EE468 Course Notes

Introduction © Compilers

And Translation Engineering

By Hank Dietz

August 1993 Reésion

School of Electrical Engineering
Purdue Uniersity
West Lafayette, Indianad7907-1285

<

e
o TR

g e
:{L:N
o3 :éU

2

N

Preface

This document, which is currently being printed and digted as notes for EE46Bytro-
duction © Compilers And Translation Engineeringat Purdue Unversity, is a nodified version of
course notes originally written in 1983he original course notes werevdieped by H. Dietz
and R. Juels (copight 1983, 1984, and 1986 by H. Dietz) at the Polytechnic Institute wf Ne
York, where thg were used in teaching both the urgtaduate and introductory graduate compil-
ers courses.

The notes were deloped becausevailable compiler t&ts fail to inspire a true understand-
ing of compiler conceptsMost tects relate compiler understanding to formalisms which are
unfamiliar to magy computer engineers, whereas these notesalesmpiler concepts as a top-
down structured approach to a class of problems within computer engine&étirgsame mate-
rial is covered, hut, in this presentation, the forest is seen befaenining indvidual trees.

Of course, these notes agr Bhorter and less formal than atb®ok should be.lt was a
deliberate choice that traded completeness for readabilhigrefore, these notes complement,
rather than replace, a good compilerglieok: typicallyeither \ersion of the books by Aho &
Uliman or Fischer & LeBlanc.

Comments and suggestions pertaining to this document should be directed to Prof. H. Dietz,
School of Electrical Engineering, Purdue umgity, West Lahyette, IN47907-1285. Alterna-
tively, dectronic mail may be sent to:

hankd@ecn.purdue.edu

Page 1

EE468 Course Notes Compilation Goals

This page is intentionally blank.

Page 2

Compilation Goals EE468 Course Notes

Compilation Goals

A compiler, more properly called &anslator, is a pogram which accepts phrases from an
input language and produces related phrases in an output land®efgee a compiler can be
written, a definition of the input language, output language, and the relationship between them
must be established.

In compilers for typicalHigh Level Languages or HLL s, the input language consists
mainly of three diferent types of constructsontrol structures, assignments &peessions, and
calls. Theoutput language is usually some form of assembly language (although an assembler is
also a compiler — it inputs assembly language and outputs machine Badfe)e we attempt to
instruct a computer to perform translations, it is important weldg a “feel” for the relationship
between the twlanguages. Thillowing examples are typical mappings of common HLL con-
structs into an assembly language.

1. Control Structures

In typical HLLs, control structures are the means by which the orderingeo@t®n is
accomplished. Thisrdering can be sequential, conditional, or itgeatiSequential ordering is
the implicit ordering: statements are normalkecuted in the order in which theare written.
The GOTOstatement simply prades a vay of eplicitly specifying the net statement in
sequence. Conditionalrdering is typically accomplished by thE statement, which ales
groups of statements to be ignored xecaited depending on some conditidrooping, or itera-
tive adering, preides for repetitie exeution of a group of statement¢HILE, or UNTIL, some
condition is met.

1.1. GOTO

The GOTGstatement is the control structure most closely resembling an assembly language
instruction. Itsimply causes the program tgeeute the statement(s) which folMlca particular
label instead of the statement(s) which falhe GOTGstatement:

GOTO label;
statementl
label: statement2

might become assembly codedik

Page 3

EE468 Course Notes Compilation Goals

JUMP label ;Jumpto statement2
code compiled for statementl
label: code compiled for statement2

1.2. IF

IF is the standard control structure used Xecate a statement only if some condition is
true. IF the condition is trueTHENthe statement isxecuted. Otherwisethe statement is
ignored (skipped)Hence:

IF expression THEN statement

might be translated into:

code compiled forxression

TEST ;Is the expression TRUE?
JUMPF done ;If FALSE, skip statement
code compiled for statement

done:

Another form oflF statement is also permitted in most modern languagethis form, depend-
ing on the condition, either the first statementxeceted or the second ixesuted, It neser
both. Ingeneral:

IF expression THEN statementlELSE statement2

would be compiled into something &k

code compiled forxgression
TEST ;Is the expression TRUE?
JUMPF s2 ;If FALSE, skip statementl
code compiled for statementl
JUMP done :Did statementl s kip statement2
s2: code compiled for statement2
;Did statement2 f all through
done:

1.3. REPEAT

The REPEATstatement is the standard control structure used to represent a loop whose con-
tents are alays executed at least onceThe loop iISREPEAEd UNTIL the epression is true.
Therefore, this:

REPEAT statementUNTIL expression

becomes:

Page 4

Compilation Goals EE468 Course Notes

again: code compiled for statement
code compiled forxression
TEST ;Is the expression TRUE?

JUMPF again ;iIf FALSE, do statement again

1.4. WHILE

The WHILE statement is the standard control structure used to represent a loop whose con-
tents may be»>ecuted zero or more times depending on a conditéILE the epression is
true, the loop isxecuted. AnHLL construct lile:

WHILE expression DO statement

is easily translated into:

test: code compiled forxgpression
TEST ;Is the expression TRUE?
JUMPF done ;If FALSE, jump out of loop
code compiled for statement
JUMP test ;Continue looping
done:

However, if we assume that the loop body isdily to be &ecuted more than once, thisnot the
most dicient implementatianFor example, this:

JUMP test ;Enter loop at test
again: code compiled for statement
test: code compiled forxgression
TEST ;s the expression TRUE?

JUMPT again ;lIf TRUE, repeat loop body

will perform the same function as the yimus translation of th&/HILE loop, tut there is only
oneJUMPstatement xecuted for each iteration, whereas thevias translation wuld execute

two JUMP per iteration (one thagfls through and one that is &ak. Unfortunatelythe second
translation is more ditult to achi@e. The reason for this is simply that the second translation
places the code for thetatemenbefore the code for thexpression but the HLL source code has
them appearing in the opposite order

Of course, there ararf more than ter ways to correctly translate \WHILE loop, or ay-
thing else for that matter

1.5. FOR

In mary situations, a loop is used to perform an operai#@Ra fixed number of times.
The FORcontrol structure pnades an dicient way of writing such a loop by implying the incre-
ment and comparison operations which occur with each pass through thé lkamgp such as:

Page 5

EE468 Course Notes Compilation Goals

FOR variable = expression1 TO expression2 DO statement

could be compiled into code &k

code compiled for assignment, variablexpeessionl

JUMP start ;Skip increment first time
loop: code compiled for assignment, variable = variable + 1
start: code compiled forteed for variable > expression2
TEST ;Is the expression TRUE?
JUMPT done ;If TRUE (equal), done
code compiled for statement
JUMP loop ;Continue looping

done:

1.6. SIMD Control Flow

Although most sequential languagewvéaearly identical control fl statements, as out-
lined abae, some explicitly parallel languages for Single Instruction stream, Multiple Data
stream (SIMD) computers primle a diferent type of control construct called “enabling” or
“masking’ The basic diiculty in using a SIMD computer is due to tteef that although all the
processors can operate on theimadata simultaneouslyhe instructions are fetched by a single
control processor that broadcasts each instruction to all the procdsdoliews that, in a SIMD
computerevery processor must bexecuting the same instruction at the same time.

Unfortunately this implies that ifany processor needs txeeute a conditionallysescuted
statement, then all processors mugcate that statement —ven if they didn’t want to. The
solution is todisablethose processors that are forcedxecate the statement aigst their will so
that the dkct is the same as if thelid not execute the statementdence, a SIMOF statement
has the follving meaning: disable those processors for which the conditjmara(lel_expr) is
false, if the condition is true for grprocessor thenxecute the statement, and finally restore the
enable state thakisted prior to theéF. This results in a translation 8k

IF parallel_expr THEN statement

becoming:

Page 6

Compilation Goals EE468 Course Notes

PUSHEN :Save enable status

code compiled for patlel_expr
TEST ;For each processor, is it TRUE?
DISABLEF :Disable processors where FALSE
ANY ;Is it TRUE for any processor?
JUMPF done ;If not, all skip statement

code compiled for statement

done:
POPEN ;Restore previous enable pattern

In the abwe oode,PUSHENSsares the current enable status faregy processaqrtypically using a
separate “enable stack” that is independent of the data $8KBLEFthen disableswery cur
rently-enabled processor in which the top-of-stazkie isFALSE (without rem@ing that \alue

from the data stack)The ANYinstruction simply tests to see if the top-of-staakue of ay pro-

cessor iSTRJUE, and results in aalue on the control processogack — which is thenxamined

and remweed by the JUMPF instruction. Finally POPEN restores the enable status thasw

saved by PUSHEN hence, the same set of processors are enabled after the construct that were
enabled before the constructhis allovs SIMD IF and other SIMD control constructs to be
nested with essentially the saméeef as nesting of the sequential control constructs.

Code for other SIMD constructs, such as a SIMBIILE loop, is generated in much the
same \ay:

WHILE parallel_expr DO statement

is easily translated into:

PUSHEN :Save enable status

test: code compiled for patlel_expr
TEST ;Is the expression TRUE?
DISABLEF :Disable processors where FALSE
ANY ;Is it TRUE for any processor?
JUMPF done ;If not, jump out of loop

code compiled for statement

JUMP test ;Continue looping

done:
POPEN ;Restore previous enable pattern

2. Assignmentst E xpressions

Assignment statements ankbeessions are modeled after eemtional algebraic notations
and are consistent across most modern languages for this rédgehraic rules dictate that an

Page 7

EE468 Course Notes Compilation Goals

expression is euated vorking from left to right gcept when parenthesis indicate otherwise or
when an operator of higher precedence is to the rightexample, inA + B * C, the result is

A + (B * C) because multiplication tak precedencever addition of A + B. These rules
are complg, hence we will postpone discussing them until bettaysaof defining them ka
been presented.

However, the standard algebraic notation is netyvmuch lile most assembly languages, so
we will examine a fev sample translations using fully-parenthesizegressions. Furthethe
architecture of the computer has aglaimpact on the assembly language instructions used to
evduate epressions and assignment statements; we will only consider a simple stack-based
machine (essentially the TSM discussed later) for themmgles.

2.1. SimpleAssignment

The most common assignment in programs is a simple assignnegent lik
A =B

which might be compiled into:

PUSH A :Push A’s address

PUSH B ;Push B’s address

IND Indirect to get B’s value
POP ;Pop itinto A's address

2.2. AssignmentJsing Expressions

Simple assignment does not perforny arithmetic, lut merely copies aalue. Arithmetic
can be performed by using axpeession as the right-half-part of the assignment:

A=(B+Q

might become:

PUSH A ;Push A’s address

PUSH B :Push B’s address

IND :Indirect to get B’'s value
PUSH C ;Push C’s address

IND Indirect to get C's value
ADD :Add B’s and C’s values
POP ;Pop resultinto A’s address

More compla expressions can be dealt with in the sanay when we are generating code
for a stack machine(This is not quite true of code generated fagjiserbased machines: since
there are a finite number ofgisters, it is possible that ampgession could be too comgl¢o
keep track of eerything within the rgister(s) of the CPUlIn such cases, &riables” can be
induced (created) to act as additionagigters.) Br example:

Page 8

Compilation Goals EE468 Course Notes

A= (B*C)+(D*E)

could generate code &k

PUSH A :Push A’s address

PUSH B :Push B’s address

IND ;Indirect to get B’s value
PUSH C :Push C’s address

IND :Indirect to get C's value
MUL ;Multiply B’s and C’s values
PUSH D :Push D’s address

IND :Indirect to get D’s value
PUSH E ;Push E’s address

IND Indirect to get E’s value
MUL ;Multiply D’s and E’s values
ADD ;Add (B*C)and (D *E)

POP ;Pop resultinto A’s address

2.3. Expressions As Conditions

Expressions also can appear in statements other than assigrirhentondition inlF ,
WHILE and REPEATstatements can be axpeession. Irsuch cases thepgression can be trans-
lated as though it appeared in the right-half-part (after the equal sign) of an assignment statement.
Given:

IF (B +C) THEN . ..

(B+C) might become:

PUSH B :Push B’s address

IND :Indirect to get B’s value
PUSH C ;Push C’s address

IND Indirect to get C's value
ADD :Add B’s and C’s values

Of course, the ng instruction vould normallyTEST the truth of the result rather than store the
value in some ariable.

Notice that, in generalaviables which appear ywhere other than the left-hand-part of an
assignment statementvgateir values pushed and in the left-hand-parytherely hae their
address pushed-or this reason, the address of aiable is commonly knen as itslvalue and
its value is called itsvalue. Notice that an lalue can be carted to an ralue by applying indi-
rection:IND.

Page 9

EE468 Course Notes Compilation Goals

2.4. SIMD Expressions

Oddly enough, the &y one generates code for arpression to bevaluated in parallel for
all the processors of a SIMD machinedentical to hov one generates code for the eglent
expression to bevaluated on a single ceantional processorThe only distinction is that while
some @pressions for a SIMD are to beakiated in parallel (parallelxpression), others may be
evduated only by the single control processor (ser@kession); this mads it necessary for the
compiler to leep track of where thexgression is to bevaluated. Therare four possible combi-
nations:

. Serial xpression- serial epression. Exactllike a ornventional machine.

. Serial expression - parallel epression. Ealuate the serialx@ression, then broadcast
(replicate) the alue to all processorsThis is usually twial, since the control processor is
always broadcasting things to the processoxsnary.

. Parallel expression— serial expression. Esluate the parallelx@ression, then someho
reduce all the alues for the processors into a singhdue. Thisis tricky because there are
mary different ways to reduce a set oélues into a singlealue. Oneof the simplest of
these is théANY operation, as discussed in the section on SIMD control constANY;
simply ORs dl the values together to create a singdéue. Actually the reduction can use
ary associatve gperation: for gample,ADD reduction vould generate the sum of thalv
ues on all the processors.

. Parallel xpression— parallel pression. Exactliike a @rventional machine.

3. Calls

There are tw basic kinds of calls, subroutine calls and function calsubroutine, or pro-
cedure, call is a statement which has tiiecef executing the statements defined within the sub-
routine and resumingxecution. Functiorcalls are similgrhoweve, they return a alue and are
hence walid expressions instead of statementSome languages, most notably C, <be usage
to determine the type of call: function or subroutihethis case aalue is alvays returned, bt it
is ignored when called as a subroutine.)

Both subroutines and functions can be “passegiiments. Thesarguments can be trans-
mitted in sgeral different ways: agylobal data, by alue, reference, name, aaniations on these
techniques. Globallata is defined as data which can be accessed directlyytpadrof a pro-
gram, hence guments can be transmitted by assignment statemesusted before a callThe
other techniques passggaments as parameters within the call.

If a parameterized call is usedgaments are usually permitted to beressions and will
be evaluated in &actly the same ay as gpressions appearing in the right-half-part of an assign-
ment statementWhen data is passed bglue, each of the parameters vsleated prior to per
forming the call and only the resultinglues are accessible within the subroutine or function.
Data passed by reference is nedle@ated prior to the call,ui a descriptor (often the address of
each datum) is passed to the subroutine or function so that it can then directly access the data.

Page 10

Compilation Goals EE468 Course Notes

Call by name is usually implemented by passing descriptors which are actually the addresses of
“thunks” of code whichesluate each gument.

3.1. GOSUR RETURN

The simplest calling technique is typified by the paramete@€SURas found in BSIC.
Arguments can be transmitted to the subroutine only by assignments to giabaleg. In
effect, GOSUBs merely aGOTChat remembers where it came from and can return to that point
by executing a RETURNinstruction. Mostcomputers hae a CALL instruction which werks
exactly like GOSUBnd aRET instruction which wrks like RETURN In the follonving example,

a abroutine to print a number is called to print 5:

1000 A=5’ assign value to global variable

1010 GOSUB 2000’ call the subroutine

1020 STOP

2000 PRINT A’ subroutine to print argument
2010 RETURN' return to statement after GOSUB

resulting in code lik:

L1000: code compiled for assignment, A=5

L1010: CALL L2000 ;Call subroutine at L2000
L1020: code compiled for SAP

L2000: code compiled for PRINT A

L2010: RET ;Return

3.2. Parameterized Suboutines

More typical of modern HLLs is call byalue, most often using the CPU stack as temporary
storage for thealues of aguments (as well as\d@ag return addresses)he CPU stack param-
eterpassing technique isfifient, tut is also important because it enables subroutines and func-
tions to be recurge, using the stack pointer to find space fowrmpies of aguments and local
variables. Br example, a similar subroutine call might be:

print(5)

which is translated into:
PUSH 5 ;Push argument onto the stack
CALL print ;Call the print subroutine

This example is somehat contved, havever, Snce whateer is pushed on the stack musten-
tually be remwed — somehav, something must kne how mary arguments were pushed and
must remee them from the stack when the subroutine has returiath can be accomplished in
mary ways, the most common of whichsolves use of a “Frame Pointer” (FP). more realistic
coding of the abee example would be:

Pae 11

EE468 Course Notes Compilation Goals

MARK :Push FP value and make FP
;hold value of SP

PUSH 5 ;Push argument onto the stack

CALL print ;Call the print subroutine

RELEASE ;Set SP=FP, pop old FP value
:into FP

Of course, not all computers\WeMARKand RELEASEinstructions in their instruction sets —
mary don’t even havean FP Howeva, it is usually easy to perform the same function using other
instructions and either a generalister or a memory location as the FP

3.3. RFarameterized Functions

If print(n) was o be used as a function, the call might look something:lik
A = print(5)

and would be translated into:

PUSH A :Push A’s address

PUSH 0 ;Leave space on stack for
;return value of print()

MARK :Push FP value and make FP
:hold value of SP

PUSH 5 ;Push argument onto the stack

CALL print ;Call the print subroutine

RELEASE ;Set SP=FP, pop old FP value
;into FP

POP ;Pop returned value into A

In calls which pass guments on the stack, thalue of the ajument(s) must be found (ref-
erenced) by the subroutine/function as the contents of a memory location at a partisatar of
from either the stack pointer or the frame point€ne last instruction»ecuted by the subrou-
tine/function would be aRET, howeve, the function would place the alue to be returned into the
appropriate place just beforeeeuting theRETURN

3.4. StandardizedCalling Techniques

The techniques used to perform subroutine and function cafjswidely from one lan-
guage to another and theaenples gien above ae \ery crude.However, the key daracteristic of
subroutine and function calling techniques is #ilasubroutines and functions should be called,
and passed guments, in a consistenaw

Very often, a good assembly language programmer will cd@rdifit routines in ays tai-
lored to optimize rgister usage; this causevae book-keeping problems for a compilenvém a
human one) and meak re-use of compiled cod#kable modulesandsupport libraries, very

Page 12

Compilation Goals EE468 Course Notes

difficult. Note,however, that calls to “lilt-in” subroutines oiintrinsic (built-in) functions, such

as Riscals writeln or ord , need not generate code which is consistent with calls of user
defined routines: the compiler may treat these as special cases, and mag geherate a call

of ary kind — the appropriate instructions could be plaicelihe (for example, instead of gener
ating a call to a function to compubed , a Rascal compiler might generate code which directly
performs the function).

