
IEEE TRANSACTIONS ON COMPUTERS, VOL. c-32, NO. 2, FEBRUARY 1983

S Michael J. Flynn was born in New York, NY, on
May 20, 1934. He received the B.S.E.E. degree
from Manhattan College, New York, the M.S. de-
gree from Syracuse University, Syracuse, NY,
and the Ph.D. degree from Purdue University,
West Lafayette, IN, in 1955, 1960 and 1961, re-
spectively.
He joined IBM in 1955 and over a ten year ten-

ure there, worked principally in the areas of circuit
development and computer organization and de-
sign. He was a designer and manager of prototype

versions of the IBM 7090 and 7094/11 and later was the nianager responsible
for design and development of the System 360 Model 91 Central Processing
Unit. He was a member of the faculty of Northwestern University and The
Johns Hopkins University, Baltimore, MD, from 1970-74. In 1973-74 he was
on leave from the University to serve as Vice President of Palyn Associates,
Inc., San Jose, CA, a computer design firm where he continues to serve as
Senior Consultant. Since January 1975, he has been a Professor of Electrical
Engineering at Stanford University and since 1977, Director of Computer
Systems Laboratory.

Dr. Flynn has served as Vice-President of the IEEE Computer Society and
as an Associate Editor of the TRANSACTIONS ON COMPUTERS. He was

Founding Chairman of both the Association for Computing Machinery
Special Interest Group on Computer Architecture and the IEEE Computer
Society Technical Committee on Computer Architecture.

Lee W. Hoevel (S'74-M'77) was born in Kansas
City, MO, on January 22, 1946. He received the
B.A. degree in mathematics and economics from
Rice University, Houston, TX, in June 1968, and
the Ph.D. degree in electrical engineering from
The Johns Hopkins University, Baltimore, MD, in

_ ~~~~~1979.
In June 1968, he joined the staff of The Johns

Hopkins Applied Physics Laboratory, Silver
Spring, MD. He took a leave of absence in the fall
of 1971 to become a full-time graduate student of

The Johns Hopkins University. He was a Research Assistant with the De-
partment of Electrical Engineering, Stanford University, Stanford, CA, from
1975-1979. He has been a member of the technical staff at the IBM T. J.
Watson Research Center, Yorktown Heights, NY, since 1979. His current
research interests include program behavior, memory hierarchies, and com-
puter architecture.

The NYU Ultracomputer-Designing an MIMD
Shared Memory Parallel Computer

ALLAN GOTTLIEB, RALPH GRISHMAN, CLYDE P. KRUSKAL, KEVIN P. McAULIFFE,
LARRY RUDOLPH, AND MARC SNIR

Abstract-We present the design for the NYU Ultracomputer, a
shared-memory MIMD parallel machine composed of thousands of
autonomous processing elements. This machine uses an enhanced
message switching network with the geometry of an Omega-network
to approximate the ideal behavior of Schwartz's paracomputer model
of computation and to implement efficiently the important fetch-
and-add synchronization primitive. We outine the hardware that would
be required to build a 4096 processor system using 1990's technology.
We also discuss system software issues, and present analytic studies
of the network performance. Finally, we include a sample of our effort
to implement and simulate parallel variants of important scientific
irograms.

Index Terms-Computer architecture, fetch-and-add, MIMD,
multiprocessor, Omega-network, parallel computer, parallel pro-
cessing, shared memory, systolic queues, VLSI.

Manuscript received January 13, 1982; revised June 28, 1982. This work
was supported in part by the National Science Foundation under Grant
NSF-MCS79-07804, and by the Applied Mathematical Sciences Program
of the Department of Energy under Grant DE-AC02-76ER03077.

A. Gottlieb, R. Grishman, K. P. McAuliffe, and M. Snir are with the
Courant Institute of Mathematical Sciences, New York University, New
York, NY 10012.

C. P. Kruskal is with the Department of Computer Science, University of
Illinois, Urbana, IL 61801.

L. Rudolph was with the Department of Computer Science, University of
Toronto, Toronto, Ont., Canada. He is now with the Department of Computer
Science, Carnegie-Mellon University, Pittsburgh, PA 15213.

I. INTRODUCTION

W ITHIN a few years advanced VLSI (very large scale
W integration) technology will produce a fast single-chip

processor including high-speed floating-point arithmetic. This
leads one to contemplate the level of computing power that
would be attained if thousands of such processors cooperated
effectively on the solution of large-scale computational prob-
lems.
The NYU "Ultracomputer" group has been studying how

such ensembles can be constructed for effective use and has
produced a tentative design that includes some novel hardware
and software components. The design may be broadly classi-
fied as a general purpose MIMD machine accessing a central
shared memory via a message switching network with the
geometry of an Omega-network. (For related designs see [3],
[37], [38], [42], and [44].)
The major thrust of this paper is to outline and justify, in

some detail, the proposed hardware and present the analytic
and simulation results upon which parts of the design are
based. We also discuss system software issues and describe
some of our ongoing efforts to produce parallel versions of
important scientific programs (but the reader should see [13]

0018-9340/83/0200-0175$01.00 © 1983 IEEE

175

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 2, FEBRUARY 1983

and [18] respectively for a more detailed treatment of these
last two topics). Section II of the present report reviews the
idealized computation model upon which our design is based;
Section III presents the machine design; Section IV analyzes
network performance; Section V highlights a parallel scientific
program; and Section VI summarizes our results.

II. MACHINE MODEL

In this section we first review the paracomputer model, upon
which our machine design is based, and the fetch-and-add
operation, which we use for interprocessor synchronization.
After illustrating the power of this model, we examine some
alternative models and justify our selection. Although the
paracomputer model to be described is not physically reali-
zable, we shall see in Section III that close approximations can
be built.

exactly what it would be if they occurred in some (unspecified)
serial order, i.e., V is modified by the appropriate total incre-
ment and each operation yields the intermediate value of V
corresponding to its position in this order. The following ex-
ample illustrates the semantics of fetch-and-add: Assuming
V is a shared variable, if PEi executes

ANS1 -- F&A(V, e1),
and if PEj simultaneously executes

ANSj 4- F&A(V, ej),
and if V is not simultaneously updated by yet another pro-
cessor, then either

ANS <- V
ANSJ 4- V+ ei

or
ANSi -- V+ ej
ANS- V

A. Paracomputers

An idealized parallel processor, dubbed a "paracomputer"
by Schwartz [36] and classified as a WRAM by Borodin and
Hopcroft [2], consists of autonomous processing elements
(PE's) sharing a central memory. The model permits every PE
to read or write a shared memory cell in one cycle. In partic-
ular, simultaneous reads and writes directed at the same

memory cell are effected in a single cycle.
We augment the paracomputer model with the "fetch-

and-add" operation (described below) and make precise the
effect of simultaneous access to the shared memory. To ac-

complish the latter we define the serialization principle: The
effect of simultaneous actions by the PE's is as if the actions
occurred in some (unspecified) serial order. For example,
consider the effect of one load and two stores simultaneously
directed at the same memory cell. The cell will come to contain
some one of the quantities written into it. The load will return
either the original value or one of the stored values, possibly
different from the value the cell comes to contain. Note that
simultaneous memory updates are in fact accomplished in one
cycle; the serialization principle speaks only of the effect of
simultaneous actions and not of their implementation.
We stress that paracomputers must be regarded as idealized

computational models since physical limitations, such as re-

stricted fan-in, prevent their realization. In the next section
we review the technique whereby a connection network may
be used to construct a parallel processor closely approximating
our enhanced paracomputer.

B. The Fetch-and-Add Operation

We now introduce a simple yet very effective interprocessor
synchronization operation, called fetch-and-add, which permits
highly concurrent execution of operating system primitives and
applications programs. The format of this operation is F&A(V,
e), where Vis an integer variable and e is an integer expression.
This indivisible operation is defined to return the (old) value
of V and to replace V by the sum V + e. Moreover, fetch-
and-add must satisfy the serialization principle stated above:
If V is a shared variable and many fetch-and-add operations
simultaneously address V, the effect of these operations is

and, in either case, the value of V becomes V + ei + ej.
For another example consider several PE's concurrently

applying fetch-and-add, with an increment of 1, to a shared
array index. Each PE obtains an index to a distinct array ele-
ment (although one does not know beforehand which element
will be assigned to which PE). Furthermore, the shared index
receives the appropriate total increment.

Section III presents a hardware design that realizes fetch-
and-add without significantly increasing the time required to
access shared memory and that realizes simultaneous fetch-
and-adds updating the same variable in a particularly efficient
manner.

C. The Power ofFetch-and-Add

Since in a parallel processor the relative cost of serial bot-
tlenecks rises with the number of PE's, users of future ultra-
large-scale machines will be anxious to avoid the use of critical
(and hence necessarily serial) code sections, even if these
sections are small enough to be entirely acceptable in current
practice.

