Assembly Language

Hank Dietz

http://aggregate.org/hankd/

http://aggregate.org/hankd

Assembly Language?

* Compiling a HLL (e.g., C) program:
1. Compiler generates assembly code
2. Assembler creates binary modules
— Machine code, data, & symbolic info
— Libraries are modules too
3. Linker combines needed modules into one
4. Loader is the part of the OS that loads a
module into memory for execution
* Usually, HLL programmer's don't see this;
1-3 invoked by ec, 4 when you run the program

Assembly Language(s)?

* Not one language, but one per ISA
* "Human readable” textual representation
* Typically, one line becomes one instruction
* May also have macros
* Directives control assembly, specify data
* Used to be used for programming... now:
* Used mostly as compiler target
* People use it for debugging, performance
tweaking, or when no other option exists

Which Assembly Language?

* Which assembly language will we use?
« MIPS?
* |A32 or AMD64/Intel64/X86-647
e ARM?

 We'll start with a simple stack instruction set:
* Close to what most compilers do internally
* Can transform to whichever

* No, the

Worlds Inside Programs

Most programming languages are very similar,
procedural (as opposed to descriptive, etc.)
Code:

* Assignments & expressions

* Control flow

* Functions & subroutines

Data

Comments — which we'll ignore :~(

Worlds Inside Programs

Most programming languages are very similar,
procedural (as opposed to descriptive, etc.)
Code:

* Assignments & expressions -

* Control flow - easy, similar in most ISAs

* Functions & subroutines -

Data

Comments — which we'll ignore :-(

Control Flow

* Determines sequence/order of operations
(orders can be parallel)

 HLLs have many constructs:
* 1f-then-else, switch-case, etcC.
* while-do, repeat-until, for, etcC.
* goto, break, continue

* Most assembly languages just have goto
and conditional goto... so that's what we
must use to implement everything

Compilation / Translation

Compilation is really based on “compiling” a
bunch of code chunks that represent each part
of your program into the translated constructs
Compiler optimization isn't really “optimal” -
apply correctness-preserving transformations
Parallelizing is reordering operations; optimizing
by making various things happen in parallel

Translation Templates

* |t's about pattern matching & substitution

* Patterns contain terminals
* Also contain nested patterns (nonterminals)

e General form:

nonterminal: {list of terminals & nonterminals}

{output pattern}

if (expr) stat;

* expr and stat are names of other patterns
 Jump over stat if expr is false, create label

{code for expr}

Test

JumpF L

{code for stat}
L:

if (expr) statl else stat2;

* statl and stat2 are just stat
 Jump over stat2 if statlwas executed

{code for expr}
Test

JumpF L

{code for statl}
Jump M

{code for stat2}

-

if (expr) statl else stat2

* There are two jumps for the then clause...
why not reorder to make that the fast case?

{code for expr}
Test

JumpT L

{code for stat2}
Jump M

{code for statl}

-

while (expr) stat

* Loop body executes 0 or more times

L: {code for expr}
Test
JumpF M
{code for stat}
Jump L

do stat while (expr);

* Loop body executes 1 or more times
* Code is more efficient than for while loop

L: {code for stat}
{code for expr}
Test
JumpT L

while (expr) stat
* |Improve while by using do-like sequence
enclosed in an if

{code for expr}
Test
JumpF M

L: {code for stat}
{code for expr}
Test
JumpT L

while (expr) stat

* |Improve while by jumping into loop...
nothing wrong with unstructured code here

Jump M
L: {code for stat}
M: {code for expr}
Test
JumpT L

for (exprl;expr2;expr3) stat

* Really “syntactic sugar” for:

exprl; while (expr2) {stat; L:expr3;}

* Only difference is continue goes to L

DO label var=exprl,expr2,expr3

* Fortran DO loops imply lots of stuff, e.q.:
- |Is loop counting up or down?
- If var is a real, Fortran requires converting
the index into an integer to avoid roundoft
* Implying more information is just more syntactic
sugar — use a simpler source language pattern
to encode a more complex, but common, target

code sequence

switch (expr) stat

Not equivalent to a sequence of if statements;
this is C's version of a “computed goto”
The case labels inside stat are merely labels,

and so is default, which is why there's break

Depending on case values, compilers code as:
— Linear sequence of if-gotos

— Binary search of if-gotos

— Index a table of goto targets

— Combinations of the above...

