Characterization of camera shake

Henry Dietz, William Davis, & Paul Eberhart ISS-228, 11:30AM, January 29, 2020

> University of Kentucky Electrical & Computer Engineering

Camera Shake

- Unintended vibration or movement of the Camera system during an exposure
- Causes:
 - Unsteady mount, e.g., human hands
 - Moving parts within the camera system, e.g., mirror, shutter curtain, lens aperture
 - Uneven motion, e.g., while panning
- Effects:
 - Motion blur
 - Reduced resolution

Methods to reduce shake

- Rigid mounts, especially tripods
- Large, heavy, dollies for smooth motion
- Brown Stabilizer, aka, Steadicam (using high intertial mass to resist shake)
- Intelligently-controlled gimbals and motion control systems

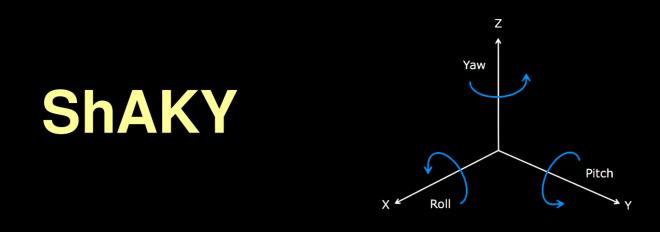
Methods to correct shake

- During exposure:
 - OIS: Optical Image Stabilization (lens elements move to compensate)
 - IBIS: In-Body Image Stabilization (image sensor moves to compensate)
- As computational postprocessing:
 - Nikon's BSS: Best Shot Selector
 - Sony et al multi-shot anti-blur mode
 - Computational deconvolution

Why characterize shake?

- Gimbals, motion control, OIS, and IBIS must respond to shake sensed in real time
 - Understand performance of systems
 - Develop better (predictive?) tracking
- Multi-shot anti-blur and deconvolution can use shake model to improve results
- To establish "best practices"

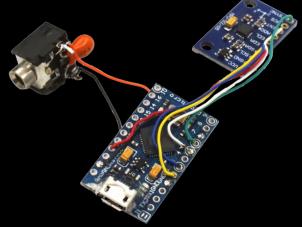
... knowledge is good, right? ;-)



Hasn't CIPA done this?

- CIPA: Camera & Imaging Products Assoc.
 - International industry association
 - 1st charge is create & promote standards
- Created standard for testing camera image stabilization systems: DC-X011-2014
 - Specifies a camera test procedure
 - Reference 500Hz vibration pattern

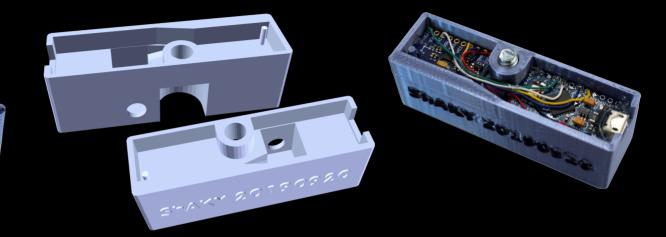
... experiments informed their test procedure, but that seems to have been the only goal


- ShAKY: SHift Angle KentuckY
 - Open source device, build for under \$20
 - 9-axis sensor, 6-axis up to ~1000Hz
 - Provision for shutter synchronization
 - Driverless USB interface
- Originally made different device for each type of camera, now have a "generic" ShAKY

ShAKY Electronics

Ν
 \mathbb{N}
 \mathbb{N}
 \mathbb{N}
 Ν
 \mathbb{N}
3
3

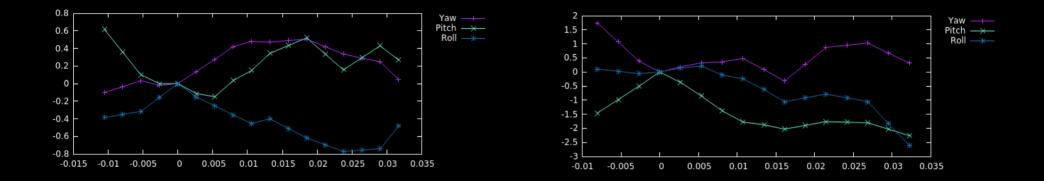
MPU-9250 Vcc MPU-9250 Gnd MPU-9250 SDA MPU-9250 SCL MPU-9250 INT MPU-9250 FSYNC 3.5mm Plug Outer 3.5mm Plug Tip



