Introduction

CPE380/CS380/EE380, Spring 2021

Hank Dietz

http://aggregate.org/hankd/

Course Overview

- You know how to write a simple program... from CS courses
- You know how to build simple combinatorial and sequential logic circuits... from EE courses (especially CPE282)
- This course fills the gap between the two:
 - So you can better **specify & use** that stuff
 - So you can **create** the stuff in between

Changes for Spring 2021?

- There's now Freshman Engineering
- EE383 used to come after EE380... now, EE383 is EE287 and comes before it
- CS270/CPE282 overlaps some EE380 material; e.g., remember CPE282's uKY processor?
- EE380 used to be required for CS/EE/CPE... now, it's required only for Computer Engineers
- In sum, CPE380 will slowly change focus from specify & use to create using Verilog


```
module mul(ready, c, a, b, reset, clk);
parameter BITS = 32;
input [BITS-1:0] a, b;
input reset, clk;
output reg [BITS*2-1:0] c;
output reg ready;
reg [BITS-1:0] d;
reg [BITS-1:0] state;
reg [BITS:0] sum;
always @(posedge clk or posedge reset) begin
  if (reset) begin
    ready \leq 0;
    state <= 1;</pre>
    d <= a;
    c <= {{BITS{1'b0}}, b};</pre>
  end else begin
    if (state) begin
      sum = c[BITS*2-1:BITS] + d;
      c <= (c[0] ? {sum, c[BITS-1:1]} :</pre>
             (c >> 1));
      state <= {state[BITS-2:0], 1'b0};</pre>
    end else begin
      ready \leq 1;
    end
  end
end
endmodule
```

Verilog 32-bit Multiplier

Textbook

- The text is: *Computer Organization & Design, 5th Edition: The Hardware/Software Interface* by Patterson & Hennessy
- You can use any edition from 2nd on, but we'll reference sections from the 5th
- We will not assign problems from the text
- Lots of additional materials at the course URL and presented in class... text is reference only

Grading & Such

- Two in-class exams, ~20% each
- One final exam, ~30%
- Material cited from the text, from lectures, or from the course URL: http://aggregate.org/EE380/
- Other, ~30% (typically, homework via WWW forms)
- I try not to curve much, but might adjust %

Course Content

Topic	Primary Reference	Weeks	Exam
Introduction	Book Chapter 1	1.0	0
A Simple Machine	Online (EE280 review from Book Appendix B)	2.0	0
Performance	Book Chapter 1	0.5	0
Machine Language	Book Chapter 2	1.5	1
Arithmetic	Book Chapter 3	2.0	1
Data Path & Control	Book Chapter 4	1.0	1
Pipelining	Book Chapter 4	1.5	2
Memory & I/O	Book Chapter 5	1.5	2
Parallel Processing	Book Chapter 6	1.0	2

Me (and why I'm biased)

- Hank Dietz, ECE Professor and James F. Hardymon Chair in Networking
- Office: 203 Marksbury
- Research in parallel compilers & architectures:
 - Built 1st Linux PC cluster supercomputer
 - Antlr, AFNs, SWAR, FNNs, MOG, ...
 - Various awards & world records for best price/performance in supercomputing
- Lab: 108/108A Marksbury I have TOYS!

Let's Talk About Computers

- Embedded computers, IoT (Internet of Things)
- Personal Mobile Devices (PMDs)... usually "smart phones" and tablets
- Personal Computers (PCs)
- Servers
- Supercomputers
- Clusters, Farms, Grids, and Clouds (Warehouse Scale Computers – WSC, Software as a Service – SaaS)

Data source- IDC. Chart © Adam Hartung 2017

What's Inside?

UNIVERSITY OF KENTUCKY

UNIVERSITY OF KENTUCKY

Memory Terminology

- Volatile power off, data fades away
- ROM non-volatile Read Only Memory
- PROM, EPROM, OTP, EEROM, Flash, 3DXPoint types of non-volatile programmable memory
- RAM volatile Random Access Memory
 - SRAM Static RAM, fast but big cells
 - DRAM Dynamic RAM, slow but small cells
 - EDO, SDRAM, DDR, RamBus DRAM types
- Core non-volatile magnetic RAM technology
- Registers, Cache fast working memories

More Memory Terminology

- Punched cards
- Punched paper tape
- Tape, Magtape
- Drum
- Disks:

- Floppy, Hard, Magneto-optical, CD (-R, -RW), DVD (+/-R, +/-RW, -RAM), Blu-ray
- Solid State Disk, Optane

Network Terminology

- SAN, LAN, MAN, WAN Area Network; System/Storage, Local, Metropolitan, Wide
- Ethernet, DSL (Digital Subscriber Line)
- USB, FireWire
- Hub, Switch, Router
- WiFi, Bluetooth, NFC
- Bandwidth, Latency

Other I/O Terminology

- Keyboard
- Mouse, Trackball, Touchscreen, Lightpen, Touchpad, etc.
- Pixel Picture Element
- Camera: Charge-Coupled Device, CMOS

Other I/O Terminology

 Display: Cathode Ray Tube, Plasma, Liquid Crystal Display, Digital Micromirror Device aka Digital Light Processor, Organic Light Emitting Diode, elnk

Processor Terminology

- CPU Central Processing Unit
- PE, Core Processing Element
- Processor CPU or chip containing PEs
- "Computer Family" same ISA
- IA32, x64 ISAs based on the Intel 386
- MIPS, ARM, SPARC other common ISAs
- DSP Digital Signal Processor
- GPU Graphics Processing Unit

Why Multi-Core?