Assignments & Expressions

This is where the computation happens
Assignment notation was a major advance;
Cobol's add ¢ to b giving a is a=b+c
Expressions (expr) compute a value
Assignments associate a value with a name:

name=expr

name=expr ?

Not really math; it binds a value to a name
Names (lval) are places that can hold values:
registers or main memory addresses
Expressions (rval, value) are computed results
Consider some examples:

a=5 associates value 5 with name a

5 1S not a name
a=b associates a copy of b's value with a

a=5
* Let's generate simple stack code for this...

Push a push &a on stack
Push 5 push the value 5
Store *(&a)=5, remove &a from stack

* but where's the ; at the end?

— C has an assignment operator
- ; simply means discard the value produced

5

we

a

Push a push &a on stack

Push 5 pushthe value 5

Store *(&a)=5, remove &a from stack
Pop discard remaining copy of 5

b=(a=53);
* b gets a copy of a's value

Push b push &b on stack

Push a push &a on stack

Push 5 pushthe value 5

Store *(&a)=5, remove &a from stack
Store *(&b)=5, remove &b from stack
Pop discard remaining copy of 5

b+c

What does b+c mean — what's added?

It adds rvals to produce an rval result.
What does b.c mean?

It adds lvals to produce an lval result:
&b + offset_of_field_c
What does b[c] mean?

It adds lval+rval to produce an lval result:
&(b[0]) + (c * sizeof(b[c]))
If you know which are lvals and rvals, it's easy...

a=(b+c);

Push a push &a on stack
Push b push &b on stack

Ind replace &b with *(&b)

Push ¢ push &c on stack

Ind replace &c with *(&c)

Add replace b, ¢ with b+c

Store a=b+c, remove &a from stack

Pop discard remaining copy of b+c

a=(b+c);

Push a push &a on stack
Push b push &b on stack

Ind replace &b with *(&b)

Push ¢ push &c on stack

Ind replace &c with *(&c)

Add replace b, ¢ with b+c

Store a=b+c, remove &a from stack

Pop discard remaining copy of b+c

i1f (b+c) stat;

Push b push &b on stack

Ind replace &b with *(&b)
Push ¢ push &c on stack
Ind replace &c with *(&c)
Add replace b, c with b+c
Test tests and pops
JumpF L

{code for stat}

1f (b<c) stat;

Push b push &b on stack

Ind replace &b with *(&b)
Push ¢ push &c on stack
Ind replace &c with *(&c)
Lt replace b, ¢ with b<c
Test tests and pops
JumpF L

{code for stat}

a=(b+(5*c));
Push a push &a on stack
Push b push &b on stack
Ind replace &b with *(&b)
Push 5 push 5 on stack
Push ¢ push &c on stack

Ind replace &c with *(&c)

Mul replace 5, ¢ with 5*c

Add replace b, 5*c with b+5*c
Store a=b+5*c, remove &a from stack

Pop discard copy of b+5*c

a=b[c];
Push a push &a on stack

Push push &b on stack
Push ¢ push &c on stack

U

Ind replace &c with *(&c)

Push 4 push sizeof(b[c]) on stack
Mul replace c, 4 with c*4

Add replace &b, c*4 with &b+c*4
Ind replace &(bl[c]) with b[c]
Store a=b|[c], remove &a from stack

Pop discard copy of b|c]

Different Models

Stack code - easy to generate, as you saw...
General Register code

— three operand (MIPS): regl =reg2 op reg3
— two operand (I1A32): regl = regl op reg3

- single accumulator: acc = acc op mem
Load/Store vs. memory operands;
can you do things like: regl = regl op mem

