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Abstract
Super-resolution (SR) image processing describes any tech-

nique by which the resolution of an imaging system is enhanced.
Normally, the resolution being enhanced is spatial; images are
processed to provide noise reduction, sub-pixel image localiza-
tion, etc. Less often, it is used to enhance temporal properties –
for example, to derive a higher framerate sequence from one or
more lower framerate sequences. Time domain continuous imag-
ing (TDCI) representations are inherently frameless, represent-
ing a time-varying scene as a compressed continuous waveform
per pixel, but they still imply finite temporal resolution and ac-
curacy. This paper explores computational methods by which the
temporal resolution can be enhanced and temporal noise reduced
using a TDCI representation.

Introduction
TDCI[1] representations offer a variety of benefits, some of

which have been explored in publications at Electronic Imaging
2014, 2015, and 2016. For example, TDCI allows virtual ex-
posures for images to be specified after capture, supporting ar-
bitrary selection of the interval represented by a computation-
ally extracted image while providing high dynamic range inde-
pendent of virtual shutter speed. Beyond introducing the basic
concepts, our earlier work centered on methods to capture TDCI
streams directly or to synthesize them using conventional cam-
eras. The current work centers on methods by which the temporal
resolution can be improved beyond the shortest pixel integration
time supported by the capture device. Unlike conventional video,
TDCI streams can represent arbitrarily precise timing informa-
tion. Thus, expensive computational enhancement of temporal
quality can be performed and results encoded once, then used to
cheaply render many images from the same TDCI stream – for
example, rendering a movie at various framerates.

Although temporal interpolation between images is fairly
common, our goal is not to simply create intermediate frames.
Rather, the goal is to produce the highest possible temporal qual-
ity for each pixel value change – without imposing constraints
that would require all pixels to change state simultaneously at
frame edges. This paper explores various methods by which such
temporal enhancement can be accomplished and how effective
these methods can be.

What is known
Before discussing algorithms for super-resolution temporal

interpolation, it is important to understand what a TDCI stream
actually encodes. What are the empirically known data for a par-
ticular pixel?

There are some applications of imaging, primarily in the

scientific and engineering domains, that are directly interested
in measuring properties of photons. However, that is not what
people care about when they look at a photograph. The underly-
ing assumption of TDCI is that a photograph is intended to be a
model of scene appearance. An image should look approximately
like we would perceive the scene. Individual photons are merely
the mechanism by which a camera samples that appearance; they
are not part of the model per se.

For example, imagine that one is photographing a blue piece
of paper. The paper’s appearance is blue because the material of
which it is made preferentially reflects a larger fraction of blue
light than other colors. However, in some small time interval,
there might only be a single red photon reflected. Conventional
wisdom would argue that the paper is red during that time inter-
val. In contrast, TDCI suggests that during that time period the
paper is probably the same blue it was before and after that time
interval, but the lack of sufficient photons to sample it makes us
unable to prove our hypothesis. The more precisely one attempts
to know when an object has a particular color and brightness, the
lower the confidence and precision with which one can actually
measure the color and brightness.

This implication of this is that all empirically-measured
pixel values, even those made with theoretically perfect photon
detectors, are noisy averages sampled over a period of time. The
smaller the number of photons used to sample, the greater the
uncertainty. Without control over the rate of photon arrival, the
only way to sample enough photons to have high confidence in
the pixel values is to sample over a relatively long interval. That
additionally requires that the scene content itself not be changing
during that time.

Most temporal super-resolution algorithms are really for
frame-rate up-conversion; they focus on estimating how objects
move within the scene between evenly-spaced frames[5], often
also applying some filtering to reduce noise[6]. That emphasis is
based on two assumptions:

1. The pixel values in a frame (an image within a temporal se-
quence of images) are correct; temporal interpolation must
pass through these values at the recorded time

2. The majority of change between frames is due to changes in
the scene appearance (primarily motion of scene elements
relative to the camera); the scene is changing faster than the
light by which it is sampled

The work in this paper makes neither of those assumptions,
nor does it require that the scene is sampled a frame at a time
nor at regular intervals. Pixel samples are noisy values within
approximately knowable error bounds and most small, rapid,
changes are due to noise rather than changes in scene appearance.



