
Refining raw pixel values using a value error model to drive
texture synthesis
Henry Gordon Dietz; Department of Electrical and Computer Engineering, University of Kentucky; Lexington, Kentucky

Abstract
The goal in photography is generally the construction of a

model of scene appearance. Unfortunately, statistical variations
introduced by photon shot and other noise introduce errors in
the raw value reported for each pixel sample. Rather than sim-
ply accepting those values as the best raw representation, the
current work treats them as initial estimates of the correct val-
ues, and computes an error model for each pixel’s value. The
value error models for all pixels in an image are then used to
drive a type of texture synthesis which refines the pixel value esti-
mates, potentially increasing both accuracy and precision of each
value. Each refined raw pixel value is synthesized from the value
estimates of a plurality of pixels with overlapping error bounds
and similar context within the same image. The error modeling
and texture synthesis algorithms are implemented in and evalu-
ated using KREMY (KentuckY Raw Error Modeler, pronounced
"creamy"), a free software tool created for this purpose.

Introduction
Most image processing is based on the assumption that a

pixel has a single, accurately known, value per color channel. If
error in these values is modeled, it most often is modeled for the
entire capture system as a final property. Instead, consider using
an error model to guide an algorithm to enhance the apparent
accuracy and precision of raw values.

In Sony ARW2 compression: Artifacts and credible repair
[1], a model for error of each lossy-compressed raw pixel value
in an ARW2 file was used to drive a raw repair algorithm using
texture synthesis. The method was shown to very effectively re-
move compression artifacts, but that processing also seemed to
provide some improvement in dynamic range and signal-to-noise
ratio (SNR) even where there were no obvious compression ar-
tifacts. This can be seen in Figure 1, which shows a fragment
of a Sony ILCE-7RM2 raw studio shot from DPReview[2] pro-
cessed normally as an ARW2 and as a raw DNG file improved by
KARWY. It was this observation that inspired the current work:
is it generally possible to enhance even uncompressed raw sensor
data using an error model to guide a texture synthesis algorithm?

Raw image data
Although most digital cameras normally save images in

heavily-processed formats based on the JPEG/JFIF standards, an
increasing number of cameras offer the option of saving raw im-
age sensor data. Here, the word "raw" does not denote one par-
ticular file format. For example, at this writing, dcraw[3] recog-
nizes and can decode raw images in any of 689 somewhat differ-
ent raw file formats. The word "raw" really refers to data being

Figure 1. Does KARWY enhance ARW2 dynamic range and SNR?

recorded from the sensor with minimal processing. The data is
generally encoded with a roughly linear gamma, and has not been
demosaiced to interpolate full color information to each pixel lo-
cation. The idea is to postpone processing decisions so that the
image data can later be transformed as flexibly as possible and
rendered without loss of quality.

Most image enhancement processing is about improving the
rendering of a captured image. In that context, it makes sense to
accept raw image data as input. For rendering, there is no reason
to modify the data in the raw file. However, altering the pixel
data in the raw file is exactly what this paper proposes.

Most image sensors are inherently analog devices and any
processing that happens in the analog domain, before analog to
digital conversion, unavoidably embeds those processing deci-
sions in the raw data. The resulting digitized raw data also is
large, so saving it directly would limit the number of photos that
can be stored on a memory card, slow file write times, and even-
tually limit the burst rate at which images can be captured. Thus,
raw sensor data is commonly compressed before writing. This
digital compression may be technically lossy or lossless, but it is
useful to note that even conversion from analog to digital values
is an inherently lossy process – and there are various other as-
pects of image sensing that introduce errors in the form of noise.
The goal in this paper is computational removal of these corrup-
tions in order to recover truer, or at least more credibly true, raw
data.

Improving raw image data
The current work does not mark the first time a tool has

been built to improve raw data rather than its rendering. Some



tools have been built to repair defects in raws from specific cam-
era models. For example, DeOrbIt[4] attempts credible repair of
"white orb" defects produced by the FUJIFIM X10 camera and
KARWY[1] attempts to undo the corruptions due to a specific
type of lossy compression used by some Sony cameras.

There also have been tools produced to generically im-
prove the raw data quality from many different types of cam-
era. Although the DNG file format is usually presented as a
more portable file format for raw image data, and Adobe Dig-
ital Negative Converter[5] appears to merely translate raw data
into that file format, the tool actually does make changes to the
raw pixel data values. Even more similar to the current work is
RawImageClearer[6], which grew out of work on an Avisynth
plugin called RemoveGrainHD; both use a "denoising box" to
implement a type of smart median filter to reduce noise in the
raw data.