In general, the coding sequence for a call is standardized for each combination of CPU and
operating system; whater the cowention is, it is the preferred translation because using it will
simplify the interbce of compiled programs to other safte. Inmost applications, that is the
purpose of a compiler: to simplify the use of the resources, both &lerdmd softare, ailable
on a machine.

Page 13

EE468 Course Notes Organization of a Compiler

This page is intentionally blank.

Page 14

Organization of a Compiler EE468 Course Notes

Organization of a Compiler

A compiler is a program which accepts phrases from an input language and produces related
phrases in an output languagéhe relation between the input phrases and the output phrases
must preser the meaning, or semantics of the totality of inplihis is not as simple as it seems,
since the meaning is not well specifiedt s lagely implicit; further most HLL programs st
as abstract algorithms which are not clearlydithko the abilities of computer hardre.

To avoid these complications, compilers are generally directed by a simple understanding of
the phrase structure, or gramimafrthe input languageHowever, even with this simplification,
the mapping of algorithms into machine instructions is usually too cartple done in a single
operation. Atypical compiler consists of geral phases and is used in cooperation with other
software which preides most of the frameork for development of programs.

The frame&vork of programs used to support a compiler esyvdependent on the machine
architecture, operating system, and the input & output languhg@sost cases, theventual out-
put language is machine code and the standard tools for creating machine code from assembly
language are used to insulate the compiler from the problems associated with an output language
which is not &pressed as %& Sincetext editors are usuallyailable, and other methods of gen-
erating tet files abound, compilers usually do nové@dwilt-in editors (although some Y& ai-
tors so that correcting errors found in compilation is easiEne softvare typically used in com-
piling a program is:

Page 15

EE468 Course Notes Organization of a Compiler

Algorithm

Source (tet) Editor

Source Program (%8

“ Compiler’

Assembly Language (&

Assembler

Object Modules (code)

Linker

Machine Code (code)

the Madine

The “Compiler” in the diagram akle is ectually seeral phases which can beeeuted
either in sequence or as cooperating concurrent paytscally, it consists of dexical analyzer
(tokenizer),syntax analyzer(parser), and an output languagpele generator

Input Language (i)

Lexical Analyzer

Lexemes or dkens

Syntax Analyzer

Phrase Structure

Code Generator

Output Language (k)

Page 16

Grammars (describing language patterns) EE468 Course Notes

Grammars (describing language pattens)

Computer Science is, of course, concerned with computation, anvendeat predates
computers by centuriesuclid, for exkample, vas working with the design of algorithmgOne
can consider computer science asitg two components: firstthe engineering techniques for
building machines and sof@ave; second, a meta-theory which is concerned with the underlying
ideas and modelsWithout theoretical foundations, engineering is mostly trial-and-erraerdri
by insight.

The theory of computer science comes from suelrshk fields as mathematics, linguistics,
and biology In compiler design and construction, the linguistic study of grammars to describe
natural languages has been of primary importaas.we will discuss latethe other major con-
tribution came from mathematics: graph theory based analysis of programs for the purpose of
optimization.) Althoughmuch of this wrk is highly theoretical, it has a direct impact on our
understanding of compiler design and construction: vesgis an ébstraction that, although
imperfect, enables us toganize our approach to problems that are too coxnjadoe lved by
insight alone.

The material in this chapter of the notes roughly corresponds to trexedan Fischer &
LeBlanc chapter 4.

1. Chomsky Grammars

A generative gammar can be thought of as a set of rules by which we can geneailate v
phrases in a particular languag&/orking tovard description of natural languages, Noam Chom-
sky defined classes of “compligy” of generatve gammars. Theesulting hierarch of four
classes, each of which properly contains thd,rie commonly knen as theChomsky hierar-
chy. The ordering is:

Type O
Unrestricted Grammars

Type 1
Context-Sensitve Grammars (CSGs)

Type 2
Context-Free Grammars (CFGs)

Type 3
Regular Grammars (RGS)

The ley imperfection in this abstraction is that we will digeocharacteristics of grammars that
are not alvays related to properties of the languagey titeempt to describe.d¥ example, a ¥pe
1 grammar describing a language has characteristics thaldwot be eidenced in a yipe 2
grammar describing the same language (if such a descriptists)e Acceptinghis flav, let's

Page 17

EE468 Course Notes Grammars (describing language patterns)

explore some ideas about genaratirammars and the Chomgskierarcly.

1.1. Whatls a Grammar?

A generatve gammar G, can be &pressed a& ={V, T, B S, wher Vis a finite set of
non-terminals or variables, T is a finite set oferminals or tokens P is a finite set oproduc-
tions, and Sis a special non-terminal called ts&art symbol. Normally, V andT are disjoint. A
grammaticabymbolis a member of eithér or T.

1.2. Type 0: Unrestricted Grammars

An unrestricted grammar consists of a lispobductions of the forma - 3, such that an
string of grammatical symbolsy can generate gnother string ¢). For those with interest in
automata theorythe unrestricted grammars characterize the ra@ysenumerable languages;
that is, thg can be recognized by a nondeterministiziilg machine.This is probably too com-
plex a ecification for computer languages.

1.3. Type 1: Context-Sensitie Grammars

If we constrain an unrestricted gramnsgmoductions so that ik - Sthengis at least as
“long” as ¢, the grammar is comé-sensitve. The productions are then of the form:

a-Aa, - a-fa,

wheregis not an empty string of symbolhis is read asA becomes3in the contgt of ;, ,,”
In general, these grammars are still too compbe eficient computer analysis of phrase struc-
ture, hence theare not used for specification of computer languages.

Despite this, most computer languages are actually xiosgesitve, mainly because of the
languages type system.Fortunately this contat sensitvity can usually be dealt with in the
framework of a contat-free grammaras explained in the follaing chapters.

1.4. Type 2: Context-Free Grammars

Each production of a contefree grammar (CFG) is of the forf - «, whereA is a \ari-
able andux is a string of symbolsThe important aspect of the coxttdree grammars is that the
derivations are imoked on variables independent of what surrounds them, hengeatbendepen-
dent of contgt.

To generate phrases in the language from the gramanae derive grings of terminals by
repeatedly applying productions to non-terminalgifr@ng with the start symbollf we apply
each productiols - gto the stringa-A-yto obtaina-5y we eventually obtain the language gen-
erated byG, denoted.(G), the set of strings such that:

. each string consists solely of terminals (all non-terminale iaen “expanded”) and

. each string can be deed from S(the start non-terminal) by applying productions:

Page 18

Grammars (describing language patterns) EE468 Course Notes

a1—>a2—>...am

It also should be noted that each non-terminal in a CFG canwedves a start symbol for
some subset of the grammadrherefore, the original contefree language (CFL) can be thought
of as the union of CFLs — each CFL generateddparding a non-terminal.

For computer languages, we will be concerned with nothing more cartiide contgt free
grammars (and contefree languages), since thare restrictve enough to permit dicient syntax
analysis yet are able to generate/pdul linguistic structures.

1.5. Type 3: Regular Grammars

If all the productions of a contefree grammar (CFG) are of the fodn- wBor A - w,
whereA andB are non-terminals ang is a string of terminals (possibly empty), then we say the
grammar is right-linearSmilarly, if A -~ Bwor A — w, for all productions, the grammar is left-
linear Either form is called a gular grammar

Regular grammars are too restni@ifor most purposes, n@ver, very eficient recognizers
can be hilt for them since the are homomorphic to finite state automata: since the only non-
terminal in the right-hand-part of wproduction occurs at the end (ordgi@ning) of the produc-
tion, the generation of language phrases can proceed withangha “remember” our position
in more than one productiorthis lack of “memory” maks r@ular grammars incapable of gen-
erating (or recognizing) language structures #tbitrarily deep nested parenthe8&GIN/ END
blocks, or other nested structures — all of which can easilyfressed using a CFG.

In computer language compiler design, we will often usegalae grammar (RG) to
describe the “wrds” in the language and a CFG to describe the phrases constructed from those
words.

1.5.1. Rrsing Using Regular Grammars

Since the productions of ag@ar grammar do not nest, there is no need for a stack to store
positions within rules — what has been recognizeagsddes not mattexeept in that it brought
the parser to its current statéor example, a grammar which recognizes angatamight be:

<int>:=0<i2>|1<i2>|2<i2>| 3<i2>| 4 <i2>
| 5 <i2>|6<i2>|7<i2>| 8 <i2>]|9 <i2>
<i2> = <int> |

It should be obious that these rules constitute a right-linear gramifiave were to recognize an
<int> , we would first find a digit, then we ould gotothe rule to find axi2> , eic. — we need

not remember where we came from, since wenkwbat to do simply by kneing our position in

the current rule.

Had the rules been written as:

Page 19

EE468 Course Notes Grammars (describing language patterns)

<int>::=<i2>0|<i2>1|<i2>2|<i2>3|<i2>4
| <i2>5|<i2>6|<i2>7|<i2>8|<i2>9
<i2> = <int> |

Perhaps it is less wlous, hut this would also require only kirdedge of the position within the
current rule (since it is left-linear).

1.5.2. RegularExpressions

Reyular xpressions are a simplified form of grammar used to represent R@sally, a
regular pression is:

. £ (epsilon — the empty set) is agrdar expression which “matches” nothing,
. for each symbddin the languagesis a rgular expression which “matches,

. if Ris a r@ular expression(R)* “matches” zero or more occurrences of the “patt&n”
this is also knan as theclosure of R,

. if Ris a rgular pression(R3* “matches” one or more occurrences of the “pattn”

. if RandSare rgular expressions(R) | (S)“matches” either the “patterrR or the “pattern”
S and

. if RandSare rgular expressions(R) (S)‘matches” thecatenation of “pattern”R followed
by “pattern”S

Reusing thexample abwe, we might say that arint> is:

(0[1]213]41516]78]9) (0|12]3[4[5]6]7]8[9)*

or simpler still:

(011]2[3]45]6]7]8|9)+

2. Parsing CFLs

Thus fr, we havediscussed the use of grammars to describe, and to generate phrases in,
particular languaged-However, a @mpiler mustrecognize accept or parse, phrases from a lan-
guage: it must be able to “understand” the grammatical structure of the {@fwourse, it must
also be able to use that understanding to generate a related phrase in the output larighage, b
is a separate problem discussed [ater

To parse a sentence in some language is simply to determine the sequence of production
derivations which lead from the start symbol to the sentetme-down). Similarly, one can
determine the required sequence of productions by collapsing strings of terminals into non-
terminals according to the production rules: starting with the sentence to be parsed, the sequence
can be determined which will lead back to the start syntmitdm-up).

The sequence of degdtions can be graphically displayed apase tree (also called a
derivation tred. Thesetrees illustrate the structure of the parsed sentence with respect to the

Page 20

Grammars (describing language patterns) EE468 Course Notes

productions of the grammaFor example, consider the gramm@r= ({S, A}, {a, b}, RS, where
P consists of:

S- aAS

S-a

A SbA

A-SS

A-Dba

Consider also the folling dervation:

S . aAS- aSbAS- aabAS-. aabbaS- aabbaa

The followving parse tree illustrates the detion:

A context-free grammarG, which can create more than one parse tree for same s/ said
to beambiguous An important point, hwever, is thatthe gammar whib genemtes a particu-
lar context-free languge s rot unique it is therefore possible to consider other grammars which
are not ambiguous yet generate the same language as an ambiguous .gi@omeamportant
theoretical results in thisgerd are:

3. Ambiguities

. there gist inherently ambiguous comtefree languages,

. there aists no general algorithm to determine whether \@®gianguage is inherently
ambiguous, and

Pae 21

EE468 Course Notes Grammars (describing language patterns)

. there aists no general algorithm to transform ambiguous octtee grammars into unam-
biguous contet-free grammars (in cases where orists).

These results are somleat disconcerting, since computer languages should, in general, be
unambiguous.

4. Determinism

Another property which language designers must &gy wf isnon-determinism. Deter
minism simply means that no portion of the language requires unbounded look-ahead, hence we
can alays determine which production to applyxhe Non-deterministicsituations are cases
where we cannot be sure which production to apply until well after e dpplied one of those
that might be ne, hence we must undo that application and try other productions if we guessed
wrong: parsing by trial and error

For reqular languages, non-determinism does not poseraxesproblem since it is kmm
that deterministic and non-deterministic finite automatothébé no difference in their accepting
ability. (Therefore we can generally find a deterministic parser which accepts the same lan-
guage.) ltis also knavn that deterministic and non-deterministigring machineshibit no dif-
ference in their accepting abilityt is unknovn whether the deterministic and non-deterministic
automatons accept the same classes of languages for the type 1 and type 2 lakiguasyes.it
is known that the deterministic pushwlo automatons accept the deterministic cartee lan-
guages which lie properly between thgular and contd-free languages.

In general, contd-free languages are not deterministic, na@nethose that are unambigu-
ous. Inother words, although only one parse tree meigtethere may be noay (other than trial
and error) to determine thextedervation which will lead to recognition from all points in the
parse tree.

As language designers and compiler designers, we clearly prefer deterministic parsers, i.e.
parsers which need not use trial and error to construct a parsd/nek.work has been done in
classifying grammars with respect to deterministic parsiugliscussion of some of the results
can be found in Chapters 5 and 6 of Aho and Ullmianparticular the preference of Aho and
Uliman for LR parsers is based on the theoretical result that the languages which can be parsed
deterministically by LL parsers are a proper subclass of the languages which can be parsed deter
ministically by LR parsers.However, in practical applications, LL parsers can often be con-
structed to be at least adigent as LR parsers.

5. Chomsky Normal and Griebach Normal forms

Consider the grammar:

S_-AB
S-a
A- a

Page 22

Grammars (describing language patterns) EE468 Course Notes

B is a useless non-terminal (not defined aghang). Grammarsnay also contain productions of
the formA - ¢ whereeis the null symbol.For languages which do not contairproductions of
this form are unnecessaryhe important point here is thagstrictions on the format of pduc-
tions can be imposed withowducing the gneative power of the contefree gammar

Every CFL withoute is defined by a grammar with no useless symbols, epsilon productions,
or unit productions (unit productions are of the fékm. B, obviously remaable).

Any CFG generating a language withautan be generated by a grammar in which all pro-
ductions are of the forlA - BCor A - a. This is called th&€homsky Normal Form.

Alternatively, any CFL without epsilon can be generated by a grammar for wivigly @ro-
duction is of the formA - a-a where« is a possibly empty string ofaviables. Thids called
Griebach Normal Form.

6. Backus-NaurForm

While linguists were studying cotiefree grammars, computer scientists wergiti@ng to
describe computer languages using Backus-Naur f@MF is similar to CFG notation with
minor changes in format and some shorthafsdirammar in CFG notation euld be cowerted to
BNF as follavs:

S-aAbs
S-b
A SAc
A ¢

In CFG form becomes:

<S>:=a<A>b<S>|b

<S> <A>cC |

<A>::

in BNF. Note that non-terminals (which are capitalized in CFG form) are enclosed in pointed
braclets as meta-syntactical delimiters and thdigal strole is dternation (an alternate produc-
tion resulting in the same non-terminal as thevipres production).

7. SyntaxDiagrams

The general preference of computer scientisisrit using LL (recursie descent) parsers
has led to another standardywof representing grammatical ruleSyntax diagramsare simpli-
fied flovcharts for a recurgé descent parser whichomld accept a language according to a set of
grammatical rulesUnlike flowcharts, syntax diagrams are usuallywrdrom left to right rather
than top to bottom, Wi the concepts are the same and the graphic representation tend®to mak
syntax diagrams more readable than BNF

Each non-terminal symbol in the grammar is represented by a diagram of all productions
resulting in that symbolA rectangle is dr&n around each non-terminal in the production; a cir
cle is dravn around each terminalThe branching into seral alternatie @nstructs is done

Page 23

EE468 Course Notes Grammars (describing language patterns)

simply by draving several lines; there is no representation for the logic which selects the appro-
priate case Further productions in a syntax diagram can include loops: a structure which cannot
be expressed in a single BNF productiomit lzan be used aduatageously in an LL parsefThis

is one of the modifications which permit LL parsers to compete with fiwenty of LR
parsers.)