- \$8 MPU-9250 multi-chip module
 - Gyroscope roll, pitch, & yaw @ 8000Hz
 - Accelerometer X, Y, & Z @ 4000Hz
 - Magnetometer X, Y, & Z @ 8Hz
- \$5.60 Atmega328 Arduino Pro Mini
- 3.5mm jack + capacitor to debounce

ShAKY Packaging

- 3D-printed housing, originally different for each camera model, but now generic
- Goal is to get 9-axis sensor rigidly aligned with the lens... alignment error convolves the axis measurements, but can be negligible



ShAKY Software

- Calibration & sync were hard, but now work
- Software inside ShAKY (~1K lines):
 - Performs magnetometer calibration
 - Streams records to USB @ ~1000Hz with X, Y, Z, roll, pitch, yaw, sync
- Software in ShAKY's USB host (~600 lines):
 - Implements high-quality tracking
 - Given sync curtain delay & shutter speed, plots each exposure using gnuplot

ShAKY Gnuplot Output

Typical ShAKY output for Sony A6500 (IBIS and EFC disabled)

Left: sitting still on a tabletop Right: hand-held

ShAKY Operation

- Mounts on camera via ¹/₄-20 tripod thread
- Flash sync signal can be used to precisely sync with shutter
- Data streams out USB around 1000 records/s
- Powered by USB

ShAKY Measurement Procedure

- Scene is a 4K display
 - Resolution target (used to detect shake)
 - QR code created by A CGI form
- Image EXIF contains:
 - Shutter speed, etc.
 - Resolution & QR data can be added

Data encoded is: f55;nMamiya/Sekor;d6;c1;h3;v240;g2

Shake Testing Protocol

The basic protocol that we are currently using involves holding a camera about 6 feet from a display showing the QR code generated by this WWW form.

55	is the marked focal length of your lens in mm.			
Mamiya/Seko	r	is the name of your len	IS.	
The camera	a is approximately 6	feet from the	target.	
What are you using to compose the image?				

- Optical viewfinder (OVF)
- Electronic viewfinder (EVF)
- Rear Liquid Crystal Display (LCD)
- Rear LCD tilted up or down
- Estimated aim without view

How are you holding the camera?

- Mounted on a steadycam device
- Mounted on a tripod or similar
- Mounted on a monopod
- Two hands, with your body braced against something
- Two hands, body not braced
- One hand

It has been about 240 hours since I last used a hand-held vibrating power tool (e.g., a weed-whacker).

Generally, how steady do you think your grip is?

- Very steady with lots of practice holding cameras
- More steady than average
- About average
- Less steady than average

Submit Reset

Preliminary Results

- Variation in shake between consecutive shots by the same person and camera (which explains why Nikon's BSS works)
- Using Canon 5D IV, OVF (optical viewfinder) was ~2X better than rear LCD
- Using Sony A7, EVF (electronic viewfinder) was ~2X better than rear LCD
- EFC (electronic first curtain) very significantly reduced shake on Sony A7

Preliminary Results

CIPA DC-X011-2014 states yaw & pitch were measured for "*many people*" and the "*characteristic frequency and amplitude were extracted and synthesized to generate the vibration waveforms*" – claim is roll, X, Y, and Z are "practically negligible"

- We didn't see very consistent characteristics
- X, Y, and Z generally didn't matter much; roll can matter a lot – off axis
- Camera itself causes shake

Preliminary Results

Does a two-handed grip on a camera give consistently less shake than one-handed shooting?

- Surprisingly, NO!
 - Two-handed is often worse or comparable
 - Differences in which axis moves most

Conclusions and Future Work

- ShAKY is a viable low-cost, open-source, device for studying camera shake
- Some preliminary results are surprising it is worthwhile making more measurements

