
1

Compiler And Runtime Support For
Predictive Control Of Power And Cooling

Henry G. Dietz William R. Dieter
hankd@engr.uky.edu dieter@engr.uky.edu

Electrical and Computer Engineering Dept.
University of Kentucky

Lexington, KY 40506-0046

Abstract— The low cost of clusters built using commodity
components has made it possible for many more users to
purchase their own supercomputer. However, even modest-
sized clusters make significant demands on the power and
cooling infrastructure. Minimizing the impact of problems
after they are detected is not as effective as avoiding
problems altogether. This paper is about achieving the best
system performance by predicting and avoiding power and
cooling problems.

Although measuring power and thermal properties of a
code is not trivial, the primary issue is making predictions
sufficiently in advance so that they can be used to drive
predictive, rather than just reactive, control at runtime.
This paper presents new compiler analysis supporting
interprocedural power prediction and a variety of other
compiler and runtime technologies making feed-forward
control feasible. The techniques apply to most computer
systems, but some properties specific to a clusters and
parallel supercomputing are used where appropriate.

I. I NTRODUCTION

At all levels, power and cooling issues are becoming
critical factors in computer design and operation. The
problem with power and cooling is that, unlike most
other performance criteria, power and cooling are in-
tegrative system-level effects with relatively poor mea-
surement facilities, long time constants, and significant
hysteresis.

Commercially available processor and motherboard
designs generally do not provide sensors that can mea-
sure energy or power (energy consumed per unit time).
Some laptop computers employ intelligent batteries that
can provide very rough readings, and external meters
also can be used, but the measurements generally are
averaged over relatively large intervals and convolve
processor power use with that of other node components.
The runtime system may be able to note which compo-
nents are contributing to the current power consumption,
but distinguishing the individual contributions is difficult
and accuracy is further degraded by the process.

More targeted thermal sensors exist on many moth-
erboards, but thermal sensing can take as long as 5 ms

to 10 ms and there is significant hysteresis. For exam-
ple, temperature at a sensor may continue to rise long
after power consumption at the heat source has been
dramatically reduced. One of the authors has an old
laptop that senses temperature to control a fan so that a
maximum operational temperature is never exceeded, but
the fan stops immediately when power is turned off. The
annoying result is that the laptop frequently overheats
just after being turned off, and a thermal interlock will
not let it power on again until the temperature has
dropped to be within range... which can take quite a
while without a fan running. It is precisely this type
of hysteresis that makespredictivethermal management
necessary: by the time a problem is directly sensed, it is
usually too late to correct it.

Any annotation of code with energy consumption
estimates must support predicting behavior far enough
into the future to be useful in the timescale in which
the system will be controlled by the runtime system.
That timescale ranges from hundreds of microseconds to
seconds: very far into the future given a processor that
executes thousands of instructions every microsecond.
Standard engineering practice provides neither compiler
nor runtime technologies able to hoist predictions about
power and thermal properties of a region of code so far
in advance of the code’s execution.

In Section II, we present a methodology by which
a compiler (or an assembler, linker, or loader) can use
static analysis of instruction-level energy use to construct
power and cooling predictions looking many thousands
of instructions ahead. Techniques for efficiently transmit-
ting the predictions to the runtime control and a frame-
work using this predictive ability in support of multiple
version coding also are presented. Section III describes
a method for creating or refining predictions at runtime,
as well as guidelines for runtime use of predictions. The
contributions are summarized in Section IV.

2

II. COMPILER TECHNIQUES

An increasing number of compiler researchers are
focusing on development of compiler technology that
treats power consumption as a first-class performance
parameter for compilers to optimize [6], [14]. Ironically,
the compiler technology we advocate in this paper does
not promise any major advances in compiling code
to use less power. Our compiler contribution centers
on converting instruction-level energy estimates into a
mechanism efficiently supportingpredictivecontrol.

At the instruction level, compile-time estimation of
power consumption is possible using any of a wide
variety of approaches [19], [4], [15]. Many of the
techniques discussed in the literature use detailed archi-
tectural models, but such models are difficult to create
and maintain for the processors and other subsystems
commonly used in cluster nodes. The difficulty is further
compounded by the fact that different revisions of a part
often have different power attributes and documentation
of architectural details is not always freely available.
Thus, we prefer to use an instruction-level accounting
method that is based on empirical measures. Such a
technique also can account for costs associated with
specific system calls, which defy architectural modeling.