The follonving set of BNF / Syntax Diagram egdiences completely define the mapping.
(Since rectangles and circles ardidifit to illustrate using character graphics ytioften are indi-
cated by other means.)

7.1. LeftRecursive (rouping Left - Right)

<a> ::=<a>c
<a> =

Ll

7.2. RightRecursive (grouping Right- Left)

<a> ;:=c<a>
<a> ::=

7.3. Non-Associatie (no grouping)

<a> = c

<a> :=

L

Page 24

Grammars (describing language patterns) EE468 Course Notes

7.4. Ambiguous

<a> =<a>c<a>
<a> :=

An ambiguous constructauld be translated into either the left or right reaugrsigsion —
the ambiguity wuld be resoled.

Page 25

EE468 Course Notes Lexical Analysis

This page is intentionally blank.

Page 26

Lexical Analysis EE468 Course Notes

Lexical Analysis

Lexical analysis is the process of translating input into a form where input symbols are
grouped into “grammatically significant” chunks calettens lexemes or terminals. From a
grammatical point of vig, lexical analysis is a ay of isolating the lvest-level rules from the
more interesting part of a grammarhere is no need to perfornxleal analysis separately from
syntax analysis,ui the lavest-level rules tend to belky and it is more natural to consider them
separately For example:

Canyoureadthisaseasilyasasentencewithspacesbetweentokens?

Is not as easy to understand as:

Can you read this as easily as a sentence with spaces
between tokens ?

A person reading this paragraph does not read it one character at a time, although that is the
way in which it is presentedinstead, it is read as a sequence oétsk vwords and punctuation.
Recognizing a punctuation mark in English is eagywords can be much more fiiult. Words
may hae © be understood by use of a dictionaparticularly since there are mawords and
grammatical analysis is fiifult without knaving the types of the @rds. InEnglish, the gram-
matical types are the parts of spegahu is a pronounread is a \erb, etc. Although computer
languages are simpler than natural languages, the sdinaltifs arise in recognizing them and
compilers use solutions similar to those us&dhtd understanding natural languages.

Lexical analysis breaks the input, which almosvagk is a sequence of characters, into
tokens. Theules which group characters together are generally simple, often forming a Chom-
sky type 3 (rgular) grammar As in English, each toén has tw atributes: a alue and grammat-
ical type. The walue is usually constructed directly from the charactdrd3" would be of type
<number> and h&e the \alue123. Sometimes, thealue is ignored; forxample, a kyword is
completely specified by the tek type. In general, aplexically-recognized symbol whichas a
non-terminal in the grammar before iagvsplit into syntax andxial parts has bothalue and
type, aty terminal has only a type.

1. Where To Draw The Line

The decision of what to recognizeileally and what to recognize syntactically is influenced
by mary factors. Ingeneral, ap lowest-level productions (which form a galar grammar) are
good candidates forxecal recognition. However, the grammatical types of teks can be made
more or less specific so that the syntactic specification is more natural.

Page 27

EE468 Course Notes Lexical Analysis

One method defines all teks as being of fed types.Of course, this is the only reasonable
way to deal with leywords and special symbolsutbeverything else gets lumped together as
“identifiers” and that might not be so useful.

Since the majority of computer languages are actually xosémsitve & a levd just abee
lexical analysis (aariable is not just an identifidsut an identifier which has already been seen in
the contet of a \ariable declaration), the comtesensitvity can usually be med down to the
lexical level and a CFG can be used to describe the synfehis simple technique greatly
enhances the peer of contat free parsing.

In a language lik C, an identifier could be a function name, a structure name, a member
name, a &riable name, a useefined type name, or a labdétach of these cageries can be lé-
cally recognized as distinct tek-types or all of them could be recognized astetype “identi-
fier” The rules which describe the recognition of these things fesatit types are highly con-
text sensitve, and since contd-sensitve parsers are ditult to kuild, it is preferable to eliminate
this recognition from the syntax definitioné lexical analyzerusing a &irly simple symbol
table, can incorporate this kind of caxtteensitvity so that the parser need not.

For example, declaring an inger \ariablei and then seeing a referenca tahe compiler
can understand thatwas sen in the conie of a function withi declared as an irger simply
by having the declaration modify (or create) the symbol table entry fofhe second time is
seen, it is of type “ingger local ariable”; the first time it w&s merely of type “identifiér

In nearly all compilers, the symbol table is used in tlag discussed ale. Therefore, a
major consideration in splitting the grammar inteidal and syntactic parts is to netae inter
face to the symbol table simple on both sides of the splits can be accomplished by wirag
all symbol table lookup to thexial part. If this is done, the kdcal analyzer can return pointers
to symbol table entries of teks rather than returning tuples of thestokalue and type Chapter
5 of these notes will discuss symbol tables in depth.

2. Techniques

There are s&ral common approaches txieal analysis.One approach is simply to write
an algorithm which magically recognizes ¢ols; usuallythis is both easy andfefient. Analter
native invaves constructing ®FA (deterministicfinite automata) acceptor for teks and then
emulating that acceptor; this is a good approach because it canvee derthanically from the
grammatical (Chomsktype 3) specification of t@ns. ‘et another approach, the one used by
most production compilers, usesaotseparate phases to perfornxital analysis: the first phase
simply breaks the input into chunks (atoms), the second classifies the chunks and assamiates tok
types with them.Any combination of these techniques is possible.

2.1. Algorithmic (Heuristic)

Any good programmer can quickly write an algorithm which will recognizenekin a
heuristic vay (a vay not directly related to a grammatical specificatidf)ere are dffculties in
portability, error recavery, and in praving that the tokns are accepted as the grammar defines

Page 28

Lexical Analysis EE468 Course Notes

them, lut these problems were not considered major until recenthastheli®ed that heuristic
techniques resulted im$ter compilersThese techniques are discussed here more as a historical
note than a recommended procedure.

2.1.1. StringComparisons

Suppose a language has maeywords and may other combinations of characters which
form single tolens (like >= to mean “greater than or equal to'Pne way to recognize tans
would be to simply perform a string compare of the input with the string for eaeh tahich is
possible in that conk¢ If the string matches an equal length left substring of the input, then the
next character is>amined. [fit is a\alid tokenedgg, then the tokn has been recognize@ther
wise, the other possible strings are compared.

Each of these comparisons is a binary decision; the strings either matcl do . |If
they match, then the ¢ token is the one matchedtherwise, the other possibilities must be
tried. Onlystrings which are syntacticallyalid as the ne token need to be tried; foxample, if
the input has not had ya, you do not hee o compare for) .

Substring matching is ceenient in that it allvs the compiler writer to embed theikeal
definitions within the parser; this can neadevdopment easier since additional constructs can be
added to the compiler without changing thadel analysis routinesHowever, this technique can
lead to slav parsers (when manstring comparisons must be made) andidifties in error
recovery (when a syntax error occursxieal analysis may “get lost”).

Ron Cains gnall C compiler is a goodxample of this techniqueSo are most assemblers:
ary language which has teks in fixed fields is particularly well-suited to string comparison
techniques. Theriginal design of BSIC used string compares on the first three letters of each
statement to determine the kind of statement (from whence came the uspless kET).

2.1.2. Scanninglechniques

Lexation can be a bizarre process, although conceptually siffipke.decision of where a
token ends is often most easily described by an algorithm which performs checks whisk-are a
ward to formally describeFor example, consider the folleing sgments of FORRAN 77:

DO 10 1=1,10
VErsus:
DO 10 1=1.10

The first sgment is the bginning of aDOloop; the second is an assignment eaant to:

DO101=1.10

In the first @ample, the toé&n types are DO, LABEL, ARIABLE, ASSIGN, NUMBER,
COMMA, and NUMBER. In the second, tlyeare VARIABLE, ASSIGN, and NUMBER.The
trick in deciding which interpretation is to scan the line for the COMMZAokefore deciding

Page 29

EE468 Course Notes Lexical Analysis

that “do” is a token by itself. However, even that is not enough, as sk by the assignment:

DO 10 I=A(1,10)

A program can be written to input a line and, if the first non-blank characters on the D@ are
scan the line for a comma which is not within nested parenth&his. problem points out just
how magic leical analysis can beven Aho & Ullman (see page 108 Principles of Compiler
Design missed this nasty quirk of FORAN 77.

Fortunately very few languages ha gecifications as compleas that of FOR'RAN 77.
Most can be beically analyzed without use of magi&till, there will alvays be FORRAN

2.2. Tabular Recognizers

For most computer languages, the rules which break input inentoform a rgular lan-
guage. ahlular lexical recognizers are usually general-purpose interpretefstefministicfinite
automata (DR) and the mapping of agalar grammar into a D¥is a $mple matterso any reg-
ular language can befiefently recognized simply by changing thedtable.

Chapter 3 of Fischer & LeBlanc discusses the construction of tablrdBFA) lexical
analyzers in depth, with emphasis placed on the algorithm used to construcAthélBieugh
the algorithm is important, it is relady easy to hild small DFAs by amination; lage DFAs
are nearly alays generated by sofawe tools, such dsx. Hence, for this course we will focus
on kuilding small DFAs by hand, in particular using the folling example.

In general, DR recognizers consist of a yinnterpreter and three table$he first table is a
character input mapping table: it merely wats a character of input into an indieto the other
tables. Thesecond table is the goto, or state, talités indexed by the current state and the eur
rent character of input to determine thatrstate. The third table is the actions tablk.is a table
of actions to ta& yoon entering each staté typical action vould be to adance the input to the
next character and perhaps store theviogs character in auffer for use later In the example
given here, the actions all simply aaivce the input, so the actions table has been omitted.

I* DFA.C

Deterministic Finite Automata recognizer in C.
This program uses a DFA to recognize:

Pattern States used

i f 0o ,1,2

else 0 ,56,7,8
while 0 ,9,10,11,12,13
int 0o ,134
return 0 ,14,15,16,17,18,19

o
O8]
o

digit+

Page 30

Lexical Analysis EE468 Course Notes

alpha (alpha | digit)* all except 20 & 21
space+ 0 (ignore leading spaces)
punctuation 0,21

Fall 1983 by Hank Dietz
*/

#include <ctype.h>
#include <stdio.h>

/* The inputtypes & mapping table for characters */
#define T_i 0
#define T_f1
#define T_e 2
#define T_| 3
#define T_s 4
#define T_w5
#define T_h 6
#define T_n7
#define T_t 8
#define T _r9
#define T_u 10
#define T_al 11
#define T_di 12
#define T_sp 13
#define T_pu 14

int charmap[129] = {
[* EOF */
T pu,
[* all control chars are of type space... */
T sp, T_sp, T_sp, T_sp, T_sp, T_sp, T_sp, T_sp,
T sp, T_sp, T_sp, T_sp, T_sp, T_sp, T_sp, T_sp,
T sp, T sp, T_sp, T_sp, T _sp, T sp, T _sp, T_sp,
T sp, T_sp, T_sp, T_sp, T_sp, T_sp, T_sp, T_sp,
/* So is space */
T sp,
F1"#$% & (*
T pu, T_pu, T_pu, T_pu, T_pu, T_pu, T_pu, T_pu,
FYy*+,-./0%
Tpu T pu TpuTpuT pu T pu T pu, T_di,

Page 31

EE468 Course Notes Lexical Analysis

12345678

T di, T_di, T_di, T_di, T_di, T_di, T_di, T_di,
F9:;<=>?2@*

Tdi, T pu TpuTpuTpuTpuTpuT pu,
FABCDEFGH?Y
Tal,TalTalTalTeTTfTalTh,
FIJKLMNOP*

Ti, T al, T al,TI T alTn T alT_al,
FQRSTUVWX*

Ta, TrTs TtTuTaTwT al,

*Y Z][17 _

TalTal,Tpu T pu T pu T pu, T pu, T_pu,
abcdefgh?
TalTalTalTalTeTfTalTh,
Fijklmnop*

TiTa, Ta, TILTalTnTalT al,
Fqrstuvwx?*

Ta, TrTs TtTuTalTwT al,
yz{|} DEL?
TalTalTpuTpuTpuTpuTsp}

/* The DFA action definitions & transition table */
#define ACCEPT 512

#define KIF (ACCEPT + 0)
#define KELSE (ACCEPT +1)
#define KWHILE (ACCEPT + 2)
#define KINT (ACCEPT + 3)
#define KRET (ACCEPT + 4)
#define WORD (ACCEPT +5)

#define NUMBER (ACCEPT + 6)
#define ERROR (ACCEPT + 7)
#define PUNCT (ACCEPT + 8)

int dfa[23][15] = {

[* [f e I S
w h n t r
u alpha digit space punctuation
*/
{1, 22, 5, 22, 22,
9, 22, 22, 22, 14,
22, 22, 20, 0, 21},

Page 32

Lexical Analysis EE468 Course Notes

{22 2, 22, 22, 22,

22, 22, 3, 22, 22,

22, 22, 22, WORD, WORD },
{22, 22, 22, 22, 22,

22, 22, 22, 22, 22,

22, 22, 22, KIF, KIF },
{22, 22, 22, 22, 22,

22, 22, 22, 4, 22,

22, 22, 22, WORD, WORD },
{22, 22, 22, 22, 22,

22, 22, 22, 22, 22,

22, 22, 22, KINT, KINT },
{22, 22, 22, 6, 22,

22, 22, 22, 22, 22,

22, 22, 22, WORD, WORD },
{22, 22, 22, 22, 7,

22, 22, 22, 22, 22,

22, 22, 22, WORD, WORD },
{22, 22, 8, 22, 22,

22, 22, 22, 22, 22,

22, 22, 22, WORD, WORD },
{22, 22, 22, 22, 22,

22, 22, 22, 22, 22,

22, 22, 22, KELSE, KELSE },
{22, 22, 22, 22, 22,

22, 10, 22, 22, 22,

22, 22, 22, WORD, WORD },
{11, 22, 22, 22, 22,

22, 22, 22, 22, 22,

22, 22, 22, WORD, WORD },
{22, 22, 22, 12, 22,

22, 22, 22, 22, 22,

22, 22, 22, WORD, WORD },
{22, 22, 13, 22, 22,

22, 22, 22, 22, 22,

22, 22, 22, WORD, WORD },
{22, 22, 22, 22, 22,

22, 22, 22, 22, 22,

22, 22, 22, KWHILE, KWHILE },
{22, 22, 15, 22, 22,

22, 22, 22, 22, 22,

Page 33

EE468 Course Notes

22, 22, 22, WORD,

{ 22, 22, 22, 22, 22,
22, 22, 22, 16, 22,
22, 22, 22, WORD,

{ 22, 22, 22, 22, 22,
22, 22, 22, 22, 22,
17, 22, 22, WORD,

{ 22, 22, 22, 22, 22,
22, 22, 22, 22, 18,
22, 22, 22, WORD,

{ 22, 22, 22, 22, 22,
22, 22, 19, 22, 22,
22, 22, 22, WORD,

{ 22, 22, 22, 22, 22,
22, 22, 22, 22, 22,
22, 22, 22, KRET,

{ ERROR, ERROR, ERROR, ERROR,

ERROR, ERROR, ERROR, ERROR,

ERROR, ERROR, 20,

Lexical Analysis

WORD },

WORD },

WORD },

WORD },

WORD },

KRET },
ERROR,
ERROR,

NUMBER, NUMBER },

{ PUNCT, PUNCT, PUNCT, PUNCT, PUNCT,
PUNCT, PUNCT, PUNCT, PUNCT, PUNCT,
PUNCT, PUNCT, PUNCT, PUNCT, PUNCT 1},

{ 22, 22, 22, 22, 22,
22, 22, 22, 22, 22,
22, 22, 22, WORD,
int nextc; [* current character of input */
main()
{
/* make nextc valid before we use it */
nextc = getchar();
/* until EOF, keep recognizing lexemes */
while (nextc != EOF) {
lex();
}
}
lex()
{

Page 34

WORD } };

Lexical Analysis EE468 Course Notes

/*

*/

Use dfa[][] to scan next lexeme. As each state is

entered, the state number is displayed. When a
lexeme has been accepted, the token type is printed.

int state;
/* Always start in state 0 */

state = dfa[O][typ(nextc)];
printf("0");

While an entire lexeme has not yet been recognized,

get the input type of the next character and use it
to go to the "next" state.

*/
while (state < ACCEPT) {
advance();
printf(", %d", state);
state = dfa[state][typ(nextc)];
}
/* Print the name of the token type recognized */
switch (state) {
case KIF: printf(": if\n"); break;
case KELSE: printf(": else\n"); break;
case KWHILE: printf(": while\n"); break;
case KINT: printf(": int\n"); break;
case KRET: printf(": return\n"); break;
case WORD: printf(": <word>\n"); break;
case NUMBER: printf(": <number>\n"); break;
case ERROR: printf(": <lexical_error>\n"); break;
case PUNCT: printf(": <punctuation>\n"); break;
default: printf(": This cannot happen\n");
}
return(state); /* return the token type */
}
advance()
{
/* Advance to next token of input. When EOF is reached,

never getchar() past it.

Page 35

EE468 Course Notes Lexical Analysis

*/

if (nextc = EOF) nextc = getchar();

typ(c)

int c;

{

[* Use charmap[] to map c into an input type for state
table indexing. Since EOF is -1 and valid chars are
between 0 and 127, simply index charmap[] by c + 1.