If the fetch-and-add operation is available, we can perform
many important algorithms in a completely parallel manner,
i.e., without using any critical sections. For example Gottlieb
et al. [1 311 present a completely parallel solution to the read-
ers-writers problem2 and a highly concurrent queue manage-
ment technique that can be used to implement a totally de-
centralized operating system scheduler. (The queue man-
agement technique is reprinted in the Appendix of the present
paper.) We are unaware of any other completely parallel so-
lutions to these problems.3 To illustrate the nonserial behavior
of these algorithms, we note that given a single queue that is

' As explained in, [12], the replace-add primitive defined in [1 3] and used
in several of our earlier reports is essentially equivalent to the fetch-and-add
primitive used in the present paper.

2 Since writers are inherently serial, the solution cannot strictly speaking
be considered completely parallel. However, the only critical section used is
required by the problem specification. In particular, during periods when no
writers are active, no serial code is executed.

3 Reed and Kanodia [31] give a completely parallel solution to those
readers-writers problems for which it suffices to detect, rather than prevent,
the concurrent execution of multiple reader tasks with a single writer task.
(After detecting such an occurrence, the reader tasks are "undone" and "re-
done").

176

GOTTLIEB et al.: NYU ULTRACOMPUTER

neither empty nor full, the concurrent execution of thousands
of inserts and thousands of deletes can all be accomplished in
the time required for just one such operation. Other highly
parallel fetch-and-add-based algorithms appear in [18], [24],
[25], and [33].

D. Generalizing Fetch-and-Add

One can define a more general fetch-and-¢ operation that
fetches the value in V and replaces it with O(V, e). Of course
defining /(a, b) = a + b gives fetch-and-add. If 4 is both as-
sociative and commutative, the final value in V after the
completion of concurrent fetch-and-¢'s is independent of the
serialization order chosen.
We now show that two important coordination primitives,

swap and test-and-set, may also be obtained as special cases
of fetch-and-0. (It must be noted, however, that the fetch-
and-add operation has proved to be a sufficient coordination
primitive for all the highly concurrent algorithms developed
to date.) We use the brackets I and }to group statements that
must be executed indivisibly and define test-and-set to be a
value-returning procedure operating on a shared Boolean
variable.

TestAndSet(V)
ITemp - V

V TRUE)
RETURN Temp.

The swap operation is defined as exchanging the values of
a local variable L (which specifies a processor register or stack
location) and a variable V stored in central memory

Swap(L, V)
{Temp +- L
L V
V Temp)

It is easy to see that

TestAndSet(V) is equivalent to Fetch&OR(V, TRUE).

Similarly, a swap operation can be effected by using the
projection operator ir2, where 72(a, b) = b; i.e.,

Swap(L, V) is equivalent to L - Fetch &r2(V, L).
We conclude this discussion of fetch-and-¢ by showing that

this operation may be used as the sole primitive for accessing
central memory. Specifically, we show how to obtain the fa-
miliar load and store operations as degenerate cases of fetch-
and-4. To load the local variable L from a variable V stored
in central memory one simply executes

L - Fetch&r1(V, *)

where irI(a, b) = a and the value of * is immaterial (and thus
need not be transmitted). Similarly, to store the value ofL into
V one executes

* Fetch&7r2(V, L)

where the * indicates that the value returned is not used (and
thus again need not be transmitted).

E. Alternate Machine Models

In this subsection we discuss several other heavily researched
models of parallel processors and explain our choice of a
large-scale MIMD shared memory machine.
One line of study pioneered by Kung (see, e.g., [27]), focuses

on the great economic and speed advantages obtainable by
designing parallel algorithms that conform well to the re-
strictions imposed by VLSI technology, in particular algo-
rithms and architectures that lay out well in two dimensions.
These "systolic" processor designs are already having a sig-
nificant impact on signal processing, an impact that will
doubtless increase dramatically over the next several years.
However, for computations having complex control and data
flow, the systolic architecture is less well suited. We do expect
that VLSI systolic systems will be used for those subcompo-
nents of our machine having regular control and data flow; the
design of one such component, an enhanced systolic queue, is
presented in Section III-D.
The current generation of supercomputers may be roughly

classified as SIMD shared memory machines by considering
their vector pipelines to be multiple processors each executing
the same instruction [41]. Effective use of such machines is
only attained by algorithms consisting primarily of vector
operations. Although it is far from trivial to "vectorize" al-
gorithms, such a program has been successfully undertaken
at many supercomputer sites. Once again, however, some
problems (especially those with many data dependent deci-
sions) appear to resist effective vectorization. Rodrigue, Gir-
oux, and Pratt [32] of Lawrence Livermore National Labo-
ratory write:

Vector and array processors were designed with the
idea of solving fluid-type problems efficiently. In gener-
al these machines do not lend themselves well to parti-
cle tracking calculations. For a scientific laboratory
such as LLNL, the computer should be able to handle
both forms of calculation, but it remains to be seen
whether this goal will ever be achieved.

This goal is achieved by rejecting SIMD machines in favor
of the MIMD paracomputer model, which our simulation
studies have shown to be effective for both fluid-type [34]
and particle tracking calculations [19].

Yet a third alternative model, specifically architectures
derived from very general abstract "dataflow" models of
parallel computation, have been pursued by other researchers
(see the February 1982 Special Issue of Computer and the
references contained therein). Recent work in this area has
stressed the advantages of a purely applicative, side-effect-free
programming language for the description of parallel com-
putation. Although such dataflow machines have been dis-
cussed for several years, no completely satisfactory physical
design has yet emerged. Without commenting on the relative
merits of applicative programming, we note that Gottlieb and
Schwartz [14] show how a dataflow language may be executed
with maximal parallelism on our machine (see also [17]).
The final model we consider is a message passing alternative

to shared memory. Except for very small systems, it is not

177

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 2, FEBRUARY 1983

Fig. 1. Block diagram.

possible to have every PE directly connected to every other PE.
Thus it may be necessary to route messages via intermediate
PE's. In the original ultracomputer design of Schwartz [36]
the programmer specified the routing explicitly. By tailoring
algorithms to the particular interconnection geometry, one can

obtain very high performance. However, we found such a

machine to be significantly more difficult to program than one

in which the entire memory is available to each PE (see [8],
[10], [11], and [35]). If the geometry is hidden from the pro-

grammer by having the individual PE's perform the necessary

routing, a more loosely coupled machine results. In recent years

such machines have been much studied for distributed com-
puting applications. Although message passing architectures
are indeed quite attractive for distributed computing, we be-
lieve that for the applications we have emphasized, thousands
of processors cooperating to solve a single large-scale scientific
problem, the more tightly coupled model featuring high speed
concurrent access to shared memory is more effective.

III. MACHINE DESIGN

In this section we present the design of the NYU Ultra-
computer, a machine that appears to the user as a paracom-

puter, and we justify our design decisions. As indicated above,
no machine can provide the single-cycle access to shared
memory postulated in the paracomputer model; our design
approximates a paracomputer by using a message switching
network with the geometry of the Omega-network of Lawrie
[29]4 to connect N = 2D autonomous PE's to a central shared
memory composed ofN memory modules (MM's). Thus, the
direct single cycle access to shared memory characteristic of
paracomputers is replaced by an indirect access via a multi-
cycle connection network. Each PE is attached to the network
via a processor network interface (PNI) and each MM is at-
tached via a memory network interface (MNI). Fig. 1 gives
a block diagram of the machine.

After reviewing routing in the network, we show that an

analogous network composed of enhanced switches provides
4 Note that this network has the same topology as the rectangular SW

banyan network of Goke and Lipovsky 171.

0000 0 O O 0 O O *000

00IooI I I IFIs 001

0100_0 Fe/ Fe/00

1000 0 00 0 100

1010 I1 101

11 109_ 0 0 0 0 *110

Fig. 2. Omega-network (N = 8).

efficient support for concurrent fetch-and-add operations. We
then examine our choice of network and local memory. To
conclude this section we present a detailed design for the
switches and describe the PE's, MM's, and network interfaces.
As will be shown both the PE's and MM's are relatively
standard components; the novelty of the design lies in the
network and in particular in the constituent switches and in-
terfaces.

A. Network Design

For machines with thousands of PE's the communication
network is likely to be the dominant component with respect
to both cost and performance. The design to be presented
achieves the following objectives.

i) Bandwidth linear in N, the number of PE's.
ii) Latency, i.e., memory access time, logarithmic in N.
iii) Only O(N log N) identical components.
iv) Routing decisions local to each switch; thus routing is

not a serial bottleneck and is efficient for short messages.
v) Concurrent access by multiple PE's to the same memory

cell suffers no performance penalty; thus interprocessor
coordination is not serialized. We are unaware of any signifi-
cantly different design that also attains these goals.

