A Quantum-Inspired Model For Bit-Serial
SIMD-Parallel Computation

Henry Dietz, Aury Shafran, and Gregory Austin Murphy

University of Kentucky, Lexington KY 40506, USA,
hankd@engr.uky.edu,
WWW home page: http://aggregate.org/hankd

Abstract. Bit-serial SIMD-parallel execution was once commonly
used in supercomputers, but fell out of favor as it became prac-
tical to implement word-level operations directly in MIMD hard-
ware. Word-level primitive operations simplify programming and
significantly speed-up sequential code. However, aggressive gate-
level compiler optimization can dramatically reduce power con-
sumed in massively-parallel bit-serial execution without a perfor-
mance penalty. The model described here, Parallel Bit Pattern
Computing, not only leverages gate-level just-in-time optimization
of bit-serial code, but also uses a quantum-inspired type of symbolic
execution based on regular expressions to obtain a potentially expo-
nential reduction in computational complexity while using entirely
conventional computer hardware.

Keywords: bit-serial SIMD, quantum computing, qubit, logic op-
timization, regular expressions, just in time compilation, C++

1 Introduction

Bit-serial SIMD supercomputing is not a new topic for the Languages and Com-
pilers for Parallel Computing (LCPC) community; much of the work presented
in the first two decades of this workshop series targeted such machines. However,
the current work is largely focused on applying compiler technology at the level
of individual gate operations, and such techniques are far less well studied. The
2017 “How Low Can You Go?” paper [1] was an attempt to inspire more work
in that direction, and much of what it suggested is implemented in the system
described in this paper.

The parallel bit pattern model of computation[2] shares two important prop-
erties with quantum computing:

— Both quantum computing and parallel bit pattern computing provide ex-
ecution mechanisms that have the potential for a single unit of computa-
tional work to produce results for exponentially many data values using
the concepts of superposition and entanglement. Quantum computers seek

these benefits by implementing qubits using quantum phenomena. In con-
trast, pattern bits, or pbits, use symbolic computation on a compressed
bit vector representation — a bit pattern, which can be manipulated
efficiently using conventional computer hardware.

— Both focus on optimizing computations at the gate level. Quantum com-
puters are directly programmed at that low level, expecting programmers
to manually optimize the gate-level code. In contrast, parallel bit pattern
computing leverages gate-level compiler optimization technology at
runtime to allow not only programming at the gate level, but also at a
higher level, using relatively conventional operators and data types includ-
ing variable-precision integers: pints.

Parallel bit pattern computing is neither a simulation of quantum computing nor
a compatible replacement for quantum hardware. It offers a new high-level pro-
gramming model, and bit-serial parallel execution model, that together enable
conventionally-constructed computers to efficiently use superposition and entan-
glement to implement a large class of quantum-inspired algorithms. The model is
fundamentally stronger than quantum models because it allows non-destructive
measurement and values may be maintained for arbitrarily long without deco-
herence. Of course, all this is accomplished while aggressively using compiler
optimization to dramatically reduce the total number of gate-level operations
that must be executed to perform each computation, thus potentially reducing
the power consumed.

1.1 Representation of Entangled Superposition

Figure 1 shows three different ways in which superposed values can be rep-
resented. The value of a qubit is commonly modeled as a real-valued, two-
dimensional, probability density function: the Bloch Sphere[3]. Instead of using
that model, an e-way entangled pbit value can be represented as an array of 2¢
values (AoV), in which each possible multi-bit value is an element: an entangled
pair of pbit initialized to equiprobable {0, 1, 2, 3} is shown. However, the AoV

z =10 0 1 2 3
L
y CIICIENEIEEIE)
Array of Values (AoV)
¢ representation of 2 entangled pbits 0123
T ———=x

Array of Bits (AoB) [OI 1 : OI 1 J

representation of 2 entangled pbits { M

—5 = |1> Bloch Sphere representation of a single qubit

Fig. 1. Representations: Bloch Sphere qubit; AoV and AoB 2-way entangled pbit

layout does not provide the benefits sought by bit-serial execution. Thus, con-
sider turning that representation — a trick used to integrate word-based floating
point units with massively-parallel bit-serial execution in the Thinking Machines
CM2[4]. Thus, the value of each pbit is an array of 2¢ bits (4oB), entangled values
are bits with the same array index (i.e., using the same entanglement channels),
and value probabilities are not real numbers, but always integer parts per 2¢.