Unfortunately, the goal of the current work is incompatible
with median filtering. Although median filtering is capable of ef-
fectively reducing noise and therefore improving SNR, it cannot
produce values that do not already exist in the image data. In
effect, median filtering is imposing a type of posterization that
improves SNR at the expense of reducing tonal quality. KREMY
seeks to enhance the tonal quality while simultaneously reducing
noise.

Stacking, error models, and texture synthesis

Image stacking[7] is a process by which a series of regis-
tered images of the same scene are intelligently combined. Stack-
ing can be used to enhance any of a variety of image properties;
for example, stacking images captured with various focus dis-
tances can merge the sharpest portions from each image to pro-
duce a single result image with all distances in focus. Here, the
primary goal is to enhance dynamic range and SNR, which can
be accomplished by stacking using simple weighted averaging.
This averaging need not introduce any blur as a side-effect of the
processing, and, unlike median filtering, the number of distinct
pixel tone values easily can increase by a factor of as much as n
when n images are averaged.

The problem with stacking is that the input to KREMY is
just a single image. Thus, instead of stacking images, the trick
is to stack pixel values sampled from various places within the
single original image that look similar – implementing a type
of texture synthesis. The approach is conceptually similar to
block-matching and filtering methods[8], but differs in that we
are working on raw data and explicitly using an error model to
control the synthesis. The raw value error model is not only used
to determine which portions of the image are similar enough to
be stacked, but also to derive weightings for averaging and to en-
sure that the final raw pixel values do not wander outside the error
bounds obtained from the original image. Although the improved
image might not be a more accurate representation of the scene,
no raw pixel value is ever changed by more than the uncertainty
to which its value was known; the pixel values are simply being
adjusted to more credible positions within their error bars.

Creation of a raw pixel value error model
Before any of the transformations of raw pixel values can be

performed, it is necessary to create a model of raw pixel value
error. It does not matter what this error comes from:

• Photon shot noise
• Analog sensor noise
• Imprecision in the analog-to-digital conversion
• Digital roundoff, colorspace conversions, and black point

computations, etc.
• Lossy compression

All that is needed is a computational method by which a
potential change of any particular raw pixel value can be judged
viable or not.

The error model in KARWY
In KARWY[1], the error model is dominated by accuracy

loss due to the lossy compression scheme – which is obviously
not the case for KREMY typically operating on raw values that
were either left uncompressed or were losslessly compressed. For
each pixel site, KARWY computes a minimum and maximum vi-
able true value using intimate knowledge of the ARW2 raw file
compression algorithm. Linear 14-bit raw data is converted into
11-bit values using a five-linear-segment curve specified in the
file metadata as thresholds at which the spacing between distin-
guished original values doubles. These 11-bit values are then
lossy-compressed in 32-pixel blocks using a form of delta encod-
ing. The deltas are encoded by storing precise 11-bit minimum
and maximum values for pixels in the block and using a scaled
7-bit offset to specify the other pixel values in the block.

Empirically-determined error models
In order for KREMY to be able to improve raw files coming

from nearly any type of camera, the only practical approach is to
create an error model directly from empirical measurements of
raw image data.

There are many possible levels of detail for the error model,
ranging from a single percentage noise value to calibrated per-
pixel probability distributions for the true value given the raw
value recorded for that pixel, the ISO setting used on the cam-
era, temperature of the sensor, estimate of photon shot noise, etc.
More detailed error models should lead to more accurate recon-
structions of the true raw pixel values, but the most detailed are
impractical to construct and use. KARWY was successful using
an error model tracking simple min-max range bounds for the
true pixel value at each pixel site in the image, so it seems rea-
sonable for KREMY to also focus on models that use min-max
bounds.

Image stacking to create an error model
The first approach tried for construction of the error model

was one based on stacking of multiple raw calibration images.
The error model itself takes the form of an array which is
4x65536x2, separately recording for each of 4 color channels,
for each of 216 possible 16-bit raw pixel values, the minimum
and maximum true values that could have been encoded as the
given raw value. The four color channels allow for different color



filter array designs, but two of the channels are G for Bayer RGB
cameras. Similarly, most cameras produce raw data with fewer
than 16 bits per pixel, but having the model note that some values
never occur is harmless.