Figure 1. Constant within error bounds is probably constant

If objects within the scene move, they do not move far between
temporal samples. The different assumptions made in this paper
also reflect the idea that capture is made at higher temporal sam-
pling frequencies or framerates – and TDCI is intended primar-
ily for image data with 1/240s or finer temporal resolution. In
sum, our goal is improving temporal and value accuracy of pixel
waveforms to enable extraction of extremely high quality stills
representing arbitrary time intervals.

Sample quality and error bounds
Before discussing methods for improving the quality of

TDCI image data, it is important to note what is known about
the pixel samples.

The time interval represented by each pixel sample is known
very precisely, usually to an accuracy that is a small fraction
of the shutter speed. Even samples timed in software (e.g., us-
ing CHDK[7] inside a Canon PowerShot) generally have timing
known to within 0.001s. The problem is resolving pixel values at
times within or between samples.

Error bounds on pixel samples are a much more complex
thing to determine precisely, but we have several viable method-
ologies. The standard one used with TIK[3] is computed by anal-
ysis of a time sequence captured of a completely static scene us-
ing as close as possible to the same exposure parameters, ambient
temperature, etc., that is used for the TDCI pixel data to be pro-
cessed. TIK can perform the analysis of the test capture to pro-
duce a 256x256 map for each color channel in which the pixel
values are scaled to 0..255 and the [x][y] entry reflects the prob-
ability that a pixel sampled with value y is subsequently sampled
as the value x. These error maps are generated as PPM images, so
they can be manipulated with image editing tools; for example,
an ISO setting between ones for which error map images were
experimentally determined can be approximated by weighted av-
eraging of error maps from lower and higher ISOs.

The actual error model used here, and in TIK, is that of hard
bounds on minimum and maximum values. These bounds are de-
termined by setting a probability threshold which is then applied
to the error map.

Purely temporal interpolation
The simplest methods for increasing temporal resolution ex-

amine the value of each pixel individually as it evolves over time.

Figure 2. Simple averaging can violate sample error bounds

It would seem very straightforward to interpolate between the
points on the one-dimensional trajectory of a pixel’s values over
time, but the pixel values read are not points:

• Each sampling of a pixel value represents an average mea-
sured over a time interval, not a reading at a point in time.

• Each sampling of a pixel value is subject to error due to
noise and perhaps other corruptions, such as artifacts from
lossy compression – as used for JPEG stills, MPEG video,
etc.

It is easy for a simple interpolation process to magnify these
errors, actually synthesizing temporal noise. The goal in purely
temporal interpolation is to maximize the probability that the in-
terpolated values reflect what the true pixel values would have
been at each point in time.

Variation within error bounds
Most of the area of most scenes does not change appearance

from one frame to the next. This should be by far the most com-
mon case for the evolution of each pixel’s sampled value over
time... but it isn’t. In fact, it is very rare that the value is identi-
cal from one sample to the next. Noise and other corruptions of
the data cause small, largely random, variations in the pixel value
sampled over time.

A simple example of this is depicted in Figure 1. Each of the
green blocks represents a pixel sample, with width equal to the
exposure integration time (shutter speed) and height equal to the
average value of the pixel in that interval. The partially-shaded
region at the top of each green block represents the error bounds
on that value. The red line shows a highly credible interpolated
value – a constant value that passes within the error bounds for
each sample.

The fact that the red line is constrained by multiple slightly-
different bounds essentially gives it higher accuracy than any of
the individual readings could afford. This is the basic princi-
ple behind image stacking[2, 4] as it is commonly used in astro
photography. Corresponding pixel value samples from a time se-
quence of aligned images of the exact same scene are averaged,
often dramatically improving both dynamic range and signal-to-
noise ratio (SNR).