The AoB representation offers one more huge benefit: low entropy. The bit
values often have relatively simple repeating patterns, which we can compress
by representation as a regular expression (RE). In the AoB example above,
{0,1,0,1} can reduce to (01)% and {0,0,1,1} is 0212 by simple run-length encod-
ing. By storing and operating directly on REs, parallel bit pattern computing
reduces both storage requirements and computational complexity by as much
as an exponential factor... essentially the same goal sought by quantum com-
puting, but achieved using partially symbolic parallel execution on conventional
hardware.

1.2 A pbit-level Example

Even at the pbit level, storage space for values is automatically managed. Also
unlike quantum computers, programs are not restricted to using reversible gates
like NOT (Pauli X), CNOT, SWAP, CCNQOT (Toffoli), and CSWAP (Fredkin). They can
be used, but so can conventional gates and fanout. For example, a 1-bit full
adder computing a+b+cin to produce sum and cout could be:

pbit sum = pbit_xor(pbit_xor(a,b),cin);
pbit cout = pbit_or(pbit_and(a,b),pbit_and(pbit_xor(a,b),cin));

Of course, pbit_xor(a,b) will be evaluated only once, but the really interesting
thing is that values for a, b, and cin can be 3-way entangled superpositions of all
8 possible input values. To do this, each input must be given a Hadamard value
on it’s own entanglement channel (a concept unique to parallel bit patterns):

pbit a = PBIT_H(0); // a is (01)+
pbit b = PBIT_H(1); // b is (0011)+
pbit cin = PBIT_H(2); // cin is (00001111)+

The result of performing the add is thus that sum gets the value (01101001)+
and cout gets (00010111)+. Unlike quantum computers, this entangled super-
position does not collapse into a single value when measured; any or all of the
values can be read. In fact, the entire probability distribution can be read with-
out need to repeat the computation: in this case, the 2-bit {cout,sum} results
would be 1/8 {0,0}, 3/8 {0,1}, 3/8 {1,0}, and 1/8 {1,1}.

These REs can be simplified using run-length encoding: cout is (03110113)+.
Execution walks these RE patterns without expanding them to AoB form. Over-
head of this symbolic manipulation is reduced by using larger symbols in the
RE; rather than patterns of individual bits, the current prototype treats each

4096-bit chunk as a symbol. This also allows massively-parallel execution of gate
operations over the bits within each chunk, and applicative caching can avoid
recomputation when a chunk result is available from a prior computation.

1.3 Two pint-level Examples

Moving up to the pint level, consider the problem of computing the square
root of the 16-bit value 29929, which is 173. Rather than using a conventional
algorithm, this can be computed by squaring all 8-bit values and selecting only
the values that produced 29929. The complete code is simply:

int main(int argc, char **xargv) {
pint_init();

pint a = pint_mk(16, 29929); // 16-pbit value 29929

pint b = pint_h(8, 0xff); // H() .. H(7)

pint ¢ = pint_mul(b, b); // square them

pint d = pint_eq(c, a); // where square equals 29929
pint e = pint_mul(d, Db); // make non-sqrts all O
pint_measure(e); // prints 0, 173

}

Notice that multiplying two 8-bit values naturally produces a 16-bit result (which
here is 8-way entangled). This pint computation is implemented by just 310 gate-
level pbit operations. The obvious algorithm to find all factors of 221 is similar,
but creates a 16-way entangled space from two 8-way entangled values:

int main(int argc, char **xargv) {
pint_init();

pint a = pint_mk(8, 221); // 8-pbit value 221=13%17
pint b = pint_h(8, 0x00ff); // H(0) .. H(7)

pint ¢ = pint_h(8, 0xff00); // H(8) .. H(15)

pint d = pint_mul(b, c); // multiply them

pint e = pint_eq(d, a); // where product equals 221
pint f = pint_mul(e, Db); // make non-factors all O
pint_measure(f); // prints 0, 1, 13, 17, 221

The number of values found in this measurement trivially determines primality.
Any value thus factored will list at least 0, 1, and itself; if that is all, the number
is prime. If there are four listed, then the number is the square of a prime. If
there are five, the number is the product of two primes — the prime factors.
Of course, much more efficient algorithms are possible, but the elegance of this
example is a compelling argument for investigating this model further.