A C program was written to perform the stacking of two or
more uncompressed DNG raw files to compute this pixel value
error model, and it operates as follows:

1. Set the camera to the same exposure parameters that will be
used for the images to be improved and capture multiple,
perfectly aligned, raw images of a constant scene. The full
range of tones should be present in the scene.

2. Using the -u command line option of Adobe Digital Neg-
ative Converter, each of the images is converted into an
uncompressed raw DNG file. This results in the raw data
being a contiguous block of 16-bit unsigned short integer
values in the DNG raw file.

3. The stacking does not merge the images, but rather con-
structs min-max records representing the range of 16-bit
values seen at each pixel location. For example, if a par-
ticular pixel has the value 1024 in the first image, 942 in the
second, and 984 in the third, the record would summarize
this as having the range 942..1024.

4. Each min-max record is used to "vote" for min and max
values in the range it spans. For example, if the 942..1024
record was for color channel 1, then a vote for 942 as the
min and a vote for 1024 as the max would be registered for
every value of channel 1 between 942 and 1024. For each
possible pixel value, a sorted list of possible {min, count}
and {max, count} tuples is maintained and each vote sim-
ply increments the count. To keep the data structure from
becoming too large, only a fixed maximum number of vote
tuples are kept for each combination of channel and raw
value; when that limit is exceeded, the innermost-valued
tuple is discarded to make space.

5. Once all pixel locations have been processed, the tuples for
each combination of channel and value are reduced to sin-
gle min and max values by summing votes working inward
until sufficient votes have been counted to ensure corrupted
pixels are ignored. Those min and max values are recorded,
along with a confidence value determined from the counts.

6. Although typical images contain far more pixel sites than
there are combinations of channel number and pixel value,
it is common that many combination of channel number and
pixel value simply do not occur in a given image. This can
cause some table entries to be uninitialized. More signifi-
cantly, the method used in step 4 does not necessarily pro-
duce a smooth, nor even monotonic, sequence of min and
max values as pixel value is varied within a color channel.
For example, channel 1’s max for 942 might be 1024, but
channel 1’s max for 941 might be 1030 because it came
from a different set of pixel value observations. Thus, mul-
tiple passes are made over the data to interpolate the min
and max values to make smooth, monotonic, sequences.
The interpolation processing is linear, but is biased to fa-
vor higher confidence values.

The hope was that the very expensive processing above

would produce very high quality error models, and that those
could then be used to judge the quality of error models created
by simpler methods. However, high numbers of apparently cor-
rupted pixel values compromised the results. What caused so
many pixel values to be corrupted? We had underestimated the
difficulty in maintaining perfect pixel-level alignment with high-
resolution cameras that contain moving mechanical parts, espe-
cially using certain lenses that contain optical image stabiliza-
tion. Using a color-checker target (which has large areas of con-
sistent value), and selecting the best-aligned few shots of many
captured, produced more consistent results... but the complexity
of this process was clearly impractical.

Error model based on standard deviation
Fundamentally, uncorrelated value errors behave like noise.

Thus, conventional methods for describing noise should be ap-
plicable to construction of an error model. Instead of stacking
multiple images, standard deviations were computed on patches
within a single image.

The big problem with computing noise using standard devi-
ations is that they should only be computed on regions that have
a consistent shading, but it is unclear what such regions are in
a noisy image. It is reasonable to assume that, with the excep-
tion of stars in night sky images, a true pixel value generally will
be similar to the true value of at least one of its neighbors. In-
deed, the anti-aliasing filters used in most digital cameras ensure
a certain level of similarity independent of the scene. Thus, the
idea is to use how the standard deviation changes as patch size is
changed to determine the appropriate patch size.

C code was written that determined bounds for each individ-
ual pixel site by computing the standard deviation on a block of
9 pixels and then incrementally removing the most outlying pixel
from that block until only a few pixels remained or the outlying
pixel was within 2 standard deviations. Unfortunately, the ranges
set by this approach, and by other methods based on standard
deviations, produced inconsistent results.