HLL-oriented Memory-to-Memory (IAPX432):
E.g.,ali]=b[j] *c[k] in one instruction

a=b[c];
Push a stack: &a

Push b stack: &a, &b
Push ¢ stack: &a, &b, &c
Ind stack: &a, &b, c
Push 4 stack: &a, &b, c, 4
Mul stack: &a, &b, c*4
Add stack: &a, &(b[c])
Ind stack: &a, b[c]
Store stack: b[c]

Pop stack:

a=b[c];
Push a rO=&a

Push b 10=&a, r1=&b

Push ¢ r0=&a, r1=&b, r2=&c
Ind r0=&a, r1=&b, r2=c
Push 4 r0=&a, r1=&b, r2=c, r3=4
Mul r0=&a, r1=&b, r2=c*4
Add r0=&a, r1=&(b[c])

Ind r0=&a, rl=b|c]

Store rO=b|[c]

Pop

a=b[c];

Push a r0=&a Li r0,a

Push b rl=&b Li rl,b

Push ¢ r2=4&c Li r2,c

Ind r2=C Lw r2,Q@r2
Push 4 r3=4 Li r3,4

Mul r2=c*4 Mul r2,r2,r3
Add r1=&(b[c]) Add rl1l,rl,r2
Ind r1=b|c] Lw rl,@rl
Store rO=b|c] Sw rl,@roO

Pop

Two Vs. Three Operands

* Uses fewer instruction bits...
MIPS three of 32 registers takes 3*5=15 bits;
IA32 two of 8 registers takes 2*3=6 bits

* From stack code, it doesn't cost anything

* With a smart compiler avoiding recomputation

(e.g., via common subexpression elimination),
might need to fake three operands:

Op rl,r2,r3 becomes Mov rl,r2
Op rl,r3

Two Vs. Three Operands

Li r0,a Li r0,a
Li rl,b Li rl,b
Li r2,c L1 r2,c
Lw r2,Q@r2 Lw r2,Q@r2
Li r3,4 Li r3,4
Mul r2,r2,r3 Mul r2,r3
Add rl,rl,r2 Add rl,r2
Lw rl,@Qrl Lw rl,@Qrl

Sw rl,@rO Sw rl,@rO

Load/Store Vs. Mem Operands

* Easier to build pipelined implementation if
load/store are the only memory accesses
(as in RISC architectures like MIPS)
 Memory used to be faster and processor
couldn't fit lots of registers...
- Memory operands mean fewer instructions
— Pairs well with two operand forms (IA32)
— Single acc must allow memory operands
(where else to get second operand?)

Load/Store Vs. Mem Operands

Load/Store

Li r0,a

Li rl,b

Lw rl,@Qrl

Li r2,c

Lw r2,Q@Qr2
Add rl,rl,r2

Sw rl,@r0

2 Operand Single Acc

Lw r0,@b Lw @b

Add rO0,(@c Add @Qc
Sw r0,Q@Qa Sw @Qa

How Many Registers Needed?

Li r0,a 1 register
Li rl,b 2 registers
Li r2,c 3 registers
Lw r2,Q@r2 3 registers
Li r3,4

Mul r2,r2,r3

Add rl,rl,r2 3registers
Lw rl,@rl 2 registers
Sw rl,@ro0 2 registers

Spill/Reload Fakes More

Li r0,a
Li rl,b
Li r2,c
Lw r2,Qr2
Li r3,4

Mul r2,r2,r3
Add rl,rl1l,r2
Lw rl,@Qrl
Sw rl,@rO

Li r0,a

Li rl,b

Li r2,c

Lw r2,Qr2

{ Spill t0=x0 }
Li r0,4

Mul r2,r2,r0
Add rl,rl,r2
Lw rl,@Qrl

{ Reload r0=to0 }
Sw rl,@roO

HLL Memory-to-Memory

* Advantages:
— Easier to write complex assembly code
(but we use compilers for that now and this
actually makes the compiler harder to write)
— Can enforce strict typing, software reliability
(but complicates hardware a lot)
— Allows glueless parallel processing by
keeping all program state in memory
(but memory access is s-lI-o-w)
* |APX432 did this... nothing since then