The remainder of this paper discusses some of the more interesting aspects
of the current implementation of the parallel bit pattern computing model.

2 The Prototype Implementation

The latest prototype implementation consists of 2,713 lines (59KB) of C source
code, originally written by Dietz and significantly improved by Shafran in Spring
2020. There are expected to be five major layers in the implementation of this
model, four of which are operational at this writing. The lowest level is the chunk
management. Above that layer is the factored bit parallel (FBP) or pattern layer,
which manages regular expression values of pbits. The pbit layer is next, con-
structing optimized DAGs (directed acyclic graphs) for pbit-level computations.
The pint layer handles arithmetic and other operations on variable-precision
multi-pbit signed and unsigned integer values. The top layer, which is not yet
complete, essentially wraps the pint layer in C++ constructs that allow pints
to be directly manipulated in a C++ program as though they were a built-in
data type. These layers are described in the following subsections.

2.1 The Chunk Management Layer

As mentioned in Section 1.2, the REs are currently expressed as patterns of
4096-bit chunk values within a potential 4294967296-bit AoB representation for
32-way entanglement. The chunk management layer implements a pool for al-
location of chunk data blocks in an aligned, contiguous, region of memory. The
data is kept separate from the management structures to ensure optimal align-
ment with cache lines, page table entries, and parallel execution structures. In
Spring 2020, Murphy began work on parallel evaluation within a CUDA GPU,
but parallel execution is currently within the host processor.

Chunks are indexed by a hash table containing many buckets (to keep loading
light), each of which heads a dual-linked list of hash entries. Each hash entry
not only points at the corresponding chunk data, but also contains a reference
count tracking how many higher-level structures still have live pointers to this
chunk entry. Duplicate chunks are recognized and only unique live chunks are
stored. Reusing chunk memory as soon as possible is intended to improve cache
and translation lookaside buffer performance.

2.2 The Factored Bit Parallel (FBP) Pattern Layer

The representation of a pbit value as a regular expression in which chunks are
the basic symbols is managed by the factored bit parallel (FBP) layer.

As Table 1 shows, many FBP operations still have worst-case complexity
that is exponential. Note that, using a more conventional (e.g., AoV) model of
computation, all of the pbit operations would have at least 232 work complexity,
and there would be more total work to perform because bit-serial optimiza-
tions[1] would not have been applied. In contrast, RE-based FBP makes 232 an
unlikely worst case. The 220 limits come from operations acting only on the sym-
bols within a regular expression, rather than operating (in parallel) on the 4096
bits in each chunk. Lower-entropy regular expressions and applicative caching of
chunk operations make the expected complexities far lower; any operation with

Time Work Operations

1 1 SWAP gate; ALL, ANY reduction; non-destructive measurement
1..22° 1..22° DUP; POPulation count; simplify regular expression

1..220 1.2%2 CSWAP, CCNOT, NOT, AND, OR, XOR gates

Table 1. Complexities of 32-way entangled FBP operations with 4096-bit chunks

no more than 12-way entanglement takes unit time, and a symbol repeated N
times in an FBP regular expression typically would be evaluated only once.
Contrast these complexities with a true quantum computer supporting 32-
way entanglement (which none yet support). Complexity would be constants for
SWAP, CSWAP, CCNOT, and NOT. However, the other operations are not directly
implementable. In fact, the no cloning theorem implies implementing operations
like POP or even non-destructive measurement is impossible. Many complex quan-
tum algorithms, such as Shor’s algorithm|[5], owe their complexity to statistically
approximating such operations (typically using phase interference).