1) Routing in an Omega-Network: The manner in which
an Omega-network can be used to implement memory loads
and stores is well known and is based on the existence of a
(unique) path connecting each PE-MM pair. To describe the
touting algorithm we use the notation in Fig. 2: both the PE's
and the MM's are numbered using D-bit identifiers whose
values range from 0 to N - 1; the binary representation of each
identifier x is denoted XD ... xl; upper ports on switches are
numbered 0 and lower ports 1; messages-from PE's to MM's
traverse the switches from left to right; and returning messages
traverse the switches from right to left. A message is trans-
mitted from PE(pD ... PI) to MM(mD ...*1) by using output
port mj when leaving the stage j switch. Similarly, to travel
from MM(mD ... mlI) to PE(pD ... p1) a message uses output
port pj at a stage j switch.

178

GOTTLIEB et al.: NYU ULTRACOMPUTER

The routing algorithm just presented generalizes immedi-
ately to a D-stage network composed of k-input-k-output
switches (instead of the 2 X 2 switches used above) connecting
kD PE's to kD MM's: The ports of a switch are numbered 0 to
k - 1 and the identifiers are written in base k. Although the
remainder of this section deals exclusively with 2 X 2 switches,
all the results generalize to larger switches, which are con-
sidered in Section IV.

2) Omega-Network Enhancements: To prevent the network
from becoming a bottleneck for machines comprising large
numbers of PE's, an important design goal has been to attain
a bandwidth proportional to the number of PE's. This has been
achieved by a combination of three factors (see Section IV for
an analysis of network bt4ndwidth).

i) The network is pipelined, i.e., the delay between messages
equals the switch cycle time not the network transit time.
(Since the latter grows logarithmically, nonpipelined networks
can have bandwidth at most O(N/log N).)

ii) The network is message switched, i.e., the switch settings
are not maintained whilo a reply is awaited. (The alternative,-
circuit switching, is incompatible with pipelining.)

iii) A queue is associated with each switch to enable con-
current processing of requests for the same port. (The alter-
native adopted by Burroughs [3] of killing one of the two
conflicting requests also limits bandwidth to O(N/log N), see
[26].)

Since we propose using a message switching network, it may
appear that both the destination and return addresses must be
transmitted with each message. We need, however, transmit
only one D bit address, an amalgam of the origin and desti-
nation: When a message first enters the network, its origin is
determined by the input port, so only the destination address
is needed. Switches at the jth stage route messages based on
memory address bit mj and then replace this bit with the PE
number bit pj, which equals the number of the input port on
which the message arrived. Thus, when the message reaches
its destination, the return address is available.
When concurrent loads and stores are directed at the same

memory location and meet at a switch, they can be combined
without introducing any delay by using the following procedure
(see [13] and [21]).

i) Load-Load: Forward one of the two (identical) loads and
satisfy each by returning the value obtained from memory.

ii) Load-Store: Forward the store and return its value to
satisfy the load.

iii) Store-Store: Forward either store and ignore the
other.

Combining requests reduces communication traffic and thus
decreases the lengths of the queues mentioned above, leading
to lower network latency (i.e., reduced memory access time).
Since combined requests can themselves be combined, the
network satisfies the key property that any number of con-
current memory references to the same location can be satis-
fied in the time required for just one central memory access.
It is this property, when extended to include fetch-and-add
operations as indicated below, that permits the bottleneck-free
implementation of many coordination protocols.

3) Implementing Fetch-and-Add: By including adders in

F&A (X, e+f)-e

4- 1'

Fig. 3. Combining Fetch-and-Adds.

the MNI's, the fetch-and-add operation can be easily imple-
mented: When F&A(X, e) is transmitted through the network
and reaches the MNI associated with the MM containing X,
the value ofX and the transmitted e are brought to the MNI
adder, the sum is stored in X, and the old value ofX is returned
through the network to the requesting PE. Since fetch-and-add
is our sole synchronization primitive (and is also a key ingre-
dient in many algorithms), concurrent fetch-and-add opera-
tions will often be directed at the same location. Thus, as in-
dicated above, it is crucial in a design supporting large numbers
of processors not to serialize this activity.

Enhanced switches permit the network to combine fetch-
and-adds with the same efficiency as it combines loads and
stores: When two fetch-and-adds referencing the same shared
variable, say F&A(X, e) and F&A(X,J), meet at a switch, the
switch forms the sum e + f, transmits the combined request
F&A(X, e +J), and stores the value e in its local memory (see
Fig. 3). When the value Y is returned to the switch in response
to F&A(X, e +J), the switch transmits Yto satisfy the original
request F&A(X, e) and transmits Y + e to satisfy the original
request F&A(X,J).

Assuming that the combined request was not further com-
bined with yet another request, we would have Y = X; thus the
values returned by the switch are X and X + e, thereby ef-
fecting the serialization order "F&A(X, e) followed imme-
diately by F&A(X,f)." The memory locationX is also prop-
erly incremented, becomingX + e +f. If other fetch-and-add
operations updatingX are encountered, the combined requests
are themselves combined, and the associativity of addition
guarantees that the procedure gives a result consistent with
the serialization principle.

Although the preceding description assumed that the re-
quests to be combined arrive at a switch simultaneously, the
actual design can also merge an incoming request with requests
already queued for output to the next stage (see Section III-
D).
To combine a fetch-and-add operation with another refer-

ence to the same memory location we proceed as follows.
i) Fetch&Add-Fetch&Add: As described above, a com-

bined request is transmitted and the result is used to satisfy
both fetch-and-adds.

ii) Fetch&Add-Load: Treat Load(X) as Fetch&Add(X,
O).

iii) Fetch&Add(X, e)-Store(X,J): Transmit Store(e +J)
and satisfy the fetch-and-add by returningf.

Finally, we note that a straightforward generalization of the
above design yields a network implementing the fetch-and-0
primitive for any associative operator k [12].

4) Other Considerations: We now turn our attention to
other issues concerning the proposed network design.

179

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 2, FEBRUARY 1983

Since the introduction of queues in each switch leads to
stochastic delays and the network is pipelined, it is possible for
memory references from a given PE to distinct MM's to be
satisfied in an order different from the order in which they were
issued. This reordering can violate the serialization principle
specified in our model (see [28]). A simple-minded solution
to this problem is not to pipeline requests to read-write shared
variables; however, this approach is overly conservative since
most such request can be safely pipelined.

Since the analyses thus far obtained require the introduction
of simplifying assumptions (see Section IV), and we are unable
to perform faithful simulations of full 4096 PE networks, we
cannot confidently predict the expected network latency. Our
preliminary analyses and partial simulations have yielded
encouroAging results.
A potential serial bottleneck is the memory module itself.

If every PE simultaneously requests a distinct word from the
same MM, theseN requests are serviced one at a time. How-
ever, introducing a hashing function when translating virtual
addresses to physical addresses, assures that unfavorable sit-
uations occur with probability approaching zero as N in-
creases. On average, the most requests directed at a singleMM
is (asymptotically) on log N/log log N [44]. Furthermore, the
probability that all MM's receive less than log N requests
(asymptotically) exceeds 1 - 1I/P(N) for any polynomial
P.
The hardware complexity due to the decision to adopt a

queued message switching network introduces significant
processing at each stage. Although the internal cycle time of
the switches may be important for today's technology, we ex-
pect that by the end of the decade any on-chip delay will be
dominated by the chip-to-chip transmission delays. (Since the
switch bandwidth will be pin limited, the added internal
complexity will not increase the component count.)
B. Local Memory
The negative impact of the large network latency can be

partially mitigated by providing each PE with a local memory
in which private variables reside and into which read-only
shared data (in particular, program text) may be copied.
Storing shared read-write data in the local memory of multiple
PE's must, in general, be prohibited: the resulting memory
incoherence would otherwise lead to violations of the seriali-
zation principle. We shall show in Section III-D that in certain
special cases, this restriction may be relaxed.
One common design for parallel machines is to implement

a separately addressable local memory at each PE, imposing
upon compilers and loaders the onus of managing the two level
store. The alternative approach, which we intend to implement,
is the one conventionally used on uniprocessors: The local
memory is implemented as a cache. Experience with unipro-
cessor systems shows that a large cache can capture up to 95
percent of the references to cacheable variables, effectively
shifting the burden of managing a two level store from the
software to the hardware (see [20]).
C. The Switches