Our initial implementation of interpolation in TIK[3] recog-
nizes when temporally-adjacent pixel samples have overlapping



Figure 3. How conventional video handles slopes

Figure 4. Linear interpolation between sample centers

error bounds and combines those samples. The combining can
be as simple as averaging the reported values for all samples, but
simple averaging can result in pixel values that land outside the
error bounds for some samples. Figure 2 shows a case in which
the average, shown with a dashed red line, would fall outside the
error bounds for the second sample.

Assuming that the error bounds are in fact correct, the con-
stant value selected to cover all temporally-adjacent samples with
overlapping bounds must reside within the intersection of all the
bounds. On that basis, we argue for the following procedure,
which produces the solid red line shown in Figure 2:

1. Determine the average of the pixel sample values,

avg = (
N

∑
n=1

samplen)/N

2. Determine the lower bound on the intersection,
min = maximum(min1,min2, ...minN)

3. Determine the upper bound on the intersection,
max = minimum(max1,max2, ...maxN)

4. Find value in bounds nearest to average,

value =


min if avg < min;
max if avg > max;
avg

In fact, this concept of the average staying within bounds
also can be used to detect when a sequence of stackable values
actually hides a slowly-changing scene. Slow dimming or bright-
ening of the scene can produce overlapping bounds that skew

Figure 5. Linear interpolation between sample centers fails

Figure 6. Simple linear interpolation between sample intervals

higher or lower over time. To avoid interpreting such a shallow,
and noisy, slope as a constant, one could simply end the sequence
as producing a constant when the average value first hits the in-
tersection minimum or maximum. In such a case, only the third
through fifth samples of Figure 2 would be treated as having a
constant true value.

Slopes
Interpolation of an essentially constant value is not really

improving its temporal resolution. Temporal super-resolution re-
ally happens only when sample values are changing by significant
amounts.

Let us begin by considering interpolation along samples fol-
lowing a simple slope, as shown in Figure 3. In this example, we
make the simplifying assumption that each of the sample values
is fully precise and accurate; the min and max error bounds are
the sample value.

The normal handling of video sequences is that, although
the shutter speed may be relatively fast, each pixel sample is
treated as though it represented the true pixel value for the en-
tire period up to initiating capture of the next frame. For exam-
ple, if the width of a sample in Figure 3 is 1/60s, the framerate
is 1/30s and the second 1/60s of each 1/30s interval is assumed
to be identical to the first half. In cinematography, the ratio be-
tween the length of the exposure interval and the time period per
frame is commonly known as the shutter angle and expressed as
angle= 360o×shutter/period. Thus, the example would be said
to have a 180o shutter angle.



Figure 7. Lagrange (and other polynomial) interpolation has trouble lying flat

The traditional cinematographic handling of a slope results
in very abrupt temporal steps with temporal resolution restricted
to the period of the framerate. An easy, probably more accurate,
way to handle this is to simply draw a line from the center of each
sample to the next, as shown in Figure 4. For a truly constant rate
of change, this has some very desirable properties.

However, consider what happens when the slope changes, as
shown in Figure 5. Linear interpolation between the centers still
appears perfectly reasonable, except for one detail: if we were
to compute a value for the same time interval represented by the
third sample, we would get a different value! To be precise, the
light-green area included above the sample value is greater than
the dark blue area excluded, so the value computed would be
somewhat higher than the actual sample. Even if fairly generous
error bounds were permitted, the value computed could still be
shifted outside of those bounds.

We suggest that a basic principle in super-resolution render-
ing should be that sampling the interpolated function in any in-
terval that corresponds directly to an original sample should
never result in a value outside the error bounds of the origi-
nal sample. Linear interpolation based on sample center points
in general will violate this principle whenever the slope changes.

