
An Introduction To Verilog

CPE380, Spring 2026

Hank Dietz

http://aggregate.org/hankd/

http://aggregate.org/hankd

References

• IEEE 1364-2005
• Verilog HDL by Samir Palnitkar,

ISBN-978-0132599702
• Various Verilog materials online, e.g.:
http://www.asic-world.com/verilog/

• The Icarus Verilog wiki
• Note: the Verilog CGI used for the examples

here is an http:, not https:, which may require
setting a security override in some browsers

A Little History

• Philip Moorby created Verilog around 1983 in
Gateway Design Automation to model hardware
at various levels, developed with a simulator

• Verilog synthesis tool from Synopsys, 1987
• Gateway Design Automation Cadence, 1989→
• Verilog made public domain to compete with

VHDL; standards in 1995, 2001, 2005
• There is also now System Verilog

https://en.wikipedia.org/wiki/VHDL
https://en.wikipedia.org/wiki/SystemVerilog

What are used HDLs for?

• Expressing complex digital circuit designs
(although they can handle some analog too)

• Simulating and debugging designs

• Implementation of hardware as:
• Complete systems
• Board-level designs
• FPGA-based implementations
• Standard cell / custom integrated circuits

Chip Terminology

• Silicon Ingot – sausage-like single crystal
• Wafer – slice from above
• Die – one chip's area on a wafer
• Chip – a mounted die
• Yield – fraction that are good
• SSI, MSI, LSI, VLSI, WSI – Scale Integration;

Small, Medium, Large, Very Large, Wafer

Chip Fabrication

Chip Fabrication

• Moore's Law is primarily about density, not speed
• Fab cost ~ cube of the die area

Digital Design Using An HDL

• Circuit Under Design (CUD)
(modeled using an HDL)

• Test Bench
• Inputs (stimulus) to CUD
• Simulation of the CUD
• Method for checking outputs

• Coverage
(how much is really tested?)

• Generally, an iterative process...

Digital Design Methodology

Verilog Hello, World!

• You can do things at a high enough level so
that Verilog is just a programming language:

module helloworld;
 initial
 $display(“Hello, World!”);
endmodule

• That will execute. It will not build hardware!

http://aggregate.org/EE380/v24hello.html

Synthesizable Verilog

• Defines and instantiates hardware modules:

module not_gate(in, out);
 input in;
 output out;
// ain't Verilog neat!

 assign out = ~in;
endmodule

Module Nesting

• Can instantiate a module inside a module
• Cannot define a module inside a module

i.e., it works a lot like C functions...

Parametric Module Content

• A module specifies a chunk of hardware or
executable (simulation) code, but it can be
parameterized in various ways

• Constant values can be parameters

• Can generate structures at compile time
using genvar variables

Parameter Example
module lsbof(dout, din);
parameter BITS=4;
output dout; input [BITS-1:0] din;
assign dout = din[0];
endmodule

module tryit;
reg [7:0] b = 42; wire a;
lsbof #(8) mylsb(a, b);
initial #1 $display(a);
endmodule

// instead of #(8), could have said
lsbof #(.BITS(8)) mylsb(a, b);
// or elsewhere said
defparam tryit.mylsb.BITS = 8;

Parameter Example

• tryit only tries one input value
• Can run it here:

http://aggregate.org/EE480/parameter.html

http://aggregate.org/EE480/parameter.html

A 4-bit Odd Parity Module

module parity4(dout, din); // compute odd parity
output dout; input [3:0] din;
wire [3:0] tmp; assign tmp[0] = din[0];
xor mygate1(tmp[1], tmp[0], din[1]);
xor mygate2(tmp[2], tmp[1], din[2]);
xor mygate3(tmp[3], tmp[2], din[3]);
assign dout = tmp[3];
endmodule

module tryit;
reg [3:0] b = 7; wire a;
parity4 myparity(a, b);
initial #1 $display(a);
endmodule

4-bit Odd Parity Example

• tryit only tries one input value
• Can run it here:

http://aggregate.org/EE480/oddparity4.html

http://aggregate.org/EE480/oddparity4.html

Generate BITS-bit Odd Parity
module parity(dout, din); // compute odd parity
parameter BITS=4;
output dout; input [BITS-1:0] din;
wire [BITS-1:0] tmp; assign tmp[0] = din[0];
genvar i;
generate for (i=1; i<BITS; i=i+1) begin:xors
 // xor gates named xors[i].mygate
 xor mygate(tmp[i], tmp[i-1], din[i]); end endgenerate
assign dout = tmp[BITS-1];
endmodule

module tryit;
reg [7:0] b = 42; wire a;
parity #(8) myparity(a, b);
initial #1 $display(a);
endmodule