In order to provide higher-resolution power infor-
mation at runtime, Bellosa et al [2], [3] propose a
methodology in which a calibration technique is used to
associate power costs with specific performance counter
events (e.g., cache misses) that closely correspond to
causes of power changes but can be sampled faster.
Compiler technology for predicting many of these per-
formance counter events is fairly mature; for example,
Chi and Dietz were performing sufficiently detailed
cache miss analysis in 1989 [5]. It is even simpler to use
calibration, perhaps by fractional factorial experiments,
to associate energy consumption with static program
attributes that might not be tracked by hardware perfor-
mance registers – such as energy consumed by each type
of instruction. For cluster computing, we also can take
advantage of the inherent homogeneity of the system;
it is feasible to augment a single prototype node with
specialized, potentially expensive, current and/or thermal
probes to obtain calibration data that will be highly
accurate for a cluster of identical, but uninstrumented,
nodes.

For the purposes of this paper, it is sufficient to
appreciate that there are many viable ways to determine
upper bound, lower bound, and expected (average) en-
ergy consumption for each instruction. Combining that
data with pipelined scheduling logic such as that already
in most compilers trivially yields good energy, execution
time, power, and heat estimates for a basic block of code
at a time. Prediction could thus be as simple as inserting
an instruction posting the predicted value(s) at the start

main(...) {
A g(...); B g(...); C

}
g(...) {

D if (E) { F g(...); G } H
return;

}

Fig. 1. Sample Recursive Program

main: A goto g;
x: B goto g;
y: C goto exit;
g: D if (! E) goto t;

F goto g;
z: G
t: H on ... goto x, y, z;

Fig. 2. goto -Converted Sample Recursive Program

of each basic block. The problem is that basic blocks are
generally far too small to be a useful unit of prediction
for power and thermal control at runtime.

A. State Machine Prediction Lookahead Analysis

A basic block contains no control flow: every in-
struction will be executed if any instruction is executed.
Predict longer-term future behavior is fundamentally
similar to the analysis needed to perform very deep
speculative execution: the difference is that instead of
hoisting code to be speculatively executed earlier, we
are summarizing power and thermal properties over the
possible future execution paths and inserting code to post
those summaries to the runtime system. The approach we
have discovered and present here can handle prediction
across arbitrary control flow without any direction from
the programmer.

In 1999, Dietz[7] developed new compiler analysis
and transformation techniques to support speculative
predication across arbitrary control flow, e.g., in support
of the predicated execution facilities of the Itanium
architecture. In fact, that technique was very similar to a
method Dietz developed in 1993[8] and has continued
to use[9] for direct conversion of a MIMD program
into an equivalent SIMD program. The first step in both
older techniques and the new approach proposed here
is to convert the program into a state transition graph in
which each basic block is a node and arcs between nodes
represent guarded (predicated) control flow. Function
call and return, even for recursive functions, is thus
represented without any distinction; a call creates an arc
and a return creates multiple arcs, one to each of the
possible return positions.

For example, Figure 1 shows the outline of a simple C
program containing a recursive function call. A function
call is really just agoto accompanied by some data

3

A DE

F

G

H

B

C

main(...) g(...)c0

c1
c5 c3

c2

c8
c7

c4

c6

Fig. 3. State Machine For Sample Recursive Program

manipulation; functionreturn is essentially a computed
goto based on data saved when the function was called.
This goto -conversion yields code roughly structured
like that listed in Figure 2.

The resulting state transition graph is shown in Fig-
ure 3. This graph has precisely the same structure
described in Dietz [7]. Each arc is labeled with a
condition upon which that arc is traversed, however, for
simple timing prediction analysis we need not consider
these conditions. The graph serves primarily as a way
to simplify reasoning about future behavior. Only the
power, timing, and thermal attributes of the basic block
within each state are critical.

