Introduction

CPE380/CS380, Spring 2026
Hank Dietz

http://aggregate.org/hankd/

q:gz University of
Kentucky

http://aggregate.org/hankd

Course Overview

* You know how to write a simple program...
from CS courses

* You know how to build simple combinatorial
and sequential logic circuits from ECE courses
(especially CPE282 or EE280/EE281)

* This course fills the gap between the two:
* So you can better specify & use that stuff
* So you can create the stuff in between
* There will be implementations in Verilog

module mul(ready, c, a, b, reset, clk);

parameter BITS = 32;

input [BITS-1:0] a, b;
input reset, clk;

output reg [BITS*2-1:0] c;
output reg ready;

reg [BITS-1:0] d;

reg [BITS-1:0] state;

reg [BITS:0] sum;

always @(posedge clk or posedge reset) begin
if (reset) begin
ready <= 0;
state <= 1;
d <= a;
c <= {{BITS{1'b0}}, b};
end else begin
if (state) begin
sum = c[BITS*2-1:BITS] + d;
c <= (c[0] ? {sum, c[BITS-1:1]} :
(c > 1));
state <= {state[BITS-2:0], 1'b0};
end else begin
ready <= 1;
end
end
end
endmodule

Verilog 32-bit
Multiplier

32-bit Adder

initto0 inittob

v

64-bit result

Textbook

The OPTIONAL text is:

Computer Organization & Design,
5% Edition: The Hardware/Software
Interface by Patterson & Hennessy
You can use any MIPS edition from 2" on...
but for Spring 2026, we’ll do some RISC-V
We will not assign problems from the text
Lots of additional materials online and
presented in class... text is for reference only

Grading & Such

One individual Verilog project, ~10%

Three team projects, ~10% each

Four homework assignments, ~10% each
In-person final exam, ~20%

(course grade limited to 1 letter above final)
Material from lectures, the text as cited, canvas,
or from the course URL:
http://aggregate.org/CPE380/

You are expected to regularly attend class

| try not to curve much; always in your favor

Course Content

Lectures Topic

Introduction

Verilog (individual project)

Multi-cycle machine (team project)

Machine & assembly languages (homework)
Single-cycle machine (team project)

Integer & float arithmetic (homework)
Pipelined machine (team project)

Memory hierarchy and 1/O (homework)
Parallel processing and performance (homework)
reserved for schedule slippage

A simple compiler

Review for final exam

_ == WP PAOWNOWWWE

Schedule Notes

* Projects are deliberately pushed as early as
possible to reduce time pressure

* Some topics may be given more or less time
depending on how students are doing

* | will be presenting research at IS&T Electronic
Imaging (EI26) conference, so we will not
have regular class meetings 3/3 & 3/5

Me (and why I'm biased)

Hank Dietz, ECE Professor and

James F. Hardymon Chair in Networking

Office: 203 Marksbury

Research in parallel compilers & architectures:

* Built 1%t Linux PC cluster supercomputer

* Antlr, AFNs, SWAR, FNNs, MOQG, ...

* Various awards & world records for best
price/performance in supercomputing

Lab: 108/108A Marksbury — | have TOYS!

%College of
Engineering

ﬁcdlegc of
Engineering -
\\\

Let's Talk About Computers

Embedded computers, loT (Internet of Things)
Personal Mobile Devices (PMDs)...

usually “smart phones” and tablets

Personal Computers (PCs)

Servers

Supercomputers

Clusters, Farms, Grids, and Clouds
(Warehouse Scale Computers - WSC,
Software as a Service — SaaS)

U.S. Consumer Electronics Market
Size, by Product, 2020 - 2030 (USD Billion)

$181.2B

$176.6B = o -
mom B W

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

® Smartphones Tablets Desktops Laptops/Notebooks
@ Digital Cameras @ Hard Disk Drives @ E+eaders

https://www.grandviewresearch.com/industry-analysis/personal-consumer-electronics-market

What's Inside?

ll--_'_..
-I"—':r—|--|_r
=

hard drive

graphics card

(= L
05 Howirufin o

Wi e b
EERERE

P B200F HowStifWorks

/ Capacitive multitouch LCD screen
2

/ 3.8 V, 25 Watt-hour battery

L

Computer board

aND oV
& B

&

FlashAir

W-02

&

o

s

0% [0Z2 I GiIULL

Wireless LAN

-l

@ 32GB)
|2

TOSHIBA

ESP32-CAM

Interface

Computer

Evaluating
performance

Processor

AMD Athlon™

Processor

AGP Bus

AGP I

System

Controller
(Northbridge)

Memaory Bus

DRAM

¢ PCl Bus

:

Peripheral Bus

|

Controller
(Southbridge)

System
Management

ISA Bus

‘ LAN I ‘ SCSI I

USB

Y Dual EIDE

Processor Terminology

CPU - Central Processing Unit

PE, Core - Processing Element

Processor — CPU or chip containing PEs
“‘Computer Family” - same ISA

x86, 1A32, x64/AMDG64 - Intel 386-based ISAs
MIPS, ARM, RISC-V - other common ISAs
DSP - Digital Signal Processor

GPU - Graphics Processing Unit

Tensor — Matrix support for neural networks
Quantum - Combinatorial use of superposition

Complexity is Increasing!