Error model based on similarity ranges
A very simple way to define error is that it is the difference

between things that were supposed to have the same value. Of
course, merely examining a single image, it is impossible to know
which pixel sites were supposed to have the same value. How-
ever, most scenes have various regions in which the scene ap-
pearance is constant – evenly-shaded patches. Within each such
patch, pixels that were supposed to have the same value should
have similar values even in the presence of error – error should be
relatively small. Further, measuring that small difference should
provide an estimate of the error.

Of course, large portions of most images are not evenly
shaded. Regions of an image that have relatively large differ-
ences between same-channel nearby pixel values tell us nothing
about the error because the true pixel values probably differed by
an unknown and significant amount. These regions are simply
ignored when constructing the raw value error model.

Clearly, an error model produced by examining only the
properties of contiguous blocks of pixels that have similar val-
ues cannot produce a different model for each pixel site. Thus,



the error model produced is essentially of the same form as was
produced by image stacking: an array which is 4x65536x2, sepa-
rately recording for each of 4 color channels, for each of 216 pos-
sible 16-bit raw pixel values, the minimum and maximum true
values that could have been encoded as the given raw value.

Crude filtering (not a full standard deviation computation)
was used to identify regions that were likely to have resulted from
an evenly-shaded portion of the scene. Each such region was
used to create a min-max range estimate, which was then pro-
cessed very much like the min-max records obtained using im-
age stacking, but with a simpler voting procedure. Values miss-
ing min-max data were given interpolated min-max values and
two additional passes forced the min and max values to be mono-
tonic. This simple approach was the most effective one tried, and
is the current implementation in the C-coded KREMY.

The complete enhancement algorithm
The first step in using KREMY is to use logic taken from

dcraw to open an uncompressed raw DNG file and obtain a
pointer to the raw image data so that it can be examined and re-
vised. However, that presupposes that the raw image is provided
in DNG format – an option few cameras provide. Thus, Adobe
Digital Negative Converter[5] is used to convert a native raw into
an uncompressed DNG with appropriate metadata.

Once the raw data from the DNG is accessible, similarity
range analysis is applied to create the error model. The resulting
model provides minimum and maximum bounds for each possi-
ble 16-bit value.

Smoothing
To reduce the impact of specific types of visual artifacts,

KARWY performs two types of stochastic smoothing operations
on the the pixel estimates. The first is optional, with adjustable
strength. It attempts to identify pixels that had initial values that
are almost certainly far from their correct value, and for each sub-
stitutes an initial value that would yield smoother local shading.
This substitution does not necessarily blur details; it basically bi-
ases the texture synthesis to favor a smoother tonal transition.
A second type of smoothing is always performed by KARWY.
It attempts to recognize and break-up "Blondie" parallel-line ar-
tifacts which are specific to Sony’s lossy ARW2 compression.
Neither of these smoothing methods are used in KREMY; in fact,
no smoothing is applied per se.

Texture Synthesis
Texture synthesis is the process of creating a texture that

"looks like it belongs" and inserting it in an image. Normally,
the unit of synthesis is one or more pixels, as was the case in
the texture synthesis we implemented in DeOrbIt[4]. In contrast,
here, as in KARWY[1], we only seek to synthesize refinements
of pixel values. Thus, the goal is to synthesize the most credible
texture while keeping all pixel values within their computed error
bounds.

It is important to note that texture synthesis is not smooth-
ing nor is it blurring the image. By definition, texture synthesis
is producing patterns – logically the opposite of smoothing. In
fact, KREMY’s texture synthesis may enhance edges at the same

Figure 2. Spiral weighting pattern for texture synthesis

time as reducing noise (increasing SNR). The reason is simple:
texture synthesis is replacing random noise with more highly cor-
related patterns. Both sharp edges and smoothly-shaded regions
are highly correlated patterns of pixel values.

The texture synthesis algorithm used in KREMY is very
closely related to that used in KARWY[1]. Although many tex-
ture synthesis methods merely copy pixel values, the methods
used in both KARWY and KREMY compute improved raw pixel
values using weighted averages of values of other pixels that ap-
pear in a similar context within the image. Both also determine
similarity by applying an error model. As was suggested earlier
in this paper, the primary difference between the two tools is in
the error model used.

Color filter array issues
There is a second significant difference between the texture

synthesis models used in KARWY and KREMY: all Sony cam-
eras using the ARW2 raw format that KARWY processes incor-
porate very similar Bayer color filter arrays. While most digital
cameras use color filter arrays, they do not all have the same col-
ors or pattern.

