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Abstract—There are many ways to reduce power consumed
in performing a computation. Most focus on making each gate
more power efficient. In contrast, the current work focuses on
directly reducing the number of gate-level operations needed to
produce each word-level result.

Compiler optimization of computations at the gate level
exposes many redundancies that are not apparent when opti-
mizing word-level operations. In the proposed architecture, all
operations on multi-bit data values are performed bit serially.
Thus, a k-bit add takes O(k) clock cycles. However, by doing
each operation SIMD-parallel on n data, n k-bit operations also
complete in O(k) clock cycles using only O(n) gates per clock.
Further improvement can be made by using regular expression
patterns to represent the n values in each bit position; not only
does this compress the data, but it also allows many gate-level
operations to be performed directly on the patterns without
expanding them to bit vectors.

Index Terms—low power; green computer architecture; com-
piler optimization; gate-level logic optimization; regular expres-
sion; just in time compilation

I. INTRODUCTION

For the last half century, the majority of improvement in the
abilities of computers has come from using more circuitry to
perform parts of the computation in parallel. Over that time,
there was steady exponential growth in the amount of circuitry
that can be placed on each chip, but the growth rate predicted
by Moore in 1965 is no longer being met[1]. As that rate
slowed, a second problem developed: it became impractical
to continuously power all the circuitry that can fit on a chip.
Thus, the next big improvements in system performance will
not come by simply using more circuitry in parallel. Power
per unit of computation also must be reduced.

There are many different ways in which power consumed
per unit of computation performed can be reduced[2]. In
the current work, we suggest a combination of compiler
optimization technology and computer architecture that can
productively apply all of the methods described in the follow-
ing subsections.

A. Implement Using Low-Power Gates

An obvious way to reduce power consumption is to em-
ploy gate designs which inherently use less power. Adiabatic
logic[3] can significantly reduce power consumption per ac-
tive gate. Transformation of gate-level designs into reversible
logic[4] can be applied to reduce power consumption of nearly
any computer architecture.

B. Operate Only On Active Bits

Most programming languages are word-oriented: the data
types in the language roughly correspond to machine words.
For example, the C langauge originally defined an int as be-
ing an integer value of whatever precision was most efficiently
manipulated by the machine — now, an int is typically a 32-
bit word value. The catch is that fetching, operating on, and
storing 32 bits often implies expending power processing bits
that are known to be inactive and unnecessary.

Operations on integers should be limited to just the active
bits. A variable that is used as a loop index running from 0
to 100 should not be treated as a 32-bit value. In SWARC[5]
or BitC[6] one can declare such a variable as unsigned
int :7. The SWARC compiler minimizes operations on inac-
tive bits by packing shorter values into machine words that are
operated upon as “SIMD Within A Register” (SWAR) vectors.
BitC targets bit-serial nanocontrollers that directly implement
arbitrary-precision arithmetic.

Conceptually the same type of precision adjustment can be
applied to the precision of floating-point values and arithmetic.
For example, specifying accuracy constraints rather than pre-
cision allows the compiler to use higher precisions only when
lower precision fails to meet accuracy requirements[7].

C. Apply Compiler Optimization At The Gate-Level

Optimizing compilers can perform a large variety of sophis-
ticated transformations that simplify computations and remove
unnecessary operations, thus saving 100% of the power those
operations would have consumed.

For example, constant folding, common subexpression elim-
ination, and value forwarding allow code like a=4; b=a-3;
c=c+b; d=axc; e=c*ax*b; to be optimized into a=4;
b=1; ++c; d=c<<2; e=d;.More sophisticated compiler
analysis and transformations can even change the order of
complexity of a computation by eliminating entire loops, etc.
The perhaps surprising fact is that the same types of analysis
and transformation compilers normally apply to word-level
operations becomes dramatically more effective when applied
to bit-level representations of computations[6][8]. Ironically,
bit-serial SIMD supercomputers generally have not taken ad-
vantage of this; from the Goodyear MPP[9] to the CM-2[10],
they instead have been programmed by invoking bit-level
microcoded instruction sequences that implement a relatively
conventional word-oriented instruction set.
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Consider bit-serial addition of c=a+b where a and b are
declared as unsigned int:4 a, b;. The basic gate-level
operations on individual bits would be the following 35 single-
gate operations:

c0=(a0"b0); cl=((a0&b0) "~ (al"bl));
((al&bl) | ((al&b0)& (al”bl))) "
(a27°b2));
=(((a2&b2) | (((alsbl) | ((a0&b0) &
(al"bl)))&(a2°b2))) " (a3"b3));
=((a3&b3) | (((a2&b2) | (((al&bl) |
((a0&b0)&(al”bl)))&(a2”b2))) &
(a3"b3)));

However, ordinary compiler optimization would factor-out
the repeated portions of the computation. The result is just 17
single-gate operations and about half the power usage:

=(a0"b0); tO (a0&b0) ; tl (al"bl);
=(t0"tl); =(als&bl); =(t0os&tl);
=(t21t3); =(a2"b2); =(td4"t5);
=(a2&b2); =(t4&th); =(t6lt7);
=(a3"b3); c3—(t8 t9);
((a3&b3) | (£t8&t9));

Taking this analysis a bit further, if the addition is preceded
by b=1;, the compiler analysis produces the equivalent of
an incrementer circuit instead of an adder. This uses just 7
single-gate operations:

c0="a0; cl=(a0”al); tO0=(al&al);
c2=(a2"t0); tl=(a2&t0); c3=(a3"tl);
cd=(a3&tl);

If instead b=a; appeared before the addition, then the result
becomes the zero-gate shift computation:

c0=0; cl=a0; c2=al; c3=a2; cd4=a3;

Although the improvement obtained varies widely, some
complex computations can realize as much as a five-order-
of-magnitude reduction in the number of gate-level operations
needed as compared to when optimization is done exclusively
at the word level[2].

D. Amortize Control Logic Overhead

In thinking about computation, there is a tendency to focus
on the arithmetic and memory accesses as the primary costs.
Those costs are significant, but the basic circuit and power
overhead of fetching, decoding, and implementing the control
logic for executing instructions easily can be comparable or
even higher. It is critical that more clever control logic be
implemented in a way that does not exceed the logic power
savings by making more control circuitry active.

The unfortunate fact is that more sophisticated, finer-
grained, control of a computer requires a significantly larger
investment of circuitry and power budget for the control logic.
Consider a bit-serial machine with a single-gate one-bit ALU.
It can be made to do only the necessary bit-level operations,
and easily can be made to draw very little power for the
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Fig. 1. Bloch Sphere visualization of a qubit with value v

ALU. However, the power invested in fetching and decoding
an instruction will be far greater than that consumed by the
ALU. Just incrementing a program counter to point at the next
instruction uses far more power than performing a single-gate
ALU operation.

A popular solution to this is to use “virtualized” SIMD-
parallel execution to hide latency: a model very similar to
what was used for the Thinking Machines supercomputers[10],
and more recently for GPUs[11]. If incrementing the program
counter, fetching an instruction, and decoding the operation
costs approximately N gate delays, then there should be a
virtualization factor of at least N. For example, if instruc-
tion control logic takes about 20 gate delays to handle one
instruction, then a sequence of approximately 20 single-gate
operations should be processed per instruction. This virtualiza-
tion factor is, of course, multiplied by the width of the parallel
system. A machine with 32 single-gate ALUs might therefor
be virtualized with at least 640 SIMD processing elements.

E. N-Way Parallel Execution Without N Units of Hardware

One of the most promising potential methods for dramat-
ically reducing power consumption per unit computation is
the use of an execution model that supports N-way parallel
computation with fewer than N units of work. There are
various ways in which this apparently impossible goal might
be achieved. The current work is not about quantum comput-
ing, but the proposed approach can be better understood by
considering how a quantum machine might achieve this goal.

A quantum bit (aka, a qubit or gbit) can represent the value
0, 1, or a superposition of both simultaneously. Physicists
describe the value of a qubit as a continuous wave function
that defines probabilities of the value being 0 or 1. A Bloch
Sphere, as shown in Figure 1, is a geometrical representation of
this wave function value, essentially defining the probabilities
of 0 and 1 in terms of a pair of spherical coordinates (6, ¢)
defining a position on the surface of the sphere, with 100% 0
at the top of the sphere and 100% 1 at the bottom.

The interesting feature of this wave function model is that
multiple qubits can be entangled, made to have their wave
functions interact, such that any set of combinations of n
discrete 0 and 1 values are represented using just n qubits.
For example, two qubits can hold 00, 01, 10, and 11 simulta-
neously, with each of those possible discrete values having
its own probability. In such a configuration, any operation
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Fig. 2. Addition of two 2-pbit values

performed on the qubits is essentially performed on all values
simultaneously — by changing the wave function in a way
that can modify the probability distribution. It is this ability
to represent up to 2™ values in just n qubits, and to have
performing a single operation act upon 2" values, which makes
quantum computation so desirable.

Those abilities of quantum computing come at a cost: what
a physicist would call a superposition state does not actually
exist as what a computer engineer would call a state. Quantum
coherence is maintained only for a very limited time and
even within that period the act of reading-out an n-qubit
value essentially collapses the superposed state to a randomly-
selected discrete value. Thus, you can compute many results
simultaneously, but can only read one. There is also the fact
that nobody has yet built a quantum computer that is large
and reliable enough to do useful computations faster than a
conventional computer.

