Refining raw pixel values using a value error model to drive texture synthesis

Henry Dietz

IPAS-084, 3:50PM January 31, 2017

University of Kentucky Electrical & Computer Engineering

Related Work

- Adobe DNG Converter changes pixel values, presumably in applying color / black point
- RawImageClearer started as Avisynth plugin RemoveGrainHD, uses smart median filter
- Dabov, et al, *image denoising using block* matching and 3D filtering
- Many *image stacking* programs

The Idea: "raw" Repair

- "raw" means "uncooked" or "unprocessed" but if data was corrupted, why not repair it?
- Fuji X10 "white orbs" blooming ⇒ DeOrblt
- Sony ARW compression artifacts ⇒ KARWY (KARWY also reduces noise?)

KREMY

- KREMY (pronounced "creamy") is KentuckY Raw Error Modeler
- Goal is not improved rendering, but removal of value errors introduced by noise, etc.
- Refines uncompressed DNG data using:
 - Texture synthesis *within error bounds*
 - An empirically-determined error model (KARWY models lossy ARW compression)

Empirical Error Models

- For each pixel site, probablity distribution for possible true values given value recorded *– too expensive to construct*
- For each recorded color channel value, probability distribution of possible true values - used in tik TDCI software
- For each recorded color channel value, minimum and maximum viable true values (treat raw as 4 channels)

Image Stacking Error Model

- Model is 4 channels x 2¹⁶ values x (min, max)
- Stack 2 or more DNG raws:
 - 1. Constant scene, similar exposure settings
 - 2. Adobe DNG Converter –u to make DNGs
 - 3. Compute (min, max) for each pixel site
 - 4. Vote for (min, max) values in model
 - 5. Sum votes to establish reliable (min, max)
 - 6. Interpolate to smooth, monotonic, model

KREMY Error Model

- Stacking was impractical and inconsistent
- Models based on a single image:
 - Change in patch standard deviation
 - Similarity range in evenly-shaded patches
- Model is 4 channels x 2¹⁶ values x (min, max), processed to force monotonicity

Enhancement Algorithm

- Re-uses some code from KARWY, but:
 - No smoothing (KARWY does 2 types)
 - Different computation of error model
- Texture synthesis based on:
 - Finding up to 1089 similar pixel sites (sort-of like stacking up to 1089 images)
 - Similarity determined by 3x3 block having all pixels within errors bounds of 3x3 block around this pixel

Enhancement Algorithm

 Similarities weighted by distance in spiral search order (which can end early)

- New pixel value always within error bounds
- Minor adjustments are (optionally) made to final pixel values to approximate
 - Original average brightness
 - Original average local contrast

Overall Impact Of KREMY

- Behaves most like image stacking; primary effect is improving SNR
- Does not posterize (unlike median filtering)
- Texture synthesis also enhances textures; edges are given more consistent appearance
- All changes are held within error bounds; all changes are quite subtle (and really hard to see on projected slides)

Base ISO APS-C Bayer DSLR Canon EOS Digital Rebel XT @ ISO 100

Base ISO Compact Bayer Canon PowerShot S70 @ ISO 50

High ISO APS-C Bayer EVIL Sony NEX-7 @ ISO 1600

High ISO APS-C Bayer EVIL Sony NEX-7 @ ISO 1600 (badly underexposed)

Medium ISO MFT Bayer Olympus E-M1 Mark II @ ISO 400

High ISO FF Bayer DSLR Nikon D810 @ ISO 1600

• Particularly effective – even reduces moiré

Base ISO Cell Phone Apple iPhone 7 @ ISO 20

Base ISO Non-Bayer (CMYG) Canon PowerShot G1 @ ISO 50

Base ISO Non-Bayer (RGBE) Sony DSC-F828 @ ISO 64

• Quantify improvement by replacing LSBs with random noise, compare original vs. KREMY

- All raw bits intact
- Left: original raw; Right: KREMY raw

- 4 LSBs replaced with random data
- Left: original raw; Right: KREMY raw

- 5 LSBs replaced with random data
- Left: original raw; Right: KREMY raw

- 6 LSBs replaced with random data
- Left: original raw; Right: KREMY raw

- Left: all raw bits intact
- Right: KREMY raw from 4 LSBs replaced

Conclusions

- Empirical construction of value error model
- Texture synthesis within error bounds is a subtle improvement, but like ≥4 extra bits
- Works for all 2x2 CFA pattern DNGs
- Future work: speed-up algorithm, add controls