Classic Bayer patterns repeat a 2x2 block pattern of Red,
Green, Blue, and Green. However, the Green pixels in Red/Green
rows are often slightly different from those in Blue/Green rows.
In dcraw[3], this mismatch is managed using a command-line op-
tion to force separate interpretation of two Green channels. Sev-
eral 2x2 patterns explicitly using four-color filters also have been
proposed:

• Cyan, Yellow, Green, Magenta – Canon PowerShot G1
• Red, Green, Blue, and Emerald (Cyan) – Sony F828
• Red, Green, Blue, and White (Clear)

KREMY supports all 2x2 patterns by always treating each



Figure 3. Canon EOS Digital Rebel XT @ ISO 100 showing crop

Figure 4. 150x100 pixel crop, normally processed raw

position in the 2x2 pattern as a separate color channel. This
potentially misses opportunities for improving Green data, but
makes it unnecessary for KREMY to be told what colors are in
each position. This "colorblind" four-channel treatment is not
sufficient to handle the few cameras that use larger repeating
blocks (e.g., the Fujifilm X-Pro1) nor in systems that layer colors
(e.g., the Foveon X3 sensor in the Sigma DP2), but many of those
cameras are also problematic for DNG raw encoding.

Spiral search for similar pixels
In KREMY, as in KARWY, the texture synthesis is based

on searching for similar pixels in a 1089-position spiralling-out
sequence centered at the pixel in question, with positions out-
side the image boundaries ignored. However, KARWY does this
search only for pixels with ambiguous values, while KREMY
tries to improve all pixel values.

The improved value of each pixel is a weighted average of
the values of similar pixels found. The similarity weighting for a
match is the product of:

• the similarity of a 3x3 block of pixels around the search
candidate to those around the pixel to be improved. Simi-
larity is zero if any of the nine corresponding pixels has a
value which is not within the computed value error bounds.

Figure 5. 150x100 pixel crop, enhanced KREMY vs. raw

Figure 6. 150x100 pixel crop, KREMY-improved raw

Otherwise, similarity of each pixel is scored as 1 minus the
square of the fraction of the error bound that the pixel is
distant from the reference pixel value. Weighting by the
product of the eight neighbors is the primary reason that
credible textures are synthesized. Note that the only one of
the nine pixels coming from the same color channel as the
pixel being improved is the one in the center.

• the base distance weighting for that position in the spiral
plus 1. The base distance weightings in the spiral decrease
with distance as shown in Figure 2, which is the same pat-
tern used by KARWY[1].

Each similar pixel’s value is multiplied by the similarity and
added to a sum, which is finally divided by the sum of the similar-
ities to get the new pixel value. To ensure stable behavior when
no similar pixels are found, the sum is initialized with the origi-
nal pixel value. To speed the processing, the search may also be
truncated after the similarity sum has reached a value (currently
64) indicating high confidence in the improved value.

Final processing
After the pixel values have been updated by texture synthe-

sis, the data may be saved back into the DNG file. However, there
are two types of minor flaws that can be introduced by the fact



Figure 7. Canon PowerShot S70 @ ISO 50 showing crop

Figure 8. 160x120 pixel crop, normally processed raw

that each update of a pixel can skew the properties of the image.
The first correction involves the average brightness of the

image. Changes may have made the image brighter or darker than
it was before. A simple pass is made over the image comparing
brightness of each spot to the original brightness in that spot. If
necessary, the pixel’s value is bumped up or down to keep the
overall brightness from changing dramatically.

The second correction involves local contrast. If a pixel
value change increased local contrast, this single pass attempts
to reduce contrast back to the original levels.

These final processing steps help avoid introducing blotchy
patterns, but they can be omitted with minimal harm.

Results
To experimentally evaluate KREMY, raw files from a wide

range of cameras were collected and processed with the tool. In
all cases, KREMY was run without any parameters specified; the
enhancement was determined completely automatically based on
KREMY’s analysis of the uncompressed DNG input.

Of course, raw files need to be rendered to be shown in this

Figure 9. 160x120 pixel crop, enhanced KREMY vs. raw

Figure 10. 160x120 pixel crop, KREMY-improved raw

paper. For that purpose, dcraw or rawtherapy (set to "neutral")
were used to render the images. After cropping (and scaling by
converting each pixel into an 8x8 block so that JPEG rendering
within a PDF would not alter it), some of the images were given
simple level adjustments to make differences more visible.