*

return(charmap[c + 1)]);
}
2.3. Atomic

Atomic lexical analysis is, where possible, the preferred methodxafaleanalysis. The
name is borneed from the LISP concept of an atom: an item which is treated as a singlis-indi
ible, unit. When input is read, it is often possible to findeioledges by a simple technique which
is independent of the particular tvkbeing recognized A grammatical edge is a terminal which
cannot be part of the grammatical production being considered, and hence marks the end of that
particular production.)For example, FORH tokens are all separated by spacksLISP, tokens
are either separated by spaces or.arg, or) . Mary more cowentional languages also define
tokens as characters separated by spaces or spéeial symbols.Therefore, a toén easily can
be recognized and then lakup in a dictionary of tans.

Atomic lexical analysis is usually used with languages thate hesered keywords,
because this can malhe dictionary lookup easie(A resened lkeyword means that theskword
can neer be wsed as an identifier and therefakvays has the same tek type.) Even if
keywords are not reseed, the tokn dictionary can be part of the symbol tabkwords can be
placed in the same symbol table that contasrsable names, etcThis results in a small, yet
very efficient, lexical analyzer It is dso simple to modifyparticularly if the lical analyzer is
constructed mechanically from agréar grammar; punctuation k<= would be recognized by
the DR, arything that looks lik aword would be lookd-up to determine the tek type (which
could be leyword, identifier local intger \ariable . . .).

As an @ample, consider the [BFgiven earlier. It can be simplified to use a 4 by 4 goto
table instead of 23 by 15imply use the symbol table to recognissords:

Page 36

Lexical Analysis

alpha (alpha | digit)*
token value is the text,
token type is lookup(text)
digit+
token value is atoi(text),
token type is NUMBER
space+
ignored....
anything
token value is the text,
token type is the text

EE468 Course Notes

Page 37

EE468 Course Notes Symbol &bles

This page is intentionally blank.

Page 38

Symbol Bbles EE46&ourse Notes

Symbol Tables

Symbol tables are data structures used by compilers to remember information about lan-
guage constructsEach construct is identified by a symbol (symbolic name) and hence these data
structures conceptually form a table of symbols and information about &aehsymbol table
contains nearly all the information which must be passed between fidremtifophases and hence
provides a common inteate between the phasds. most compilers, symbols are eplént to
the charactestring representation of certain @is (not all tokns will hae ymbol table entries
— for example, numeric constanales and arious punctuation marks usually are not entered).

As discussed in the prieus chapter of these notes, adonkcan hee wo atributes: the
token value and the tadn type. Both of these characteristicould be remembered in the symbol
table entry of each tek. Furtherthere must be aay of looking-up the appropriate entry; since
only the string of characters isadable directly from the input, symbol table entries contain a
copy of the string which represents each symbol so that the string can be usesi/ as se&rch-
ing the table.A symbol table containing this information is Baient to support an atomic¥ieal
analyzer

However, if symbols hae aher attrilutes, these must also be remembered in the symbol
table. for example, the scope (global véocal) of a declaredariable can be thought of as yet
another attribte of the symbol which represents thatiable. Asan alternatie, scoped names
can be thought of as multiple symbol table entries for names where the lookup proogdyse al
chooses the currentlyalid definition. In production compilers, symbols canveamtire lists of
attributes which are represented by other comphga structures and are often receegdeclar
ing a data structure which contains a pointer to another such structure); the entire mechanism is
considered the symbol table, it may actually be a com@gwvork of tables and lists.

The material ceered in this chapter corresponds roughly to thaee in chapter 9 of Fis-
cher & LeBlanc.

1. SimpleSymbol Tables

By “simple” we mean that there is only one scope (i.e., only gladrébles) and there are
few attributes associated with each symbBlrther once a symbol has been entered in the table,
it will never haveto be deleted (although it might be modifiedhis is the kind of symbol table
one might find in a BSIC or FOR'RAN compiler

The fundamental operations on such a table are generally:

. Lookup an entry for a particular symborhis is used to accessyanf the information
about the symbollf the symbol does notxest, an entry can be constructed for it with all
the information ecept the symbol name string mackas unknon or the lookup can

Page 39

EE468 Course Notes Symbol &bles

simply return some code meaning “not found.
. Enter a nev symbol, and information about it, into the table.

. Modify information about a symbol prieusly entered in the tablélhis is often written in-
line rather than as a separate function because the modifications can usually be done in-situ
(without allocating more memory for the information) using the entry found by lookup.

There are seral fundamental data structures which aeeyvappropriate for tables to be
used in these restrictedays. Alinear table is frequently used because it is the mogbod
technique, tree structures are often used becaugearthenore dicient and hae sveal useful
side-efects, and hashing is used whericefngy is the key oncern.

1.1. Linear (Stack)

Conceptually a sngle-scope symbol table is just a list of entries, each of which has the
character string which represents theetnka token type, and possibly a ®k \alue. (Thetoken
value is often its runtime addressjtlihe address can reside in the assensidgmbol table and
be referenced by the compiler using the string for the symBairjsider the program geent:
int joe;
char poly;
washere: call ithink;

The symbol table entries are conceptually:

string type value

joe int variable (addressf joe)

poly charariable | (addressf poly)
washere label (addressf washere)
ithink subroutine (addregsf ithink)

It is apparent from the ale example that the symbol table can be an aridgw entries in
the table are made in the order in which the symbols are first encountered and, since no deletions
eve need to be made, the storage space faremtries can be allocated using an array as a stack:
start at one end of an array anarg time a n& entry is made, makit in the nat slot in the
array

The representations of the symbol strings are most naturally the strings tle=mdgivere
is a limit on the length of these strings, each entry could hahar array of the maximum size
resered. 1o avoid limiting the length, each entry could instead point at a separately allocated
char arrayas fhown in A&U Figure 9.1, page 330(This separate allocator can also act as a
stack.) Theype field could be encoded as an gatieor in more compl& typing schemes, could
be a pointer to the symbol table entry of the symbol which defines that TyeMalues, or
addresses, might be machine addressegedsn, if our output is assembly language, the address
of an item could be thealue the assembler associates with the string and hence implicit in the

Page 40

Symbol Bbles EE46&ourse Notes

symbols gring entry

The problem with linear symbol tables is that finding a particular syméuly talkesO(n)
effort. If there aren symbols in the table, theverage lookup will scam/2 entries if it is in the
table and alh if not. For a program with seeral hundred ariables, this can cause the compiler
to be disturbingly s. Howeva, this technique is reasonable for small tables and, if we scan the
most-recently-made entries firdtcality-of-reference (a variable which is referenced ieny
likely to be referenced am very soon) can result in usabldiggng. A simple eample of a
symbol table aganized in this vay is:

/* SymTab.C

SYMbol TABle example in C.

Fall 1983 by Hank Dietz
*/

#include <ctype.h>
#include <stdio.h>

#define WORD 512 /* a WORD */

#define KIF (WORD + 1) /* the keyword if */

#define KELSE (WORD + 2) /* the keyword else */

#define KWHILE (WORD + 3) /* the keyword while */

#define KINT (WORD + 4) /* the keyword int */

#define KVAR (WORD + 5) /* WORD is an int variable */
#define KFUNC (WORD + 6) /* WORD is a function name */

#define STKSIZ 32 /* size of stack (symbol table) */

char mempool[STKSIZ * 10]; /* memory pool for strings */

int memnext = 0; [* nextfree char in pool */
int string[STKSIZ]; * symbol table string indexes */

int types[STKSIZ]; /* symbol table token types */

int sp = 0; / * s tack pointer (next table index) */
main()

{

/* A main to demonstrate use of the symbol table */
register int i;

Page 41

EE468 Course Notes

[* initialize symbol table & keywords */
syminit();

i = | ookup("this");
printf("%s is type %d\n",

&(mempool[string[i] 1), typesli]);
types[i] = KVAR;

i = | ookup("while");
printf("%s is type %d\n",
&(mempooll string[i]]), typesli]);

i = | ookup("this");
printf("%s is type %d\n",
&(mempool[string[i]]), typesli]);

}

syminit()

{
/* Install keywords */
enter("if", KIF);
enter("else", KELSE);
enter("while", KWHILE);
enter("int", KINT);

}

lookup(s)

char gf];

{

/* Perform linear search for the token which looks like
the string s[]. Try the newest entries first.

*/

register int try;

/* Scan table from most recent to oldest entry */
try =sp-1;
while (try >= 0) {
if (strcmp(s, &(mempool[string[try]])) == 0) {
return(try);

}

Page 42

Symbol &bles

Symbol Bbles

try =try - 1;
}

/* Could not find it. Enter it as a WORD. */
return(enter(s, WORD));

enter(s, typ)
char s[];

int typ;

{

/* Enter the symbol which looks like string s[] into the
symbol table. Mark it as token type typ.

*/

register int i;

types[sp] = typ;

/* Place s[] into mempool[] and make string[sp]
point at it.

*/

string[sp] = memnext;

i =0,;

while (s[i]) {
mempool[memnext] = s]i];
memnext = memnext + 1;
i=i+1 ;
}

mempool[memnext] = 0;

memnext = memnext + 1;

/* Bump sp, but return sp of entry just made */
sp=sp+1;
return(sp - 1);

It is also possible to dynamically alter the order in which entries are searched so that a refer
ence to a symbol causes the synatitry to mave © the front of the search ordeThis maxi-

EE46&ourse Notes

mizes the benefits of locality-of-referenc&&U describe this technique as selfganizing lists

(see page 338)The search ordering is implemented by an additional piece of information in each
entry: the location of the reentry to try if this entry did not hold the desired symhak a

Page 43

EE468 Course Notes Symbol &bles

whole, this forms a lingd list running throughout the table.

1.2. Tree

Trees can be thought of as linear arrays whiale leach two or more etra fields in each
entry so that searching for a particular entry is ead@mary trees are most commonly used,
because tw fields are enough to realize the beneftme of the fields wuld point to an entry
which contains a symbol whose name string is alphabetically before the symbol in thiSThatry
other would point to an entry after thisiVhen this netwrk of tags is dnan, the resulting dia-
gram is a binary treeThe tree formed by thexample gven above looks like:

The time it taks to lookup an entry is dependent on the layout of the lfréee tree is bal-
anced (all branches are of the same length), then lookKdfag n). Howevae, if the tree has just
one, \ery long, branch, it i©(n). The performance of a tree is therefore a probabilistic thimg, b
usually abouO(log n).

There are techniques which can maintain balance when inserting an entry into the tree so
that searching is ahys O(log n), and these techniques form what are cal®d. trees How-
eve, AVL balancing is time consuming and the algorithm is nuiztt.

For any tree structure, theverhead of comparing with each symbol is roughly twice that of
other techniquesFirst, compare for equalitylf that fails, compare for less or greater to decide
which tag to follev (where to look net). For this reason, treesonk best with &irly large tables.
However, the tree structure alphabetizes the symbols, and this f$ef#-eain be ery useful:
alphabetized lists of symbols are often needed for cross-reference listings or for creating code
modules name lists (if the output is machine code rather than assembly language).

1.3. HashTable

Hashing is a technique with one major benefit: ietallmosO(1) effort. Actually, hashing
is a probabilistic process and théoeffis a firly complex function of the density of population of
the table. A table which is less than 80% full is quite clos@(t, but a full table isO(n), o
hashing does e mmplications.

1 SeeFundamentals Of Data Strucesby Horawitz and Sahni, page 454, for a detailédLAnsert algo-
rithm.

Page 44

Symbol Bbles EE46&ourse Notes

In a hashed symbol table, a “magic” number is computed from the string for each symbol.
This number is then considered the startingndesearch the (usually linear) tabléinlike dl
other techniques, if the numbers are unique for each string, then the strings deenbt lea
stored in the table entries and lookup igiati Theoriginal BASIC is probably the only such lan-
guage in common use: aliables are either a single letter or a letter vedld by a digit. This
makes a total of 26 11, or 286, possible name®y building an array of 286 entries, we can
directly compute the indeof the entry for a particular symbol hame string as:

index = string[0] - 'A’;

if (string[1]) {
index = index + (26 * (string[1] - '0’ + 1));

Unfortunately (fortunately?),ery fev languages he sich restricted names that this is pos-
sible. Havever, using the hash number as a “good guess” for where to start looking, hashing still
performs ery well. Then the table appears muchelil inear table, and is actually linearly
searched from the point of our guess if the guess did not happen to find the right entry immedi-
ately The following example is equidlent to the linear symbol tablgample, lit uses hashing:

/* Hash.C

HASHed symbol table example in C.

Fall 1983 by Hank Dietz
*/

#include <ctype.h>
#include <stdio.h>

#define WORD 512 /* a WORD *

#define KIF (WORD + 1) /* the keyword if */

#define KELSE (WORD + 2) /* the keyword else */

#define KWHILE (WORD + 3) /* the keyword while */

#define KINT (WORD + 4) /* the keyword int */

#define KVAR (WORD + 5) /* WORD is an int variable */
#define KFUNC (WORD + 6) /* WORD is a function name */
#define NOTUSED (WORD + 7) /* a NOT (yet) USED entry */

#define STKSIZ 32 /* size of stack (symbol table) */

char mempool[STKSIZ * 10]; /* memory pool for strings */
int memnext = 0; [* nextfree char in pool */

Page 45

EE468 Course Notes Symbol &bles

int string[STKSIZ]; /* symbol table string indexes */
[* symbol table token types -- initialized to NOTUSED */
int types[STKSIZ] ={

NOTUSED, NOTUSED, NOTUSED, NOTUSED,
NOTUSED, NOTUSED, NOTUSED, NOTUSED,
NOTUSED, NOTUSED, NOTUSED, NOTUSED,
NOTUSED, NOTUSED, NOTUSED, NOTUSED,
NOTUSED, NOTUSED, NOTUSED, NOTUSED,
NOTUSED, NOTUSED, NOTUSED, NOTUSED,
NOTUSED, NOTUSED, NOTUSED, NOTUSED,
NOTUSED, NOTUSED, NOTUSED, NOTUSED },

main()
{

Exactly as in the Linear sezhed example

}

syminit()
{

Exactly as in the Linear segted example

lookup(s)
char s[];
{
/* Perform hash search for the token which looks like
the string s[]. Try the entry given by the hash value
and, if needed, continue scanning over non-matching
entries until either a match or unused entry is found.
If an unused entry is found, install s[] as a WORD.
*/
register int try;

/* compute hash value & map it into a table index */
try = hash(s) % STKSIZ;

/* while the entry we are looking at has been used */
while (types][try] '= NOTUSED) {
[* if the string matches, return this entry */
if (stremp(s, &(mempool[string[try]])) == 0) {
return(try);

Page 46

Symbol Bbles EE46&ourse Notes

}

/* no match, try next (linear rehash) */
try = (try + 1) % STKSIZ,;
}

/* Could not find it. Enter it as a WORD. */
return(enterat(try, s, WORD));

enterat(e, s, typ)
int e;
char s[];
int typ;
{
Exactly asenter in the Linear searthed example
except in that efelences tsp become eferences te in this code

}

enter(s, typ)
char gf];
int typ;
{
/* Enter the symbol which looks like string s[] into the
symbol table. Mark it as token type typ.

*/
register int i;
i = | ookup(s);
typesli] = typ;
return(i);

}

hash(s)

char sf];

{

/* Compute magic hash function. This can be done using
almost any algorithm and most people have favorites.
In general, the hash function should be:

1. Easy to compute
2. Evenly distributed. All hash values should occur,

Page 47

EE468 Course Notes

there should be no "holes" or "clumps"

3. Skewed; insensitive to adjacency. Most words will
be very similar (ie. "name" and "namel"), these
should generate entirely different hash values

*/
register int h;

/* Here, we use the first char * the last char + the
length of the string; imperfect, but adequate.

*/
h = strlen(s);
return((s[h-1] * s[0]) + h);

2. Scopedsymbol Tables

Symbol &bles

The most common complication in symbol table®ives languages which permit multiple
scopes. Ascope is an area of the program in which symbole baarticular meaning; multiple
scopes imply that a symbol mayveaevaal meanings, only one of which is agtiwithin the
current scopeFor example, in C, there are banscopes: global and localConsider the follwing
program sgment:

int a, b;
char c;

main()

{

*/

a=1;

b = 2;

junk();

printf("%d\n", b); /* Prints 2, not 1 */
}
junk()
{

int c;
char b;

/* Here, cis a local int, b is a local
char, and a is a global int.
The globals b and c are hidden.

Page 48

Symbol Bbles EE46&ourse Notes

/* Both b and a here are globals. */
b = a;
printf("%d\n", b); /* Prints 1 */

The scope rules sthvm abawe ae callednested lexical scoping When the contd of a nev
function is entered, at compile time, amscope must be created for locariables. Theold
scope (global ariables) does not gavay, hut is searched only if the wescope does not ka an
entry for the desired symboRn entry isvisible if there is no identical symbol in a more recently
created scopeWhen the ne scope is &ited (the function end is seen), adnables declared in
the nev scope must be deleted from the symbol talliée followving basic operations apply to
tables with nested scoping rules:

. Lookup in ay scope. Searcthe most recently created scope first.
. Enter a nev symbol in the current scope.

. Modify information about a symbol defined in a visible scope.

. Create a n&@ scope.

. Delete the most recently-created scope.

These rules suggest a stack allocation scheWiben a symbol table entry is made, the
entry is allocated as though it were pushed onto a s@oation of a n& scope is simply the
process of remembering the stack pointer prior to creation of that sPabetion of all entries
defined after entering a scope then becomes nothing more than popping the stack until the
remembered stack pointer has been reacliéiés can be directly applied to linear and tree sym-
bol tables.