With the priority that original sample error bounds not be
violated, the easiest solution is to interpolate only between sam-
ple periods. Each sample endpoint is connected to the start of the
next with a straight line. This very simple approach is illustrated
in Figure 6, and it is the method currently used in in TIK[3].
Empirically, performance is quite good using this method – tran-
sitions are smoother than one would expect. Why? Normally,
virtual exposures are being made with integration times that are
not much shorter than those used for the original samples. It is
common that a virtual sample will misalign with the edge of an
original sample, thus integrating a portion of the original sample
value and the sloped transition; one doesn’t see a sudden transi-
tion. Further, the values centered between samples are precisely
the average of those samples.

There is an additional benefit to this type of linear interpo-
lation between samples. If we have determined that a particular

sequence of samples represents a constant, we can replace the
entire sequence of samples with a single virtual sample span-
ning the full temporal interval and having relatively tight error
bounds derived by intersection. In fact, this is the primary method
by which the basic TIK implementation compresses TDCI data
streams. This type of substitution would greatly magnify errors
if used with the point-based linear interpolation.

Curves
Although linear interpolation between sample intervals is

quite effective, there are still abrupt changes in slope of the pixel
value waveform over time. Interpolation is a very heavily-studied
field, and there are many methods for generating a smooth curve
(possibly even with smooth derivatives) to represent a data set.
Most methods center on finding piecewise-polynomial curves
which respond to a set of control points in ways dictated by a
set of knotts and basis functions. Various types of Splines in-
cluding Non-Uniform Rational Basis Splines (NURBS), Bezier
curves, and Lagrange interpolaters are among the more common
methods.

The unfortunate problem is that fitting a smooth curve to
data points is not the task at hand. Each sample of a pixel’s value
merely defines an average over an interval – not a value at a point.
Adding to that distinction is the fact that even the average values
are not known precisely, but as estimates within error bounds.

Figure 7 shows a simple data set and the result of Lagrange
interpolation. The control points used were the centers of the
sample intervals and the sample values. The C-coded Lagrange
interpolator we created for this actually has the additional un-
usual feature that it can iteratively adjust the control points within
the error bounds to try to ensure that virtual exposures for each
of the original sample intervals would result in a value within the
original error bounds, but in this particular run the error bounds
were zero. The key point is that the interpolator handles the con-
stant time range very badly, introducing noise where there was
none. Similar issues appeared with the other curve interpolators
tested – polynomials tend not to lie perfectly flat.



Figure 8. A linear approximation to a smooth interpretation

Figure 9. Temporal super-resolution localization of an edge

Spatio-temporal interpolation
All the above techniques assumed that the pixel value wave-

forms were essentially smooth. However, relative motion of the
scene can change the object that a pixel is sampling, and that
can cause strongly discontinuous transitions. It is in recognizing
these discontinuities that spatial information – values of nearby
pixels – play a role.

Temporal edge localization
Consider the transition shown in Figure 8. Using TIK’s

linear interpolation between sample intervals, the transition is
treated as a relatively smooth three-segment linear approxima-
tion to a nonlinear curve brightening the pixel.

However, the first two samples establish a very consistent
constant level. Similarly, the fourth and fifth samples seem to de-
fine a new constant level for the pixel. Suppose that we somehow
know that in fact the dark level was a person’s dark jacket as they
walked through a doorway and the brighter level was the sky seen
through the doorway after the person had passed through. In that
case, there really isn’t a smooth transition; the pixel goes directly
from seeing the dark coat to seeing the bright sky. If that is the
case, we can deduce that the in-between value of the third sam-
ple must have come from summing partial exposures to the coat
and sky. The fact that the third sample’s value is 3/4 of the way
between the constant levels thus implies that 1/4 of the sample
time was seeing the coat and 3/4 were seeing sky – suggesting
the sharp edge shown in Figure 9.