We now detail an individual network switch, which is es-

sentially a 2 X 2 bidirectional routing device transmitting a
message from its input ports to the appropriate output port on
the opposite side. The PE side sends and receives messages to
and from the PE's via input ports, called FromPEi, where i =
0, 1, and output ports, called ToPEi. Similarly, theMM side
communicates with the MM's via ports FromMMi and
ToMMi. (Note that in our figures the To and From ports are
coalesced into bidirectional ports.)
As indicated above, we associate a queue with each output

port. The head entry is transmitted when the switch at the
adjacent stage is ready to receive it (the message might be
delayed if the queue this message is due to enter is already
full).
To describe the process whereby requests are combined in

a switch, we view a request as consisting of several components:
function indicator (i.e., load, store, or fetch-and-add), address,
and data. The address itself consists of the amalgamation of
part of the PE number and part of the MM number, and the
internal address within the specified MM. For ease of expo-
sition, we consider only combining homogeneous requests (i.e.,
requests with like function fields); it is not hard to extend the
design to permit combining heterogeneous requests. For each
request, R-new, that enters a ToMM queue5, we search the
requests already in this queue using as key the function, MM
number, and internal address from R-new.6 If no request
matches R-new, then no combining is possible and R-new
simply remains the tail entry of the output queue. Otherwise,
let R-old denote the message in theToMM queue that matches
R-new. Then, to effect the serialization R-old followed im-
mediately by R-new, the switch performs the following actions:
The addresses of R-new and R-old are placed into a Wait
Buffer (to await the return of R-old from memory) and R-new
is deleted from the ToMM queue. If the request is a store then
the datum of R-old (in the ToMM queue) is replaced by the
datum of R-new. If the request is a fetch-and-add then the
datum of R-old is replaced by the sum of the two data. In ad-
dition, for fetch-and-adds, the datum of R-old is sent to the
wait buffer. Thus, each entry sent to the wait buffer consists
of the address of R-old (the entry key); the address of R-new;
and, in the case of a combined fetch-and-add, a datum. (Note
that stores and fetch-and-adds can both be implemented by
using an ALU that receives the data of R-old and R-new and
returns either the sum of the two numbers or just R-new.)

Before presenting the actions that occur when a request
returns to a switch from a MM, we make two remarks. First,
we will use two Wait Buffers (one associated with each ToMM
queue) since access to a single wait buffer would be rate lim-
iting. Second, the key of each entry is the Wait Buffer uniquely
identifies the message for which it is waiting since the PNI is
to prohibit a PE from having more than one outstanding ref-
erence to the same memory location.

After arriving at a FromMM port, a returning request,
R-ret, is both routed to the appropriate ToPE queue and used
to search associatively the relevant wait buffer. If a match

5 Although we use the term queue, entries within the middle of the queue
may also be accessed.

6 The design of the ToMM queue, permitting this search and subsequent
actions to be performed with minimal delay, is detailed in Section III-C1.

180

GOTTLIEB et al.: NYU ULTRACOMPUTER

WRIT OUT
BUFFER

Fig. 4. Systolic ToMM queue.

occurs, the entry found, R-wait, is removed from the buffer
and its function indicator, PE and MM numbers, and address
are routed to the appropriate ToPE queue. If the request was
a load, the data field is laken from R-ret; if a fetch-and-add,
the R-wait data field is added to the R-ret data field.
To summarize the necessary hardware, we note that in ad-

dition to adders, registers, and routing logic, each switch re-

quires two instances of each of the following memory units. For
each unit we have indicated the operations it must support.

i) ToMM-queue: Entries are inserted and deleted in a

queue-like fashion, associative searches may be performed, and
matched entries may be updated.

ii) ToPE-queue: Entries may be inserted and deleted in a

queue-like fashion.
iii) Wait-buffer: Entries may be inserted and associative

searches may be performed with matched entries removed.
Note that it is possible for more than two requests to be

combined at a switch. However, the structure of the switch is
simplified if it supports only combinations of pairs since a re-

quest returning from memory could then match at most one
request in the wait buffer, eliminating the need for contention
logic. Another advantage of not supporting multiple combi-
nations within one switch is that it permits the pipelined im-
plementation of the ToMM queue described below.
The switch can be partitioned into two essentially inde-

pendent components, each implementing a unidirectional
switch. The communication between the two components is
restricted to the information pertaining to combined messages,

that is, the information sent from the ToMM queues to the
wait buffers. Since requests are combined relatively infre-
quently, the link between the two components can have a small
bandwidth. We are currently investigating other possible
partitions for a switch while noting that its increased func-
tionality hinders a bit-slice implementation.

1) The ToMM Queue: As illustrated in Fig. 4 our ToMM
queue is an enhancement of the VLSI systolic queue of Guibas
and Liang [15]. We first describe the queue-like behavior of
this structure and then explain how the necessary searching
is accomplished.

Items added to the queue enter the middle column, check
the adjacent slot in the right column, and move into this slot
if it is empty. If the slot is full, the item moves up one position

in the middle column and the process is repeated. (Should the
item reach the top of the middle column and still be unable to
shift right, the queue is declared full.) Meanwhile, items in the
right column shift down, exiting the queue at the bottom.

Before giving the enhancements needed for searching, we
make four observations: the entries proceed in a FIFO order;
as long as the queue is not empty and the switch in the next
stage can receive an item, one item exits the queue at each
cycle; as long as the queue is not full a new item can be entered
at each cycle7; items are not delayed if the queue is empty and
the next switch can receive them.
The queue is enhanced by adding comparison logic between

adjacent slots in the right two columns, permitting a new entry
moving up the middle column to be matched successively
against all the previous entries as they move down the right
column.8 If a match is found, the matched entry moves (from
the middle column) to the left column, called the "match
column." Entries in the match column shift down at the same
rate as entries on the right column of the queue. A pair of re-
quests to be combined will therefore exit their respective col-
umns at the same time and will thus enter the combining unit
simultaneously.
Note that it is possible to reduce the width of the ToMM

queue by having each request split into several successive
entries. If requests are transmitted between switches as a series
of successive packets, a ToMM queue with a width matching
the size of these packets would avoid the assembly and disas-
sembly of messages, resulting in a complete pipelining of the
message processing. The smaller size of comparators and ad-
ders may also result in faster logic. A detailed description of
the VLSI switch logic appears in [40].

D. The Network Interfaces

The PNI (processor-network interface) performs four
functions: virtual to physical address translation, assembly/
disassembly of memory requests, enforcement of the network
pipeline policy, and cache management. The MNI (mem-
ory-network interface) is much simpler, performing only re-
quest assembly/disassembly and the additions operation
necessary to support fetch-and-add. Since the MNI operations
as well as the first two PNI functions are straightforward, we
discuss only pipelining policy and cache management.

Before detailing these two functions, we note two restrictions
on pipelining memory request (i.e., issuing a request before the
previous one is acknowledged). As indicated above, pipelining
requests indiscriminately can violate the serialization principle
(Section III-A4), and furthermore, pipelining requests to the
same memory location is not supported by our current switch
design (Section III-C).

Since accessing central memory involves traversing a mul-

7 The number of cycles intervening between successive insertions must,
however, be even (zero included).

8 Actually, an item is matched against half of the entries moving down the
right column. Since we packetize messages (see below) we can arrange for
each item to be matched against its corresponding item in each request moving
down the right column (this is particularly easy if each message consists of
an even number of packets). If, however, an entire request is contained in one
packet, then one needs either twice as many comparators or two cycles for each
motion.

181

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 2, FEBRUARY 1983

tistage network, effective cache management is very important.
To reduce network traffic a write-back update policy was
chosen: writes to the cache are not written through to central
memory; instead, when a cache miss occurs and eviction is
necessary, updated words within the evicted block are written
to central memory. Note that cache generated traffic can al-
ways be pipelined.

In addition to the usual operations described above, which
are invisible to the PE, our cache provides two functions, re-
lease and flush, that must be specifically requested a-nd can be
performed on a segment level or for the entire cache. We now
show that judicious use of release and flush further reduces
network traffic.
The release command marks a cache entry as available

without performing a central memory update. This enables a
task to free cache space allocated to virtual addresses that will
no longer be referenced. For example, private variables de-
clared within a begin-end block can be released at block exit.
Thus, the release operation reduces network trafflc by lowering
the quantity of data written back to central memory during
a task switch. Moreover, if (prior to a task switch) another
virtual address maps to a released cache address, no central
memory update is necessary.

Release also facilitates caching shared read-write data
during periods of read-only access: if a set of tasks sharing
read-write data can guarantee that during a period of time no
updates will occur, then the data is eligible for caching for the
duration of this period. Subsequently, the data must be re-
leased and marked uncacheable to insure that no task uses stale
data.
The flush facility, which enables the PE to force a write-back

of cached values, is needed for task switching since a blocked
task may be rescheduled on a different PE. To illustrate an-
other use of flush and release, consider a variable V that is
declared in task T and is shared with T's subtasks. Prior to
spawning these subtasks, T may treat V as private (and thus
eligible to be cached and pipelined) providing that V is flushed,
released, and marked shared immediately before the subtasks
are spawned. The flush updates main memory, the release
insures that the parent task will not use stale data, and marking
V shared enables T's subtasks to reference V. Once the sub-
tasks have completed, T may again consider V as private and
eligible for caching. Coherence is maintained since V is cached
only during periods of exclusive use by one task.
To increase performance one may define a combined

flush-and-release command that can be implemented using
only a single scan through the cache directory.