Base ISO APS-C Bayer DSLR example
Figure 3 shows a raw photo captured using an APS-C sensor

format Bayer-filtered DSLR, the Canon EOS Digital Rebel XT,
and the crop area marked in green is shown in Figure 4. This im-
age was taken in August 2006 and we no longer have this camera,
so it would not be possible to capture additional shots to create an
error model by stacking. Further, the image was captured at ISO
100, the very low-noise base ISO of the camera. Yet, as the crop
from the KREMY-improved raw in Figure 6 clearly shows, noise
is reduced without introducing any obvious artifacts. Note that
the images presented in this paper have all been rendered with
just 8 bits per color channel, so it should be a little surprising that
noise is visible, and visibly reduced by KREMY, for a camera
that used a 12-bit analog-to-digital converter. The difference be-



Figure 11. Sony NEX-7 @ ISO 1600 showing two crops

Figure 12. 150x100 pixel crop, normally processed raw

Figure 13. 150x100 pixel crop, normally processed raw

tween the original raw and KREMY-improved raw, auto-leveled
to make the differences more visible, is shown in Figure 5.

Base ISO Compact Bayer example
Raw image capture is not just available in DSLRs (digital

single-lens reflex cameras), but has long been available in more
compact cameras – especially those intended as more portable

Figure 14. Full image, enhanced KREMY vs. raw

Figure 15. 150x100 pixel crop, KREMY-improved raw

Figure 16. 150x100 pixel crop, KREMY-improved raw

"second cameras" for serious photographers. Figure 7 shows
a raw photo captured using the Bayer-filtered 1/1.8" CCD of a
Canon PowerShot S70 in August 2005, and the crop area marked
in green is shown in Figure 8. Again, this image was captured
at the camera’s lowest available ISO 50, but there is still signif-
icant noise visible. Figure 10 shows the dramatic improvement
made by using KREMY to improve the raw. The auto-leveled



Figure 17. Olympus E-M1 Mark II @ ISO 400 crop, original raw

Figure 18. Olympus E-M1 Mark II @ ISO 400 crop, KREMY-improved raw

difference image in Figure 9 makes it clear that the transforma-
tion performed in texture synthesis is quite complex, with some
obvious correlations, but overall there was much more random
noise in this image than in the one from the Canon DSLR. A
higher noise level is expected given the much smaller sensor, and
correspondingly smaller pixels, used in the S70; however, the
crop is also taken from a darker portion of the image, which in-
creases the impact of photon shot noise and dark noise. Note that
the edges in the scene (even the diffuse lines on the roof) are at
least as well defined as they were in the original raw despite the
smoother tonality of the KREMY-processed raw.

High ISO APS-C Bayer Mirrorless example
With more modern higher-end cameras, the noise at low

ISOs is generally not strong enough to visibly survive the pro-
cessing required to format this paper for publication. However,
at high ISOs in lighting requiring longer shutter speeds, noise
still becomes apparent and even overpowering. Figure 11 shows
an image of Mount Rushmore National Memorial taken just as
the park was closing on a cloudy (dark and starless) night in June

Figure 19. Nikon D810 @ ISO 1600 eye crop: left raw, right KREMY

Figure 20. Nikon D810 @ ISO 1600 foot crop: left raw, right KREMY

Figure 21. Apple iPhone 7 crop: left raw, right KREMY

2012; the minimal lighting required the Sony NEX-7 to use a
0.3s exposure at ISO 1600 to capture detail in the carved faces.
Both crops of this image are severely underexposed, yet KREMY
provided an obvious improvement in both SNR and clarity of the
shapes of objects in the scene. KREMY’s transformation of the
crop in Figure 12 to that in Figure 15 is quite effective, but the
transformation of Figure 13 into Figure 16 is far more dramatic.



Figure 22. Canon PowerShot G1 @ ISO 50 crop: left raw, right KREMY

The most disturbing noise in Figure 16 has a structure that
is related to a flaw in Sony’s lossy raw compression algorithm –
the "Blondie" parallel line artifacts described in the paper about
KARWY[1]. KARWY directly uses the ARW compression data
to recognize and repair these artifacts, while KREMY works off
an uncompressed DNG. KREMY never sees the ARW compres-
sion data, so it does not recognize these structures as artifacts:
they are not part of the error model – although the texture synthe-
sis still manages to improve many of them. For example, the mild
"color blocking" seen in Figure 14 is correcting blocking artifacts
created by Sony’s block compression algorithm despite KREMY
having no direct knowledge that such a problem existed.

