An Introduction To Verilog

CPE380, Spring 2026

Hank Dietz

http://aggregate.org/hankd/

q:gz University of
Kentucky

http://aggregate.org/hankd

References

IEEE 1364-2005

Verilog HDL by Samir Palnitkar,
ISBN-978-0132599702

Various Verilog materials online, e.g.:
http://www.asic-world.com/verilog/
The Icarus Verilog wiki

Note: the Verilog CGl used for the examples
here is an http:, not https:, which may require
setting a security override in some browsers

A Little History

Philip Moorby created Verilog around 1983 in
Gateway Design Automation to model hardware
at various levels, developed with a simulator
Verilog synthesis tool from Synopsys, 1987
Gateway Design Automation -» Cadence, 1989
Verilog made public domain to compete with
VHDL; standards in 1995, 2001, 2005

There is also now System Verilog

https://en.wikipedia.org/wiki/VHDL
https://en.wikipedia.org/wiki/SystemVerilog

What are used HDLs for?

* Expressing complex digital circuit designs
(although they can handle some analog too)

* Simulating and debugging designs

* |Implementation of hardware as:
* Complete systems
* Board-level designs
* FPGA-based implementations
* Standard cell / custom integrated circuits

Chip Terminology

Silicon Ingot — sausage-like single crystal
Wafer - slice from above

Die — one chip's area on a wafer

Chip - a mounted die

Yield - fraction that are good

SSI, MSI, LSI, VLSI, WSI - Scale Integration;
Small, Medium, Large, Very Large, Wafer

Chip Fabrication

Silicon ingot

—

f

Tested dies Patterned wafers

Packaged dies Tested packaged dies

Chip Fabrication

Cost per wafer

Cost per die = — ,
Dies per wafer x Yield

Dies per wafer = Wafer area/Die area

1

Yield = _ :
(1+ (Defects per areaxDie area/2))

 Moore's Law is primarily about density, not speed
 Fab cost ~ cube of the die area

Digital Design Using An HDL

Circuit Under Design (CUD)
(modeled using an HDL)

Test Bench

* |nputs (stimulus) to CUD

* Simulation of the CUD

* Method for checking outputs
Coverage

(how much is really tested?)
Generally, an iterative process...

Digital Design Methodology

Behavioral Description

Place and Route
Timing Verification

Verilog Hello, World!

* You can do things at a high enough level so
that Verilog is just a programming language:

module helloworld;
initial
$display(“Hello, World!");
endmodule

 That will execute.

http://aggregate.org/EE380/v24hello.html

Synthesizable Verilog

 Defines and instantiates hardware modules:

module not gate(in, out);

input 1n;

output out;

// ain't Verilog neat!
assign out = ~1in;

endmodule

Module Nesting

* (Can instantiate a module inside a module
e Cannot define a module inside a module

i.e., it works a lot like C functions...

Parametric Module Content

* A module specifies a chunk of hardware or
executable (simulation) code, but it can be
parameterized in various ways

* Constant values can be parameters

* Can generate structures at compile time
using genvar variables

Parameter Example

module lsbof(dout, din);

parameter BITS=4;

output dout; input [BITS-1:0] din;
assign dout = din[0];

endmodule

module tryit;

reg [7:0] b = 42; wire a;
Lsbof #(8) mylsb(a, b);
initial #1 $display(a);
endmodule

// instead of #(8), could have said
Lsbof #(.BITS(8)) mylsb(a, b);

// or elsewhere said

defparam tryit.mylsb.BITS = 8;

Parameter Example

* tryit only tries one input value

* Canrun it here:
http://aggregate.org/EE480/parameter.html

http://aggregate.org/EE480/parameter.html

A 4-bit Odd Parity Module

module parity4(dout, din); // compute odd parity
output dout; input [3:0] din;

wire [3:0] tmp; assign tmp[0O] = din[0O];

xor mygatel(tmp[1l], tmp[O], din[1]);

xor mygate2(tmp[2], tmp[l], din[2]);

xor mygate3(tmp[3], tmp[2], din[3]);

assign dout = tmp[3];

endmodule

module tryit;

reg [3:0] b =7; wire a;
parity4 myparity(a, b);
initial #1 $display(a);
endmodule