E. The Processors and Memory Modules

The MM's are standard components consisting of off the
shelfmemory chips. The PE's, however, need to be a (slightly)
custom design since we require the fetch-and-add operation.
Moreover, to utilize fully the high bandwidth connection
network, a PE must continue execution of the instruction
stream immediately after issuing a request to fetch a value
from central memory. The target register would be marked
"locked" until the requested value is returned from memory;
an attempt to use a locked register would suspend execution.

Note that this policy is currently supported on large scale
computers and is becoming available on one chip processors
[30]. Software designed for such processors would attempt
to prefetch data sufficiently early to permit uninterrupted
execution and a cache designed for such processors would not
lock up despite outstanding cache misses (see [23] for one such
design).

If the latency remains an impediment to performance, we
would hardware-multiprogram the PE's as in the CHOPP
design [42] and the Denelcor HEP machine [4]. Note that
k-fold multiprogramming is equivalent to using k times as
many PE's-each having relative performance 1/k. Since, to
attain a given efficiency, such a configuration requires prob-
lems of larger size, we view multiprogramming as a last re-
sort.

Although we have not given sufficient attention to I/O, we
note that I/O processors can be substituted for arbitrary PE's
in the system. More generally, since the design does not require
homogeneous PE's, a variety of special purpose processors
(e.g., FFT chips, matrix multipliers, voice generators, etc.) can
be attached to the network.

F. Machine Packaging

We conservatively estimate that a machine built in 1990
would require four chips for each PE-PNI pair, nine chips for
each MM-MNI pair (assuming a 1 Mbyte MM built out
of 1 Mbit chips), and two chips for each 4-input-4-output
switch (which replaces four of the 2 X 2 switches described
above). Thus, a 4096 processor machine would require roughly
65 000 chips, not counting the I/O interfaces. Note that the
chip count is still dominated, as in present day machines, by
the memory chips, and that only 19 percent of the chips are
used for the network. Nevertheless, most of the machine vol-
ume will be occupied by the network, and its assembly will be
the dominant system cost due to the nonlocal wiring re-
quired.

It is possible to partition an N input, N output Omega net-
work built from 2 X 2 switches into /IN "input modules" and
v/IN("output modules." An input module consists of v/
network inputs and the VaN (lg N)/4 switches that can be
accessed from these inputs in the first (lg N)/2 stages of the
network.9 An output module consists of +'N network outputs
and the V'NK (lg N)/4 switches that can be accessed from these
outputs in the last half of the network. Moreover, as noted by
Wise [45], it is possible to arrange the switches of each module
so that, between any two successive stages, all lines have the
same length (Fig. 5). Finally, if the input boards are stacked
vertically on one rack, the output boards are stacked vertically
on another rack, and the two racks are stacked one atop an-
other, such that the boards on one rack are orthogonal to the
boards on the other rack, then all off board lines will run nearly
vertically between the two sets of boards as illustrated in Fig.
6. The same strategy can be used for networks built of k X k
switches. (Figs. 5 and 6 are reprinted with permission from
[45].)
We propose using this layout for a 4K processor machine

9 We use ig for the base 2 logarithm.

182

GOTTLIEB et al.: NYU ULTRACOMPUTER

Fig. 5. Layout of network on boards.
Fig. 6. Packaging of network boards.

constructed from the chips described at the beginning of this
section. This machine would include two types of boards: "PE
boards" that contain the PE's, the PNI's, and the first half of
the network stages and "MM boards" that contain the MM's,
the MNI's, and the last half of the network stages. Using the
chip counts given above, a 4K PE machine built from two chip
4 X 4 switches would need 64 PE boards and 64 MM boards,
with each PE board containing 352 chips and each MM board
containing 672 chips. Since the PE chips will be near the free
edge of the PE board and the MM chips will be near the free
edge of theMM board, I/O interfaces can be connected along
these edges. Bianchini and Bianchini [1] have considered
machines built from single chip 2 X 2 switches. Their analysis
shows that an air cooled 4096 PE ultracomputer can easily be
packaged into a 5 X 5 X 10 ft enclosure.

IV. COMMUNICATION NETWORK PERFORMANCE

Since the overall ultracomputer performance is critically
dependent on the communication network and this network
is likely to be the most expensive component of the completed
machine, it is essential to evaluate the network performance
carefully so as to choose a favorable configuration.

A. Performance Analysis

Although each switch in the network requires a significant
amount of logic, it appears feasible to implement a 2 X 2 switch
on one chip using today's technology. Further, we believe it will
be feasible in 1990 technology to implement 4 X 4 or even 8
X 8 switches on one chip. It seems, however, that the main
restriction on the switch performance will be the rate at which
information can be fed into and carried from the chip, rather
than the rate at which that-information can be processed within
the chip. The basic hardware constraint will therefore be the

number of bits that can be carried on or off the chip in one unit
of time (one cycle).

Suppose that 400 bits can be transferred on or off the chip
in one cycle (which we estimate, for 1990 technology, to be on
the order of 25 ns). If each message transmitted through the
network consists of approximately 100 bits (64 bits of data),
then a 2 X 2 switch needs two cycles for the transfer of the 800
bits involved in the relaying of two messages in each direction.
It is, however, possible to pipeline the transmission of each
message, so that the delay at each switch is only one cycle if
the queues are empty.
The chip bandwidth constraint does not determine a unique

design for the network. It is possible to replace 2 X 2 switches
by k X k switches, time multiplexing each line by a factor of
k/2. It is also possible to use several copies of the same net-
work, thereby reducing the effective load on each one of them
and enhancing network reliability. We present performance
analyses of various networks in order to indicate the-tradeoffs
involved.
A particular configuration is characterized by the values

of the following three parameters.
i) k-the size of the switch. Recall that a k X k switch re-

quires 4k lines.
ii) m-the time multiplexing factor, i.e., the number of

switch cycles required to input a message. (To simplify the
analysis we assume that all the messages have the same
length.)

iii) d-the number of copies of the network that are
used.
The chip bandwidth limits the k/m ratio, which we may

thus take to be independent of the network configuration. Note
that for any k a network with n inputs and n outputs can be
built from (n lg n)/(k lg k) k X k switches and a proportional

183

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 2, FEBRUARY 1983

number of wires. Since our network contains a large number
of identical switches, the network's cost is essentially propor-

tional to the number of switches and independent of their
complexity. Thus the cost of a configuration is d(n Ig n)/(k
lg k) (we are neglecting the small cost of interfacing the d
copies of the network).

In order to obtain a tractible mathematical model of the
network we have made the following simplifying assump-

tions.
1) Requests are not combined.
2) Requests have the same length.
3) Queues are of infinite size.
4) Requests are generated at each PE by independent,

identically distributed, time-invariant random processes.

5) MM's are equally likely to be referenced.
Let p be the average number of messages entered into the

network by each PE per network cycle. If the queues at each
switch are large enough ("infinite queues") then the average

switch delay is approximately

1 + m2p(l 1/k)

2(1 -mp)
cycles (see [26]; similar results can be found in [16] and [6]).
The average network traversal time (in one direction) T equals
the number of stages times the switch delay plus the setting
time for the pipe, i.e.,

T lg -+ mr2p(l -1l/k) 1
lgk 2(1-mp) J

Let us note the following facts.
1) The network has a capacity of 1/rm messages per cycle

per PE. That is each PE cannot enter messages at a rate higher
than one per m cycles, and conversely the network can ac-

commodate any traffic below this threshold. Thus, the global
bandwidth of the network is indeed proportional to the number
of PE's connected to it.