Parallel Machines

* There are two flavors of large-scale parallelism:
— MIMD: different program on each PE
(multi-core processors, clusters, etc.)
— SIMD: same instruction on PE's local data
(GPUs - graphics processing units)
* Each MIMD PE runs a sequential program...
nothing special in code generation
— If one PE executes some code, all must
— Can disable a PE that doesn't want to do it

SIMD Code

* There are two flavors of data
— Singular, Scalar: one value all PEs agree on
— Plural, Parallel: local to each PE
* Assignments and expressions work normally,
except when mixing singular and plural:
— Singular values can be copied to plurals
— Plural values have to be “reduced” to a single
value to treat as singular; for example, using
operators like any or all
* Control flow is complicated by enable masking...

if (expr) stat;

* Jump over stat if expr is false for all PEs;
otherwise, do for all the PEs where it's true

PushEn save PE enable state
{code for expr}

Test test on each PE...
DisableF turn myself off if false
Any any PE still enabled?
JumpF L stat if any PE wants it

{code for stat}
L: PopEn restore enable state

if (¢ < 5) a = b;

* Masking idea can be used in sequential code to
avoid using control flow: if conversion
* The above can be rewritten as:

a= ((c<5) ?2b : a);

* Bitwise AND with -1 can be used to enable,
while AND with O disables, thus simply OR:

t
a

-(c < 5);
((t & b) | ((~t) & a));

while (expr) stat;

* Keep doing stat while expr is true for any
PE; once off, PE stays off until while ends

PushEn
M: {code for expr}

Test
DisableF
Any
JumpF L
{code for stat}
Jump M
L: PopEn

save PE enable state

test on each PE...

turn myself off if false
any PE still enabled?

exit loop if no PE enabled

restore enable state

Functions & Subroutines

* Mixes expressions and control flow...
* Complex!
— Support of recursion
— Lots of stuff that has to happen
- ... but
specifies it (e.g., as part of the ABI)
* We'll focus on generically what must happen

Simple Subroutine Call/Return

* Jump, but first save return address on stack

sub () ; Push L
Jump sub
L:
sub () { sub:
return; Ret ;PC=pop

}

Simple Subroutine Call/Return

* Jump, but first save return address on stack
* Very common, and L is actually PC value when

executing, so often a special instruction:

Push L Call sub
Jump sub

Stack Frame

The return address isn't all we must pass...
Everything for a particular call is a stack frame:
— Return address

— Return value (for a function)

- Argument values

— Local variables

— Temporaries

— Optionally, a frame pointer (FP)

Call/return and stack use is specified in ABI

Function Call

* Reserve space for return value first...
* Then push args & remove them on return

£(5); Push a
Push 0 :retvalue
Push 5 ;push arg
Call £

Pop pop arg
Store
Pop

a

Function Call

f(int b) {

}

return(b+1l);

f

Push 16
ASP
Push 16
ASP

Ind
Push 1
Add
Store
Pop
Ret

Function Call

Push 16 ;stack offset of ret value, Push 0

ASP -add stack pointer
Push 16 ;stack offset of b
ASP

Ind ‘get rval of b

Push 1 add1

Add

Store ;store into ret value
Pop ‘remove extra copy

Ret

Frame Pointer

* Where did the stack offsets come from?

f: Push ‘stack offset of ret value, Push 0
Push ‘stack offset of b

* Frame pointer (FP) points at a fixed point in the
stack (saved FP), forming a linked list of frames

Function Call Using FP

* Mark pushes old FP, makes new FP point at it
* Release restores old FP, removes frame
a = f£(5); Push a
Push 0 :retvalue
Push 5 ;push arg
Mark
Call £
Release
Pop ,pOp arg
Store
Popn

Function Call Using FP

f(int b) {

}

return(b+1);

f:

Push 4 :always f
AFP

Push -4 :always b
AFP

Ind

Push 1

Add

Store

Pop

Ret

What Is Passed For Args?