The catch is that it isn’t reasonable for our interpolator to

Figure 10. Multiple transitional samples imply a smooth interpretation

Figure 11. Edge between samples cannot be localized further

recognize the coat and sky, so how can we obtain information
that will disambiguate between the interpretations in Figures 8
and 9?

The first problem to solve is recognition of the constant lev-
els. Fortunately, that is trivially accomplished using the error
model discussed earlier.

The second problem has to do with detecting continuity of
motion. The reasoning is that any roughly continuous motion of
a sharp-edged object should only cause a specific pixel to tran-
sition from sampling one value to the other at most once. That
single transition could happen between samples, or it could hap-
pen within a sample interval. If it happens between, it will not be
seen. However, as shown in Figure 11, the error in the linear in-
terpolation between sample intervals is already known to be less
than half the temporal gap between samples.

The third and final problem is knowing that there is indeed a
sharp edge between the two constant levels. This is where look-
ing at spatially neighboring pixel values becomes useful. If there
is such an edge, then one or more pixels on opposite sides of the
current pixel should be detecting each of the two constant lev-
els at appropriate times (an overlapping time interval). Basically,
each side of the edge has to come from some neighbor and end
in another. Failing this constraint suggests a scene structure spa-
tially sampled below Nyquist, in which case creating a smoothed
structure is preferable to synthesizing a sharp edge.



Temporal synchronization
The time at which a transition occurs should be highly corre-

lated for neighboring pixels. Where this correlation occurs, more
precise timing may be derived by interpolating the time from
neighboring pixels.

Suppose that a particular pixel has a non-sharp (interpo-
lated) transition between samples, such as appears in Figure 11.
If we imagine that each sample in that figure took 8 "ticks" of
time, then the ambiguity is that the level transition came between
T=24 and T=32. Now suppose that one of the adjacent pixels had
a super-resolution transition at time T=36, as shown in Figure 9.
Further, suppose that another neighboring pixel, on the opposite
side of the non-sharp transition pixel, also had a super-resolution
transition, but at time T=22. The average of the two sharp tran-
sition times is (36+22)/2, or T=29. Since T=29 is in the interval
24..32, it is reasonable to assume that the previously non-sharp
transition should be corrected to a sharp transition at T=29.

In essence, the idea is that times of similar super-
resolution transition events in neighboring pixels can be spa-
tially interpolated in nearly the same way that color information
is interpolated to demosaic Bayer-filtered pixels. With some ad-
ditional processing logic, even non-sharp transition events can be
used in this way to develop time-value constraints on neighboring
pixels: the transition timing can be sharpened to the interpolated
temporal intersection of the possible transition time intervals. It
is also possible to extend the concept of "neighbors" beyond im-
mediate neighbors to a small region around the pixel in question.

Once a pixel’s waveform has had a portion of its timing en-
hanced in this way, that enhanced information also may be prop-
agated to improve timing of other neighbors.

Timing of pixel integration intervals
Although all the figures in this paper have shown pixel

samples evenly spaced in time, there is no such constraint on
TDCI data. Neither is it necessary that the input nor output be
organized as frames in which all pixels have identical integration
intervals. In fact, skewing of light integration periods across a
sensor is highly desirable, because it dramatically improves the
probability that waveforms of neighboring pixels can be used to
refine timing information.

There are a variety of methods that can be used to control
the integration intervals for pixels, some of which can enhance
the effectiveness of temporal super-resolution processing:

• Native TDCI capture: as described in our earlier work on
frameless TDCI capture[1], there are various ways that an
imaging sensor can be constructed to either have a fully in-
dependent, or deliberately pattern skewed, sampling inter-
val for each pixel. Unfortunately, it is not clear that any cur-
rently available camera sensor is capable of directly imple-
menting this. We have created various prototype cameras
that approximate this behavior, such as the FourSee multi-
camera[8], which deliberately temporally skews exposures
from multiple cameras sharing a single lens and viewpoint.