2) The initial 1 in the expression for the switch delay cor-

responds to the time required for a message to be transmitted
through a switch without being queued (the switch service
time). The second term corresponds to the average queueing
delay. This term decreases to zero when the traffic intensity
p decreases to zero and increases to infinity when traffic in-
tensityp increases to the 1/m threshold. The surprising feature
of this formula is the m2 factor, which is explained by noting
that the queueing delay for a switch with a multiplexing factor
of m is roughly the same as the queueing delay for a switch
with a multiplexing factor of one, a cycle m times longer, and
m times as much traffic per cycle.
We now use these formulas to compare the performance of

different configurations. Let us assume that using k X k
switches the time multiplexing factor m equals k. Using d
copies of the network reduces the effective load on each copy

by a factor of d. Thus the average transit time for a network
consisting of d Omega-networks composed of k X k switches
is

T lgn 1+kk(k-l)p+k 1
lg k 2(d-kp)n

cycles, wherep is, as before, the average number of messages
sent to the network by each PE per cycle. As expected, delays
decrease when d increases. The dependency on k is more
subtle. Increasing k decreases the number of stages in the
network, but increases the pipelining factor, and therefore
increases the queueing delays and the pipe setting delay.
We have plotted in Fig. 7 the graphs of T as a function of

the traffic intensity, p, for different values of k and d. We see
that for reasonable traffic intensities a duplicated network
composed of 4 X 4 switches yields the best performance (but
see the next paragraph for a preliminary evaluation for net-
works consisting of two-chip switches). A network with 8 X
8 switches and d = 6 also yields an acceptable performance,
at approximately the same cost as the previous network. Since
the bandwidth of the first network is d/k = 0.5 and the
bandwidth of the second is 0.75, we see that for a given traffic
level the second network is less heavily loaded and thus should
provide better performance for traffic with high variance. Of
course a final determination of an optimal configuration re-
quires more accurate assessments of the technological con-
straints and the traffic distribution. The pipelining delays in-
curred for large multiplexing factors, the complexity of large
switches, and the heretofore ignored cost and performance
penalty incurred with interfacing many network copies, will
probably make the use of switches larger than 8 X 8 imprac-
tical for a 4K PE parallel machine.
The previous discussion assumed a one chip implementation

of each switch. By using the two chip implementation described
at the end of Section III-C, one can nearly double the band-
width of each switch while doubling the chip count. As delays
are highly sensitive to the multiplexing factor m, this imple-
mentation would yield a better performance than that obtained
by taking two copies of a network built of one chip switches.
(It would also have the extra advantage of decreasing the gate
count on each chip.) Thus, the ultimate choice may well be one
network-built of 4 X 4 switches, each switch consisting of two
chips.
We now return to the five assumptions listed above. The first

two assumptions, that all messages are of equal (maximal)
length and traverse the entire network, are clearly conservative.
In practice, messages that do not carry data (load requests and
store acknowledgements) would be shorter, and merged
messages do not each traverse the entire network.

Simulations have shown that queues of modest size (<8)
give essentially the same performance as infinite queues.

Although the requests generated by PE's cooperating on a
single problem are not independent, the presence of a large
number of PE's and a number of different problems will tend
to smooth the data. On the other hand, even in a large system
the pattern of requests by a single PE will be time dependent
and further analytic and simulation studies are needed to de-
termine the effect of this deviation from our assumed
model.

Finally, by applying a hashing function when translating
from virtual to physical addresses, the system can ensure that
each MM is equally likely to be referenced.

184

GOTTLIEB el al.: NYU ULTRACOMPUTER

k:4,d:1

kt48d&2

1 1 I I 1 1

-0.05 0.10 0.15 0.20 0.25 0.30 0.35
p = messages per PE per network cycle

Fig. 7. Transit times for different configurations.

B. Network Simulations
Our discussion of the possible configurations for the com-

munication network still lacks two essential ingredients: an

assessment of the traffic intensity we expect to encounter in
practical applications, and an assessment of the impact of the
network delay on the overall performance.
We routinely run parallel scientific programs under a

paracomputer simulator (see [9]) to measure the speedup
obtained by parallelism and to judge the difficulty involved in
creating parallel programs (see Section V). A recent modifi-

cation allows us to simulate an approximation to the proposed
network design rather than an ideal paracomputer: Since an

accurate simulation would be very expensive, we used ins.tead
a multistage queueing system model with stochastic service
time at each stage (see [39]), parameterized to correspond to
a network with six stages of 4 X 4 switches, connecting 4096
PE's to 4096 MM's. A message was modeled as one packet if
it did not contain data and as three packets otherwise. Each
queue was limited to fifteen packets and both the PE instruc-
tion time and theMM access time were assumed to equal twice

E

.4J

C-
4J

C-I
L

L

a

4c
c

185

IEEE TRANSACTIONS ON COMPUTERS, VOL. c-32, NO. 2, FEBRUARY 1983

TABLE I
NETWORK TRAFFIC AND PERFORMANCE

avg. CM idle memory shared
access idle cycles per ref. per ref. per
time cycles CM load instr. instr.

1 8.94 37 percent 5.3 0.21 0.08
2 8.83 39 percent 4.5 0.19 0.08
3 8.81 22 percent 4.9 0.25 0.05
4 8.85 19 percent 3.5 0.24 0.06

the network cycle time. Thus the minimum central memory
access time, which consists of the MM access time plus twice
the minimum network transit time, equals eight times the PE
instruction time.
We have monitored the amount of network traffic generated

by several scientific programs under the pessimistic assumption
that no shared data is cached and the optimistic assumption
that all references to program text and private data are satis-
fied by the cache. The programs studied were as follows.

i) A parallel version of part of a NASA weather program
(solving a two dimensional PDE), with 16 PE's.

ii) The same program, with 48 PE's.
iii) The TRED2 program described in Section V, with 16

PE's.
iv) A multigrid Poisson PDE solver, with 16 PE's.
Table I summarizes simulations of these four programs. The

time unit is the PE instruction time. In these simulations the
number of requests to central memory (CM) are comfortably
below the maximal number that the network can support and
indeed the average access time is close to the minimum. (Since
each PE was a CDC 6600-type CPU, most instructions in-
volved register-to-register transfers.) Specifically, only one

instruction every five cycles for the first two programs (and
one every four for the last two) generated a data memory
reference. 10 Moreover only one data memory reference out of
2.6 in the first two programs, and one reference out of five for
the last two programs were for shared data. We note that the
last two programs were designed to minimize the number of
accesses to shared data. As a result the number of idle cycles
was significantly higher for the first two programs. Since the
code generated by the CDC compiler often prefetched oper-
ands from memory, the average number of idle cycles per load
from central memory was significantly lower than the central
memory access time.
We conclude that were these studies repeated on actual

hardware the traffic intensity would be low (p <.04), and
prefetching would mitigate the problem of large memory la-
tency. The first conclusion, however, must be strongly quali-
fied. The simulator we used is much less sensitive to fluctua-
tions in the network traffic than an actual network would be.
Moreover, we have ignored both cache generated traffic and
the effect of operating system programs.

V. SIMULATIONS AND SCIENTIFIC PROGRAMMING

As indicated above we use an instruction level paracomputer
simulator to study parallel variants of scientific programs.

10 Since for the first two programs, the PE's were idle (waiting for a memory
reference to be satisfied) approximately 40 of the time, five cycles corresponds
to approximately three instructions.

Applications already studied include radiation transport, in-
compressible fluid flow within an elastic boundary, atmo-
spheric modeling, and Monte Carlo simulation of fluid
structure. Current efforts include both extending the simulator
to model the connection network more faithfully and running
programs under a parallel operating system scheduler.
The goals of our paracomputer simulation studies are, first,

to develop methodologies for writing and debugging parallel
programs and second, to predict the efficiency that future large
scale parallel systems can attain. As an example of the ap-
proach taken, and of the results thus far obtained, we report
on experiments with a parallelized variant of the program
TRED2 (taken from Argonne's EISPACK library), which
uses Householder's method to reduce a real symmetric matrix
to tridiagonal form (see [22] for details).
An analysis of the parallel variant of this program shows-

that the time required to reduce an N X N matrix using P
processors is well approximated by

T(P, N) = aN + dN3/P + W(P, N)

where the first term represents "overhead" instructions that
must be executed by all PE's (e.g., loop initializations), the
second term represents work that is divided among the PE's,
and W(P, N), the waiting time, is of order max(N,'\-). We
determined the constants experimentally by simulating
TRED2 for several (P, N) pairs and measuring both the total
time T and the waiting time W. (Subsequent runs with other
(P, N) pairs have always yielded results within one percent of
the predicted value.) Table II summarizes our experimental
results and supplies predictions for problems and machines too
large to simulate (these values appear with an asterisk). In
examining this table, recall that the efficiency of a parallel
computation is defined as

E(P, N) = T(1, N)/(P * T(P, N)).

Although we consider these measured efficiencies encour-
aging, we note that system performance can probably be im-
proved even more by sharing PE's among multiple tasks.
(Currently the simulated PE's perform no useful work while
waiting.) If we make the optimistic assumption that all the
waiting time can be recovered, the efficiencies rise to the values
given in Table III.