4-bit Odd Parity Example

* tryit only tries one input value

* Canrun it here:
http://aggregate.org/EE480/0ddparity4.html

http://aggregate.org/EE480/oddparity4.html

Generate BITS-bit Odd Parity

module parity(dout, din); // compute odd parity
parameter BITS=4;
output dout; input [BITS-1:0] din;
wire [BITS-1:0] tmp; assign tmp[O@] = din[0];
genvar 1;
generate for (i=1; i<BITS; i=i+1) begin:xors
// xor gates named xors[i].mygate
xor mygate(tmp[i], tmp[i-1], din[i]); end endgenerate
assign dout = tmp[BITS-1];
endmodule

module tryit;

reg [7:0] b = 42; wire a;
parity #(8) myparity(a, b);
initial #1 $display(a);
endmodule

BITS-bit Odd Parity Example

* tryit only tries one input value

* Canrun it here:
http://aggregate.org/EE480/0ddparity.html

http://aggregate.org/EE480/oddparity.html

Tasks and Functions

* More like local parametric macros...
— Either can have multiple 1nput variables
— Can contain its own local variables

* A function is defined within a module
— Returns a single value named like function
— Call other functions, not tasks nor recurse
— Combinatorial only

A task s a subroutine within a module
— Returns values via output variables
— Can call other tasks, can include time delays

Verilog Abstraction Levels

Behavioral (algorithmic) level

— programming, sort of

Dataflow level

— data flow between registers and processing
Gate level

— connecting logic gates

Switch level

— interconnecting (MOS) transistors
Register-Transfer Level (RTL)

— Behavioral + dataflow that is synthesizable

Hierarchical Modeling

sub- sub-
block 1 block 2
‘eaf | | leaf
cell cell

* Top down

e Bottom u

p

‘-_‘-

block 3

sub-w

block 4

Top level
black

leaf leaf
cell cell
‘;\R
Macro macro
cell 3 cell 4

N

- P
MECTO masro
/cell 1 cell 2
leaf leaf leaf leaf
cell cell CeI]__ cell »

leat

cell

leaf
cell

4-bit Ripple Carry Counter

?ﬁf}lre q0 q1 42 q3
Counter
F—- -+ -—-—-"—- 7 T - - - —|= = — - — — 1
I |
I q q q q I
clock ——I—(J> T_“FF I__Q T_FF I—C> T_FF l_o> T_FF I
| tf0 tff1 tff2 tf3 |
I
|
I

Ripple Counter Hierarchy

Ripple Carry
/ 7nter \\
T _FF T T_FF _FF
(tEf0) (H£1) (tff2) (tf£3)

FF
1
Inverter D_FF [nver
gate gate

D_FF Inverter D FF

T-Flip-Flop

T FF 9
reset qn | Qn+i ,_ S R
1 0 L4 |
1 | q |
0 0 1 Coc'l‘_l_°>D_FF |
l I

1

0 0 | |
e s b e sl

D-Flip-Flop Module

e MakeaTfromalD...

module DFF(q, d, clk, reset);

input d, clk, reset;

output q;

reg q; // q 1s a register

always @(posedge reset or

negedge clk)
1f (reset) g = 1'b0; else g = d;

endmodule

T-Flip-Flop Module

* Make a T from a DFF instance N

=

module TFF(q, clk, reset); /1 1°7 |

input clk, reset; L‘i;‘J
output q;

wire d; // d is an internal wire

DFF dff0(qg, d, clk, reset);

not nl(d, qg); // use built-in not
endmodule

Ripple Counter From 4 TFFs

ppIe

reset

module ripcount(qg, clk, reset);
input clk, reset;
output [3:0] q; // 4-bit output