As suggested earlier, there are many ways to compute
approximate energy consumption, execution time, power,
heat generation, etc., for individual instructions, and
hence for basic blocks. Each of these quantities can
not only be estimated as an expected (average) value,
but also as minimum and maximum bounds. Further,
if the calibration process is detailed enough to identify
where heat is generated (within the physical processor
chip layout), it may be useful to track heat as a vector
with components corresponding to heat output in each
identifiable portion of the physical system.

For our example, consider labeling each state with the
simplest possible prediction information: expected power
consumption and expected execution time. Suppose that
analysis determines that basic blockA in Figure 3 takes 2
units of time to execute at an average power consumption
of 1 unit of energy per unit time. We will denote this
as simply2@1. Labeling all nodes in the graph in this
way yields the graph in Figure 4.

Although the labels in Figure 4 are predictions if the
information is posted at the start of execution of each
state, they are unlikely to predict behavior far enough
in advance. The primary reason for building this graph
is so that predictions can be extended over longer time

2@1 5@1

4@2

1@3

6@1

7@2

3@2

main(...) g(...)

Fig. 4. Timing@Power Labeling

periods that are more meaningful in terms of the time
constants encountered in runtime power and thermal
control, thus providing useful predictions with minimal
overhead. Thus, consider collecting a prediction for each
node that looks T units of time ahead, where T is
determined by the runtime predictive control parameters,
with typical values for T in the range of thousands to
millions of processor clock cycles.

Conceptually, the state machine model of a program
is very much like the Nondeterministic Finite Automata
(NFA) used to describe lexical recognizers. However,
lexical analyzers are normally built from Determinis-
tic Finite Automata (DFA), not NFA, so a conversion
process is applied. In the context of speculative predi-
cation [7], MIMD to SIMD conversion [8], [9], or of
the power and cooling prediction discussed here, we
refer to any such transformation as Meta-State Conver-
sion (MSC): a method to construct an equivalent meta-
state graph that deterministically incorporates informa-
tion from multiple original states in each meta-state. The
MSC rules used for each purpose are essentially closure
operations, but with very different semantics that result
in very different graphs. The closure process used to
label a state machine with T-unit lookahead predictions
of maximum average power is simpler than for the other
purposes, leaving the graph structurally unchanged. For
each node, the basic prediction lookahead MSC is given
as Algorithm 1.

Closures to determine other predictions for other
attributes work the same way. For example, determin-
ing the minimum average power with T-unit lookahead
would substitute “minimum” for “maximum” in step 3.
A variety of special-case optimizations can be made to
improve the accuracy and speed of the basic algorithm.
For example, loops with compile-time known iteration
counts can be analyzed much as though they consisted
of a single properly-labeled node. It also is possible to

4

15/11 18/14

21/13

30/14

20/13

19/12

6/10

main(...) g(...)

Fig. 5. T=10 Power Predictions (Power/Prediction Interval)

Algorithm 1 T-Unit Lookahead For Maximum Power
Prediction

1) Determine all paths rooted at the given node which
are no longer than one node past an expected
execution time length <T or that prematurely reach
a terminal node (such asC in Figure 3).

2) For each path, compute the sum of the products
of the node execution time and power (i.e., the
total energy expended in the node) and divide that
product by the sum the node execution times. This
produces an average power value for the path.

3) Label the root node with the maximum average
power value computed for any of the paths.

significantly prune the path enumeration in step 1 by
retaining intermediate results and recognizing when a
path reaches a node that has already been visited. In
any case, the expense of the analysis occurs entirely at
compile time.

Although the example in Figure 4 is too small to
yield an interesting labeling for a realistically large T,
the average power estimates for a period of T=10 units
of time in the future are shown in Figure 5. We have
kept the predicted power expressed as fractions to clarify
how they are derived by computing power divided y
path length. For example, the labeling ofA as 15/11
is because the pathA-DE-F yields (1*2+1*5+2*4) /
(2+5+4) = 15/11 whereas the pathA-DE-H yields
(1*2+1*5+1*6) / (2+5+6) = 11/13. Note that the path
lengths used are generally a fraction of a node execution
time longer than T. For typical values of T, the error
is negligible; alternatively, it is possible to examine the
instruction-level predictions within the last state in each
path to obtain the precise value of T desired.