• Leaf shutter: an aperture-like iris opens and then closes.
As the aperture is opening, the lens passes through a va-
riety of effective f/numbers, eventually opening enough so

that the aperture is determined by the aperture in the lens.
The same thing happens in reverse to end the exposure.
Thus, over the exposure interval the aperture varies some-
what, making light sensitivity a function of time. The effect
is usually negligible, as is the associated change in depth of
field during the exposure interval.

• Focal plane shutter: in most interchangeable-lens cam-
eras, a first curtain sweeps across the sensor to begin expo-
sure and then a second follows it to recover the sensor end-
ing exposure. Older single-lens reflex (SLR) cameras often
had focal plane curtains moving horizontally, but now trav-
eling the shorter vertical distance is more common. In ei-
ther case, the exposure interval is a function of respectively
the pixel X or Y coordinates. Although focal plane shutter
speeds of 1/4000s (250us) are not uncommon, the curtain
traversal time is usually closer to 1/200s (5000us). Thus, at
a shutter speed of 1/4000s, the last pixels of the sensor are
exposed approximately 20 exposure intervals later than the
first. The fractional skew is less at low shutter speeds; a 1s
exposure would be temporally skewed only 0.5% from one
edge of the sensor to the other.

• Electronic rolling shutter: in most webcams and video
cameras, there is no mechanical shutter. Instead, the sys-
tem takes advantage of the fact that pixels are addressable
elements. All the pixels are scanned to begin or end expo-
sure, typically in a raster order. The temporal effect is very
similar to that of a focal plane shutter, except the scan is
often slower and, although one axis suffers more delay than
the other, when pixels are sampled usually is a function of
both X and Y coordinates.

• Global electronic shutter: although it is rare at this writ-
ing, some sensors have mechanisms that allow all pixels
to start or stop collecting change from photons simulta-
neously. In such a system, all pixels truly sample during
the exact same time interval. Of course, this is arguably
the worst case when attempting to perform temporal super-
resolution enhancement.

The temporal skew caused by focal plane or electronic
rolling shutters is easily measured to a very high accuracy[9], but
is often considered problematic. However, it means that nearby
pixels are time shifted by a small and precisely knowable amount.
Thus, an edge that falls between samples for a particular pixel
might well fall within a sample for one of its neighbors. Simi-
larly, the temporally skewed samples from similar events seen by
a group of pixels can be combined to make a temporally-denser
set of samples for all pixels. By recognizing patterns and tem-
porally aligning the waveforms from adjacent pixels, the more-
precise timing of an event for one pixel may be used to tune the
record of when the corresponding event happened for another
pixel. In summary, temporal sampling skew simply makes tem-
poral synchronization more effective.



Conclusion
Temporal super-resolution using various forms of frame-

oriented data has been done many times before. The goal is gen-
erally to insert frames between existing ones, thus up-converting
the frame rate. However, TDCI is very different. Because it is
frameless, the goal is not synthesizing equally-spaced frames, but
enhancing the temporal and value accuracy of per-pixel wave-
forms. Even tiny adjustments of when value transitions occur
can significantly improve virtual exposures rendered by integrat-
ing pixel waveforms over an arbitrary time interval.

The work reported in this paper is still very preliminary;
we do not yet have enough data to make definitive statements
about the effectiveness of the various methods discussed. How-
ever, several key ideas are noteworthy:

• At high sampling rates, value error (noise) is more signifi-
cant than large-scale object motion

• Any changes made to the TDCI pixel waveforms should
respect the error bounds on the relevant pixel samples

• Polynomial interpolation functions do not directly apply;
the problem is not interpolating between known points be-
cause pixel samples really are bounded estimates of average
values over short time periods

• Temporal skew in pixel sampling can be beneficial

Some of the methods discussed here are already imple-
mented in TIK, and various sample images are included in the
2017 Electronic Imaging paper describing TIK[3]. Ongoing
work centers on improving that tool.
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