TFF tffO(q[0], clk, reset);

TFF tff1l(q jlj, g[0], reset);
TFF tff2(qj2j, gl[l], reset);
TFF tff3(ql3], ql2], reset);

endmodule

Test Bench Styles

{Stimulus block)
clk reset

'

(Deesign Block)
Ripple Carry
Counter

t J

* Dummy module instantiates both

Top-Tevel Block

d clk clk
. -
Stimulus

lock d_reset — Design Bluck
> .
pple

<q - ——— - q

Example Design & Stimulus

* Stimulus and output waveforms

oIk | Eiplnininininlin
et |
: : |
ol3:0] @@@ R @(D@D
* Design block e a @ @

Ripple Counter Stimulus

module stimulus;
reg clk; reg reset; wire[3:0] q;
ripcount rl(qgq, clk, reset);
initial clk = 1'b0O;
always #5 clk = ~clk; // flip clk every 5 ticks
initial // drive the reset signal sequence

begin

reset = 1'b1;

#15 reset = 1'b0O;

#180 reset = 1'b1l;

#10 reset = 1'b0;

#20 $f1n15h // end simulation
end

initial // output a trace
$monitor($time, “ Output g = %d”, q);
endmodule

Ripple Counter

* Need a test framework to try it out...
- stimulus module instantiates ripcount
— Stimulus initializes values, generates clock,
and prints results each time they change
* Canrun it here:
http://aggregate.org/EE480/ripplecount.html

http://aggregate.org/EE480/ripplecount.html

Verilog

As A Programming Language

(maybe your first parallel programming language)

Verilog Preprocessor

* There are global textual substitution directives

— “define works like #define in C,
except the defined name gets a = prefix

— include works like #include in C

- ifdef, else, endif works like in C,
and the defined name doesn’t get the ~ prefix

* Use these for global properties of a design

Example of Preprocessor Use

"define WORD [7:0] // make all words 8 bits long
"define VAL 380 // an ordinary constant
"define DEBUG // enable debug output

module demo;
reg WORD Ken = "VAL;

initial // drive the reset signal sequence
begin
“ifdef DEBUG // note: not "DEBUG

if (Ken != "VAL) $display(“Not Kenough!”);
“endif
$display(“Hello, Ken ”, Ken);
end
endmodule

* Run it here;: http://aggregate.org/EE380/v24pre.html

http://aggregate.org/EE380/v24pre.html

Verilog Comments

* Both C comment styles are supported:

// to end of this line 1s ignored

/* to matching close
is ignored */

Verilog Names

Similar to C in many ways:

— All keywords are lowercase

- Names canusea-z, A-Z, 0-9,

- Names don't start with 0-9

— Only system task names can start with $

- Whitespace generally treated as a separator
Escaped identifiers start with \ and end with

whitespace... e.g.:
\ // 1s the name *@#$%&!

Verilog Numbers

* Precision (in bits) can be explicit:
— Prefix size' specifies size bits precision
— Unsized is at least 32 bits (' optional)
* Base defaults to 10, but can be specified:
- Hexadecimal (base 16): h or H
— Decimal (base 10): d or D
— Qctal (base 8): o or 0
— Binary (base 2): b or B
* E.g.: 255 'Hff 8'0377 8'b11111111

Verilog X And Z Values

Used with base 2, 8, or 16 constants

An unknown value is (lowercase): x

— Number of bits in x determined by base
- E.g.: 8'b1010xxxx 8'hax

A high-impedance value is (lowercase): z
— Number of bits in z determined by base
- E.g.. 8'bzzzzxxxx 8'hzx

Extending precision pads with: x z 0
e.g.. 4'bxx 4'hx ; 4'blx 4'b0O0O1x

Other Value Oddities

* |n numbers:
— 7 can be used in place of z
— isignored (but can't start a number)

- E.g.: 8'h2 7 8'b0010zzzz

* Negative numbers:
- Always treated as 2's complement
— Sign before precision: -8'1