Instead of building a quantum computer, the current work
begins with the notion of simulating quantum-like superpo-
sition and entanglement using bit patterns implemented in a
relatively conventional computer. Each pattern bit (abbreviated
as pabit or pbit) is an ordered list of 1-bit values. The
entanglement of two pbits is represented by pairing of bit
values in corresponding positions within their ordered lists.
For example, two pbits with the value {0, 1, 2, 3} and two
pbits with the value {3, 1, 3, O} represents the entangled set
of value-pairs: {(0,3), (1,1), (2,3), (3,0)}. As shown in Figure
2, adding these two produces the 3-pbit result {3, 2, 5, 3}.
Clearly, the ordered pattern for each bit can be treated as a (in
this case, 4-bit) vector and bit-serial operations on pbits can
be performed using SIMD-parallel gate-level operations.

In this representation, the length of each bit vector is
determined by its entanglement and can be quite large: n-
way entanglement requires a bit vector of length 2". However,
rather than directly representing the bit vector, the pattern of
bits can be compressed by representing the bit vector as a
regular grammar or regular expression (RE) that can generate
the bit vector. The problem of finding the minimal complexity
RE to generate a given bit pattern is difficult, but run-length
encoding (RLE) is easily applied to create an RE that can
deliver significant compression. For example, the bit vector
{0,0,0,0,0,0,1,1, 1, 1,0,0,0, 0, 1, 1}, trivially can be
compressed into a pattern like 0°1#0*12 by RLE.

To implement the SIMD virtualization discussed earlier
(as a method to reduce control overhead), the RE can use
a symbol size of greater than one bit: the vectors can be
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Fig. 3. Encodings of 4 fully entangled pbits using 4-bit vector chunks

“chunked” into sub-vectors of length corresponding to the
desired virtualization times the physical parallelism of the
hardware. In practice, chunks should be fairly large; the current
implementation, which runs on a conventional laptop, uses a
chunk size of 2'2 bits. For a small example, consider just 22
bits per chunk. The 4-pbit pattern integer (paint or pint) with
the 4-way entangled value {2, 3,8, 1,6,7,12,5,2,3,8, 1, 14,
7, 12, 5} could be segmented into 4-bit-long symbols (chunks)
and represented using RLE-generated RE as shown in Figure
3. As is also shown in that figure, it is easy to reduce the RE
further by recognizing that the first three pbits are repeating
patterns with lower entanglements.

While this RE compression scheme reduces the memory
space needed, the key benefit is that by operating directly on
the compressed form, the amount of parallel computation
needed can be reduced by as much as the compression
factor. While the reduction in the number of gate-level opera-
tions that must be performed depends on the entangled values
and is not always exponential, it is generally a very significant
factor. In the current implementation, duplicate chunks are also
recognized and factored, further reducing storage requirements
and allowing for applicative caching to avoid chunk-level
recomputation. For example, if two chunks have been bitwise-
ANDed before, that can be recognized and the result can be
obtained from a software cache without ever accessing the data
bits from the chunks.

II. THE PROTOTYPE IMPLEMENTATION

The current prototype implementation consists of a little
over 2K lines (40KB) of C source code. There are expected
to be five major layers in the implementation of this model,
four of which are operational at this writing. The lowest level
is the chunk management. Above that layer is the factored bit
parallel (FBP) layer, which manages regular expression values
of pbits. The pbit layer is next, constructing optimized DAGs



Operation Name | Operation Functionality O()
H, Hadamard a=superposition of 0/1 R
NOT Adiabatic a =NOT a N
SWAP Adiabatic exchange values of a and b 1
CCNOT, Toffoli Adiabatic if a AND b, ¢ =NOT ¢ N
CSWAP, Fredkin Adiabatic if ¢, SWAP(a, b) N
Duplicate a=> R
AND a=bAND ¢ N
OR a=bO0ORc¢ N
XOR a=1bXOR ¢ N
All Reduction, true if a is 1 1
Any Reduction, true if a contains a 1 1
Population Reduction, count of 1s in a R
Simplify Internal simplify regular expression R

TABLE I
WORST-CASE COMPLEXITY OF SOME FBP OPERATIONS

(directed acyclic graphs) for pbit-level computations. The pint
layer handles arithmetic and other operations on entire multi-
pbit signed and unsigned integer values. The top layer, which
is not yet complete, will essentially wrap the pint layer in C++
constructs that allow pints to be directly manipulated in a
C++ program as though they were a built-in data type.

How expensive are operations on pbits? Thanks to the chunk
and FBP layers, many operations are surprisingly cheap. Table
I lists some of the currently implemented FBP operations.
For each, the operator name, functionality, and worst-case
computational complexity are listed. Complexities are given
in terms of NN being the number of machine bits in the
representation of the value, although it is highly unlikely that
the regular expression representation will require examining
that many bits; most patterns contain repeated symbols, and
the bits in repeated symbols (chunks) are generally examined
only once. A few operations have complexity bounded by the
number of symbols in the regular expression, R. The O(1)
complexities are achieved by algorithms that literally never
examine an actual chunk, nor even walk the regular expression.
Note that the reduction operations are logically equivalent
to using interference in a quantum computer to sample a
superposed state without collapsing it; of course, unlike qubits,
pbit values can always be read without collapsing them.