VI. CONCLUSION

Until now the goal of building high performance machines
has been achieved at the price of increasingly complex hard-
ware structures, and ever more exotic technology. It is our
belief that the NYU Ultracomputer approach offers a simpler
alternative, which is better suited to advanced VLSI technol-
ogy: high performance is obtained by assembling large quan-
tities of identical computing components in a particularly ef-
fective manner. The 4096 PE Ultracomputer that we envision
has roughly the same component count as found in today's
large machines. The number of different component types,
however, is much smaller, each component being a sophisti-
cated one chip VLSI system. Such machines would be three
orders of magnitude faster and would have a main storage

186

GOTTLIEB et al.: NYU ULTRACOMPUTER

TABLE II
MEASURED AND PROJECTED EFFICIENCIES

Reduction of Matrices to Tridiagonal Form
PE 16 64 256 1024 4096

N

16 62 percent 26 percent 7 percent 1 percent* 0 percent*
32 87 percent 60 percent 25 percent 6 percent* I percent*
64 96 percent 86 percent 59 percent 27 percent* 7 percent*
128 99 percent* 96 percent* 86 percent* 59 percent* 24 percent*
256 100 percent* 99 percent* 96 percent* 86 percent* 58 percent*
512 100 percent* 100 percent* 99 percent* 96 percent* 85 percent*

-1024 100 percent* 100 percent* 100 percent* 99 percent* 96 percent*

TABLE III
PROJECTED EFFICIENCIES

- \ ~~~~~~~~~~Reductionof Matrices to Tridiagonal Form
\E 16 64 256 1024 4096

N \(without waiting time)
16 71 percent 37 percent 12 percent 3 percent 0 percent
32 90 percent 69 percent 35 percent 12 percent 3 percent
64 97 percent 90 percent 68 percent 35 percent 12 percent
128 99 percent 97 percent 90 percent 68 percent 35 percent
256 100 percent 99 percent 97 percent 90 percent 68 percent
512 100 percent 100 percent 99 percent 97 percent 90 percent
1024 100 percent 100 percent 100 percent 99 percent 97 percent

three orders of magnitude larger than present day ma-
chines.
-Our simulations indicate that the NYU Ultracomputer

would be an extremely powerful computing engine for large
numerical applications. The low coordination overhead and
the large memory enable us to use efficiently the high degree
of parallelism available. The usefulness of these machines is
not restricted to numerical computations: they are true gen-
eral-purpose computers. Finally, our limited programming
experience, on an instruction level simulator, indicates that the
manual translation of serial codes into parallel Ultracomputer
codes is a relatively straightforward task.
To demonstrate further the feasibility of the hardware and

software design we intend to construct a 64 PE prototype,
which will use commercial microprocessors and memories
together with custom-built VLSI components for the net-
work.

APPENDIX

Management ofHighly Parallel Queues

Since queues are a central data structure for many algo-
rithms, a concurrent queue access method can be an important
tool for constructing parallel programs. In analyzing one of
their parallel shortest path algorithms, Deo et al. [5] dramatize
the need for this tool.

However, regardless of the number of processors used,
we expect that algorithm PPDM has a constant upper
bound on its speedup, because every processor demands
private use of the Q.
Refuting this pessimistic conclusion, we show in this ap-

pendix that, although at first glance the important problem
of queue management may appear to require use of at least a

few inherently serial operations, a queue can be shared among
processors without using any code that could create serial
bottlenecks. The procedures to be shown maintain the basic
first-in first-out property of a queue, whose proper formulation
in the assumed environment of large numbers of simultaneous
insertions and deletions is as follows: if insertion of a data item
p is completed before insertion of another data item q is
started, then it must not be possible for a deletion yielding q
to complete before a deletion yielding p has started.

In the algorithm below we represent a queue of length Size
by a public circular array Q[0: Size-I] with public variables
I and D pointing to the locations of the next items to be inserted
and deleted (these correspond to the rear and front of the queue
respectively). Initially I = D = 0 (corresponding to an empty
queue).
We maintain two additional counters, #Ql and #Qu,

which hold lower and upper bounds respectively for the number
of items in the queue, and which never differ by more than the
number of active insertions and deletions. Initially #Ql =
#Qu = 0, indicating no activity and an empty queue. The
parameters QueueOverflow and QueueUnderflow appearing
in the program shown below are flags denoting the exceptional
conditions that occur when a processor attempts to insert into
a full queue or delete from an empty queue. (Since a queue is
considered full when #Qu > Size and since deletions do not
decrement #Qu until after they have removed their data, a
full queue may actually have cells that could be used by an-
other insertion.) The actions appropriate for the Queue
Overflow and QueueUnderflow conditions are application
dependent: One possibility is simply to retry an offending insert
or delete; another possibility is to proceed to some other
task.

Critical section-free Insert and Delete programs are given
below. The insert operation proceeds as follows: First a test-

1,87

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-32, NO. 2, FEBRUARY 1983

increment-retest (TIR) sequence is used to guarantee the ex-
istence of space for the insertion, and to increment the upper
bound # Qu. If the TIR fails, a QueueOverflow occurs. If it
succeeds, the expression Mod(Fetch&Add(I, 1), Size) gives
the appropriate location for the insertion, and the insert pro-
cedure waits its turn to overwrite this cell (see [13]). Finally,
the lower bound # Ql is incremented. The delete operation is
performed in a symmetrical fashion; the deletion of data can
be viewed as the insertion of vacant space.

Procedure Insert (Data, Q, QueueOverflow)
If TIR (#Qu, 1, Size) Then I

Myl - Mod(Fetch&Add(I, 1), Size)
Wait turn at MyI
Q[MyI] - Data
Fetch&Add(#Ql, 1)
QueueOverflow<- False I

Else QueueOverflow - True
End Procedure
Procedure Delete (Data, Q, QueueUnderflow)

If TDR (# Ql, 1) Then I
MyD - Mod(Fetch&Add(D, 1), Size)
Wait turn at MyD
Data * Q[MyD]
Fetch&Add(#Qu, -1)
QueueUnderflow 4- False I

Else QueueUnderflow 4 True
End Procedure

Boolean Procedure TIR (S, Delta, Bound)
IfS + Delta < Bound Then

If Fetch&Add(S, Delta) < Bound Then
TIR -true

Else Fetch&Add(S, -Delta)
TIR - false

Else TIR -- False

End Procedure
Boolean Procedure TDR (S, Delta)

IfS - Delta> 0 Then
If Fetch&Add(S, -Delta)> 0 Then

TDR - True
Else I Fetch&Add(S, Delta)

TDR - false
Else TDR - False

End Procedure
Although the initial test in both TIR and TDR may appear

to be redundant, a closer inspection shows that their removal
permits unacceptable race conditions. This point is also ex-
panded in Gottlieb et al. [13] where other fetch-and-add based
software primitives are presented as well.

It is important to note that when a queue is neither full nor
empty our program allows many insertions and many deletions
to proceed completely in parallel with no serial code executed.
This should be contrasted with current parallel queue algo-
rithms, which use small critical sections to update the insert

REFERENCES

[1] R. Bianchini and R. Bianchini, Jr., "Wireability of the NYU Ul-
tracomputer," Courant Institute, NYU, NY, Ultracomputer Note 43,
1982.

[2] A. Borodin and J. E. Hopcroft, "Routing, merging, and sorting on
parallel models of computation," in Proc. 14th Annu. Ass. Comput.
Mach. Symp. Theory Computing, 1982, pp. 338-344.

[3] Burroughs Corp., "Numerical aerodynamic simulation facility feasibility
study," NAS2-9897, Mar. 1979.

[4] Denelcor Corp., "Heterogeneous element processor principles of oper-
ation," Denver, CO, Pub. 9 000 001, 1981.

[5] N. Deo, C. Y. Pang, and R. E. Lord, "Two parallel algorithms for
shortest path problems," in Int. Conf. Parallel Processing, 1980, pp.
244-253.

[6] D. Dias and J. R. Jump, "Analysis and simulation of buffered delta
networks," IEEE Trans. Comput., vol. C-30, pp. 273-282, 1981.

[7] L. R. Goke and G. J. Lipovsky, "Banyan networks for partitioning
multiprocessor systems," in Proc. Ist Annu. Symp. Comput. Arch.,
1973, pp. 21-28.

[8] A. Gottlieb, "PLUS-A PL/I based Ultracomputer simulator I,"
Courant Institute, NYU, NY, Ultracomputer Note 10, 1980.

[9] "WASHCLOTH-The logical successor to soapsuds," Courant
Institute, NYU, NY, Ultracomputer Note 12, 1980.

[10] ,"PLUS-A PL/I based Ultracomputer simulator II," Courant
Institute, NYU, NY, Ultracomputer Note 14, 1980.

[11] A. Gottlieb and C. P. Kruskal, "MULT-A multitasking Ultracomputer
language with timing, I & II," Courant Institute, NYU, NY, Ul-
tracomputer Note 15, 1980.

[12] "Coordinating parallel processors: A partial unification,"
Comput. Arch. News, pp. 16-24, Oct. 1981.

[131 A. Gottlieb, B. Lubachevsky, and L. Rudolph, "Basic techniques for
the efficient coordination of very large numbers of cooperating sequential
processors," ACM TOPLAS, Jan. 1983.

[14] A. Gottlieb and J. T. Schwartz, "Networks and algorithms for very large
scale parallel computations," Computer, vol. 15, pp. 27-36, Jan.
1982.

[15] L. J. Guibas and F. M. Liang, "Systolic stacks, queues, and counters,"
in Proc. Conf. Advanced Research VLSI, Jan. 1982.