Strength Levels

Strength level Type Degree
supply Driving strongest
strong Driving N
pull Driving
large Storage
weak Driving
medium Storage
small Storage
highz High Impedance |weakest

Verilog Strings

* Strings look like they do in C:
— Surrounded by double-quotes
— Escapes: \t \n \"” \\ \oct %%
- E.g.: "Hello, World!\012”
* Mostly used for arguments to system tasks
* Also can be reg vector initializers filling 8
bits/char from least to most significant

reg [32*%8:1] mystring;
mystring = “Hello, World!\n”

Verilog Wires (Nets)

* Wires represent potential connections
between hardware elements;
signals that are continuously driven
* Keyword: wire tri wand tri® tril
* Default value: z (or given default 0 or 1)
* Can specify width

wire myoutput; // a wire
tri1 [31:0] mybus; // tri-state bus
wand myand; // a wired-AND

Verilog Registers

* Registers represent data storage elements...
like variables (not edge-triggered, clocked)

* Retain (unsigned) value until next assignment

 Keyword: reg trireg

* Default value: x

* Can specify width (default at least 32):

reg [15:0] r; // r is a 16-bit reg

Verilog Integers

* Integers are basically signed registers
 Keyword: integer

* Can specify width (default at least 32)
* Two equivalent declarations:

integer [15:0] r;

reg signed [15:0] r;

Verilog Reals

* Reals are floating-point values
- Can use decimal: 3.14
— Can use scientific notation: 314e-2
» Keyword: real
* Default value: 0
* Value is rounded when you need an integer

real r;

Verilog Times

* Times hold values of (simulated) time
 Keyword: time

* Precision is at least 64 bits

* $time system variable gives the current time

time when started;
initial
when started = $time;

Verilog Vectors

* A vector specifies multiple-bit width
* Appliesto reg integer wire
* Specifies range and order:
[msb_index : Isb_index]
* Can select a bit or a subset of bits

wire [31:0] mybus;

reg [0:31] reversed;
mybus[15:0] // not mybus[0:15]
reversed[16] // just bit 16

Verilog Variable Vector Select

reg [255:0] datal; // little endian
reg [0:255] data2; // big endian
reg [7:0] byte;

// variable part select, fixed 8-bit width

byte = datal[31-:8]; // datal[31:24]
byte = datal[24+:8]; // datal[31:24]
byte = data2[31-:8]; // datal[24:31]
byte = data2[24+:8]; // datal[24:31]

// start bit pos can be a variable (but not width)
for (j=0; j<=31; j=j+1)
byte = datal[(j*8)+:8]1; // [7:0], [15:8],

// initialize only part of a vector
datal[(bytenum*8)+:8] = 8'b0;

Verilog Arrays

* An array specifies multi-dimensional collections
* Applies to all data types
* Specifies range and order:

[start_index : end_index]

* Syntactically declared after identifier,
but any vector subscripting comes last in use

wire [31:0] mybusses [0:4];
mybusses[2][15:0] // bus 2, 16 lsbs

Verilog Array Examples

integer count[0:7];

reg bool[31:0];

time chk point[1l:100];

reg [4:0] port 1d[0:7];
integer matrix[4:0][0:16];
wire [7:0] w array[5:0];

count[5] = 0;
port id[3] = 0;
matrix[1][0] = 601;

// illegal!

// illegal!

Verilog Memories

* RAM, ROM, and register files are all basically
modeled as arrays of reg
(synthesis is complicated using RAM blocks...)

* Word size for a memory is vector size,
number of elements is array size

* Selecting an array element is basically a
decoder/mux structure...