Quantum computing compilation and/or simulation envi-
ronments generally define, and expose to users, some sim-
ple syntax for expressing operations on gqubits: a “‘quantum
assembly language.” For example, Quil[12], OpenQASM[13],
and cQASM][14] all implement similar syntax for specifying
operations on qubits. In contrast, the pbit layer here is really a
just-in-time optimizing compiler for pbit operations. Various
algebraic simplifications are symbolically performed as pbit
expression DAGs are created, without any FBP activity. For
example, AND of anything with the constant 1 does not create
an AND gate, but returns a reference to the other operand. It
is worth noting that the only constants that can appear in pbit
DAGs are 0, 1, and Hadamard superpositions for anywhere
from 1 to 32 entangled pbits.

High-level languages for quantum computers generally re-
quire specifying individual operations on qubits. For example,

both IBM’s Qiskit[15] and Microsoft’s Q#[16] essentially add
a variety of functions to existing languages to allow qubit-
level specification of computations. In contrast, the system
described in the current work also augments a conventional
language (C/C++), but it directly provides a layer that under-
stands pint operations and implements a just-in-time optimiz-
ing compiler to create the pbit DAGs.

A pint is represented as a data structure which contains an
array of pbit references, a precision, and a flag specifying if the
value is signed (as opposed to unsigned). All the usual integer
operations are supported for pint containing from 1 to 32 pbits.
The integer operations are supported by implementing an op-
timized gate-level circuit design to produce the value for each
pbit. Some multi-bit integer operations are trivially lowered
to operations on individual bits. For example, bitwise AND
of two pint values trivially produces a result using ANDs of
corresponding component pbit values from the two operands.
Other operations are significantly less straightforward. For
example, addition of two pint values performs a sequence
of pbit operations that is equivalent to implementing a ripple
carry adder circuit. Multiply builds upon that to implement a
purely combinatorial shift-and-add circuit.

In our system, when the pbit layer is initialized, all the
layers below are also initialized. Operations on pint simply
compile optimized DAGs for the component pbit operations;
the FBP layer is not triggered until the conventional value(s)
of a pint are requested (“measured”). At that point, the pbit
DAGs for the requested pint value are walked and decorated
with references to the results of FBP evaluation of each pbit.
Arbitrarily complex intermediate steps combining pint values
do not cause any computation until it is demanded by calling
for evaluation of a particular pint.

As a simple example, consider the problem of finding the
square root of a 16-bit number, 29929 in this example. A
complete C program to perform this pint computation is:

int main(int argc,
pbit_init ();

char x*argv) {

pint a = pint_mk (16, 29929);
pint b = pint_h(8, O0xff);
pint ¢ = pint_mul (b, b);
pint d = pint_eqg(c, a);

pint e = pint_mul(d, b);

pint_measure (e);

Rather than computing square root directly, our example
makes a=29929, initializes b to all possible 8-bit values with
8-way entanglement (i.e., 2% entanglement positions), makes
c the entangled values for squaring b, creates an entangled
d that is 1 only where c==a, and then makes e a copy
of b’s values with all that are not the square root of 29929
zeroed. Of course, no actual FBP operations are triggered until
pint_measure (e) is used to print the result: 0 173... and
173 is the square root of 29929.



III. CONCLUSION

The current work introduces a new model for energy-
efficient execution. Efficiency is not based in use of exotic
gate-level hardware implementation, but in reducing the num-
ber of gate-level operations that must be performed in order
to produce each result. This is accomplished through the
combination of gate-level compiler optimization technology
and novel parallel computer architecture, which could be
implemented using conventional gates. Although this work is
at a very early stage, it does clearly demonstrate that gate-
level complexity of computations can be dramatically reduced
— even exponentially — without resorting to exotic quantum
phenomena.

A prototype system has been produced, and an example was
presented. However, there is much more to be done to optimize
and extend both the compiler technology and the architecture.
An obvious improvement is that, although the system that
runs on a laptop already generates 4,096-bit-wide parallel
execution, more parallelism and other adjustments should
allow it to be re-targeted to provide appropriate parallelism
for multi-core, GPU, and cluster computers. We also plan
to expand the set of supported operations, both at the lower
levels and by adding support for pfloat. In the more distant
future, we envision not only a special-purpose architecture
tuned for parallel bit pattern computing, but also development
of compiler technology for automatic bit pattern parallelization
— much like automatic parallelization for more conventional
parallel computer execution models.
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