Call by value: copy of rval

— used by most languages (C, Java, etc.)

— considered safest way to pass values

Call by address or reference: copy of lval

— used by: ForTran, C* reference, Pascal var

— efficiently avoids copying big data structures
Call by name or thunk: pointer to function

to compute lval as it would have thunk to earlier
— used by: Algol, some Lisp variants

Enough Generalization: MIPS!

We'll be using MIPS throughout this course
A simple, 32-bit, RISC architecture:

— 32 general registers, 3-register operands
— Strict load/store for memory access

— Every instruction is one 32-bit word

- Memory is byte addressed (4 bytes/word)
— Closely matched to the C langauge
Reference materials:

— Online at aggregate.org/EE380

— The textbook, MIPS cc -8, etc.

MIPS Registers ($ names)

Szero
Sat
Sv0-Svl
Sa0-Sa3
St0-St9
$s0-Ss7
Sk0-Skl
$gp

Ssp

Sfp
Sra

0

1

2-3
4-7
8-15,24-25
16-23
26-27
28

29

30

31

constant O

reserved for assembler
value results

arguments (not on stack)
temporaries

save before use

reserved for OS kernel
global (constant pool) pointer
stack pointer

frame pointer

return address (not on stack)

MIPS ALU Instructions

* Either 3 reg operands or 2 regs and immediate
16-bit value (sign extended to 32 bits):

add $rd,Srs,Srt ‘rd=rs+rt
addi S$rt,Srs,immed rt=rs+immed

* Suffix of i means immediate (u for unsigned)
* The usual operations: add, sub, and, or, xor
* Also has set-less-than, s1t: rd=(rs<rt)

MIPS Load Immediate

 (Can directly load a 16-bit immediate:
addi S$rt,$0,immed rt=0+immed

* For 32-bit, generally use 2 instructions to load
upper 16 bits then OR-in lower 16 bits:

lui $rt, immed rt=(immed<<16)
ori $rt,Srs,immed rt=rs|(immed&Oxffff)

e MIPS assembler macro does it as 1i or 1la:

li Sdest,const ‘dest=const

MIPS Load & Store

* Can access a memory location given by a
register plus a 16-bit Immediate offset:

lw $rt,off(Srs) ‘rt=memory[rs+off]
sw Srt,off($rs) ‘memory[rs+off]=rt

* Byte and halfword using b and h instead of w

MIPS Jumps

 MIPS has a jump instruction, j:
j address ‘PC=address

* Call uses jump-and-link to copy sra=PC as jal address
* Return is jump register using jr S$ra
 BUT address for jumps has limited range (26 bits);

can do full 32-bit target using jump register:

la $t0,address ‘t0=address
jr $t0 'PC=t0

MIPS Branches

* MIPS has only conditional branches:

beq $rs,$rt,place if rs==rt, PC=place
bne Srs,Srt,place if rsl=rt, PC=place

* The targetis encoded as a 16-bit “immediate” field value:
immediate = (place-(PC+4))>>2
* (Can branch over a jump to target distant addresses
 Truthin Cis “non-0,” so compare to $0 to check if false
* Comparisons for <, >, <=, >= all use s1t:
a>b is b<a, a<=b is (b<a)==0, and a>=b is (a<b)==0

MIPS Assembler Notation

* One assembly directive or instruction per line
* # means to end of line is a comment

* Labels look like they do in C, followed by a :
* Directives generally start with a .

.data #the following is static data
.text #the following is code

.globl name #name is what C calls extern
.word value #initialize a word to value

.ascii “abc” #initialize bytes to 97,98,99
.asciiz “abc” #initialize bytes to 97,98,99,0

Summary

There are many different assembly languages,
but there are many similarities

ISA specifies instructions (ABI for conventions)
MIPS is a very straightforward RISC made for C
You don't need to write lots of assembly code

- tweak code output by a compiler

— write little wrappers for what compiler can't do