Medium ISO Micro Four Thirds Bayer example
Micro Four Thirds and 1" sensor cameras are popular for

packing lots of features into a smaller system, but they do suf-
fer considerably more noise than larger sensors. The Micro
Four Thirds Olympus E-M1 Mark II produces high quality im-
ages, but even at ISO 400 there is plenty of room for improve-
ment by KREMY. Figures 17 and 18 clearly demonstrate this
with a 160x120 pixel crop from a raw studio shot posted by
DPReview[2].

High ISO Full-Frame Bayer DSLR example
The Nikon D810 offers image quality among the best of

any full-frame Bayer DSLR. Figures 19 and 20 are 75x100 crops
from an ISO 1600 raw studio shot posted by DPReview[2]. While
both of these crops show significant reduction in noise with no
loss is apparent sharpness, Figure 20 shows something unex-
pected: KREMY has partially repaired moire’ that Bayer interpo-
lation created due to below-Nyquist sampling of the vertical line
texture. The repair is not always this effective, but at least partial
repair is a natural consequence of texture synthesis because the
texture contrast is enhanced, making smart Bayer interpolation
algorithms less likely to enhance the wrong gradient. Note that
the foot crop should really be a monochromatic image, but the
false color cast comes from frequencies of the texture and pixel
placement beating against each other – an artifact more appropri-
ately repaired in rendering than by changing the raw data.

Figure 23. Sony DSC-F828 @ ISO 64 crop: left raw, right KREMY

Base ISO Cell Phone example
Over the last few years, it has become common for cell

phones to offer raw capture. DPReview is now testing cell phone
cameras in much the same ways that they test other cameras. Fig-
ure 21 shows a crop of a portion of a paintbrush from a DPRe-
view raw studio shot[2] captured with an Apple iPhone 7 at base
ISO. The tiny sensor produces significant noise, but KREMY’s
processing is fairly effective.

Base ISO Non-Bayer examples
The Canon PowerShot G1 was one of the first compact "pro-

sumer" cameras, and in 2000 it was one of the first compact cam-
eras to support raw capture, but it did not use a Bayer filter. In-
stead, it used a color filter array based on the more transparent
subtractive primaries: Cyan, Magenta, Green, and Yellow. Even
so, the camera’s base sensitivity is just ISO 50. Figure 22 shows
an 80x120 crop of a goldfish surfacing. KREMY does improve
it, but the fact that each raw value is stored in just 10 bits limits
how smooth tonal transitions can be made.

The Sony DSC-F828 is a very unusual camera. Although it
is not small, it uses a small 2/3" CCD to enable the equivalent
of a 28-200mm f/2-2.8 zoom lens, lets the body freely tilt rela-
tive to the lens, provides the "NightShot" ability to remove the
NIR-blocking filter, and uses a Red, Green, Blue, and Emerald
color filter array instead of the usual Bayer pattern. As Figure
23, an 80x120 crop of the decoration on a Turkish plate, shows,
KREMY works just as well to improve this non-Bayer raw data
as it does to improve raw data from Bayer sensors.

Quantifying improvement via random noise
Several different methods were used to try to determine how

much the SNR and dynamic range were being improved. The ob-
vious method, direct measurement of SNR, did not correlate well
with human perception – probably because the texture synthe-
sis process actually enhances textural edges while it is reduc-
ing noise, leaving very little change in the contrast that SNR
measures. Thus, instead of numerically measuring SNR, known
amounts of noise were added to an image and quality of the vari-
ous raw and KREMY-improved raws were compared.



Figure 24. 150x100 pixel crops from top to bottom with 0, 4, 5, and 6 LSBs randomized; left original, right by KREMY



Figure 25. Canon 5D Mark IV @ ISO 250 showing crop region

The original reference image, shown in Figure 25 (with a
150x100 pixel crop area marked in green), was captured using
a Canon 5D Mark IV at ISO 250 – an ISO at which there is a
very small level of noise present. Noise was added to the original
raw by replacing the least-significant bits (LSBs) of each pixel
value with a random bit pattern. The test images created this
way had from 0 to 8 LSBs destroyed. The improvement in SNR
and dynamic range can thus be determined by selecting which
KREMY-improved images looked at least as good as the original.