// memory holding 65536 bytes
reg [7:0] myram[O: 'hffff];

Verilog Operators

* Arithmetic: + - * / %
* Relational: < <= > >=
* Logical equality: == !=
* Case equality: === !===

// these all act combinatorial!
assign a = (1 ==1); // a =

assign b = (1 == 1'bx); // b =
assign ¢ = (1'bx === 1'bx); //

Verilog Operators

* Logical: ! && ||
* Bitwise: ~ & | & ~7 (xnor)
* Unary reduction: & ~& | ~| &~ ~©

Shift: >> << (always 0 filled)

// these all act combinatorial'
assign a (& 3'b010); // a
assign b = (& 3'bz11); // b
assign cC

(3'b110 >> 1); // c = 3

Verilog Operators

* Trinary conditional: 7 :
 Concatenation: { }
* Replication: { { }}

// these all act combinatorial!
assign a (1 2 1'bx : 0); // a = X
assign b {1'1 , 1'0}; // b = "bl0O
assign ¢ = {2{a,b}}; // c = {a,b,a,b}

Verilog Gate Level

* Built-in: and nand nor or xor xnor
— 1t argument is output, then inputs
* Built-in: buf not (drivers)
— Any number of output arguments,
then last is the only input
- Any z input becomes an X output

// built-in gates are combinatorial
and a(outl, inl, 1in2);
buf b(out2, out3, outd4, 1in3);

Gate Level 1-0of-4 Mux

module muxlof4(Z,D0,D1,D2,D3,S0,S1);

output Z;

input DO,D1,D2,D3,50,51;

not(SObar,S0), (S1bar,S1);

and(T0,DO,S0Obar,S1bar),
(T1,D1,S0Obar,S1),
(T2,D2,50,S1bar), D3O

-
(T3,D3,S0,S1): 1o E;_
// should be or, not nor T =D
or(Z,T0,T1,T2,T3): D2 < F=D)
endmodule D0< B
so<>—t|,
S1<>—$_

Gate-Level 1-0f-4 Mux Example

* tryit only tries one input value

* Canrun it here:
http://aggregate.org/EE480/muxlof4.html

http://aggregate.org/EE480/mux1of4.html

Verilog Data Flow Modeling

* Uses continuous assignment: assign
— A combinatorial operation
— Lval: a net, part of a net, or concatenation
- Rval is re-evaluated when anything changes

wirel[7:0] a, b, c;
wire[15:0] big;
assign {b, c} = big;
assign a = b & c;

Verilog Delay Modeling

* Delay between rval change and lval update
* Specified in units of time

- Delay in individual assign #delay

— Property of a wire #delay
* Changes faster than delay are skipped

wire #5 [7:0] a;
wire [7:0] b, c;
assign #2 b=c; // delayed 2
assign a=c; // delayed 5

Verilog Behavioral Modeling

* Procedural blocks:

— All activate at time O

— All execute concurrently

— 1nitial blocks execute only attime O

- always blocks execute repetitively, as

specified, e.g.: always@(posedge clk)

* Mostly about changing reg values;

but always could be combinatorial
* begin and end can group statements

Always Procedural Timing

* always(timing_control)
- An or ofidentifiers
- posedge of an identifier (0—1)
- negedge of an identifier (1-0)
— # time delay expression (make a waveform)

reg clk;
always @(posedge clk) begin ... end
always #5 clk = ~clk;

Procedural Assignments

Usablein initial or always blocks
Lval mustbe a reg integer ...

Two different assignment operators:

- Forawire: =

— For a flip-flop: <=

Wire assignments can be instantaneous,

but flip-flops distinguish before and after state

Procedural Assignments

always @(A or B) // infer wire
begin

B=A: (C=B;
end

always @(posedge CLK) // flip-flop
begin

B<=A; (C<=B; D<=(C;
end // (may be ok?)

Conditional Statements

e 1T (expr) stat
1T (expr) stat else stat

* case (expr) cases endcase
A caseis: values : stats
Can have a; default: stats

* For grouping. begin ... end

Looping Statements

while (expr) stat
Just like C

for (expr ; expr ; expr) stat
Note: no ++ operator, so ++1is 1=1+1

repeat (expr) stat
Not like C - repeat stat expr times

forever stat

