
Programmable Nanocontrollers For Nanodevices

H. G. Dietz

Electr ical & Computer Engineering Department

University of Kentucky

Lexington, KY 40506-0046

hankd@engr.uky.edu

Advances in nanotechnology have made it possible to assemble nanostructures into a

wide range of micrometer-scale sensors, actuators, and other novel devices... and to

place thousands of such devices on a single chip. Most of these devices can benefit

from intelligent control, but the control often requires full programmability for each

device’s controller. Routing thousands of signals off-chip is not practical, but neither are

conventional microcontroller designs able to be made small enough to be paired with

each of the thousands of devices on-chip. This paper outlines an approach toward

achieving the goal of building fully programmable controllers with circuit complexity low

enough to allow each nanotechnology-based device to be accompanied by its own

nanocontroller.

1. Motivation

The considerable body of wor k in nanoprocessors centers on using new nanotechnology

implementation technologies to produce either ver y complex conventional processors or

novel types of massively parallel computing devices. Our goal is not computing per se,

but intelligent control of devices built using nanotechnology. Our concept of a

nanocontroller is a programmable controller that is simple enough to be on the same

chip as, and paired with, the micrometer-scale nanotechnology-based device(s) that it

controls. These nanocontrollers also would be appropriate as embedded controllers for

Micro-Mechanical Devices (MMD) and other somewhat larger devices.

It is hard to imagine a wor ld without intelligent control of human-scale devices, but this is

a ver y recent phenomenon. The potential impact of nanocontrollers on nano- and micro-

scale devices is equally strong.

As a hypothetical example, consider chemical and/or biological sensor array chips. In

militar y or homeland security applications, a common goal of nanotechnology effor ts is

to create a single chip sensor array that can detect and measure the levels of a wide

range of chemical and biological toxins. The usual vision of the system is something

like:

Nanotech

Sensor

Array

Digital

Analog to

Converters

Digital

Computer

This pipeline appears to be necessary to accommodate significant digital post-

processing requirements. Some of the processing might be correcting for nonlinear

errors in the analog sensor outputs; these errors might var y from sensor chip to sensor

chip, thus requiring individual units to be calibrated. Subsequent processing might

analyze the corrected sensor levels to determine the level of health threat, report the

levels of relevant sensors, and select the appropriate remedial action to be taken, e.g.,

choice of var ious antidotes and protective gear.

Instead, suppose that each sensor is accompanied by a nanocontroller that could be

programmed to apply the calibrated nonlinear correction. Using some low-temperature

nanofabr ication technologies to build the sensor array, it might be possible to first create

a chip full of nanocontrollers and then create the sensor array as a lay er above the

nanocontrollers — literally taking no additional space on the chip to add this intelligence.

The nanocontrollers under the sensors, perhaps with additional nanocontrollers on the

same chip, can then operate as a parallel computer system to evaluate threats. The

results would be directly output from the sensor chip — perhaps as digital signals

directly displaying the appropriate remedial action on a Liquid Crystal Display (LCD) or

as playback of the appropriate digitized audio announcement.

In summary, the nanocontroller solution would be smaller, more durable, cheaper,

consume less power, and ver y likely provide higher perfor mance.

In addition to application within a wide var iety of smart chips using nanofabr ication

technology, notice that we define nanocontrollers by their circuit complexity, not by their

physical size. Physically large nanocontrollers made using organic semiconductors or

similar technologies might be useful in applications such as smart control of pixels in a

large-scale display.

2. What Must A Nanocontroller Be Able To Do?

The vision of nanocontrollers embedded alongside nanotechnology devices cannot be

implemented using conventional microcontroller architectures and compilation

technology. It will be enabled by dev eloping a new set of architectural and compilation

technologies that together can satisfy the basic requirements for such a system. There

are six primar y requirements, outlined in the following subsections.

2.1. Minimal Circuit Size

The circuit complexity per nanocontroller must be low enough to be comparable in

physical size to sensors, actuators, and other devices implemented using

nanotechnology. Even the simplest microcontrollers generally require thousands of

gates; our goal is to reduce that number to no more than hundreds of transistors.

2.2. Predictable Real-Time Behavior

From a programmer’s point of view, a nanocontroller must have predictable real-time

execution timing character istics. In order to monitor or control the real-time behavior of a

device, it often will be necessary for the nanocontroller to perfor m par ticular operations

at precise times relative to other operations. Although some nanotechnology devices

can tolerate ver y slow controller time bases, the required timing precision var ies greatly

depending on the type of device with which the nanocontroller must interact. The small

physical scale of some devices results in relatively small time constants. As an initial

goal, a nanocontroller should be able to handle real-time constraints with accuracies no

worse than a microsecond. Fortunately, the simplicity of nanocontrollers should allow

instr uction execution times of a nanosecond or less, so microsecond timing accuracy

should be easy to achieve .

2.3. Localized Input/Output

Each nanocontroller must be be able to perfor m appropr iate digital and/or analog

input/output (I/O) operations to interact with the nanotechnology device(s) with which it is

associated.

Digital I/O may be as simple as having some memory cells or registers be input/output

devices.