Figure 24 shows raw crops of the original on the left and the
corresponding KREMY-improved crop on the right. For space
reasons, only the versions with 0, 4, 5, and 6 LSBs randomized
are shown in the figure.

It is clear that the right side images are generally better than
the left side ones, but the surprising fact is that randomizing up
to four bits was not quite sufficient to make the KREMY image
appear noisier. That would suggest that SNR and dynamic range
are being improved by at least several stops. However, also note
that there is no magic in KREMY; some image files simply do
not have enough data allow recovery, and it is fairly clear that
randomizing 6 bits in each 14-bit pixel reading is removing too
much data.

Conclusion
A year ago, KARWY proved that the unfortunate artifacts

caused by Sony’s ARW2 lossy compression could be very credi-
bly repaired in raw image data by a novel type of computational
texture synthesis. This texture synthesis was novel primarily in
that it did not seek to create new pixel values, but to incrementally
enhance the accuracy of pixel values while keeping them within
error bounds computed based on how the lossy compression may
have caused pixels to diverge from their true values.

The work described in the current paper, KREMY, extends
this concept to attempt to incrementally enhance all pixel values
for a much wider range of cameras. It is much more difficult to
create a good error model for KREMY because, unlike analysis
of lossy-compressed ARW2 files, the source of the error is not
known when examining only an uncompressed raw DNG file.
However, viable methods for empirical creation of an error model
were devised and implemented.

With relatively straightforward modifications, a subset of
the algorithms used in KARWY were able to apply the error
model to synthesize credible enhancements for uncompressed
DNG raws from a wide range of cameras. An improvement in
dynamic range and SNR is apparent, however it was difficult to
measure because the processing generaly enhances correlations:
evenly-shaded areas become more even, but other structures also
become more defined. Replacing the low bits of raw data with
random noise revealed that an improved image was comparable
to an original with 4 more bits in each pixel value – a shockingly
large improvement.

Despite being written in C, KREMY is currently too slow
for use via a WWW form (as was done for KARWY) or to be ap-
plied to all images as part of the default raw processing pipeline.
Future work centers on increasing KREMY’s speed and adding a
mechanism allowing user control of how aggressive the enhance-
ment processing should be.

Acknowledgments
This work is supported in part under NSF Award #1422811,

CSR: Small: Computational Support for Time Domain Continu-
ous Imaging.

References
[1] Henry Gordon Dietz and Paul Selegue Eberhart, Sony ARW2 Com-

pression: Artifacts And Credible Repair, Electronic Imaging 2016,
Visual Information Processing and Communication VII, pp. 1-10
(February 14, 2016); doi:10.2352/ISSN.2470-1173.2016.2.VIPC-
227

[2] Digital Photography Review (DPReview) Studio shot comparison,
https://www.dpreview.com/reviews/image-comparison (2017).

[3] Dave Coffin, Decoding raw digital photos in Linux,
http://www.cybercom.net/d̃coffin/dcraw/ (2016).

[4] Henry Gordon Dietz, FUJIFILM X10 white orbs and DeOrbIt, Proc.
SPIE Electronic Imaging 2013, Digital Photography IX, 866005
(February 4, 2013); doi:10.1117/12.2004411 (2013).

[5] Adobe Digital Negative Converter 9.x,
https://helpx.adobe.com/photoshop/using/adobe-dng-converter.html
(2016).

[6] Rainer Wittmann, A non-blurring denoiser
of raw digital images, (March 15, 2009);
http://home.arcor.de/kassandro/RawImageClearer/ (accessed 2016).

[7] Deep Sky Stacker, http://deepskystacker.free.fr/ (accessed November
26, 2016).

[8] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen
Egiazarian, Image denoising with block-matching and 3D filtering,
Proc. SPIE 6064, Image Processing: Algorithms and Systems, Neu-
ral Networks, and Machine Learning, 606414 (February 17, 2006);
doi:10.1117/12.643267

Author Biography
Henry (Hank) Dietz earned his PhD at Polytechnic University and

joined the faculty at Purdue University’s School of Electrical and Com-
puter Engineering in 1986. Since 1999, he has been a Professor and
Hardymon Chair at the University of Kentucky. Although best known for
his work in compilers and parallel supercomputing using Linux PCs, his
current focus is on improving cameras as computing systems.