2.1. Linear

A linear table with nestedXieal scopes is identical to a single scope linear talleep
that pravision must be made for remembering where each scagiasband then restoring the
stack to that point.

2.2. Tree

Build a forest. Each tree corresponds to all symbols defined in a particular sédipen a
scope is ®ted, the tree is deallocatedsearching for a symbol entry is carried out as a a
sequence of tree searches, searching twestescope tree firstA stack can be used to store the
roots of each tree, and entries within the tree can also be allocated from a stack.

2.3. HashTable

There are seral possible ways of performing hashed symbol tables with multiple scopes.
One technique wilds a hash table for each scope, much as a toeddvbe liilt for each scope.
Another technique “threads” all hash table entries in aetinlist for each scope and this & f

Page 49

EE468 Course Notes Symbol &bles

more eficient.

Initially, consider marking the string name of each symbol with a code whashdeter
mined by the scope in which the symbadhsamdefined.For example, a global ariable named
hello might be entered d@hello and a local of the same name might be enterddhelto
By using multiple lookups, one for each scope, a single hash table can hold all entries for all
scopes.

The problem of deallocating all entries within a scope remains, and this is what the thread is
for. Each entry in the hash table can be threaded into edih&t of all entries in that scop&o
remose a sope, simply trace the thread deleting each entry as yout goleft to the reader to
shaow that this deletion technique is egalent to popping a stack and cannotiedholes” in the
hash table.(Random deletions can cause holes in hash tables if linear rehashing is used:

Blah (hash alue 1)
Gunk (hash alue 1)
Yick (hash alue 2)

If Gunk is deleted, hashing wilkil to findYick . Howevae, if scopes are perfectly nestédck
would already hee keen deleted whegunk is to be remeed.)

Page 50

Syntax Analysis (Brsing) EE46&ourse Notes

Syntax Analysis (Rarsing)

Syntax analysis, or parsing, is the most commonly discussed aspect of compiler design and
construction. Thids some&hat strange, because parsing is only a small part of the problem.
However, the theoretical basis for most parsing techniques is well established and teatimak
easier to talk about than most aspects of the translation pro¥isss.parsing &s a major dff-
culty in the early days of sofawe deelopment, hence parsing theory is a major accomplishment
of computer science.

A parser is the part of a translator which recognizes the “structure” of the input language.
This structure is most often specified by grammatical rudesariant of BNF or of syntax dia-
grams. Hencethe parser is also a conceptual machine which groups the input according to the
grammatical rules.There are manways in which this machine mightork, kut real computers
are best at using input presented incrementadla £quence of tadns read left to rightAccept-
ing this limitation, only tvo fundamentally dferent techniques remairlhey are usually called
bottom-up andtop-down, referring to hav they construct (trace) the parse tree.

1. Parsing Concepts

Pasing, or syntax analysis, is the process of tracing a parsefmerivation in which only
the leftmost nonterminal is replaced is calleléfamost derivation. A deriation in which only
the rightmost nonterminal is replaced is calle@yhtmost derivation.

For example, consider the grammar:

<expr> ::= <expr> + <expr>
| < expr>*<expr>
| n umber

wherenumber is ary integer constant, as recognized by ®dal analyzer (whose grammatical
description is not stlvan). Given the following string of terminals:

1+2*3

A parse tree may be generated using either a rightmost or a leftmuatioleri

Page 51

EE468 Course Notes Syntax Analysis (Brsing)

3

All parse trees (applications of a grammar to an input phrase)hagjue leftmost and rightmost
derivations. A grammar that wuld produce more than one parse tree for the same sentence is
ambiguous

2. TheParse Problem

Given a gring which may be a sentence in some language; and the production rules, start
symbol, set of terminals, and set of nonterminals, i.e. the grammar — either construct a parse tree
or reject the phrase as containing a syntactic.error

There are tw basic approaches:
(1) Derwve the sentence from the start symtag-down
(2) Derwe the start symbol from the senterim@tom-up

Assuming that all sentences are scanned from left to rigHt (@erser), construct either a
leftmost denvation (LL parser) or a rightmosLR parser) looking &t symbols (LLK) or LR(K)).

. LL is most easily done top-em.
. LR is most easily done bottom-up (rightmosteesed).
. For practical reasong,usually is one.

Most compiler t&tbooks mak the choice between LL and LR parser appear to be a major
decision. Br example, Fischer & LeBlanc dedicate chapter 5 to LL(1) parsing and chapter 6 to
LR parsing. Certainly LL and LR hae mary different characteristics and you should ivara of
them, lut, for most computer languages,tloan be used almost interchaaidy.

Unlike natural (human) languages that are generally the result ofvaegtbutionary pro-
cess, computer languages are designed as essentially complete diéties, nearly all com-
puter languages are designed so that tam be diciently recognized by a mechanical process.
This is wty LL vs. LR is usually a non-issue.

For the same reason, we are most interested in grammars which can be parsed deterministi-
cally (that is, without hang to parse part of the grammar by trial and error) looking at k symbols
— a necessary Wt not suficient condition is that the grammar is unambiguo@sensider a bot-
tom-up parse according to the grammar:

Page 52

Syntax Analysis (Brsing) EE46&ourse Notes

-~ aAcBe
Ab
- b

- d

W >>rwm
!

recognizing the inpud b b ¢ d e . Scanning left-to-right, find which is a right-side:
aAbcde
now A b matches, bt so ddb andd. This is resoled by substituting for the leftmost match first:

aAcde
aAcBe
S

A handle of a right-sentential formy, is a poduction A- g and a position of where the
string S may be found and replaced by A to produce the prior right-sentential form in a rm (Right-
Most) dervation of . In other words, A— gis a handle ofr Sw, where w contains only termi-
nals, if

using only rightmost derations. Theparsing problems are therefore:
. To locate a handle.

. If there &ists more than one production with same right side, to select which one to apply

3. Bottom-Up Parsers

Bottom-up parsers operate byaenining tolens and looking for right edges of subtrees.
When the rightmost edge of a subtree is found, that subtree cadumedinto a single symbol
representing the left side of the rul&€he process continues, recuely reducing subtrees, until
no input remains and the parse tree has been reduced to a single symbol.

3.1. Shift/ReduceParsers

Since our task is to find handles —vei an input symbol (in a left-to-right scan) vewe
reached the end of a handléhot, keep going; if so, reduce the subtréestack can be used to
maintaine ¢ B; items can behifted onto the stack.The parser simply decides to shift or reduce
for each symbol.

Page 53

EE468 Course Notes Syntax Analysis (Brsing)

a1 . eﬁ e an EOF
Input
Stack Driver Table

where the stack contains a string of form:

soxlslxz...x m Sm
whereX's are grammar symbols,’s are states, and there are m entries on the stdekce, each

state has information about what is underneath it on the skacionjunction with g this deter
mines the outcome of the shift-reduce decision.

The parse dvier table has tw parts,actions and gotos. Actionsrefer to the stack ancer
nal operations, lik accepting the completed parse or indicating errditse goto part is responsi-
ble for making transitions from one parser machine state to #tdased on the current symbol.

Action Goto

shift (statesymbol) - next state
reduce

accept

error

A grammar for which a parse table can be uniquely defined isRagrammar Consider
the following grammar:

<s> ;= real <idlist>
<idlist> ::= <idlist> , <id>
<idlist> ::= <id>

<id>:=a
<id>:=b
<id>:=c
<id>:=d

The first step is to name eaotnfiguration which may occur during recognition of phrases using
the grammar Each configuration therefore corresponds to a particular position within each pro-
duction, which we may denote bgréduction,positiojt

Page 54

Syntax Analysis (Brsing) EE46&ourse Notes

<s> = (1,00 real (1,1) <idlist> (1,2)

<idlist> ::= (2,0) <idlist> (21) , (22 <id> (2,3
<idlist> ::= (3,0) <id> (3,1)

<id> ::= (4,00 a (4,1)

<id> ::= (5,00 b (51)

<id> ::= (6,0) ¢ (6,1)

<id> ::= (7,00 d (7,1)

Configurations which are indistinguishable to the parser are represented by the same state.
The concepts afore andclosure guide this grouping.

A&U have a lttle boo-boo in their description of core on page 221 —y tied Fig. 6.7
when thg should hae referenced Fig. 6.11A&U’ s description of closure isery spread-out,ui
gets to the &y points rather quickly on pages 205-208he following informal definitions should
sufiice.

Informally, the core of an item refers to the sequence of symbols which naaysen rec-
ognized up to the position madk in a productionltems which may ha been preceded by the
same sequence up until the netkpositions haee a ©mmon core and can therefore be combined
into a single recognizer state: yhwould occur under identical circumstances.

Since we can think of each recognizer state as containing as set of items, initially one state
for each core set of items, we can informally definectbeure as the set of items which could
apply immediately after the mas#t position in ay of the core itemsTo paraphrase A&U:

. Every item in the core of a state is also in its closure and

. For every item in the closure of a state, if the position nedrkn the production is folleed
by a non-terminal then all items which mark theibaing of productions for that non-
terminal are also in the stadedosure: if <a>:= stuf « morestuf is in the closure, then
all items ::= somethingare also in the closure.

Continuing our gample, we may arbitrarily assign state 1 the core (1,0) whose closure is
also (1,0). If, however, we assign state 2 the core (1,1), it has a closure including (1,1) and the
initial configuration for eery production which recognizes atidlist> and, since the first
symbol recognized iridlist> may be<id> , it dso includes the initial configuration for each
production recognizing axid> — {(1,1), (2,0), (3,0), (4,0), (5,0), (6,0), (7,0)}.

In the interest of braty, the remainder of thisxample will ignore productions 5, 6, and 7,
since thg behave & production 4. Hence, the states in theaanple are:

Page 55

EE468 Course Notes Syntax Analysis (Brsing)

State Core Closure
1 {(1,0)} {(1,0)}
{(1.1)} {(1,1).(2,0),(3,0),(4.0)}
{(4.1)} {(4,1)}
{(3.1)} {B.1)}
{2,1),1.2)} {(2,1).(1.2)}
{(2,2)} {(2,2),(4,0)}
{(2,3)} {(2.3)}

Relatve © the original grammathis allovs us to specify which state corresponds to each config-
uration:

~N o 0ok WN

<s> = 1 real 2 <idlist> 5

<idlist> ::= 2 <idlist> 5, 6 <id> 7
<idlist> ::= 2 <id> 4

<id> ;= 26 a 3

Notice that a configuration may belong to more than one state, as doesS{Ad8.successors
may be indistinguishable, there can be more than one configuration in théTheraumber of
states corresponds to the number of setsdiftinguishable configurations Shift actions by
the parser correspond to successor operations in finding the states.

The parser dving table is therefore:

state <s> <idlist> <id> real , a $
1 halt s2
2 59 A 3
3 r4 r4
4 r3 r3
5 L rl
6 s/ 3
7 r2 r2

Reduction can takgdace only within states 3, 4, 5, and [T the grammar were LR(0), thenesy
column of state 3 wuld be r4, gery column of state 4 wuld be r3, eery column of state 5
would r1, and eery column of state 7 auld be r2. However, gate 5 has a shift in the column
— this is referred to as shift/reduce conflict State 5 is said to bmadequate We an try to
resohe this problem by using lookahead symbols to indicate when reduction shoelidated. |f
we can do this, then the grammar is simple LR(1), or SLR(1).

The distinction between LR(1) and SLR(1) grammars is that in computing lookahead sym-
bols in SLR(1), left cont¢ is not considered.To remove inadequacies for the most general
LR(1) grammarmore states may be needalfe an redefine a configuration to include the set of
symbols which are alid lookaheads when reduction ¢éskplace: state 1 could be defined by
(1,0),{$} , sate 6 vould then b&2,2) {$,,” and(4,0),{$,*,”

Page 56

Syntax Analysis (Brsing) EE46&ourse Notes

In the most general LR parsamtes which correspond to identical sets of configurations (in
the SLR(1) sense),ub with different follover symbols, are considered distindthe technique
known as LALR(1) taks left contet into account, yet has the same number of states as SLR(1).
For example:

- 1T2e3F4; 11
- 1Es

1i 6; 8

- 3E7

- 13E57+91i 10
> 1,31 6,12

mmmT -4 W0
!

has the folling states in thex¢ended meaning:

1. (1,0){$} 6: (3,1){e}

(2,0).{e}
(3.0).{e} 7 (404}
(5.0).{e,+} G.1).{.+}
(6,0),{e,+}
8. (3,2),{¢e}
2: (1,1).{%}
9: (5,2),{.e,+}
3 (1,2).{%}
(4,0).{:} 10: (5,3).f e}
(5,0).{;.+}

(6,005,411 (1,4).{3}
4: (1,344 122 (61)4.4)

5 (2.1)e}
(5.1).{e,+}

This results in the parsing table:

Page 57

EE468 Course Notes Syntax Analysis (Brsing)

state S T F E e : + $
1 halt s2 s5 s6
2 3
3 A o7 sl2
4 sl1
5 r2 9
6 B =8B r6
7 r4 9
8 r3
9 s10
10 r5 5 rs
11 rl
12 r6 r6

After filling-in shifts, note that the grammar is not LR(0), since state 5 canvetrdwuce
actions in all columns because s9 is intheolumn. Itis also not SLR(1), since if it were SLR,
; would be a alid follower of E, because it is aalid follower of F for state 6 using reduce by
rule 6: except s8 is in the column. Theconflict is resoled sincee and+ are the only alid fol-
lowers in state 6 for reductioM.herefore the grammar is LALR(1).

If it were not LALR then we wuld increase the number of states by splitting:

state 10: (5,3).{;’,e,+}
10a: (5,3).{;.e}
10b: (5,3).{;,+}

This efectively remembers more left contie whether the E is reduced to a F or a T and therefore
would be LR(1). The parsing algorithm is the same whether LR(0), SLR(1), LALR(1), or LR(1)
— only the algorithm for constructing the table changes.

3.2. Precedence Brsers

Precedence parsers are a simplifiadant of shift/reduce parsers, which, in some cases,
can be ery small, yet dicient, for things lile expressions. A&Ugive a akscription of prece-
dence parsing which is nearly identical to their shift/reduce parsing description; a simplified,
more useful, precedence parser sthatean be found in Howatz & Sahni on page 91.

It is interesting to note that one of the earliest “hacks” for parsipgessions as actually a
form of precedence parsefmhe technique wolved string replacements to a@nt expressions
into fully-parenthesized forms, which are more easily parsed:

An ingenious idea used in the first FORAN compiler was to surround binary operators
with peculiarlooking parentheses:

Page 58

Syntax Analysis (Brsing) EE46&ourse Notes

+ and - were replaced by)))+(((and)))-(((
* and/ were replaced by))*((and))/((
** was replaced by)**(

and then anxra “(((" at the left end })) " at the right were tackd on. The resulting
formula is properly parenthesized, beéeit or not. For example, if we consider
“(X+Y)+W/Z " we dbotain

@M+ +((W)/(2)))

This is admittedly highly redundantutbextra parentheses need nofeaf the resulting
machine cod8.

If we consider the number of parentheses around each operator to be its precedence, it quickly
becomes apparent that the precedence could be associated with operators in ficrantenay

than textual substitution.Each operator could i@ a ount of (1) parentheses to the left and (2)
parenthesis to the right.

4. Top-Down Parsers

Unlike bottom-up parsing, a top-dm parse does not pim by looking at the inputTop-
down parsers tgin by looking for the start symbollo do that, thg recursvely look deeper and
deeper into the tree until finally there looking for tolens.

Top-davn parsers are more commonly used than bottom-up simply becaysecleasier
to write (unless you W& a pogram which cowverts a grammar into a bottom-up parseRather
than using tables, top-dm parsers are usually written as a set of mutually-re@imsbcedures.
Such a parser is calledrecursive descentparser: it recursely descends through routines for
each of the grammatical rules until it is matchingetok

For example, consider the grammar:
<s> ::=real <idlist>
<idlist> ::= <id> , <idlist>
<idlist> ::= <id>

<id>:=a
<id>:=b
<id>:=c
<id>:=d

which is \ery similar to that gien earlier, differing only in the second ruléMe an parse accord-
ing to this grammar using C routinesdik

s()
{

2 From Knuth, A history of writing compilers,in Computers and Automation 11, 8-14 (1962).

Page 59

EE468 Course Notes Syntax Analysis (Brsing)

match("real");

idlist();
}
idlist()
{
id();
if (match(",")) idlist();
}
id()
{
if (match("a")) return;
if (match("b")) return;
if (match("c")) return;
if (match("d")) return;
}

where match is a function which simply compares thegament to the current tek, and
advancedff it matches; returning zero if no match, non-zero otherwise.

The dificulties in recursie descent parsing lie in the transformations that must be per
formed on the grammar in order to reake grammar LL(1).Let's examine a slightly more dif
cult grammar — the one we dpm with in the first ample:

<s> ;= real <idlist>
<idlist> ::= <idlist> , <id>
<idlist> ::= <id>

<id>:=a
<id>:=b
<id>:=¢c
<id>:=d

This is more dffcult in that<idlist> is left-recursie, and this recursion wuld be infinite if
we tried to recognize thedlist> with:

idlist()

{
idlist();
match(",");
id();

}

Page 60

Syntax Analysis (Brsing) EE46&ourse Notes

The best fix imolves revriting the grammar to xpress the same languageit bvithout left-
recursion. Assuggested when we discussed grammars, there agewaga in which this can be
done. Syntaxdiagrams are flecharts for recurge-descent parsers b drawvn left-to-right
instead of top-to-bottom)In syntax diagrams, left-recursion is re-written so that the rules for
<idlist> become a syntax diagram with a loop:

idlist ——

which corresponds to a parserdik

idlist()
{

id();

while (match(",")) id();
}

as opposed to the right-recwesivasion:

idlist

o
which corresponds to the parsing routine:

idlist()
{

id();

if (match(",")) idlist();
}

If you can obtain or create a correct syntax diagram, you already é«awtly hav to build the
recursve cescent parserlf instead one must construct a recuesiescent parser from a grammar
expressed in BNF or CFG notation, there areesd constraints on the rulene is that left
recursion must be eliminated, another is that the grammar must be constructed such that an LL(1)
parser can parse according to it deterministically

4.1. Elimination Of Left Recursion

We know recursve descent parsers cannot handle grammars written with left recursion.
Unfortunatelyit is quite natural for us to write grammars with left recursi@n the other hand,
it is possible to mechanically re-writeya@FG to remeoe dl left recursion.