2.3 The pbit Layer

Quantum computing compilation and/or simulation environments generally de-
fine, and expose to users, some simple syntax for expressing operations on
qubits: a “quantum assembly language.” For example, Quil[6], OpenQASM][T7],
and cQASM]8] all implement similar syntax for specifying operations on qubits.
However, that approach is not well suited to specification of FBP operations.
One problem is the mismatch between basic operations provided: the various
quantum assembly languages all provide direct operations on quantum wave
functions and only adiabatic logic gates, whereas FBP does not model wave
functions at all and provides a variety of both adiabatic and conventional types
of logic gates. However, there is a larger incompatibility: pbit layer operations
are normally not textually represented in a program, nor are they static; aggres-
sive optimization and pbit (register) allocation are done at runtime.

As is discussed in Section 2.4, the pbit layer is really intended to serve as
an internal framework for just-in-time compilation and optimization of work
specified at the pint level. When specifying a computation using sequences of
operations on multi-bit integers, as was observed by Dietz[1], it is common that
a very large fraction of the intermediate bit-level operations will end-up being
unnecessary. Logic optimization can symbolically recognize and remove many
of these operations at compile time without ever incurring the overhead of con-
structing and evaluating FBP data structures. Thus, the pbit layer is literally
an optimizing compiler used to cheaply remove as many unnecessary operations
as possible before causing any FBP-layer evaluation.

Although pbit operations should look a lot like the FBP operations that are
used to implement whatever computation remains, there is no need to use every
type of instruction that the underlying machine supports. The current pbit layer
simplifies optimizations by decomposing all operations into ANY, NOT, OR, AND,

and XOR. The only constants available are 0, 1, and Hadamard superpositions
for up to 32-way entangled pbits (i.e., H(0) .. H(31)).

Various algebraic simplifications are performed on-the-fly as pbit expression
DAGs are created. For example, AND of anything with the constant 1 does not
create an AND gate, but returns the other operand. A few multi-level simplifi-
cations also are performed, such as removal of NOT NOT and recursive searches
to see if an item being ORed or ANDed into a sequence of that operation has
already been included — e.g., (a AND (b AND (a AND c))) becomes just (b AND (a
AND c¢)). Every potential operation also has its operand order normalized and
a new operation will only be generated if that normalized computation is not
already an available expression.

Originally, to maximize the probability of finding available expressions, no
pbit DAG operation created during the expression compilation process was ever
deleted. However, the latest version greedily reclaims no-longer-referenced pbit
data structures to reduce memory usage. When the pbit layer is initialized, only
0, 1, and the Hadamard superpositions are available, but the set of available
expressions grows as calls are made to compile additional operations. When
the value of a pbit is demanded, the DAG producing that value is evaluated by
executing a simple bottom-up tree walk that decorates the DAG with the results
from executing each operation using the FBP layer. Values shared between DAGs
are evaluated only once because the first walk to visit a node decorates it with
a pointer to the FBP result, thus making it the bottom node in that walk. The
nodes that correspond to dead code are not reachable via any walk, hence they
are never evaluated using FBPs.

2.4 The pint Layer

In most quantum computer programming systems, the next level up from the
quantum assembly languages described in the previous section is one in which
quantum computations are still specified at the level of individual operations
on qubits, but the quantum manipulations are embedded in a full-featured con-
ventional programming language. For example, both IBM’s Qiskit[9] and Mi-
crosoft’s Q#[10] essentially add a variety of functions to existing languages to
allow qubit-level specification of computations. Higher-level (e.g., integer) oper-
ations must be built using the primitive operations. The system described in the
current work also augments a conventional language (C/C++), but the pint
layer directly understands integer operations.

A pint is represented as a data structure which contains an array of pbit
references, a current precision, and a flag specifying if the value is signed (as
opposed to unsigned). All the usual integer operations are supported for pint
containing from 1 to 32 pbits.

Lowering operations on pint to operate on pbits is a lot like lowering opera-
tions on integers to gate-level code operating on individual bits. Some multi-bit
integer operations are trivially lowered to operations on individual bits. For ex-
ample, bitwise AND of two pint values trivially produces a result using ANDs of
corresponding component pbit values from the two operands. Other operations

are significantly less straightforward. For example, addition of two pint val-
ues performs a sequence of pbit operations that is equivalent to implementing
a ripple carry adder circuit. Multiply builds upon that to implement a purely
combinatorial shift-and-add circuit.