21/13

30/14

21/13

6/10

main(...) g(...)

21/13 21/13

21/13

initial: 21/13

Fig. 6. E=0.4 Insertion Of Prediction Posting Operations

B. Encoding To Minimize Runtime Prediction Post Cost

Although state machine node labeling described above
trivially provides all the T-unit lookahead predictions
that a predictive runtime controller might want, the mere
act of posting a prediction at entry to each state would
constitute significant execution overhead. If posting was
implemented by inserting an instruction at the start of
each basic block to store a constant prediction value
into a memory location visible to the runtime control
system, not only might the overhead reach double-
digit percentages of runtime, but the posting operations
themselves could cause the predictions to be wildly
inaccurate – because the energy consumed by the posting
operations was not modeled. Certainly, the energy of
posting could be accounted, but a more efficient method
for transmitting predictions to the runtime controller is
a better answer.

There are two basic ways in which the accuracy of
the predictions accessed by the runtime controller can
be maintained with lower overhead:

• Reduce the frequency of posting.AbouGhazaleh,
Childers, et. al [1] proposed an algorithm to insert
power management points into a program; our goal
here is to insert a relatively small number of posting
events in the code. This can be accomplished by
selecting an error threshold, E, such that any error in
the prediction which is less than E can be ignored.
Algorithm 2 attempts to minimize the number of
prediction posting operations needed while main-
taining a specified maximum error. Applying our
algorithm with E=0.4 to the example of Figure 5
results in the graph shown in Figure 6, which results
in a reduction from 7 to just 3 prediction posting
points (the small shaded circles) and no increase in
the final number of states (the prediction posting
states are all merged into existing states). Note
that, if multiple attributes are to be predicted, the

5

algorithm would be applied separately to reduce
posting operations for each attribute.

• Use demand sampling rather than posting.
Rather than having the code actively post predic-
tions, it is possible to encode all predictions within a
static data structure that can be accessed on demand
by the runtime predictive control. The most obvious
mechanism would be to build a map of the program
code that would allow the runtime control logic
to use the current program counter (PC) from the
process to index the appropriate prediction from
the map. The map has many redundancies, since
many PC values yield the same prediction, so it
is likely that the lookup table can be dramatically
compressed using compressive hashing [17]. Fun-
damentally, the idea is to find a hash function by
which PC values that hash to the same hash table
entry have the same, or very similar, prediction
values. The hash function would be compiled-into
the process as a signal handler; whenever a new pre-
diction is needed, the runtime control logic would
signal and the handler would respond by hashing
the PC valued saved when the signal handler was
invoked and posting the prediction thus recovered.
If multiple attributes are to be predicted, they can
be tupled in the hash function or can be obtained
using multiple hash lookups.

Each of these approaches has advantages and disadvan-
tages; it is not clear which is better.

C. Multiple Version Encoding

Multiple version encoding is a well-known compiler
technique used to create multiple alternative codings for
a construct such that the runtime system can dynamically
select the best one to execute. Most often, multiple
version encoding was used to select between parallel
and serial algorithms based on the result of a runtime
dependence check, but we also can use this technique
to select between codings with different power profiles.
These alternative codings could be provided by the user
or automatically created by the compiler.

Given a method for the runtime control to provide
the user program with a “contracted” level of power
consumption, it would be very simple for a user to mark
power-contract-based branch points in their program. For
example, suppose that a particular functionality could
be implemented by any of several alternative algorithms
that the programmer suspects have significantly different
power and thermal profiles. Without the programmer
knowing the performance of each routine, the program-
mer could tell the compiler to encode all alternatives and
ask the compiler to evaluate the properties and use the
runtime contract to determine which version to execute.

Algorithm 2 Insertion Of Prediction Posting operations
1) Let PS be the prediction in state S. Augment every

state S with a posting value, VS, initialized as
VS=PS. Also mark every state as “unprocessed.”

2) While there exists an “unprocessed” state X:

a) Mark X as “processed.”
b) For each arc A, that goes from state X to

some state Y:

i) If (V X> VY) then Z=Y and M=VX else
Z=X and M=VY

ii) If ((V X!= VY) AND ((M-E) < PZ)) then
VZ=M and state Z is marked as “unpro-
cessed.”