Page 61

EE468 Course Notes Syntax Analysis (Brsing)

Probably the most commomxample of left recursion is found among the rules fqres-
sions ivolving left-to-right binding binary operators:

<expr> ;= <expr> op IDENT
<expr>:= IDENT

The first rule is anxample ofimmediatdeft recursion.In general, rules of the form:

A ADb
A - C

WhereA is a nonterminal antl andc are aiy two quences of terminals and/or nonterminals,
can be coverted into:

A - cN
N - b N
N—>€

whereNis a nevly-created nonterminalThis simple mapping, although not the general solution,
resol\es most left recursion problems in computer languaffése page 178 in A&U for a more
detailed description of this technique.)

Left recursion may also bmdir ect, tracing through seral nonterminab rules before
arriving at the realization that the same rule may beveked without having accepted anaddi-
tional input. Examples are:

S - NS
N - ¢

which is left recursie bkecauséN may match no input, and:

S - A stuf
A - B morestuf
B - S stillmorestuf

which is left recursie, obscured only by passing through avfaules. Thegeneral technique for
“fixing” these defects may be found in Bauer & EEkCompiler Construction, An Advanced
Course 1976, Nev York, SpringefVerlag, pages 70-75.

4.2. DeterminismFor K =1

In order for a grammar to be deterministically used fork)Liecognition, wheneer there
are alternatie productions, it must be possible to pick the correct one by looking at th& first
tokens. Consider:

Page 62

Syntax Analysis (Brsing) EE46&ourse Notes

A - B
A - C

If the firstK tokens accepted B could not be accepted as the fiksiokens byC, then an LLK)
parser can be usedhenK=1, we can xpress this concept disst(B), the set of tokns which
could possibly be the first accepted Bybeing disjoint with first(C), the set of tokns which
could possibly be the first accepted @y Although a grammar whictails this testcannotbe
mechanically “fixed” to be LL(1), it is adirly simple check and can pemt a great deal of grief.
(See Wtth, Algorithms + Data Structwes = Pograms pages 285-288.)

Likewise, if there is a nonterminal which could §ahe set of tokns which immediately
follow that nonterminal must be disjoint with the set that occur if aarale is applied.

A sample of an LL(1) grammar is:

- B
- Ce
- a
b C
- Dc
- d

- &

o0 wW>»>» >
i

For this grammarthe set of first tokns for each nonterminal is:

first(A)
= { f irst(B) } 0 { first(Ce)} 0{a}
={b} O{first(Ce)} O{a}
={b } O { d,c} DO{a}
={a,b,c,d}
first(B)
={ firsttb C)}
={b}
first(C)
={first(Dc)}
= { first(dc)} O { f irst(c) }
={c,d}
first(D)
={d, ¢}

Notice that thedct thatD could bes (nothing) resulted in the second symbol of the production for
C being a member dirst(C). (Incidentally it is debatable whethesrshould be writtenxglicitly
in thefirst sets.)

Page 63

EE468 Course Notes Syntax Analysis (Brsing)

Recursie descent parsing avrks because input is only ahced when a pattesfirst sym-
bol is matched —\en though fruitless recurge alls may be madeln general, each parsing
routine should return “successt it matched a first symbol of the nonterminal it trys to recog-
nize. Consider:

<thingy> ::= <a> |
<a>:i=c
:=d

the routine to recognizéhingy would simply calla, which would return either “success” or
“failure} and if it returned “&ilure’ thingy would then calb. This works because first] and
first(b) are disjoint.

5. Backing-Up

Non-deterministic parsers can bdlbusing a technique calldshck-up. Wheneer seveal
rules could be applied and the parser cannot guarantee making the right choice, the parser will try
one of them and, if thaails, back-up the input stream (and undyp ether actions) to try the ne
possible rule.Although this process amounts to a full-width search for the correct parse, if the
non-determinism is restricted to ary small portion of the grammanon-deterministic parsers
can be made nearly adielent as deterministic ones.

(Note: Back-up of the input stream is relaly easy; unfortunatejyreal translators hva
parsers with embedded siddeets like making symbol table entries and generating code: these
actions are notoriously hard to undo.)

Conceptuallyback-up can be accomplished by marking where you are in the input stream
just before trying an alternaé and, if that alternatie fails, resetting the input stream to the
remembered pointEach alternatie an be “tested” in this manne©Of course, each alternaé
must return the concept of “success” aailtire” to determine if trying the other alternas is
necessaryFor example, the non-deterministic grammagisent:

A - BCD
A - BE
A - B

Could become the recuvsidescent parse routine:

Page 64

Syntax Analysis (Brsing) EE46&ourse Notes

AQ

markbuf m;

BO):

mark(m);

if (C()) { D(); return; }
backup(m);

if (E()) return;
backup(m);

return;

In the xample, themark operation wuld simply store the current position in the input
stream into the markuffer m The backup operation wuld tale the position stored, and seek
backward in the input stream (file) to continue reading from that posit@frcourse, unrestricted
back-up can result in eew slav parser; hence, we canwsion a circular queue of teks to be
used much more #ciently for limited back-up.As each tokn is read, it is entered at the head of
the queue.When we must back-up, we are limitedNotokens (whereN+1 is the size of the
gueue), bt we simply hae te le routine read the tans from the queue until it reads past the
head, at which time we continue the read & enter at the head of the queue process.

Artificial intelligence, natural language, and semantic-based translation systems often use
back-up. Havever, limited back-up is @ry useful for error rea@ry in mary translators.

6. Error Detection & Recorery

There are mandifferent approaches to error reery. In general, the error regery mech-
anism in a compiler should be:

. Precise The error messages should wspecific and should be closely associated with
the location of the error in the inputof~example, Syntax error is a poor message
compared tiMissing THEN in line 48

. Accurate: An aror should be localizedIf a variable definition is malformed, a compiler
ought not be confused by the remainder of the program. Error messages should only be out-
put for errors.This is what Vitth calls the “dort panic” rule.

. Frequency biased The most common errors are the ones to be magivieg about and
are the preferred interpretations of ambiguous constriaisexample,a = b c(); in
the C language could be missing either an operator or a semicolon bétaedrt. An
operator is rarely left out, because it plays a “logically significant” role; semicolons do not,
hence we wuld assume (and tell the user that) the phrase shoultl leena = b;
c(); . In cases where the probability of the error being the one suspected is nearly 1, the
compiler might issue the message asaaning rather than an erroMVarnings are notatal

Page 65

EE468 Course Notes Syntax Analysis (Brsing)

to compilation lile erors; a program compiled withagnings can be run and will do some-

thing.

Two error handling techniques that are consistent with these goals will be presented here.
The abwee goals should dictate the technique; not thense.

6.1. SyncSymbols

The easiest kind of error ra@y in common use is based on the presence of grammatical
synchronization characterSuppose a C compiler is recognizing a statement when suddenly it
finds an error . . dl C statements end in a semicolon, so a quick and dirty errorargcacheme
would be to gobble all input up until thextesemicolon.In parsing C statements, the semicolon
is a synchronization symbol: if we find one, weddound the end of a statement.

Unfortunately sync symbols tend to be punctuation marks with little other meaning —
exactly the kind of symbol Knuth suggests we humans aedylilo foiget or misplace For this
reason, this kind of error resync can often mangle the general structure of a prégcéassic
example is when the is accidentally omitted from the end of a declaration ofstr@ct ; typi-
cally, the rest of the file will be completely misunderstood.

6.2. Subtree Completion

Another technique wrolves completing the subtree (production) in which the error occurred.
This is usually accomplished by pretending to find symbols that were neetedsking. For
example, if the input idF (a<b) GOTO |; and it should hae beenlIF (a<b) THEN
GOTO |; , areasonable error actionowld be to pretend that tiBHENwas seen (and to inform
the user).Any other action wuld either

(1) ignorethatlF (a<b) could not belong to another subtree or
(2) beunable to understar@OTO |; .

Page 66

Intermediate Brse Representations EE468 Course Notes

Intermediate Parse Repesentations

Thus fr, we havediscussed the general goals of a comptlee process by which input
phrases are recognizedxieal and syntax analysis), and the techniques used to store information
needed to perform recognition (symbol tableShe net step is to precisely define the output
language. Thigs not as easy as it might seemergually, most compilers will generate assembly
language output,tt a single action in a HLL may be related to snassembly language instruc-
tions, so it is important that these instructions be generated in a conseyethiaivalso results in
good eficiengy. Just as the input process is ordered by the input language grathenautput
process should be guided by an abstraction of the output langlihgse abstractions are kmo
as intermediate parse representations.

For example, consider the HLL assignmeatb*c . In the first chapterwe presented a
simple-minded translation of this directly into assembly language of a stack mathere. are
such machines,ub suppose the computer we need to compile for is a z80 instéadz80 is not
a dack machine and it does notvieaa nultiply instruction. It is highly debatable whether it is
reasonable to model the z80 as a stack machinefelv would object to modeling the z80 as
though it had a multiply instructionJust as separation oiieal analysis from parsing simplifies
parsing, generating code is easier if the compiler constructs a representation which reflects a
higherlevel model prior to generating assembly language output.

Throughout Fischer & LeBlanc, you will see maeferences to, and assumptions about, a
particular intermediate form — treel some sense, trees are the mositfle intermediate form
and that is wi the text concentrates on thenhn contrast, here we are trying tosgiyou perspec-
tive an why there are so mardifferent intermediate forms so that you will be able to engdod
decisions about lmoto design your wn for specific applications.

1. Prefix, Infix, and Postfix

As most data structure coursegolain, epressions in most cuentional languages are
written in infix form, lut computer hardare uses either prefix or postfikn infix form, operators
are between their guments:atb, for ekample. Prefiorm might be+ab, add(a,b) , or, in
mary assembly language®iDD a,b . Postfix isab+. A stack machine is also postfiRlIUSH
a; IND; PUSH b; IND; ADD

Since prefix or postfix forms are easily obtained from infix and are meré¢hbkassembly
language of most computers, yhare often used as the intermediate representatioxmes-
sions. Inparticular postfix forms are @y commonly used althoughwecomputers are really
stack machines.

Consider the syntax diagrams of syntax recognizer projéut. process of generating stack
(postfix) code can be directly related to the grammar by inserting gefeerators:

Page 67

EE468 Course Notes Intermediate Brse Representations

expr
® term
L term —@_>
{G1}
term
fact
k\—@— term J
{G2}
fact

()
U/ {G3}

m {G4} {63}
0 fact
0 expr

where the generators are:

{G1} generateADDstack op

{G2} generateMULstack op

{G3} generatePUSHSstack op

{G4} generatePUSHandIND stack ops
{G5} generateNEGstack op

An equialent representation can be made using BNF:

<expr> ;= <expr> '+’ <term> {G1}
| <term>
<term> ::= <fact>"*' <term> {G2}
| < fact>
<fact> ::= NUMBER {G3}
| WORD {G4}
| ' -’ <fact> {G5}
| * (" <expr>7)

2. Pseudocodd&lodels

If the key reason for an intermediate form is t@arize the output in a &y that is consis-
tent and dfcient, then a logical possibility auld be to design a virtual machine, or pseudocode
model, which wuld be (in some sense) the optimal output languddes optimal language

Page 68

Intermediate Brse Representations EE468 Course Notes

could then be interpreted directly or translated (perhaps by mggamsion) into assembly lan-
guage for a particular computeflmost all interpreters include pseudocode compilers; art inter
preter which includes a compiler is properly Wwmoas gpre-compiling interpreter.

There are mandifferent levels of pseudocode modelshis is natural, because fdifent
languages hee dfferent qualities that greatlyfatt the ease of generating code for a particular
machine. Afew dramatically diferent pseudocode models will be discussed here as a reminder
that generating assembly language code for the host machine is not necessarily thayright w
do things.

2.1. Rascal

Pascal is adirly corventional language, tiedevy closely to what typical computers are able
to do eficiently. There are only minor ditulties in generating assembly language code for most
modern computersHowever, Pascal is also a relatly new language (circa 1968) thataw
designed as a teaching tool, not for production programming.

Since Rscal is designed as a teaching tool, the speexeoiiteon is relatrely unimportant
— as long as the compiler ig$t, student jobs do not ®kuch runtime ayway. A fast compiler
results from a straightforavd code generation scheme; weéhadready discussed hosimple
stack (postfix) code is to generatasPal P-code is pure stack codgach operator ind@cal has
an egwalent in the P-code.

There is an additional benefit tadeal P-code: it is easy to interpret on mosveatonal
machines. (Notehere, “easy” does not meama$t” nor “eficient’) Since Pascal is relatriely
new, it should not be gry widely aailable; havever, the ease with whichacal P-code inter
preters can beuilt has wercome that barrierHere's the procedure:

(1) Compilethe Rascal compiler with itself resulting in a P-codesion of the compiler
(2) Writea Rcode interpreter for the wemachine.

(3) Transfer a copof the P-code srsion of the compiler to the wamachine. Yu nav havea
working Pascal system.

2.2. BASIC (on microcomputers)

BASIC is classically thought of as an interpreter;aictf most BSIC interpreters are really
pre-compilers. Therare sgeral reasons for thisThe best knan reason is that BSIC runs on
small computers, and small machines do neehleuch memory; in order to fit a reasonable-size
program, a gry compact high-kel instruction set had to be generatédsso, interpreting BSIC
directly means reparsing@y statement each time it igeeuted and that can bring an interpreter
to a cravl. Further the GOTGstatement can be painfully sidbecause a pure interpreter might
have b scan the entire program for the line number desired.

The pseudocode model foABIC is at such a high Vel that it amounts to little more than
pre-tolkenizing the input anduilding a table for finding line numberdn most BASIC inter
preters, each line is tekized when the user hits the retuay.kWhen the user typeRUN before

Page 69

EE468 Course Notes Intermediate Brse Representations

arything is eecuted, the program is parsed wilt the line number indetable and also to pair
FORandNEXTstatements.

2.3. Lisp

Lisp programs are unusual in that data might not be typed until it is Fsedxample, a
function, an association list, a numpand a string are all indistinguishable until yhare oper
ated upon at runtimeThis is not something that compiled machine codeld' seem to be able
to do well; it suggests that a pure interpreter might be the best possible.

Not so. The common form for programs and data is a nested list structure, represented in
the input as a set of fully parenthesizegressions. Its possible to use the fully parenthesized
expressions as the data structure diretily the werhead of performing list operations bytieal
insertion into strings containing parenthesizepressions is unthinkablex@pt on highly paral-
lel machines, where it has been proposd@djerefore, Lisp is taknized and parsed to generate a
pseudocode which consists purely of dWists, which areair easier to manipulatd-urther the
language definition implies that memory holding no-loryeeded structures will be deallocated
and reused; this is also part of the pseudocode model, although the convallgenerates such
an instruction.

3. Three-Address Code (tuples)

Most computers are not stack machines,dve rgister and memory orientedherefore, if
we wish to generate féfient assembly language code fapeessions, it wuld be better to use a
code model which reflects this architectuthe most commonly used model of this kind is a
three-address model; sometimes called a “guadad; or a “triple,” depending on relately
minor variations in the @&y they are written (see page 260 of A&U for detaildh. more general
name, acknwledging the &ct that may additional fields of information may be maintained
(mostly for optimization, as discussed later), is “tuple.

An example of a code tuple representation is:

a=b*c+d*e*(f+gq)

Result | Argl | Arg2 | Operation | 3-Address Code
t1 b c multiply tl=b*c

t2 d e multiply t2=d*e

t3 f g add t3=f+g

t4 t2 t3 multiply t4 =12 *t3

t5 t1 t4 add to=tl+t4

— a t5 store a=t

There are seyal interesting featuresiglenced in thisxample:

Page 70

Intermediate Brse Representations EE468 Course Notes

. Variables do not appear in the order of occurrence of the origipedssion, bt appear in
the order of usageThis is eqwaent to minimizing the number of items which must be
remembered (on the stack or iigisters) during eauation: important since most computers
have amly a few regsters.

. Each code tuple closely resembles a single machine instrudtmra machine with three-
address instructions this isvabus; havever, it is o worse than tw instructions on a te+
address machineln a two-address machine, a tupledikL = b * ¢ could become
LOAD regl,b ; MUL regl,c

. Although code tuples do not really specifgister usage, it is easily determined from a set
of code tuples: operations which require theguanents in rgisters vould imply ragister
usage and inducedsiables { N) should also be in gisters. Infact, mary code tuples hae
sequences Ikt3 =f + g ;14 =12 *1t3 ; clearly, it would be particularly good to
keept3 in a rayister untilt4 has beenwluated.