* Lots of things you use every day have

BI LLI O N S of components!

* You don't live long enough to know it all

a ot | e

M Lawrence Liva ore
Ngowlubn.i:w
o=) M Bl

e pl n W
E LS b B 3

Az NISH
—

S0, ADVAN EDSH —
. HSMULATION & CO purivg

El Capitan supercomputer:
11,039,616 cores, 2.821 Exaflop/s
Cost approx. $600M, 29.7 MW power

'J_'a-
!;_tl

16k

Brarch

History
Targets !

Counter

48 Entry L1
AN Inst. TLE Front End

Execution Engine

including Out of
72 Entry Recrder and Instruction Ceontrol Buffer Order Hardware

Pack Buffer

40 Entry Integer Control) .y or Improvec
' For Phenom I

& Entry Scheduler B Entry Scheduler B Entry Scheduler

Bd-bit
ALL
IRLIL

B6d-bit

AU

FMUL

Load/Store Queue

A% Entry L1 Data TLE ‘ 64AKE Cual Ported L1 Data Cache 512KB Unified L2 512 Entry L2 Inst.

with ECC [2-way associative) & data TLE

v Channel COR2 HyperTransport3.0 51 System Request Queue , BIME All C

IMiemory Controller Crosshar (48-way associative)

Abstraction “Onion”

Applications

Operating System

Assembly Language

Machine Code

Fn Units & Modules

Transistors

Materials

Software Layers
* Applications...
* Operating Systems (OS)...
* High-Level Languages (HLLS)
Aka, High Order Languages (HOLSs)
* Designed for humans to write & read
* Modularity
* Abstract data types, type checking
* Assignment statements
* Control constructs
* |/O statements

Instruction Set Architecture

* |SA defines HW/SW interface

* Assembly Language
* Operations match hardware abilities
* Relatively simple & limited operations
* Mnemonic (human readable?)

* Machine Language
* Bit patterns — 0s and 1s
* Actually executed by the hardware

High-level
language
program

(in C)

Assembly
language
program

(for MIPS)

Binary machine
language
program

(for MIPS)

swap(int v[], int k)
{int temp;
temp = v[k]:
vik] = v[k+1];
vlk+1] = temp;
)

muli $2, $5,4
add $2, $4,%2
Tw $15, 0(%2)
Tw $16, 4(%2)
sw $16, 0(%2)
sw $15, 4(%2)
ir $31

00000000101000010000000000011000
00000000000110000001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

Hardware Layers

Function-block organization

Gates & Digital Logic (CPE282 stuff)
Transistors

* Used as bi-level (saturated) devices
* Amplifiers, not just on/off switches
Materials & Integrated Circuits

* |mplementation of transistors, etc.

* Analog properties

Who Does What?

* |nstruction Set Design, by Architect

* Machine & Assembly Languages

* “Computer Architecture’

* Instruction Set Architecture / Processor
* Computer Hardware Design, by Engineer

* Logic Design & Machine Implementation

* “Processor Architecture’

* “Computer Organization”

How To Use Layers

* Things are too complex to “know everything”
* Need to know only layers adjacent

* Makes design complexity reasonable

* Makes things reusable
* Can tunnel to lower layers

* For efficiency

* For special capabilities

8 Great Ideas %

Design for Moore's Law
Abstraction

Make the common case fast
Pipelining

Parallelism

Prediction

Hierarchy of memories
Dependability via redundancy

CDEPENDABILITY

S| Terminology Of Scale

100071
100042
100043
100074
100045
100076

e 1000Ax vs. 1024/x

kilo
mega
giga
tera
peta
exa

k

mTU-—T0Z

10007-1
1000A-2
10004-3
10007-4
10004-5

milli m
micro u
nano n
pico p
femto f

* 1 Byte (B) is 8-10 bits (b), 4 bits in a Nybble
* Hertz (Hz) is frequency (vs. period)

Conclusion

LOTS of stuff to know about...

focus of this course is the basic stuff around
the ISA and its implementation

A lot of computer system design is about how
to build efficient systems despite incredibly high
and rapidly increasing system complexity

Look at the history references on the WWW:
not to memorize who, what, when, & where,

but to see trends...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