3) Statically initialize the posting location to the value
VS where S is the start state. This value serves as
the initial estimate before the program has begun
to execute.

4) For each state Y such that there exists at least one
arc A that goes from some state X to Y such that
VX!=VY:

a) Construct a new state, Z, that contains only
the code to post the prediction VY.

b) For each arc A that goes from some state X
to Y such that VX!=VY, replace arc A with
an arc from X to Z.

c) Insert an arc from Z to Y.

5) Perform traditional code straightening to merge
any pair of states X and Y such that the only arc
leaving X is also the only arc entering Y.

Algorithm 3 User-Supplied Multiple Version Syntax
#powercase
/* code for default algorithm */
#poweralt
/* code for first alternative */
#poweralt
/* code for second alternative */
...
#poweresac

A simple syntax might be as shown in Algorithm 3.
The compiler would treat the#powercase construct
as a forced position for posting predictions for all the
alternatives, generating code that evaluates the runtime
system’s contract to conditionally jump to the alternative
that best matches the contracted power and thermal
profile.

The fully automatic generation of power variants
would work in much the same way. After identifying
specific code sections that have well-known transforma-
tions into variants with potentially different power, the
compiler would treat the variants just as though they had
been provided by a user with the construct above.

6

For example, if there are two coded versions of a
meta-state (collapsed prediction region), a slow one
requiring 50W-60W and a fast one requiring 75W-80W,
the compiler prediction might say 50W-80W. If the
runtime system came back with a 70W contract, the
compiler would force the slow alternative coding to be
used. In this way, the compiler is allowing the operating
system to exert relatively fine-grain predictive control
within each process – not just across multiple processes.
This distinction is important because, unlike data centers,
parallel supercomputers have good reason to be running
very few programs in a timeshared mode. Without the
ability to adjust trade-offs within a process, there might
not be enough processes for the operating system to
throttle between.

It is worth noting that a compiler could err, or a
devious programmer could lie, giving the runtime system
a prediction that is far less resource use (power) than
the code requires. However, by being somewhat conser-
vative, the operating system can detect such a problem
before critical limits have been exceeded and throttle
by not scheduling that code. Thus, the worst case is
essentially the same behavior that other, non-predictive,
power management approaches seek.

III. RUNTIME SYSTEM SOFTWARE

The compile-time analysis provides an excellent start-
ing point for predictive control at runtime, but having
good power estimates at compile time is not the same
as being able to effectively use predictive control at
runtime. The first problem is selection of an appropriate
mechanism for passing compile-time estimates to the
runtime system. Secondarily, as good as compile-time
estimates may be, there is potential improvement avail-
able by combining static compile-time estimates with
historical records of dynamic behavior at runtime. This
is especially true if malicious users have caused false
(low) predictions to be posted in the hope of obtaining
more than their fair share of the computing resource.
Indeed, it might be feasible to forgo the compile-time
analysis entirely if the runtime history mechanisms are
sufficiently effective. Finally, it is important to make
good use of the predictions; we will not propose a
complete system here, but merely provide a few insights
and guidelines as to how predictions should be used.

A. Runtime History-Based Predictions

As powerful as the above compile-time mechanism
is, it would be nice to be able to improve upon the
estimates by using runtime history. There are many
examples of hardware structures designed to predict
branching behaviour based on history; what we propose
is a fully software-managedPredictive Power History
Buffer (PPHB).

As suggested above, power is not easy to measure di-
rectly. The closest approximation to direct measurement
is the indirect calibration of the power cost associated
with various types of events that are easily accounted,
as per Bellosa et al [2], [3] – the same general approach
that we favor for the compile-time analysis. Another
alternative is to use relatively slow-responding thermal
sensors. Temperature while executing a region of code
does not necessarily have any direct correlation with
power consumption or heat generation by that code re-
gion; temperature might be quite high and rising despite
the code currently being executed having a relatively
modest power profile. There are two reasons:

1) Temperature is an integrative measure, so a recent
history of high power consumption might make
the temperature have a high average over the
region despite execution of the region significantly
cooling the processor. It is thus far more correct
to look at the temperature change rather than the
temperature. Of course, simply recording simple
differences ignores the basic thermodynamic fact
that higher temperatures require more energy to be
maintained, so the best accuracy will be obtained
by calibrating a scaling factor for temperature
differencing.