. Tuples are easy to play wittBecause tuples are a linear form (as opposed to trees, dis-
cussed belw), they are easy to be insightful aboufs a trvial example, on a three-address
machine it is clear thab = t1 + t4 ;a = t5canbeoptimizedta = t1 + t4.

Most of the simple optimization techniques discussed later in this course are typically per
formed on code tuples.

The only problem is he to generate code tupledt happens to be di€ult to directly gen-
erate tuples from infix>g@ressions, lt very easy from postfixTherefore, infix gpressions are
translated to postfix and the postfix iswated to tuples.This translation can proceed incremen-
tally by pretending towaluate the postfix code as it is generat@dishing a alue will stack the
name of the thing pushedinstead of actually multiplying, adding, etc., the only actioemaik to
adjust the stack to hold awéemporary name for each resull.counter can generate thesevne
names as follws:

a=b*c+d*e*(f+g)
becomes the postfix sequence:
abc*de*fg+*+ =

which, in turn, results in generation of the fallag tuples:

Pae 71

EE468 Course Notes Intermediate Brse Representations

Stack Op. | Tuple Generated | Stack temp=
PUSH a — a 1
PUSH b — ba 1
PUSH ¢ — cha 1
MUL tl=b*c tla 2
PUSH d — dtla 2
PUSH e — edtla 2
MUL t2=d*e 2tla 3
PUSH f — ft2tla 3
PUSH g — gft2atla | 3
ADD t3=f+g t32tla | 4
MUL t4=12*t3 4tla 5
ADD th=t1+¥4 t5a 6
STORE a=1t5 empty 6

4. Parse and Expression Tees

The intermediate parse representations describedkt adalescribe gpressions only; the
do not model control structureslowever, as we dscussed earliea ree may be used to repre-
sent the grouping of input by yagrammar — not just by a grammar recognizimgressions.

A parse treeis exactly of the form constructed in describing grammars — a tree whose
inner nodes each represent a nontermifal.expression tees inner nodes, on the other hand,
each represent an operation to be perfornieml.example, the compare the folling parse and
expression trees far + 2 * 3 (as per thexample in chapter 6):

Suppose that a single tree is constructed to represent the structure of an entire procedure or
function. Thisstructure could then be used to perfornwflanalysis, and code motions, within
the function by maing pieces of code through the tregince operations mving entire subtrees
are relatvely cheap, compilers that need to do compdptimizations, or flav analysis, almost
always operate on trees representing entire functions or procedures.

Page 72

Intermediate Brse Representations EE468 Course Notes

However, there is a second aahtage which applies both tapFession and function parse
trees. Theree structure itself does not impose aarticular model on the code to be generated,
hence, the code generator often caneniaiter use of irrgular instruction sets by using template
matching schemes similar to those discussed in tkiechepter (An irregular instruction set is
one in which some gisters are “specidl,some special-purpose instructiongist, certain
addressing modes onlyork with certain instructions, or other anomalies abound.)

A very common motiation for using angression tree is an optimizatiorvatving “Sethi-
Ullman Numbers” — which re-arranges subtrees to minimize the numbegisfers needed to
hold temporariesThis re-arrangementauld be dificult given a linear form such as code tuples.

Page 73

EE468 Course Notes Code Generation

This page is intentionally blank.

Page 74

Code Generation EE468 Course Notes

Code Generation

Code generation is the process oilding the intermediate parse forms andwesting them
to code in the output languagl a sense, these areonaeparate processes: (Dild the interme-
diate form and (2) generate the output language interpretation of the intermediatd figrast
class ofaction is generally knan asgenerators The first kind of action is, in mgrways, noth-
ing more than the glue which holds the pieces of a compiler together (we will refer to these
actions asotes.

In some compilers, these avkinds of actions are both embedded in the parGenerators
of this kind are kne@n asembedded generators In ather systems, only the noting operations are
embedded, while the generators are separate phases which operate on the data structures of the
intermediate parse representation.

1. EmbeddedGenerators

Since actions touild the intermediate parse representation must be embedded, the easiest
code generation technique simplyries the generators in the parséhe only hard part is deter
miningwhe in the parser

To begn, consider the follving guidelines:

(1) Code should beemnented as early as possibléAs oon as enough of a phrase has been
seen so that some code can be generated, it should be generated.

(2) No information can be lostFor example, if we are parsing agtal declaration that looks
likevar a: char; , something (the intermediate representation) must remembea ibat
the thing being declared, although it may not be able to use that information until it has rec-
ognizedchar;

(3) Code must beaneated in the corct sequenceThis may be gry difficult, because the
output language may beny different from the input languagéf. this is the case, either the
language must be redefined or code generation must be isolated from the input language by
use of an intermediate representation, in which case the code generators are no longer
embedded in the parser

The guidelines gien above ae fairly solid, ut there is a nice trick that can be used toenak
it all more natural.When trying to decide where embedded things go, do not look at the. parser
Instead, look at a phrase and the desired output for that phuaselyallav yourself to see one
token of the phrase at a time and restrict yourself to writing the outpuietlye the order you
want it to appear These are essentially the same restrictions a compiler with embedded genera-
tors has imposed upon iAnything you hae 1o remember or bffer, it will have o remember or
buffer. Once this has been done, it is a simple matter to insert the appropriate actions in the parser

Page 75

EE468 Course Notes Code Generation

at the points where the parser accepts thentglou were looking at when you performed each of
the actions.

This warrants anxample. Haevever, before we do that, let us simplify the problem a Iit.
the preious chapterthe places where generators belong in>gression parser werevgn by
shaving the generators embedded in a syntax diagram and Ei¥Ee the grammar can be
directly mapped into a parseve can talk about embedding actions in a gramniNow we can
give an example — the same onevgnh in the preious chapter:

<expr> ::= <expr> '+’ <term>
| <term>
<term> ::= <fact>"*' <term>
| < fact>
<fact> ::= NUMBER
| WORD
| * - <fact>
| * (' <expr>")

A sample input of interest could be:

a+1l*-(d+9) EOF

Token | Generate | Note | Rule & Position

a PUSHa | — <fact> ::= WORD-e
IND

+ — ADD | <expr>:= <expr>'+'e<term>
PUSH 1 — <fact> ::= NUMBER®

* — MUL, | <term> := <fact> "*'e<term>

- — NEG | <fact>:='-'e<fact>

(— — <fact> ::='(e<expr>"’)’

d PUSH d — <fact> ;= WORD-
IND

+ — ADD, | <expr>:= <expr>'+'e<term>
PUSH9 | — <fact> ::= NUMBER®

) — — <fact> ::="(’ <expr>’)’s

EOF ADD, — <expr> ;= <expr> '+’ <term>e
NEG — <fact> ::="-' <fact>e
MUL, — <term> ::= <fact> ™’ <term>e
ADDQ — <expr> ;= <expr> '+’ <term>e

Now we can write the grammar with embedded actions:

Page 76

Code Generation EE468 Course Notes

<expr> ::= <expr> '+’ note (ADD <term> generate(notg)
| <term>

<term> ::= <fact> ¥ note,(MUD <term> generate(notg)
| < fact>

<fact> ::= NUMBER generatePUSHNUMBER)
| WORD generatePUSHWORD) generate(ND)
| * - notg(NEQ <fact> generate(notg)
| * (" <expr>’)

This is not the “black magic” that non-compiler people talk about; it is basically an algo-
rithm to be applied.The only insight is simply application of the third guideline:\kimgy when
to give-up using embedded generatotdowever, where embedded generators are reasonable,
some additional insights can be applied to optimize the actions which were embedded.

1.1. Implied Information

The most common insight, implicit information, can be applied to eliminate all three notes
in the abge example: if the item noted within a rule is implicitly kmo when the note is used in
a generatorthe item need not be noted@his results in a kerite of our grammar and embedded
actions as:

<expr> ::= <expr> '+’ <term> generate(ADD
| <term>

<term> ::= <fact>"*' <term> generate(MUD
| < fact>

<fact> ::= NUMBER generatePUSHNUMBER)
| WORD generatePUSHWORD) generate(ND)
| ' - <fact> generateNEG
| * (" <expr>’)

In general, not all notes are implicit and hence redundeme. Rascal-lile declaration of an
integer \ariable asvar i:int; might result in code to allocate space for thaiable using a
rule and actions li&

<decl> ::= VAR WORD note(WDRD) "" INT '}’ generate(notedw 0)

The \alue noted is not implied by the grammatical construct unless only oee i®lof tolen-
type WORD Such a restriction wuld result in a language with only onalid variable name —
not likely.

1.2. Locality of Reference

In the discussion abe, the way in which a note is madeas neer precisely specifiedThe
action calledhotg,, in the most general sense, must operatedikush() onto stack; agenerate
which refers tanote, is really performing a pop() from stack This is needed because rules can

Page 77

EE468 Course Notes Code Generation

be recursie — in our example,note, is a nested application obte,.

However, the notes we made all were grouped withinvittial rules; thg were used in the
same rule in which tlyewere defined.This is often true, although not generally tru&hen
notes are referenced only within the rule in whicly tire embedded and a traditional recussi
descent parser is used, the noting operations can be assignments tarilablds: Considehe
example:

<decl> ::= VAR WORD note(WDRD) "’ INT '}’ generate(notedw 0)
Could become:

decl()

{
char temp[BUFSIZE];

if (token == VAR) {

getoken();

if (token == WORD) {
/* note token name */
strepy(&(temp[Q]), &(token_name[0]));
getoken();
}

if (token =="") getoken();

if (token == INT) getoken();

if (token =="}") getoken();

/* generate code to allocate the variable */

printf("%s dw O\n", &(templ[0]));

}

2. Forward Referencing

Forward referencing is the problem which occurs when code must be genenatduinio
must refer to something which we will not km@bout until later (This problem occurs mainly
in embedded generatorshhe most obious xamples inolve code generation for control struc-
tures using embedded generatdfst example:

IF expression THEN statement

Should become:

Page 78

Code Generation EE468 Course Notes

code compiled forgoression
TEST
JUMPF place
code compiled for statement
place

whereplaceis a forward reference By the time we hee ®enTHEN we should hae generated
JUMPFplace howeve, we cannot knav whereplaceis until we hae recognized thetatement

If we are generating assembly language, the#@bksample demonstrates that the assembler
canresolve the forward reference for us — weowld simply mak-up a nameplace in the
above ase) for the fonard-referenced object andveathe assembler magically carry thalue
backward. Thismight be done as:

ifthen()
{
int temp;
if (token == IF) {
getoken();
expression();
if (token == THEN) getoken();
printf("tTEST\n");
/* Generate a name for forward-referenced
location & note the name for later.
The name looks like "Ln", where n is
an integer.
*
temp = newlabel();
printf("\tJUMPF\tL%d\n", temp);
statement();
/* Define the name which we created */
printf("L%d:\n", temp);
}
}

where thenewlabel routine simply generates a number for a label such that no numbers, and
hence no labels, are used twice — perhaps using a counter:

Page 79

EE468 Course Notes Code Generation

int nextlab = 0;

newlabel()

{

nextlab = nextlab + 1;
return(nextlab);

}

Of course, the forard reference remains for the assembler to resolhereare two basic ways
to actually resole a brward reference: backpatching and multiple-pass resolution.

2.1. Backpatching

Backpatching is a conceptually simplawto resole a orward referencelnstead of gen-
erating code lik we dd before, we can lea gace for the unknen value (in the generated code)
and simply patch-in thealue when we hee determined it.In effect, we would generate:

code compiled forxgression
TEST
JUMPF

code compiled for statement

and, after recognizing and generating code forstaéementwe would go back and fill in the
blank. Thisis most useful when machine code, rather than assembly language, is being output.
Re-using the ah@ example, suppose that the machine codes loek lik

TEST 0x80
JUMPF 0x41 Ox

Then our gample, resoled by backpatching, becomes:

Page 80

Code Generation

ifthen()

{

int temp;

if (token == IF) {

where:

getoken();

expression();

if (token == THEN) getoken();

genbyte(0x80);

genbyte(0x41);

/* Remember where Ic was when so that
we can fill in the location later.

*/

temp =Ic;

/* Leave space for value */

Ic +=2;

statement();

/* Fill-in the value */

patch(temp, Ic);

Ic is the Location Counter for output
genbyte(b) increments the Ic and outputs the byte

EE468 Course Notes

genword(b) increments the Ic by twand outputs the ard b
patch(a, b) patches the ard b into the output at locatioa

Unfortunately the patch operation may require random access to the entire oufjig.can be
implemented usingeek operations on the output fileutocan easily result in thrashingdence,
this simple technique is usually notry eficient unless the patches can be made on output
buffered in memory

2.2. Multiple-Pass Resolution

In multiple-pass resolution, forvard references are reset/ by making passes/@ the
input program until all the forard-referencedalues are knen. Thereare two fundamentally
different kinds of passes:

. the final pass (often called “pass 2”) and

. al other passes (often called “pass 1" — although there may bg ocanrrences of “pass

17).

Pae 81

EE468 Course Notes Code Generation

In the final pass, thealues for all forvard references are kiwa because tlyewere determined in

previous passes and remembered in some data structure (often the symbol table), hence code can
be generated in sequencéhe earlier passes do not generatg @ue at all, bt merely leep

track of hav much code wuld be generated so that the fard referencedalues can be deter

mined and stored for use in later passes.

This is not as complicated as it first sounds — stheesame paer can be used for all
passeswe smply have © rewind the input file before each paddere is the samexample, It
using multiple-pass resolution:

ifthen()
{
int temp;
if (token == IF) {

getoken();

expression();

if (token == THEN) getoken();

genbyte(0x80);

/* Generate a name for forward-referenced
location so that we can store the value
for use in later passes.

*/

temp = newlabel();

genbyte(0x41); genword(lookup(temp));

statement();

/* Define the name which we created.
The definition will be used in the
last pass.

*/

enter(temp, Ic);

}
}
where:

Ic is the Location Counter for output

genbyte(b) increments the Ic andf it is the final pass,
outputs the byté

genword(b) increments the Ic by twvand, iff it is the final pass,
outputs the wrdb

Page 82

Code Generation EE468 Course Notes

Relative o backpatching, multiple-pass resolution is sarat more compbe but generally
faster because the “patching” is sequential.

(An interesting kbrid technique uses a single pass to chain backpatches intd lisks
which are then used to sequentially patch the output in a secondvpaitecmutput, rather than
input, file.)

3. Template Generators

The most common alterne¢i © embedded code generators is Wwmoas template-based
code generationFor template code generation, actions embedded in the paikkallata struc-
ture, usually a parse tree or a three-address cod®liste lilt, these structures are passed to the
code generatorThe templates are nothing more than pairs of patterns to be found in the data
structure and the output code corresponding to each pattern; the code generator matches templates
to parts of the data structure and generates the code lyi those templatesThe templates are
commonly knavn as thecode table

Template generators are popular because the compiler writer does not need tekimdi-
mate details of the relationship between the input and output language; he only needs to kno
how to make the machine doery simple little pieces of translation based on matching patterns in
the intermediate code structures.

3.1. Template Formats

All templates must contain an pattern to match in the data structures and a chunk of code to
generate for that pattern.

Suppose three-address code is the intermediate code strustiemplate to perform tor
address addition might carry the fallmg information:

Match:

<registerl> = <registerl> + <memory>
Becomes:

ADD <registerl>,<memory>

There probably wuld be seeral different templates for addition on a particular machine,
each slightly difierent; some one addressotaddress, and three address, witlrious kinds of
places that the operands might come from, faangple: rgisters, immediate data, memory
addresses, or the stack.

The template format is usually designed to entile matching operatiora$t and, therefore,
canary widely with the intermediate code structure usddwever, the following information is
generally carried in the templates:

. Addressing modes of operands.

. The operation being performed.

Page 83

EE468 Course Notes Code Generation

. Where the result goegFor example, if a rgister which one.)

. The relatve “cost” of this code sequencéSo that the matching process can chose the bet-
ter of two dternatives — this is often done implicitly by trying to match the leagbensve
code sequences first.)

3.2. MatchingProcedures

Template matching can be done irmothasic ways: deterministic or non-deterministithis
should not be surprising, since the template matching problem is really the same as the translation
problem in general(On the other hand, embedded generators are neadysatleterministic.)

Deterministic
The data structure(s) are scanned in edfigpossibly recurgg) order to find matching tem-
plates in the code tabl®©ften, a pre-pass is madeenthe data structure to assigmisters,
etc., to the components of the structure before template matching is attempted.

Non-Deterministic
The data structure(s) are searched for the optimal set of template maishedly, only the
data structures representingpeessions are subjected to full-width searchesyeber,
alpha-beta pruning techniques can mtiese full-width searcheaifly efficient.

4. Interpreters

Interpreters are not thought of as generating code, yet the meaning of the input language
must understood and some@hoepresented. Ther@e three dferent levels at which this repre-
sentation can be made: precompilers, threaded-interpreters, and direct (pure) interpreters.

4.1. Precompilers

A precompiler is identical to a compijexcept that the output language is the machine lan-
guage of an imaginary special-purpose machMething is diferent about the compilexeept
that the output is interpreted by a program rather than run directly by drardwsmentioned
before, Rscal is commonly implemented in thiayv

4.2. Threaded Interpreters

Threaded interpreters are sommat tricky, but they are also ery similar to compilers that
generate machine languagéhe diference is that a threaded interpreter generates code which
calls routines within itself.For example, a threaded interpreter might generate code for an
expression that is identical to the machine language output of a cantpiler print statement
might call the print routine within the threaded interprefEnreaded interpreters are really just
compilers with system libraries and lgrs embedded.