BITS-bit Odd Parity Example

• tryit only tries one input value
• Can run it here:

http://aggregate.org/EE480/oddparity.html

http://aggregate.org/EE480/oddparity.html

Tasks and Functions
• More like local parametric macros…

– Either can have multiple input variables
– Can contain its own local variables

• A function is defined within a module
– Returns a single value named like function
– Call other functions, not tasks nor recurse
– Combinatorial only

• A task is a subroutine within a module
– Returns values via output variables
– Can call other tasks, can include time delays

Verilog Abstraction Levels
• Behavioral (algorithmic) level

– programming, sort of
• Dataflow level

– data flow between registers and processing
• Gate level

– connecting logic gates
• Switch level

– interconnecting (MOS) transistors
• Register-Transfer Level (RTL)

– Behavioral + dataflow that is synthesizable

Hierarchical Modeling

• Top down

• Bottom up

4-bit Ripple Carry Counter

Ripple Counter Hierarchy

T-Flip-Flop

D-Flip-Flop Module
• Make a T from a D…

module DFF(q, d, clk, reset);
 input d, clk, reset;
 output q;
 reg q; // q is a register
always @(posedge reset or

 negedge clk)
 if (reset) q = 1'b0; else q = d;
endmodule

T-Flip-Flop Module

• Make a T from a DFF instance

module TFF(q, clk, reset);
 input clk, reset;
 output q;
 wire d; // d is an internal wire
 DFF dff0(q, d, clk, reset);
 not n1(d, q); // use built-in not
endmodule

Ripple Counter From 4 TFFs

module ripcount(q, clk, reset);
 input clk, reset;
 output [3:0] q; // 4-bit output
 TFF tff0(q[0], clk, reset);
 TFF tff1(q[1], q[0], reset);
 TFF tff2(q[2], q[1], reset);
 TFF tff3(q[3], q[2], reset);
endmodule

Test Bench Styles

• Stimulus instantiates design

• Dummy module instantiates both

Example Design & Stimulus

• Stimulus and output waveforms

• Design block

Ripple Counter Stimulus
module stimulus;
 reg clk; reg reset; wire[3:0] q;
 ripcount r1(q, clk, reset);
 initial clk = 1'b0;
 always #5 clk = ~clk; // flip clk every 5 ticks
 initial // drive the reset signal sequence
 begin
 reset = 1'b1;
 #15 reset = 1'b0;
 #180 reset = 1'b1;
 #10 reset = 1'b0;
 #20 $finish; // end simulation
 end
 initial // output a trace
 $monitor($time, “ Output q = %d”, q);
endmodule

Ripple Counter

• Need a test framework to try it out…
– stimulus module instantiates ripcount
– Stimulus initializes values, generates clock,

and prints results each time they change
• Can run it here:

http://aggregate.org/EE480/ripplecount.html

http://aggregate.org/EE480/ripplecount.html

Verilog

As A Programming Language

(maybe your first parallel programming language)

Verilog Preprocessor

• There are global textual substitution directives

– `define works like #define in C,
except the defined name gets a ` prefix

– `include works like #include in C

– `ifdef, `else, `endif works like in C,
and the defined name doesn’t get the ` prefix

• Use these for global properties of a design

Example of Preprocessor Use
`define WORD [7:0] // make all words 8 bits long
`define VAL 380 // an ordinary constant
`define DEBUG // enable debug output

module demo;
 reg `WORD Ken = `VAL;
 initial // drive the reset signal sequence
 begin
`ifdef DEBUG // note: not `DEBUG
 if (Ken != `VAL) $display(“Not Kenough!”);
`endif
 $display(“Hello, Ken ”, Ken);
 end
endmodule

• Run it here: http://aggregate.org/EE380/v24pre.html

http://aggregate.org/EE380/v24pre.html

Verilog Comments

• Both C comment styles are supported:

// to end of this line is ignored

/* to matching close
 is ignored */

Verilog Names

• Similar to C in many ways:
– All keywords are lowercase
– Names can use a-z, A-Z, 0-9, _
– Names don't start with 0-9
– Only system task names can start with $
– Whitespace generally treated as a separator

• Escaped identifiers start with \ and end with
whitespace… e.g.:
*@#$%&! // is the name *@#$%&!