2) Temperature changes occur with significant hys-
teresis. The temperature change caused by one
region of code might not be visible until long
after that region has completed executing. How
long after? Again, only a calibration process can
produce the best accuracy.

There are several ways in which the history buffer can
be organized. Perhaps the most obvious would be to
borrow the same type of hash-indexing commonly used
for hardware BHBs (Branch History Buffers). In this
type of organization, the instruction address associated
with a sample would be hashed and the resulting data is
stored in that line.

The primary difference between PPHB and BHB
operation is that the PPHB is not simply recording an
unambiguous fact about code uniquely identified by the
PC value; rather, it is intended to be predictive of power
consumption over an extended period after the PC was
at the address recorded. We envision a signal handler
within the program being awakened at regular intervals
that are short relative to the minimum period of runtime
predictive control operations; we will call the integral
sampling rate multiplier R, with typical values between
2 and 10. In addition to the PPHB itself, an auxiliary
FIFO data structure is needed. The basic signal handler
algorithm is given in Algorithm 4.

The primary difficulty with this procedure is the fact
that the PPHB will not be filled with good predictions
very quickly. Smaller PPHBs fill faster, but also have a

7

Algorithm 4 Power History Buffer Signal Handler
1) Recover the program counter (PC) from the inter-

rupted process and compute the power consump-
tion since the last sample using techniques such as
those proposed by Bellosa et al [2], [3]. Insert the
pair in the FIFO buffer as PCt, Pt.

2) Compute the power prediction P by averaging Pt,
Pt-1, Pt-2, ..., Pt-(R-1).

3) Update the history in PPHB[hash(PCt-(R-1))] us-
ing P. The update may consist of replacing an
existing entry, averaging with it, or even updating
minimum, average, and maximum values.

higher probability of interference. An interesting possi-
bility is to use the static compiler analysis to initialize
the PPHB and then refine the static predictions using
dynamic measurements.

B. Control Algorithms

Rather than simply switching power management on
and off as the cluster approaches its thermal limit, the
runtime system should use control theory to smoothly
apply power management to hold the system at maxi-
mum performance without exceeding thermal limits [21].
In addition to using feedback control, long-term power
predictions from the executing code can add a feed-
forward term based on the expected reaction of the
system, thus tracking the desired operating point more
closely. Although predictive thermal management has
not been used for parallel systems, it has been shown to
be more effective than reactive management for unipro-
cessor multimedia applications [22]. Effective control al-
lows over-provisioning the computing nodes, i.e., build-
ing a bigger computer than can be continuously fully
powered [10].

Power reduction can be implemented using any of the
standard mechanisms discussed in the literature, such
as dynamic voltage and frequency scaling (DVS), in-
struction fetch throttling, and choice of code sequences.
Compiler-generated multiple version encoding (see Sec-
tion II-C) offers additional control of power vs. speed
tradeoffs within a process. Switching frequency and
voltage implies an overhead of up to 500µs, whereas
runtime selection between alternative codings based on
a power contract can be done with overhead measured
in nanoseconds.

The techniques introduced in this paper fit well with
a wide range of existing control techniques [23], [20],
[11], [12], [18], [13]. The compile-time and/or runtime
power predictions trivially improve the effectiveness of
any reactive control method by allowing control actions
that had been initiated reactively with very conservative

thresholds to instead be initiated using predictions with
significantly more aggressive thresholds. The multiple-
version coding, especially used in combination with
paired minimum and maximum power predictions, also
makes it possible to cheaply implement some control by
simply setting contracts.

Of course, new control laws emphasizing feed-forward
control should be able to do even better. We envision a
power management control law that not only takes full
advantage of power predictions as described here, DVS,
and multiple-version coding, but also of runtime model-
ing of environmental issues ranging from Computational
Fluid Dynamics (CFD) for predicting heat flow within
the room that houses a cluster computer to issues of
electricity pricing and cooling system fluctuations due
to external conditions (lower efficiency on a hot day, a
building’s cooling system being turned-off on weekends
or cool days, etc.). We are working toward developing
this level of integrated modeling and control.

