
Introduction

CPE380/CS380, Fall 2025

Hank Dietz

http://aggregate.org/hankd/

http://aggregate.org/hankd

Course Overview

• You know how to write a simple program...
from CS courses

• You know how to build simple combinatorial
and sequential logic circuits from ECE courses
(especially CPE282 or EE280/EE281)

• This course fills the gap between the two:
• So you can better specify & use that stuff
• So you can create the stuff in between
• There will be implementations in Verilog

Verilog 32-bit
Multiplier

module mul(ready, c, a, b, reset, clk);

parameter BITS = 32;
input [BITS-1:0] a, b;
input reset, clk;
output reg [BITS*2-1:0] c;
output reg ready;
reg [BITS-1:0] d;
reg [BITS-1:0] state;
reg [BITS:0] sum;

always @(posedge clk or posedge reset) begin
 if (reset) begin
 ready <= 0;
 state <= 1;
 d <= a;
 c <= {{BITS{1'b0}}, b};
 end else begin
 if (state) begin
 sum = c[BITS*2-1:BITS] + d;
 c <= (c[0] ? {sum, c[BITS-1:1]} :
 (c >> 1));
 state <= {state[BITS-2:0], 1'b0};
 end else begin
 ready <= 1;
 end
 end
end
endmodule

Textbook

• The text is:
Computer Organization & Design,
5th Edition: The Hardware/Software
Interface by Patterson & Hennessy

• You can use any MIPS edition from 2nd – 6th,
but we'll reference sections from the 5th

• We will not assign problems from the text
• Lots of additional materials at the course URL

and presented in class… text is reference only

Grading & Such
• One individual Verilog project, ~10%
• Three team projects, ~10% each
• Four homework assignments, ~10% each
• In-person final exam, ~20%

(course grade limited to 1 letter above final)
• Material from lectures, the text as cited, canvas,

or from the course URL:
http://aggregate.org/CPE380/

• You are expected to regularly attend class
• I try not to curve much; always in your favor

Course Content
Lectures Topic
1 Introduction
3 Verilog (individual project)
3 Multi-cycle machine (team project)
3 Machine & assembly languages (homework)
2 Single-cycle machine (team project)
3 Integer & float arithmetic (homework)
4 Pipelined machine (team project)
4 Memory hierarchy and I/O (homework)
3 Parallel processing and performance (homework)
1 reserved for schedule slippage
1 A simple compiler
1 Review for final exam

Schedule Notes

• Projects are deliberately pushed as early as
possible to reduce time pressure

• Some topics may be given more or less time
depending on how students are doing

• I will be presenting research at IEEE/ACM SC
(Supercomputing) conference, so we will not
have regular class meetings 11/18 & 11/20

Me (and why I'm biased)

• Hank Dietz, ECE Professor and
James F. Hardymon Chair in Networking

• Office: 203 Marksbury
• Research in parallel compilers & architectures:

• Built 1st Linux PC cluster supercomputer
• Antlr, AFNs, SWAR, FNNs, MOG, ...
• Various awards & world records for best

price/performance in supercomputing
• Lab: 108/108A Marksbury – I have TOYS!

Let's Talk About Computers

• Embedded computers, IoT (Internet of Things)
• Personal Mobile Devices (PMDs)...

usually “smart phones” and tablets
• Personal Computers (PCs)
• Servers
• Supercomputers
• Clusters, Farms, Grids, and Clouds

(Warehouse Scale Computers – WSC,
 Software as a Service – SaaS)

https://www.grandviewresearch.com/industry-analysis/personal-consumer-electronics-market

What's Inside?

Processor Terminology
• CPU – Central Processing Unit
• PE, Core – Processing Element
• Processor – CPU or chip containing PEs
• “Computer Family” – same ISA
• x86, IA32, x64/AMD64 – Intel 386-based ISAs
• MIPS, ARM, SPARC – other common ISAs
• DSP – Digital Signal Processor
• GPU – Graphics Processing Unit
• Tensor – Matrix support for neural networks
• Quantum – Combinatorial use of superposition

Complexity is Increasing!

• Lots of things you use every day have

BILLIONS of components!

• You don't live long enough to know it all

El Capitan supercomputer:
11,039,616 cores, 2.746 Exaflop/s
Cost approx. $600M, 29.6 MW power

Abstraction “Onion”

Software Layers
• Applications...
• Operating Systems (OS)...
• High-Level Languages (HLLs)

Aka, High Order Languages (HOLs)
• Designed for humans to write & read
• Modularity
• Abstract data types, type checking
• Assignment statements
• Control constructs
• I/O statements

Instruction Set Architecture

• ISA defines HW/SW interface
• Assembly Language

• Operations match hardware abilities
• Relatively simple & limited operations
• Mnemonic (human readable?)

• Machine Language
• Bit patterns – 0s and 1s
• Actually executed by the hardware

Hardware Layers

• Function-block organization
• Gates & Digital Logic (CPE282 stuff)
• Transistors

• Used as bi-level (saturated) devices
• Amplifiers, not just on/off switches

• Materials & Integrated Circuits
• Implementation of transistors, etc.
• Analog properties

Who Does What?

• Instruction Set Design, by Architect
• Machine & Assembly Languages
• “Computer Architecture”
• Instruction Set Architecture / Processor

• Computer Hardware Design, by Engineer
• Logic Design & Machine Implementation
• “Processor Architecture”
• “Computer Organization”

How To Use Layers

• Things are too complex to “know everything”
• Need to know only layers adjacent

• Makes design complexity reasonable
• Makes things reusable

• Can tunnel to lower layers
• For efficiency
• For special capabilities

8 Great Ideas

• Design for Moore's Law
• Abstraction
• Make the common case fast
• Pipelining
• Parallelism
• Prediction
• Hierarchy of memories
• Dependability via redundancy

SI Terminology Of Scale
1000^1 kilo k 1000^-1 milli m
1000^2 mega M 1000^-2 micro u
1000^3 giga G 1000^-3 nano n
1000^4 tera T 1000^-4 pico p
1000^5 peta P 1000^-5 femto f
1000^6 exa E

• 1000^x vs. 1024^x
• 1 Byte (B) is 8-10 bits (b), 4 bits in a Nybble
• Hertz (Hz) is frequency (vs. period)

Conclusion

• LOTS of stuff to know about...
focus of this course is the basic stuff around
the ISA and its implementation

• A lot of computer system design is about how
to build efficient systems despite incredibly high
and rapidly increasing system complexity

• Look at the history references on the WWW:
not to memorize who, what, when, & where,
but to see trends...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

