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Course Overview

• You know how to write a simple program...
from CS courses

• You know how to build simple combinatorial
and sequential logic circuits from ECE courses
(especially CPE282 or EE280/EE281)

• This course fills the gap between the two:
• So you can better specify & use that stuff
• So you can create the stuff in between
• There will be implementations in Verilog



Verilog 32-bit
Multiplier

module mul(ready, c, a, b, reset, clk);

parameter BITS = 32;
input [BITS-1:0] a, b;
input reset, clk;
output reg [BITS*2-1:0] c;
output reg ready;
reg [BITS-1:0] d;
reg [BITS-1:0] state;
reg [BITS:0] sum;

always @(posedge clk or posedge reset) begin
  if (reset) begin
    ready <= 0;
    state <= 1;
    d <= a;
    c <= {{BITS{1'b0}}, b};
  end else begin
    if (state) begin
      sum = c[BITS*2-1:BITS] + d;
      c <= (c[0] ? {sum, c[BITS-1:1]} :
            (c >> 1));
      state <= {state[BITS-2:0], 1'b0};
    end else begin
      ready <= 1;
    end
  end
end
endmodule



Textbook

• The text is:
Computer Organization & Design,
5th Edition: The Hardware/Software
Interface by Patterson & Hennessy

• You can use any MIPS edition from 2nd – 6th,
but we'll reference sections from the 5th 

• We will not assign problems from the text
• Lots of additional materials at the course URL

and presented in class… text is reference only



Grading & Such
• One individual Verilog project, ~10%
• Three team projects, ~10% each
• Four homework assignments, ~10% each
• In-person final exam, ~20%

(course grade limited to 1 letter above final)
• Material from lectures, the text as cited, canvas,

or from the course URL:
http://aggregate.org/CPE380/

• You are expected to regularly attend class
• I try not to curve much; always in your favor



Course Content
Lectures Topic
1 Introduction
3 Verilog (individual project)
3 Multi-cycle machine (team project)
3 Machine & assembly languages (homework)
2 Single-cycle machine (team project)
3 Integer & float arithmetic (homework)
4 Pipelined machine (team project)
4 Memory hierarchy and I/O (homework)
3 Parallel processing and performance (homework)
1 reserved for schedule slippage
1 A simple compiler
1 Review for final exam



Schedule Notes

• Projects are deliberately pushed as early as
possible to reduce time pressure

• Some topics may be given more or less time
depending on how students are doing

• I will be presenting research at IEEE/ACM SC
(Supercomputing) conference, so we will not
have regular class meetings 11/18 & 11/20



Me (and why I'm biased)

• Hank Dietz, ECE Professor and
James F. Hardymon Chair in Networking

• Office: 203 Marksbury
• Research in parallel compilers & architectures:

• Built 1st Linux PC cluster supercomputer
• Antlr, AFNs, SWAR, FNNs, MOG, ...
• Various awards & world records for best

price/performance in supercomputing
• Lab: 108/108A Marksbury – I have TOYS!





Let's Talk About Computers

• Embedded computers, IoT (Internet of Things)
• Personal Mobile Devices (PMDs)...

usually “smart phones” and tablets
• Personal Computers (PCs)
• Servers
• Supercomputers
• Clusters, Farms, Grids, and Clouds

(Warehouse Scale Computers – WSC,
 Software as a Service – SaaS)



https://www.grandviewresearch.com/industry-analysis/personal-consumer-electronics-market



What's Inside?





















Processor Terminology
• CPU – Central Processing Unit
• PE, Core – Processing Element
• Processor – CPU or chip containing PEs
• “Computer Family” – same ISA
• x86, IA32, x64/AMD64 – Intel 386-based ISAs
• MIPS, ARM, SPARC – other common ISAs
• DSP – Digital Signal Processor
• GPU – Graphics Processing Unit
• Tensor – Matrix support for neural networks
• Quantum – Combinatorial use of superposition



Complexity is Increasing!

• Lots of things you use every day have

BILLIONS of components!

• You don't live long enough to know it all



El Capitan supercomputer:
11,039,616 cores, 2.746 Exaflop/s
Cost approx. $600M, 29.6 MW power





Abstraction “Onion”



Software Layers
• Applications...
• Operating Systems (OS)...
• High-Level Languages (HLLs)

Aka, High Order Languages (HOLs)
• Designed for humans to write & read
• Modularity
• Abstract data types, type checking
• Assignment statements
• Control constructs
• I/O statements



Instruction Set Architecture

• ISA defines HW/SW interface
• Assembly Language

• Operations match hardware abilities
• Relatively simple & limited operations
• Mnemonic (human readable?)

• Machine Language
• Bit patterns – 0s and 1s
• Actually executed by the hardware





Hardware Layers

• Function-block organization
• Gates & Digital Logic (CPE282 stuff)
• Transistors

• Used as bi-level (saturated) devices
• Amplifiers, not just on/off switches

• Materials & Integrated Circuits
• Implementation of transistors, etc.
• Analog properties



Who Does What?

• Instruction Set Design, by Architect
• Machine & Assembly Languages
• “Computer Architecture”
• Instruction Set Architecture / Processor

• Computer Hardware Design, by Engineer
• Logic Design & Machine Implementation
• “Processor Architecture”
• “Computer Organization”



How To Use Layers

• Things are too complex to “know everything”
• Need to know only layers adjacent

• Makes design complexity reasonable
• Makes things reusable

• Can tunnel to lower layers
• For efficiency
• For special capabilities



8 Great Ideas

• Design for Moore's Law
• Abstraction
• Make the common case fast
• Pipelining
• Parallelism
• Prediction
• Hierarchy of memories
• Dependability via redundancy



SI Terminology Of Scale
1000^1 kilo k 1000^-1 milli m
1000^2 mega M 1000^-2 micro u
1000^3 giga G 1000^-3 nano n
1000^4 tera T 1000^-4 pico p
1000^5 peta P 1000^-5 femto f
1000^6 exa E

• 1000^x vs. 1024^x
• 1 Byte (B) is 8-10 bits (b), 4 bits in a Nybble
• Hertz (Hz) is frequency (vs. period)



Conclusion

• LOTS of stuff to know about...
focus of this course is the basic stuff around
the ISA and its implementation

• A lot of computer system design is about how
to build efficient systems despite incredibly high
and rapidly increasing system complexity

• Look at the history references on the WWW:
not to memorize who, what, when, & where,
but to see trends...
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