Traditionally, computers have had very little hardware
and software implementing “autonomic” self-evaluation
and control. Deliberately making a system that will
normally have to run below peak speed due to power
and thermal issues also goes against common super-
computing sense. However, we view these investments
as enabling the system to get better performance when
power and cooling are less expensive or more available
than than in the worst case, thus maximizing value. For
example, the electricity cost for operating the KASY0
cluster supercomputer [16] for one year exceeds the
cost of its network hardware; over the lifespan of the
machine, it will exceed the cost of the processors!
Thus, a cluster whose performance is limited by the
cost of power and cooling during on-peak hours can
run much faster during off-peak hours when electrical
costs are lower and air conditioning is more efficient due
to lower outdoor temperatures, yielding better overall
price/performance.

IV. CONCLUSION

Although there is a large and growing body of work
aimed at making power and cooling first class managed
attributes of a computing system, the critical difference
between these attributes and those that have been suc-
cessfully managed in the past is that these require dealing
with long time constants and hysteresis. Feed-forward
control, not just reactive feedback, is needed to deal
effectively with the long time constants and hysteresis
associated with power and thermal control. Most work
in this field has suffered from using measurements taken
at that moment or over the recent past as though they
were a prediction of future behavior.

In this paper, we have presented new compiler and
runtime technology that can efficiently create, and make

8

accessible to runtime control, true predictions of be-
havior for arbitrarily long periods in the future. The
compiler and runtime technologies described here are
very flexible, and can be used for large-lookahead pre-
dictions of many kinds. It remains to be seen precisely
which power and thermal attributes will be most useful
in implementing predictive runtime control, nor do we
yet know how much better the control will be using true
predictions of future behavior as input. Our future work
in this area is thus focused on implementing a variety of
these new techniques and obtaining experimental results
to guide further development.

On a larger scale, we see power and thermal issues
becoming significant components of all aspects of system
design, programming, and operation. We already have
modified the Cluster Design Rules (CDR) software tool
to model power and cooling constraints and operating
costs when designing a cluster computer. We also see a
pressing need to model complete environmental issues
ranging from Computational Fluid Dynamics (CFD)
models of heat flow within the room that houses a cluster
computer to issues of electricity pricing and cooling
system fluctuations due to external conditions (lower
efficiency on a hot day, a building’s cooling system being
turned-off on weekends or cool days, etc.). In each case,
control using prediction of future circumstances is the
key to getting the best performance.

REFERENCES

[1] Nevine AbouGhazaleh, Bruce Chiders, Daniel Mossé, Rami
Melhem, and Matthew Craven. Energy management for
real-time embedded applications with compiler support. In
ACM SIGPLAN Joint Conference LCTES’03, June 2003.

[2] Frank Bellosa. The benefits of event-driven energy accounting
in power-sensitive systems. InEW 9: Proceedings of the 9th
workshop on ACM SIGOPS European workshop, pages 37–42,
New York, NY, USA, 2000. ACM Press.

[3] Frank Bellosa, Andreas Weissel, Martin Waitz, and Simon
Kellner. Event-driven energy accounting for dynamic thermal
management. InProceedings of the Workshop on Compilers
and Operating Systems for Low Power (COLP’03), New
Orleans, LA, September 27 2003.

[4] L. N. Chakrapani, P. Korkmaz, V. J. Mooney III, K. V. Palem,
K. Puttaswamy, and W. F. Wong. The emerging power crisis in
embedded processors: What can a (poor) compiler do? In
Proceedings of the International Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASES 01),
pages 176–180, November 2001.

[5] Chi-Hung Chi and Henry G. Dietz. Unified management of
registers and cache using liveness and cache bypass. InPLDI,
pages 344–355, 1989.

[6] Keith D. Cooper and Todd Waterman. Understanding energy
consumption on the c62x. InWorkshop on Compilers and
Operating Systems for Low Power (COLP 02, co-located with
PACT 02), Charlottesville, Virginia, USA, September 2002.