Verilog Numbers
• Precision (in bits) can be explicit:

– Prefix size' specifies size bits precision
– Unsized is at least 32 bits (' optional)

• Base defaults to 10, but can be specified:
– Hexadecimal (base 16): h or H
– Decimal (base 10): d or D
– Octal (base 8): o or O
– Binary (base 2): b or B

• E.g.: 255 'Hff 8'o377 8'b11111111

Verilog X And Z Values
• Used with base 2, 8, or 16 constants
• An unknown value is (lowercase): x

– Number of bits in x determined by base
– E.g.: 8'b1010xxxx 8'hax

• A high-impedance value is (lowercase): z
– Number of bits in z determined by base
– E.g.: 8'bzzzzxxxx 8'hzx

• Extending precision pads with: x z 0
e.g.: 4'bxx 4'hx ; 4'b1x 4'b001x

Other Value Oddities

• In numbers:
– ? can be used in place of z
– _ is ignored (but can't start a number)
– E.g.: 8'h2_? 8'b0010zzzz

• Negative numbers:
– Always treated as 2's complement
– Sign before precision: -8'1 not 8'-1

Strength Levels
Strength level Type Degree

supply Driving strongest
strong Driving
pull Driving
large Storage
weak Driving
medium Storage
small Storage
highz High Impedance weakest

Verilog Strings
• Strings look like they do in C:

– Surrounded by double-quotes
– Escapes: \t \n \” \\ \oct %%
– E.g.: ”Hello, World!\012”

• Mostly used for arguments to system tasks
• Also can be reg vector initializers filling 8

bits/char from least to most significant

reg [32*8:1] mystring;
mystring = “Hello, World!\n”

Verilog Wires (Nets)
• Wires represent potential connections

between hardware elements;
signals that are continuously driven

• Keyword: wire tri wand tri0 tri1
• Default value: z (or given default 0 or 1)
• Can specify width

wire myoutput; // a wire
tri [31:0] mybus; // tri-state bus
wand myand; // a wired-AND

Verilog Registers

• Registers represent data storage elements…
like variables (not edge-triggered, clocked)

• Retain (unsigned) value until next assignment
• Keyword: reg trireg
• Default value: x
• Can specify width (default at least 32):

reg [15:0] r; // r is a 16-bit reg

Verilog Integers

• Integers are basically signed registers
• Keyword: integer
• Can specify width (default at least 32)
• Two equivalent declarations:

integer [15:0] r;

reg signed [15:0] r;

Verilog Reals

• Reals are floating-point values
– Can use decimal: 3.14
– Can use scientific notation: 314e-2

• Keyword: real
• Default value: 0
• Value is rounded when you need an integer

real r;

Verilog Times

• Times hold values of (simulated) time
• Keyword: time
• Precision is at least 64 bits
• $time system variable gives the current time

time when_started;
initial
 when_started = $time;

Verilog Vectors
• A vector specifies multiple-bit width
• Applies to reg integer wire
• Specifies range and order:
[msb_index : lsb_index]

• Can select a bit or a subset of bits

wire [31:0] mybus;
reg [0:31] reversed;
mybus[15:0] // not mybus[0:15]
reversed[16] // just bit 16

Verilog Variable Vector Select
reg [255:0] data1; // little endian
reg [0:255] data2; // big endian
reg [7:0] byte;

// variable part select, fixed 8-bit width
byte = data1[31-:8]; // data1[31:24]
byte = data1[24+:8]; // data1[31:24]
byte = data2[31-:8]; // data1[24:31]
byte = data2[24+:8]; // data1[24:31]

// start bit pos can be a variable (but not width)
for (j=0; j<=31; j=j+1)
 byte = data1[(j*8)+:8]; // [7:0], [15:8], …

// initialize only part of a vector
data1[(bytenum*8)+:8] = 8'b0;

Verilog Arrays
• An array specifies multi-dimensional collections
• Applies to all data types
• Specifies range and order:
[start_index : end_index]

• Cannot slice, can only select an element
• Syntactically declared after identifier,

but any vector subscripting comes last in use

wire [31:0] mybusses [0:4];
mybusses[2][15:0] // bus 2, 16 lsbs

Verilog Array Examples
integer count[0:7];
reg bool[31:0];
time chk_point[1:100];
reg [4:0] port_id[0:7];
integer matrix[4:0][0:16];
wire [7:0] w_array[5:0];
count[5] = 0;
port_id[3] = 0;
matrix[1][0] = 601;
port_id = 0; // illegal!
matrix[1] = 0; // illegal!