[16] R. G. Jacobsen and D. P. Misunas, "Analysis of structures for packet
communications," in Proc. Int. Conf. Parallel Processing, 1977.

[17] S. D. Johnson, "Connection networks for output-driven list multipro-
cessing," Dept. Comput. Sci., Indiana Univ., Indiana, PA, Tech. Rep.
114, 1981.

[18] M. Kalos, "Scientific calculations on the Ultracomputer," Courant
Institute, NYU, NY, Ultracomputer Note 30, 1981.

[19] M. Kalos, G. Leshem, and B. D. Lubachevsky, "Molecular simulations
of equilibrium properties," Courant Institute, NYU, NY, Ultracom-
puter Note 27, 1981.

[20] K. R. Kaplan and R. V. Winder, "Cache-based computer systems,"
Computer, vol. 6, pp. 30-36, 1973.

[21] D. Klappholz, private communication, 1981.
[22] D. Korn, "Timing analysis for scientific codes run under WASHCLOTH

simulation," Courant Institute, NYU, NY, Ultracomputer Note 24,
1981.

[23] D. Kroft, "Lockup-free instruction fetch/prefetch cache organization,"
in Proc. 8th Annu. Symp. Comput. Arch., 1981, pp. 81-88.

[24] C. P. Kruskal, "Upper and lower bounds on the performance of parallel
algorithms," Ph.D. dissertation, Courant Institute, NYU, NY, 1981.

[25] ,"Replace-add based paracomputer algorithms," in Proc.Int.
Conf Parallel Processing, 1982.

[26] C. P. Kruskal and M. Snir, "Some results on multistage interconnection
networks for multiprocessors," Courant Institute, NYU, NY, Ul-
tracomputer Note 41, 1982;also in Proc. Princeton Conf Inform. Sci.
Syst., 1982.

[27] H. T. Kung, "The structure of parallel algorithms," in Advances in
Computers, vol. 19, M. C. Yovits Ed. New York: Academic, 1980,
65-112.

[28] L. Lamport, "How to make a multiprocessor computer that correctly
executes multiprocess programs," IEEE Trans. Comput., vol. C-28,
pp. 690-69 1, 1979.

[29] D. Lawrie, "Access and alignment of data in an array processor," IEEE
Trans. Comput., vol. C-24, pp. 1145-1155, 1975.

[30] G. Radin, "The 801 minicomputer," in Symp. Architectural Support
and delete pointers.PrgamnLagaeanOprtnSytm,18,p.347

188

Programming Languages and Operating Systems, 1982, pp. 39-47.

GOTTLIEB et al.: NYU ULTRACOMPUTER

[311 D. P. Reed and R. K. Kanodia, "Synchronization with eventcounts and
sequencers," Commun. Ass. Comput. Mach., vol. 22, pp. 115-123,
1979.

[32] G. Rodrigue, E. D. Giroux, and M. Pratt, "Perspectives on large-scale
scientific computing," Computer, vol. 13, pp. 65-80, Oct. 1980.

[33] L. S. Rudolph, "Software structures for ultraparallel computing," Ph.D.
dissertation, Courant Institute, NYU, NY, 1981.

[34] N. Rushfield, "Atmospheric computations on highly parallel MIMD
computers," Courant Institute, NYU, NY, Ultracomputer Note 22,
1981.

[35] J. T. Schwartz, "Preliminary thoughts on Ultracomputer programming
style," Courant Institute, NYU, NY, Ultracomputer Note 3, 1979.

[36] J. T. Schwartz, "Ultracomputers," ACM TOPLAS, pp. 484-521,
1980.

[37] H. J. Siegel and R. J. McMillen, "Using the augmented data manipu-
lator in PASM," Computer, vol. 14, pp. 25-34, 1981.

[38] B. J. Smith, "A pipelined shared resource MIMD computer," in Proc.
Int. Conf. Parallel Processing, 1978, pp. 6-8.

[39] M. Snir, "NETSIM-Network Simulator for the Ultracomputer,"
Courant Institute, NYU, NY, Ultracomputer Note 28, 1981.

[40] M. Snir and J. Solworth, "The ultraswitch-A VLSI network node for
parallel processing," Courant Institute, NYU, NY, Ultracomputer Note
39, 1982.

[41] H. S. Stone, "Parallel computers," in Introduction to Computer Ar-
chitecture, H. S. Stone, Ed. Chicago, IL: SRA, 1980, pp. 318-347.

[42] H. Sullivan, T. Bashkow, and D. Klappholz, "A large scale homoge-
neous, fully distributed parallel machine," in Proc. 4th Annu. Symp.
Comput. Arch., 1977, pp. 105-124.

[43] R. J. Swan, S. H. Fuller, and D. P. Siewiorek, "Cm*-A modular,
multi-microprocessor," in Proc. AFIPS ConfJ, vol. 46, 1977, pp.
637-644.

[44] D. S. Wise, "Compact layout of Banyan/FFT networks," in Proc. CMU
Conf VLSI Systems and Computations, Kung, Sproull, and Steele, Eds.
Rockville, MD: Computer Science Press, 1981, pp. 186-195.

[451 G. H. Gonnet, "Expected length of the longest probe sequence in hash
code searching," J. Ass. Comput. Mach., pp. 289-304, Apr. 1981.

Allan Gottlieb was born in New York, NY, on Au-
gust 2, 1945. He received the B.S. degree from
Massachusetts Institute of Technology, Cam-
bridge, MA, in 1967, and the M.A. and Ph.D. de-

grees in mathematics from Brandeis University,
Waltham, MA, in 1968 and 1973, respectively.

During 1971-1972 he was an Acting Instructor

at the University of California, Santa Cruz, and
during 1972-1973 he was an Instructor at the
State College of Massachusetts, North Adams.
From 1973-1979 he was with York College, City

University of New York, first as an Assistant Professor and then as an Asso-
ciate Professor. Since 1979 he has been working on the NYU Ultracomputer
project at the Courant Institute, NYU, where he is now a Research Associate
Professor. His academic interests include parallel processors and parallel al-
gorithms, algorithmic analysis, operating systems, differential topology, and
computer chess.

Dr. Gottlieb is a member of the Association for Computing Machinery, the
American Mathematical Society, the New York Academy of Sciences, and
the Society of Sigma Xi, and is an affiliate member of the IEEE Computer
Society.

Ralph Grishman was born in New York, NY, on
January 6, 1948. He received the A.B. and Ph.D.
degrees in physics from Columbia University,
New York, in 1968 and 1973, respectively.

Since 1973 he has been on the faculty at New
York University, NY, where he is currently an As-
sociate Professor in the Department of Computer
Science. His main research area is computational
linguistics, but he also has a long-standing interest
in computer system design and construction. Be-
fore becoming involved with the Ultracomputer

group, he designed a medium-scale scientific computer which is now in pro-
duction use at New York University.

Dr. Grishman is a member of the Association for Computational Linguistics
and the Association for Computing Machinery.

Clyde P. Kruskal was born on May 25, 1954. He
received the A.B. degree in mathematics and com-
puter science from Brandeis University, Waltham,
MA, in 1976, and the M.S. and Ph.D. degrees in
computer sciences from New York University in
1978 and 1981, respectively.

Currently, he is a Visiting Research Assistant
Professor in the Department of Computer Science,
University of Illinois, Urbana. His research inter-
ests include the analysis of sequential and parallel
algorithms, and the design of parallel computers.

Kevin P. McAuliffe was born in Newark, NJ on
March 16, 1956. He received the B.A. and M.S.
degrees in computer science from New York Uni-
versity, NY, in 1978 and 1980 respectively.
He is currently pursuing the Ph.D. degree in

computer science at New York University, where
he also lectures in the Department of Computer
Science. His current interests are computer archi-
tecture and operating systems.

Larry Rudolph received the B.S. degree from
Queens College, City University of New York,
NY, in 1976 and the M.S. and Ph.D. degrees from
the Courant Institute, New York University, New
York, in 1978 and 1981, respectively.
He spent the 1981-82 academic year as a Post-

doctorial Fellow in the Department of Computer
Science, University of Toronto, Ont., Canada.
Currently, he is a Research Associate at Carnegie-
Mellon University, Pittsburgh, PA. His research
interests include parallel/distributed computing,

robust parallel approximation schemes, and computational geometry.

Marc Snir was born in Paris, France, on October
10, 1948. He received the B.Sc. degree and the
Ph.D. degree in mathematics from the Hebrew
University of Jerusalem, Israel, in 1972 and 1979,
respectively.

In 1979 he was Research Fellow in the Depart-
ment of Computer Science, University of Edin-
burgh, Scotland. Since 1980 he has been an
Assistant Professor in the Department of Comput-
er Science, New York University, where he is ac-
tively involved in the Ultracomputer project. His

research interests include parallel processing, interconnection networks,
complexity of parallel algorithms, inductive logic, and VLSI design.

189