[7] H. G. Dietz. Speculative predication across arbitrary
interprocedural control flow. InLanguages and Compilers for
Parallel Computing: 12th International Workshop, LCPC’99,
volume 1863, pages 432–446, London, UK, June 2000.
Springer-Verlag.

[8] H. G. Dietz and G. Krishnamurthy. Meta-state conversion. In
Proceedings of the 1993 International Conference on Parallel
Processing, volume II, pages 47–56, August 1993.

[9] Henry G. Dietz, Shashi D. Arcot, and Sujana Gorantla. Much
ado about almost nothing: Compilation for nanocontrollers. In
LCPC, pages 466–480, 2003.

[10] Mark E. Femal and Vincent W. Freeh. Safe overprovisioning:
Using power limits to increase aggregate throughput. In
Workshop on Power-Aware Computer Systems, December 2004.

[11] Rong Ge, Xizhou Feng, and Kirk W. Cameron.
Performance-constrained distributed DVS scheduling for
scientific applications on power-aware clusters. InSC ’05:
Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, page 11, 2005.

[12] Chung hsing Hsu and Wu chun Feng. Power-aware run-time
system for high-performance computing. InSC ’05:
Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing, page 9, 2005.

[13] Nandini Kappiah, Vincent W. Freeh, and David K. Lowenthal.
Just in time dynamic voltage scaling: Exploiting inter-node
slack to save energy in MPI programs. InSC ’05: Proceedings
of the 2005 ACM/IEEE Conference on Supercomputing, page 9,
2005.

[14] Masaaki Kondo, Shinichi Tanaka, Motonobu Fujita, and Hiroshi
Nakamura. Reducing memory system energy in data intensive
computations by software-controlled on-chip memory. In
Proceedings of the Workshop on Compilers and Operating
Systems for Low Power (COLP 02), co-located with PACT 02,
September 2002.

[15] Tao Li and Chen Ding. Instruction balance and its relation to
program energy consumption. InLanguages and Compilers for
Parallel Computing: 14th International Workshop, LCPC 2001,
pages 71–85, August 2003.

[16] Timothy I. Mattox, Henry G. Dietz, and William R. Dieter.
Sparse flat neighborhood networks (sfnns): Scalable guaranteed
pairwise bandwidth & unit latency. InIPDPS, 2005.

[17] Muthulakshmi Muthukumarasamy and Henry Dietz. Empirical
evaluation of compressive hashing. InWorkshop on Compilers
for Parallel Computers, January 2006.

[18] Tom W. Keller Freeman L. Rawson III Ramakrishna Kotla,
Soraya Ghiasi. Scheduling processor voltage and frequency in
server and cluster systems. InIPDPS 2005, page 8,
Washington, DC, USA, 2005. IEEE Computer Society.

[19] M. Sami, D. Sciuto, C. Silvano, and V. Zaccaria.
Instruction-level power estimation for embedded vliw cores. In
CODES ’00: Proceedings of the eighth international workshop
on Hardware/software codesign, pages 34–38, New York, NY,
USA, 2000. ACM Press.

[20] Ratnesh K. Sharma, Cullen E. Bash, Chandrakant D. Patel,
Richard J. Friedrich, and Jeffrey S. Chase. Balance of power:
Dynamic thermal management of internet data centers.IEEE
Internet Computing, 9(1):49–49, January–February 2005.

[21] Kevin Skadron, Tarek Abdelzaher, and Mircea R. Stan.
Control-theoretic techniques and thermal-rc modeling for
accurate and localized dynamic thermal management. In
Proceedings of the International Symposium on
High-Performance Computer Architecture. IEEE Computer
Society, 2002.

[22] Jayanth Srinivasan and Sarita V. Adve. Predictive dynamic
thermal management for multimedia applications. InICS ’03:
Proceedings of the 17th annual international conference on
Supercomputing, pages 109–120, New York, NY, USA, 2003.
ACM Press.

[23] Andreas Weissel and Frank Bellosa. Dynamic thermal
management for distributed systems. InProceedings of the
First Workshop on Temperatur-Aware Computer Systems
(TACS’04), Munich, Germany, June 2004.