Verilog Memories
• RAM, ROM, and register files are all basically

modeled as arrays of reg
(synthesis is complicated using RAM blocks...)

• Word size for a memory is vector size,
number of elements is array size

• Selecting an array element is basically a
decoder/mux structure...

// memory holding 65536 bytes
reg [7:0] myram[0:'hffff];

Verilog Operators

• Arithmetic: + - * / %
• Relational: < <= > >=
• Logical equality: == !=
• Case equality: === !===

// these all act combinatorial!
assign a = (1 == 1); // a = 1
assign b = (1 == 1'bx); // b = x
assign c = (1'bx === 1'bx); // c = 1

Verilog Operators

• Logical: ! && ||
• Bitwise: ~ & | ^ ~^ (xnor)
• Unary reduction: & ~& | ~| ^ ~^
• Shift: >> << (always 0 filled)

// these all act combinatorial!
assign a = (& 3'b010); // a = 0
assign b = (& 3'bz11); // b = x
assign c = (3'b110 >> 1); // c = 3

Verilog Operators

• Trinary conditional: ? :
• Concatenation: { }
• Replication: { { }}

// these all act combinatorial!
assign a = (1 ? 1'bx : 0); // a = x
assign b = {1'1 , 1'0}; // b = 'b10
assign c = {2{a,b}}; // c = {a,b,a,b}

Verilog Gate Level
• Built-in: and nand nor or xor xnor

– 1st argument is output, then inputs
• Built-in: buf not (drivers)

– Any number of output arguments,
then last is the only input

– Any z input becomes an x output

// built-in gates are combinatorial
and a(out1, in1, in2);
buf b(out2, out3, out4, in3);

Gate Level 1-of-4 Mux

module mux1of4(Z,D0,D1,D2,D3,S0,S1);
output Z;
input D0,D1,D2,D3,S0,S1;
not(S0bar,S0),(S1bar,S1);
and(T0,D0,S0bar,S1bar),
 (T1,D1,S0bar,S1),
 (T2,D2,S0,S1bar),
 (T3,D3,S0,S1);
// should be or, not nor
or(Z,T0,T1,T2,T3);
endmodule

Gate-Level 1-of-4 Mux Example

• tryit only tries one input value
• Can run it here:

http://aggregate.org/EE480/mux1of4.html

http://aggregate.org/EE480/mux1of4.html

Verilog Data Flow Modeling
• Uses continuous assignment: assign

– A combinatorial operation
– Lval: a net, part of a net, or concatenation
– Rval is re-evaluated when anything changes

wire[7:0] a, b, c;
wire[15:0] big;
assign {b, c} = big;
assign a = b & c;

Verilog Delay Modeling
• Delay between rval change and lval update
• Specified in units of time

– Delay in individual assign #delay
– Property of a wire #delay

• Changes faster than delay are skipped

wire #5 [7:0] a;
wire [7:0] b, c;
assign #2 b=c; // delayed 2
assign a=c; // delayed 5

Verilog Behavioral Modeling

• Procedural blocks:
– All activate at time 0
– All execute concurrently
– initial blocks execute only at time 0
– always blocks execute repetitively, as

specified, e.g.: always@(posedge clk)
• Mostly about changing reg values;

but always could be combinatorial
• begin and end can group statements

Always Procedural Timing

• always(timing_control)
– An or of identifiers
– posedge of an identifier (0→1)
– negedge of an identifier (1→0)
– # time delay expression (make a waveform)

reg clk;
always @(posedge clk) begin ... end
always #5 clk = ~clk;

Procedural Assignments

• Usable in initial or always blocks
• Lval must be a reg integer …
• Two different assignment operators:

– For a wire: =
– For a flip-flop: <=

• Wire assignments can be instantaneous,
but flip-flops distinguish before and after state

Procedural Assignments

always @(A or B) // infer wire
begin
 B=A; C=B;
end

always @(posedge CLK) // flip-flop
begin
 B<=A; C<=B; D<=C;
end // clock skew! (may be ok?)

Conditional Statements

• if (expr) stat
if (expr) stat else stat

• case (expr) cases endcase
A case is: values : stats
Can have a: default: stats

• For grouping: begin ... end

Looping Statements

• while (expr) stat
Just like C

• for (expr ; expr ; expr) stat
Note: no ++ operator, so ++i is i=i+1

• repeat (expr) stat
Not like C – repeat stat expr times

• forever stat