The primary complication in implementing these pint operations at the pbit
level lies in the fact that precision and signedness can dynamically vary. It does
not make sense to bitwise OR values of different precision; the less precise one
should be promoted to have the same number of pbits as the more precise
one. If two k-pbit pint values are added, the result generally has k + 1 pbits.
On the other hand, if the two unsigned integers being added are 0 and 1, only
a single bit is needed to express that the result is 1. Implementation of pint
operations involves a variety of automatic promotion and precision-minimization
operations.

When the pint layer is initialized, all the layers below also are initialized.
Operations on pint simply compile DAGs for the component pbit operations. At
the end of a sequence of pint operations, a call to evaluate each pint will cause
the component pbit DAGs to be evaluated and decorated with references to their
FBP results. Arbitrarily complex intermediate steps combining pint values do
not cause any computation until it is demanded by calling for evaluation of
a particular pint, e.g., by measuring the value. Measurement results can be
printed, but normally would be storing a single value into an ordinary int or all
superposed values into an int array.

3 Conclusion

The current work begins by describing, and giving a few motivating examples
for, the quantum-inspired parallel bit pattern model for energy-efficient execu-
tion using conventional computer hardware. The efficiency comes partly from
extensive gate-level optimization implemented using just-in-time compilation,
but also from use of symbolic computation on regular grammars to obtain the
quantum-like property of a single operation on an entangled, superposed, value
producing up to exponentially many results. The structure of a prototype im-
plementation is also detailed.

Although the prototype system is operational, it is not yet complete: we
are improving/debugging the system and implementing a C++ wrapper, and
plan an open source release. We are working on offloading the massively-parallel
evaluation of chunks to a GPU. Dietz also has created a greatly simplified parallel
bit pattern computer architecture called Tangled, which provides coprocessor
support for parallel AoB chunk operations and is being implemented in Verilog
by the students taking his undergraduate CPE480 Computer Architecture course
at the University of Kentucky in Fall 2020. In the more distant future, we envision
compiler technology for automatic parallelization targeting this new model.

References

1. Dietz, Henry G.: How Low Can You Go?. 30th International Workshop on Languages
and Compilers for Parallel Computing (LCPC 2017), College Station, Texas, 8 pages
(October 11, 2017)

2. Dietz, Henry: Parallel Bit Pattern Computing, IEEE 2019 Tenth In-
ternational Green and Sustainable Computing Conference (IGSC), DOI:
10.1109/IGSC48788.2019.8957188 (2019)

3. Rieffel, E. and Polak, W.: An introduction to quantum computing for non-physicists,
ACM Computing Surveys (CSUR), 32(3), 300-335 DOI: 10.1145/367701.367709
(2000)

4. Tucker, L. W. and Robertson, G. G.: Architecture and applications of the Connec-
tion Machine. IEEE Computer, Volume 21, Number 8, 26-38 (August 1988)

5. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring,
Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE
Comput. Soc. Press: 124-134 DOI: 10.1109/sfcs.1994.365700 (1994)

6. Smith, R.S.; Curtis, M.J.; and Zeng, W.J.: A practical quantum instruction set
architecture. arXiv preprint arXiv:1608.03355 (2016)

7. Cross, A.W.; Bishop, L.S.; Smolin, J.A.; and Gambetta, J.M.: Open quantum as-
sembly language. arXiv preprint arXiv:1707.03429 (July 13, 2017)

8. Khammassi, N.; Guerreschi, G. G.; Ashraf, I.; Hogaboam, J. W.; Almudever, C. G.;
and Bertels, K.: cqasm v1. 0: Towards a common quantum assembly language. arXiv
preprint arXiv:1805.09607 (2018).

9. Wille, R.; Van Meter, R.; and Y. Naveh: IBM’s Qiskit Tool Chain: Working with
and Developing for Real Quantum Computers. Design, Automation & Test in Europe
Conference & Exhibition (DATE), Florence, Italy, 1234-1240 (2019)

10. Svore, K. M.; Geller, A.; Troyer, M.; Azariah, J.; Granade, C.; Heim, B.; Kli-
uchnikov, V.; Mykhailova, M.; Paz, A.; and Roetteler, M.: Q#: Enabling scalable
quantum computing and development with a high-level domain-specific language.
arXiv preprint arXiv:1803.00652 (2018)