Page 84

Code Generation EE468 Course Notes

4.3. Direct Interpreters

Direct interpretation wolves parsing each statemeneny time it is xecuted. Thecode
generators of a compiler are replaced in a direct interpreter by calls to functions which perform
the desired operationS hat is firly easybut the parser itself becomes more comiecause it
needs to scan both backs and fonard; consider:

10 print "hello”
20 goto 10

When the goto statement in liR@ is parsed, thexecution of the statement requires the input to

be backd-up to linel0. The dificulties of implementing unlimited back-up were discussed ear
lier; the easy solution most direct interpreters use is to restrict the program to a size that fits
entirely in random-access memory (RAM).

Page 85

EE468 Course Notes Code Optimization (Imprement)

This page is intentionally blank.

Page 86

Code Optimization (Imprement) EE46&ourse Notes

Code Optimization (Improvement)

Compared to human “compilers”, the machine-basaiety displays a stunning lack of
insight: even a lack of common sensdt is widely accepted that programs written in High«lle
Languages and compiled by machine are at best 2 or 3 timesfigsatefin both &ecution time
and memory requirements) than the same algorithm written in assembly languagexpgran e
enced programmerThe goal of code optimization techniques is to enable the compilereo tak
advantage of the insights that humansédound to be most generally significaritlsing the
optimizations listed belg, the compiler will not really generate “optimal” code — it merely
improves what it can. However, these techniques can result in HLL compilers which generate
code nearly as fifient as optimal assembly-language code.

There are three “places” in which code optimizations can occur:

. During code gneation. The generators can be modified to generate “better” code when
certain conditions applyThis technique is greatly underrated — simple embedded genera-
tors often can be made to generagy\eficient code.

. As a pe-pass on the intermediate forifter an intermediate parse representation has been
constructed, an optimizer could modify (impebthat data structure before passing it to the
code generation phasdhe most popular intermediate forms for optimization techniques
are three-address code or parse trees.

. As a post-pass on themgeated code After the compiler has completed itomk, the out-
put can be run through an optimizer that éirskwith the assembly language code before
passing it to the assembleBuch optimizers are often completely separate from the com-
piler, dthough the are logically part of the same process.

There are mandifferent kinds of impreements that can be madin this chapterwe will
consider only those kinds which can be performed without first performiwgafialysis. Flav
analysis is a pmerful tool, hut it is difficult to implement, requires an intermediate form, and
does not impree typical code by as lge percentages as theae gsimpler techniques.

1. ConstantFolding

A common blunder in compilers is thatpgessions imolving constants areveluated at run-
time although the could be gauated at compile timeThe input statement= 5 * j + |
* (2 + 3 * 4) should generate the same output codeas5 * j + i * 1 4. Com-
pare the follaving two translations:

Page 87

EE468 Course Notes Code Optimization (Imprement)

Original Optimized

PUSH i PUSH i

PUSH 5 PUSH 5
PUSH j PUSH |
IND IND

MUL MUL
PUSH i PUSH i
IND IND
PUSH 2 PUSH 14
PUSH 3

PUSH 4

MUL

ADD

MUL MUL
ADD ADD
POP POP

Fortunately this improvement is \ery simple, if som&hat tedious, to implemenSuppose
that our language definition separat@pressions containing only constants from those which
must be ealuated at runtime. . then the portion of the compiler which accepts consteprtes-
sions can actually be an interpreter whighlgates them.Alternatively, if an intermediate form
such as three-address-code or a parse tree is used, the coqmEstiens instead can be folded
by a pre-pass on the structure prior to code generation.

2. Peephole Optimizations

When a programmer firskamines the output of a compiléne most obious blunders are
usually simple, localized, mistek. Peepholeptimizations are optimizations that can be-per
formed as corrections made on the output by observing small patches of the dhgpunhost
common kinds of peephole impm@nents are:

2.1. RedundantOperation Elimination

Simple code generation techniques often result in sequenees lik

STORE var :store accumulator into var
LOAD var :load var into accumulator

However, dnce the walue in the accumulator is not altered by 8EORE the improvement is
simply to eliminate th& OADinstruction — the &lue it loads is already loade@f course, the
LOADiInstruction can only be eliminated if ti8TOREs aWways executed just before; had there
been a label on tHeOADinstruction, thdeOADcould not hae been remweed without flov analy-
sis.

Page 88

Code Optimization (Imprement) EE46&ourse Notes

2.2. Unreachable Instructions

Suppose part of a source program looks:lik

#define DEBUG 0 /* set nonzero for debugging */
if (DEBUG) {

}

Lexical analysis wuld see the if statement &g0) { . . .}, which is olviously
not reachable unless there is a label withinithe Until we find a label within théf , al the
code is unreachable; if wevearp labels inside, the entire construct x¢raneous. Iit cant hap-
pen, it hardly maé&s sense to include code for it: the entire statement can be eliminated
because it is unreachabl@n the other hand, people tend not to write unreachable codpte
for delugging, so this techniquefafds only moderate benefits.

2.3. umps To Jumps

Structured control statements generate their magic sequences dMB, so it is not sur
prising that map will generate code lik

JUMP placel

placel: JUMP place2

Although flow analysis is needed to really clean-up these messesgdtwtion time can be peep-
hole optimized by corerting the abwe quence to:

JUMP place2

placel: JUMP place2
This is also a relatély minor improsement.

2.4. AlgebraicSimplification

Often, simple compilers will generate code for array subscripting or data structure refer
ences that adds zero or multiplies by oRetr example,i + O :

Original Optimized

PUSH i PUSH i
IND IND
PUSH O

ADD

Page 89

EE468 Course Notes Code Optimization (Imprement)

Similar simplifications can be performed f8Bracting 0,DIViding by 1,ANDng with -1, or
ORNng with 0. With some dbrt, these defects usually can be corrected during code generation
instead of during a post-pass.

2.5. Specialnstructions

One of the most serious fia of compiled code is that the code is generated using only a
small number of instruction sequencé&pecial instructions aresalable on mag machines, bt
compilers tend to generate the stupid, yet general, sequence ofltwmost commonxample
iscodefori =i + 1

Original Optimized

LOAD [INC i
ADD 1
STORE i

Other common impngements use special instructions to perform string operatieng,fast (tut
restricted) loops, multiplication by pers of two (shifts), and seeral other common mathemati-
cal functions (lile adding or subtracting small irgers).

2.6. ReductionIn Strength

In most computers, some operations are mosgersve’ than others. Reduction in
strength is the process of translating theemsve erations into equélent, lut cheaperopera-
tions wherger possible. (ltis not generally possible; these are really “special instructjoibe
classic @ample ivolves the &ct that multiplication is generallykpensve; consider the assign-
menti = i * 2 . This can be computed more cheaply as i + i

Original Optimized

MOV RO,i MOV RO,
MUL RO0,2 ADD RO,RO
MOV i,RO MOV i,RO

In the xample abwe, the MUILtiply operation vas replaced byADDtion (which also vas a rg-
isterto-register operation instead of needing immediate data, hence shorter as vasdteaps f
Another \ariation replaces multiplies andvities by appropriate shifts whee possible.

3. CommonSubexpression Elimination

An optimal program should not spend time and space on code t@luate a walue it
already knws; we sav a trivial example of this in elimination of redundant operatio®n a
larger scale, computations of entire sym@ssions can be redundant, hencg the can be elimi-
nated.

Page 90

Code Optimization (Imprement) EE46&ourse Notes

Common subgressions are easiest to recognize in an intermediate femmour example,
let us assume that three-address code is our intermediateFarther let us @amine intermedi-
ate code for dasic blockat a time — a basic block is all the code between control structures;
eveaything that could be placed in a single box within avfloart of the programSince we
examine the entire block, common supeessions across\vatal statements can be eliminated.

Suppose the statements within a particular basic block are:

b=(a*b+c)+a*b;
d=a*b;

This can be corerted into three-address code by the method described ediee this has
been done, the common supeession is so alious that little &planation must be gen —
except in that there is only one common syiressionnot two. Althoughthe computation of
TO, T2, and T4 appear identical, betweér?2 and T4, the valueof b is altered. Therefore, TO
andT2 are common, Ut notT4:

Original Value Numbers Optimized
TO=a *p; 3=1*2 ; TO =a *b;
T1=TO+c; 5 =3+ 4, T1=T0 + c ;
T2=a *b; 3=1*2 ;

T3=T1+T2; 6 =5+ 3; T3 =T1 + TO;
b = T3; 6 = 6; b = T3;
T4=a *b; 7=1*6 ; T4 =a *T 3
d = T4 7 =7, d = T4

A highly-simplified, localized, form of fl analysis resolgs the problem.Every time a ne
value is accessed (a preusly unseenariable is seen) or awevalue is generated (by a compu-
tation which iwolves a combination ofalue numbers and operator which has not been seen
before), that &lue is gien a tnique number The unique numbers can be generated by a counter
within the optimizer They are remembered by the symbol table, as an at&ibf each ariable.
Duplicate computations are redundant, hencg ¢tha be remeed.

Further any location haing a particular &lue number can be substituted foy ather; in
the computation of4, for example, T3 holds the samealue thatb does, thereford3 can be
substituted fob in computation off4. This is \ery useful if we decide to placevariables in
registers.

4. Commutativity

This mathematical property of certain operators is often graglby humans in determin-
ing which register should be used to hold each operdhis not dificult to male a @mpiler use
this property for the same sort of impement — usually in conjunction with another optimiza-
tion technique.

Page 91

EE468 Course Notes Code Optimization (Imprement)

The example gven for reduction in strengthasi = i * 2 . Suppose that the original
expressionwasi = 2 * i ;the same impnement can be madeubwould only be made if the
compiler recognizes multiplication is commuvati

A similar obseration would be useful when performing common syiression elimina-
tion. Considethe slightly modified basic block:

b=(a*b+c)+b*a;
d=a?®*b;

The common subgression is only found if the commutaty of multiplication is applied.
One simple way of accounting for commutatiy in three-address code used for common sube
pression elimination is tosbys reorder the operands of commu&atperators so that thevoe
est-\alue-numbered operand is firdt.this is done, gpressions that diér only by commutatity
will appear in the three-address codeaatly the same form, so a simple comparison can still
check for equialent expressions. (Noteassociatiity is more dificult, it is not easy to recognize
that(a*b) *c isthesameas * (b * c).)

5. Evaluation Methods

When code is being generated for apression, information is oftervalable about the
contet in which that gpression appearshis information can be used to modify thayacode is
generated so that it onlyauates what must bevaluated. Therare seeral kinds, or modes, of
evduation widely accepted:

Value
Evaluation for alue is galuation in the most general sensehe epression must be com-
puted to result in aalue. Thisis the way an &pression to the right of an assignment sym-
bol is evaluated.

Condition-Codes
Evaluation for condition-codes ivauation so that the condition-codes are set according to
the result, bt the result need not be computéar example, an x¥pression used as the con-
dition within an if statement does notveato compute a &lue:if (a '= b) .
might evaluate (a != b) by simply using a compare instruction instead of subtracting
and comparing the result to zero (tredue-mode eduation).

Side-Efects
Evaluation for side-éécts only is the weast kind of galuation. For example, an assign-
ment statement that looksdik = b; need only hee the side dect of storing the alue of
b in a; no value nor condition-codes need to baleated. Anotherexample isf(); ;
although functions in C afys return a &lue, this gpression wuld be gauated by the
side-efect of calling the function, ncalue nor condition-codesomld hare © be =t.

The eficiengy gained through use ofduation modes is generally not tremendous, ibis
a \ery simple technique anekry easy to apply

Page 92

Code Optimization (Imprement) EE46&ourse Notes

6. Library Optimizations

Although not generally considered as part of a comyhereficiengy of the runtime library
is crucial in making the compiled codefigent. A compilers ade generation cannot be
designed without some consideration of the traddudtween in-line code sequences and calls to
library routines.In most cases, the design of the library routines is the single most impacdant f
tor in the eficiengy of the compiler

To begn, the runtime support library can be thought of as a set of routines which implement
the basic operations of the intermediate form used within the complen it can be obsezd
that some of the routines will be so short thay $teuld not be subroutinesytcan be generated
in-line by the compiler Finally, by compiling sample programs andagnining the output code,
certain code sequences can be identified for iwvgment by re-definition of the library and com-
piler output. This is a slw, iterative, process.

For example, if a library multiply routine multiplieR0O = RO * R1 , but 40% of the times
it was called it vas preceded by code techangeR0 andR1, it is probably worthwhile to mak a
new library routine which multiplieRl = R1 * RO and to modify the compiler so that the
new routine is used; perhaps only used when code is optimized — there is no need for the opti-
mized \ersion to use the same library routines the compiler uses without optimization.

Another library optimization could be found byecution profiling: running a program and
monitoring which routines it spends the most timelfrmary programs were found to spend lots
of time in particular library routines, those routines aeg kandidates for optimizationFor
example, if the multiply routine is a bottleneck, it imnhwhile to spend some time counting
T-states (finding thevarage eecution time of diferent codings of the routine) and re-writing the
multiply routine to minimize xecution time. Of course, if the multiply routine ould become
much biggerthat isnt desirable eithethence some tradefofrould be chosen.

And, finally, there is another kind of “library” optimization that can greatly imprexeu-
tion speed and program siz&lost modern languages encourage re-use ofge laumber of
“standard” support functions written in the HLL; nyaof these functions are simple, short, and
very easy to implement in optimal machine codecompilerwriter should vigv these as part of
the runtime support library

For example, the C programming language is accompanied by routines for string manipula-
tion like strlen , strcpy , and strcmp , but there are often special instructions to perform
nearly the same operation¥hese routines can be implemented, in clearly optimal form, on a
Z80 using theCPIR, LDI , and CPI instructions with appropriate set-up and clean-up cdde
user would see a remarkable speed increase, just as though part of the runtime library had been
improved.

Page 93

EE468 Course Notes Contents

Table of Contents

Preface

Compilation Goals
1. Control Structures
1.1.GOTO .
1.2.1F
1.3.REPEAT .
1.4 WHILE.
1.5.FOR
1.6. SIMD Control Flav
2. Assignments & Expressions .
2.1. Simple Assignment

2.2. Assignment Using Expressions .

© W oo N O g o A DN W W W P

2.3. Expressions As Conditions.
2.4. SIMD Expressions.
3. Calls .
3.1.GOSUR RETURN
3.2. Rarameterized Subroutines.
3.3. Rarameterized Functions
3.4. Standardized Callinge€hniques
Organization of a Compiler.
Grammars (describing language patterns) .
1. Chomsk Grammars
1.1. What Is a Grammar?.
1.2. Type 0: Unrestricted Grammars .
1.3. Type 1: Contrt-Sensitve Gammars
1.4. Type 2: Contet-Free Grammars .
1.5. Type 3: Rgular Grammars .
1.5.1. Rrsing Using Rgular Grammars
1.5.2. Regular Expressions
2. Farsing CFLs .

RO O B B B B PN R B R PR R QE

3. Ambiguities.

EE468 Course Notes Contents

4. Determinism
5. Chomsk Normal and Griebach Normal forms .
6. Backus-Naur 6rm
7. Syntax Diagrams.
7.1. Left Recursie (rouping Lefts Right)
7.2. Right Recurse (grouping Right. Left)
7.3. Non-Associatie (no grouping) .
7.4. Ambiguous .
Lexical Analysis .
1. Where © Draw The Line
2. Techniques
2.1. Algorithmic (Heuristic) .
2.1.1. String Comparisons
2.1.2. Scanningdchniques . .
2.2. Takular Recognizers .
2.3. Atomic.
Symbol &bles . .
1. Simple Symbol dbles
1.1. Linear (Stack) .
1.2. Tree
1.3. Hash &ble
2. Scoped Symbolables
2.1. Linear .
2.2. Tree
2.3. Hash @ble
Syntax Analysis (&rsing)
1. Parsing Concepts.
2. The Rirse Problem
3. Bottom-Up Rrsers
3.1. Shift/Reduce d&'sers
3.2. Precedenceabsers . .
4. Top-Down Parsers . .
4.1. Elimination Of Left Recursion.
4.2. Determinism &r K=1 .

B B @ @ @GN Bl e R L AN O GO0 0 0NN KB NDNDNQ NN

EE468 Course Notes Contents

5. Backing-Up.

6. Error Detection & Rea@ry

6.1. Sync Symbols .

6.2. Subtree Completion .
Intermediate Brse Representations.

1. Prefix, Infix, and Postfix

2. Pseudocode Models.

2.1. Rascal

2.2. BASIC (on microcomputers)

2.3. Lisp

3. Three-Address Code (tuples)

4. Parse and Expressionées . .
Code Generation.

1. Embedded Generators.

1.1. Implied Information

1.2. Locality of Reference.

QA N N G QN S Q © § 60 8§ 8§ 06 O &

2. Forward Referencing

&

2.1. Backpatching
2.2. Multiple-Rass Resolution.
3. Template Generators
3.1. Template Brmats
3.2. Matching Procedures.
4. Interpreters.
4.1. Precompilers
4.2. Threaded Interpreters
4.3. Direct Interpreters.

Code Optimization (Impngement)
1. Constant &lding
2. Peephole Optimizations
2.1. Redundant Operation Elimination
2.2. Unreachable Instructions

2.3. Jumps @ Jumps . .

® @ W 0O 0 o &« B d & & d® 0 ® B

2.4. Algebraic Simplification .

©

2.5. Special Instructions .

EE468 Course Notes Contents

2.6. Reduction In Strength
3. Common Subegression Elimination.
4. Commutatiity .

5. Evaluation Methods .

®© ® v © O©

6. Library Optimizations

