Mask Recognition in the Safe Entry Scanner

Henry Dietz

COIMG-025, 13:55, January 18, 2021

University of Kentucky Electrical & Computer Engineering

The SARS-CoV-2 Pandemic

Causes COVID-19 disease

- USA fatality rate hit 4.7%, now 1.7%
- About 10-15% severe, 5% critically ill
- Initial recovery in 2-6 weeks
- Longer-lasting effects for some, no cure
- Incubation time 2-14 days, during which time one might be infectious without symptoms
- Vaccines might prevent COVID-19, but it is still possible to spread virus

SARS-CoV-2 Transmission

Contact transmission

- Transfer to mouth, nose, or possibly eyes
- Virus viable on surfaces for hours to days
- Droplet transmission (usually ≤6')
 - Inhalation of airborne droplets/particles
 - Drop out of air quickly
- Airborne transmission (to 20' or more)
 - Smaller, still much larger than the virus
 - Remain airborne for hours

Mask Use

- Fit matters
 - cover mouth
 - cover nose
 - want good seal (and no vent)
- Can trap many droplets/particles, reduce spread

Image credit: Brown Bird Design via Scientific American

Related Work

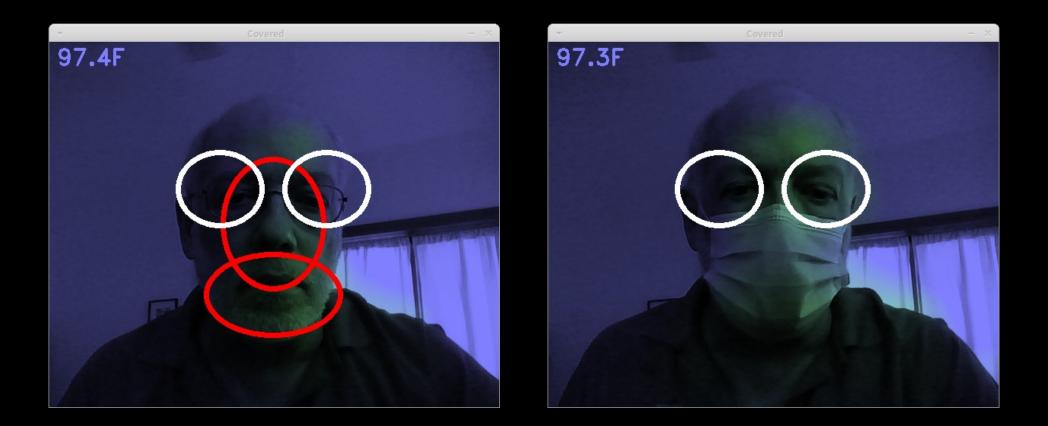
- Lots of work detecting masked faces:
 - Real-World Masked Face Dataset (RMFD)
 - Face-mask recognition has arrived for
 better or worse, National Geographic, 9/20
 COVUD 10 Mask Detector (using PEID)
 - COVID-19 Mask Detector (using RFID)
- · What's different?
 - Wider mask variety, but positioned face
 - Detect proper mask use vs. masked face
 - Part of an integrated entry scanner

Covered Safe Entry Scanner Implementation Structure

- Built using C/C++ & OpenCV
- Platforms (24/7 capable with AC power)
 - Develop & test on \$250 Linux laptop
 - Intended to run on <\$100 Android tablet
- Designed for low-quality built-in camera
- · Optional:
 - Add-on thermal imager
 - Remote sqlite database via 802.11

Mask Check At An Entry

- Use simple machine vision to automatically confirm a mask is being worn correctly
- Automatically test one person at a time
 - Begin when a person is present
 - Require person to align their face
 - Must be reasonably robust to face masks of many different designs
 - Signal and/or open door (no operator)
 - Optional temp check & contact tracing



Initial Mask Check Algorithm

- 1. Wait for a person to be detected
- 2. Show live camera view with alignment outline and instruct user to align their eyes
- 3. Use HAAR classifier to recognize left and right eyes in the designated areas and at appropriate scale
- 4. If both eyes were found, use HAAR classifiers to check for nose and mouth
 5. Unless sufficient data or time out, go to 3
 6. Announce & record nose/mouth statistics
 7. Go to 1

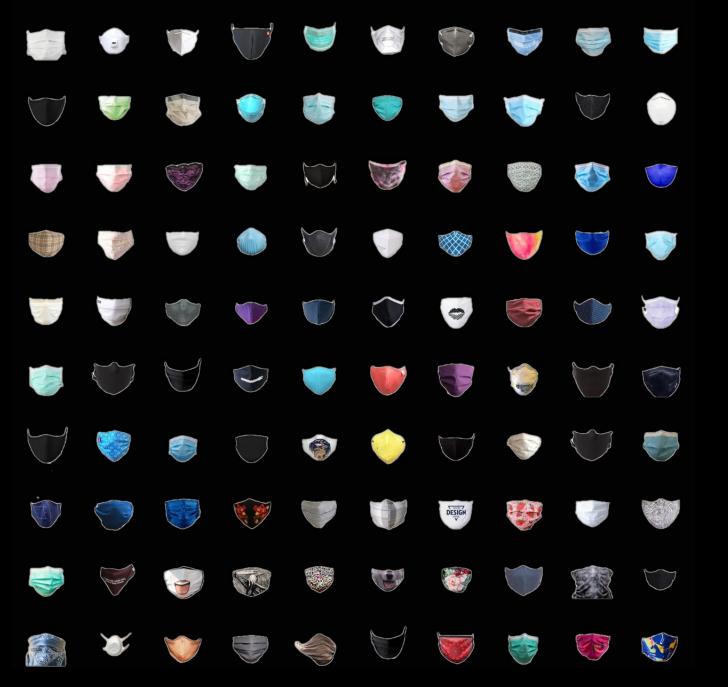
Mask Check Performance

About 85% correct rate... most wrong imagine seeing mouth

Improving Mask Check

Mouth is almost never uncovered if nose is covered:

covered nose ⇒ covered mouth


- Improves accuracy, but not real-world tested
- This also handles masks with clear sections, such as those designed to permit lip reading

Improving Mask Check

- Train a recognizer to distinguish masked, nose uncovered, and both nose and mouth uncovered in eye-aligned images
- Training data set
 - Collected & extracted 100 mask images
 - Manually warped mask images to make improperly-worn variants
 - Collected ~2000 *diverse* face images
 - Software randomly places aligned masks or variant masks on faces

University of Kentucky


Sample Training Images

Faces of people who don't exist... with aligned masks imposed at random

Training Results

Mouth covered tests only around mouth, but nose+mouth tests mostly for nose

- Temperature checks often mandated as a COVID-19 check, but are **not reliable**
 - Poor correlation with infectiousness
 - Most sensors not accurate enough

\$50 USB thermal imager based on KVIRP https://doi.org/10.2352/ISSN.2470-1173.2020.14.C0IMG-392

Contact Tracing (Optional)

- The system never matches/records a face; to identify yourself, you show a QR code
- Contact tracing using QR codes
 - Each person has one ID and *n* QR codes
 - Each entry/exit is QR code tagged
 - Infection/quarantine status by QR code
 - Person can use ID to check status online or gets flagged by QR code at entry; no personal/contact data in the database
 - Bypass checks for recently cleared IDs

Conclusions

- Recognizing proper mask use:
 - Mostly not seeing the tip of the nose
 - Mask/mouth recognition much harder
- Getting people to install a scanner is hard
 - UK filed provisional patent, but didn't allow installation: prototypes need refinement
 - Potential liability if one does install it?
 - DIY unappealing to store owners

CoveredScanner.Com