- Hit the "power wall"
- Lower voltage & slower clock reduce power more than performance
- Software companies changed license fees

Complexity

- Things are much more complex now
- Lots of things you use every day have
 BILLONS of components!
- You don't live long enough to know it all

Abstraction "Onion"

Operating System HLLs Assembly Language Machine Code Fn Units & Modules Gates Transistors Materials	Applications	
Assembly Language Machine Code Fn Units & Modules Gates Transistors	Operating System	
Machine Code Fn Units & Modules Gates Transistors	HLLs	
Fn Units & Modules Gates Transistors	Assembly Language	\setminus \setminus \setminus
Gates	Machine Code	
Transistors	Fn Units & Modules	
	Transistors	
	LINIVERSITY OF KENTLI	

Software Layers

- Applications...
- Operating Systems (OS)...
- High-Level Languages (HLLs) Aka, High Order Languages (HOLs)
 - Designed for humans to write & read
 - Modularity
 - Abstract data types, type checking
 - Assignment statements
 - Control constructs
 - I/O statements

Instruction Set Architecture

- ISA defines HW/SW interface
- Assembly Language
 - Operations match hardware abilities
 - Relatively simple & limited operations
 - Mnemonic (human readable?)
- Machine Language
 - Bit patterns 0s and 1s
 - Actually executed by the hardware

Hardware Layers

- Function-block organization
- Gates & Digital Logic (EE280 stuff)
- Transistors
 - Used as bi-level (saturated) devices
 - Amplifiers, not just on/off switches
- Materials & Integrated Circuits
 - Implementation of transistors, etc.
 - SSI, MSI, LSI, VLSI, ... WSI?

Who Does What?

- Instruction Set Design, by Architect
 - Machine & Assembly Languages
 - "Computer Architecture"
 - Instruction Set Architecture / Processor
- Computer Hardware Design, by *Engineer*
 - Logic Design & Machine Implementation
 - "Processor Architecture"
 - "Computer Organization"

How To Use Layers

- Things are too complex to "know everything"
- Need to know only layers adjacent
 - Makes design complexity reasonable
 - Makes things reusable
- Can tunnel to lower layers
 - For efficiency
 - For special capabilities

8 Great Ideas

- Design for Moore's Law
- Abstraction
- Make the common case fast
- Pipelining
- Parallelism
- Prediction
- Hierarchy of memories
- Dependability via redundancy

Computer Architecture Is Quickly Evolving

- Applications

 e.g., DVDs -> MMX, Doom -> 3DNow! & SSE;
 e.g., embedded systems, cell phones, etc.
- Programming Languages
 e.g., C -> call stack, flat memory addresses
- OperatingSystems

 e.g., Windows -> execute permission
- Technology

e.g., Power density -> power management

Chip Terminology

- Silicon Ingot sausage-like single crystal
- Wafer slice from above
- Die one chip's area on a wafer
- Chip a mounted die
- Yield fraction that are good
- SSI, MSI, LSI, VLSI, WSI Scale Integration; Small, Medium, Large, Very Large, Wafer

Moore's Law

"Cramming more components onto integrated circuits," Electronics, Vol. 38, No. 8, April 19, 1965.

Number of Components Per Integrated Circuit

Moore's Law – The number of transistors on integrated circuit chips (1971-2018)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are linked to Moore's law.

Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Chip Fabrication

Chip Fabrication

Cost per die = $\frac{\text{Cost per wafer}}{\text{Dies per wafer } \times \text{Yield}}$ Dies per wafer \approx Wafer area/Die area $\text{Yield} = \frac{1}{(1+(\text{Defects per area} \times \text{Die area}/2))^2}$

- Moore's Law is primarily about density, not speed
- Fab cost ~ cube of the die area

IC Costs: Dies To Chips

IC cost = Die cost + Testing cost + Packaging cost

Final test yield

Packaging Cost: depends on pins, heat dissipation

Chip	Die	P	ackage		Test &	Total
	cost	pins	type	cost	Assembly	
386DX	\$4	132	QFP	\$1	\$4	\$9
486DX2	\$12	168	PGA	\$11	\$12	\$35
PowerPC 601	\$53	304	QFP	\$3	\$21	\$77
HP PA 7100	\$73	504	PGA	\$35	\$16	\$124
DEC Alpha	\$149	431	PGA	\$30	\$23	\$202
SuperSPARC	\$272	293	PGA	\$20	\$34	\$326
Pentium	\$417	273	PGA	\$19	\$37	\$473

UNIVERSITY OF KENTUCKY

Technology Trends

CapacityLogic2X in 2 yearsDRAM4X in 3 yearsDisk4X in 3 years

Speed 2X in 3 years 1.4X in 10 years 1.4X in 10 years

Different rates mean relationships change; e.g., memory used to be faster than Add logic, now it's ~2000X slower!

SI Terminology Of Scale

1000^1	kilo	k	1000^-1	milli	m
1000^2	mega	Μ	1000^-2	micro	U
1000^3	giga	G	1000^-3	nano	n
1000^4	tera	Т	1000^-4	pico	р
1000^5	peta	Ρ	1000^-5	femto	f
1000^6	exa	Ε			

- 1000^x vs. 1024^x
- 1 Byte (B) is 8-10 bits (b), 4 bits in a Nybble
- Hertz (Hz) is frequency (vs. period)

Conclusion

- LOTS of stuff to know about... this course just does the basic stuff around the ISA and its implementation
- New technologies & applications mean new architectures & architectural concepts
- Look at the history references on the WWW: not to memorize who, what, when, & where, but to *see trends*...