Analog I/O is substantially more complex. Many nanotechnology devices have

inherently analog interfaces, and the space required for separate Analog-to-Digital

Converter (ADC) or Digital-to-Analog Converter (DAC) units would be too great. Thus,

an analog input would most likely be implemented by timing (in software) how long it took

for a digital threshold voltage to be crossed in charging a capacitor. An analog output

can be accomplished by a similar process, essentially using Pulse-Width Modulation

(PWM) software to drive a simple filter circuit. These approaches also help in that using

a separate ADC/DAC unit tends to fix the precision of conversion, whereas the method

discussed permits precision to be traded for sample speed under program control. Of

course, this type of analog I/O is possible only with a fast enough processor that also

has the predictable timing described in 2.2.

2.4. Coordination As A Parallel Computer

E plur ibus unum: each nanocontroller is but one of many that may need to act as one.

With thousands or millions of devices on a single chip, each with it own nanocontroller, it

often is necessary to coordinate the actions of all the devices or to reduce thousands of

sensor inputs to their single higher-level meaning. For example, a chip with a var iety of

types of analog sensors that are together able to detect or deduce levels of thousands of

different chemical compounds might only need to report the action that the user should

take to counter the set of chemical or biological agents currently sensed. Thus, the

nanocontrollers must be able to act together as a parallel computing system.

2.5. Each Nanocontroller Independently Programmable

Each nanocontroller must be fully programmable as an independent processor.

Although nanocontrollers may need to wor k together, control and sensing algorithms

often require different constants or even different code paths depending on the state of

the device with which each nanocontroller interacts. Basic properties of

nanotechnology-based devices make this divergence even more likely, because the

variability inherent in the properties of nanoscale devices is generally greater than is

commonly seen for larger-scale constructions.

For example, var iations in the molecular-level str ucture of sensors may cause non-

linear ities to be substantially different for adjacent nanotechnology sensors made with

the “identical” design, thus requiring different constants and/or algorithms for normalizing

their values. Another reason for independent programmability is to gracefully degrade

system perfor mance when some controlled devices are faulty. A faulty device could be

given a different control program that acts to minimize the impact of the particular fault

present.

Independent programmability implies that there is a programming system that can

suppor t coding of arbitrar y algor ithms. A compiler for a dialect of a familiar programming

language, such as C, would be highly desirable.

2.6. Reprogrammability

Nanocontroller programs must be able to be changed easily and perhaps dynamically,

but not frequently compared to the speed of their execution. The nanocontrollers may

have their program upgraded or changed under var ious conditions, but self-modifying

code is not desirable for this type of control system. Similar ly, as a control system rather

than a general-pur pose computer, it is likely that submission of a new program from

outside the system will be infrequent. Thus, it is acceptable and appropriate to perfor m

expensive compile-time transfor mations to improve the efficiency of each program.

The most likely scenario for reprogramming probably is the detection of development of

a sensor fault. For example, it is a well-known phenomenon that image sensors (e.g.,

CCD arrays) develop bad pixels over a per iod of years. Even a relatively expensive

reprogramming process can be accommodated when new faults arise so infrequently.

3. General Approach

From the basic requirements in section 2, it is possible to begin to focus on a class of

valid designs and the architectural and software system technologies they should

employ.

3.1. SIMD-Based Architecture

The overr iding architectural concern in design of nanocontrollers is 2.1, minimization of

the circuit size. A closely related concern has long been a focus in the parallel

supercomputing community: the desire to have as many parallel processing elements as

possible without exceeding a total system complexity budget. The answer that

developed was SIMD (Single Instruction stream, Multiple Data stream).

Currently, driven by the availability of commodity interchangeable parts for their

constr uction, MIMD (Multiple Instruction stream, Multiple Data stream) clusters of

microprocessor-based nodes are the dominant architecture in parallel supercomputing.

Thus, it is easy to forget the long sequence of SIMD supercomputer designs that have

been proposed and constructed. Early SIMD supercomputers, especially STARAN

[Bat74] and the Goodyear MPP [Bat80], quickly established basic design guidelines.

Incremental improvements were made in the NCR GAPP, AMT DAP 510 and 610,

Thinking Machines CM1, CM2, and CM200 [TMC89], and MasPar MP1 and MP2

[Bla90], and a multitude of less-well-known SIMD systems. The result is a well-

developed body of knowledge about how to architect and use SIMD systems.

SIMD-based architecture is not the only possible answer for nanocontrollers. A wide

range of novel architectures have been proposed for nanocomputing, ranging from

cellular automata to quantum computing, but it is far less clear how such models can be

architected and programmed to support sophisticated control applications. The vast

major ity of wor k involving nanotechnology and architecture is not really relevant to

producing nano-scale processors, but aims to use nanotechnology to more efficiently

implement ver y complex processors. The primar y advantages in using a SIMD

architecture are that the concepts are more fully developed and building on existing

SIMD wor k easily meets not just requirement 2.1 above , but also 2.2, 2.4, and 2.6.

Adding support for 2.3 is as simple as applying the techniques discussed in section 2.3.

3.2. MIMD-On-SIMD Compiler Technology

What SIMD cannot provide is requirement 2.5, the independent programmability of a

MIMD design... or can it? In [Par95], Ken Batcher is quoted as making the point that the

circuitr y which supports individual programmability of MIMD processors makes a MIMD

processing element at least eight times as complex as an otherwise comparable SIMD

element. The argument thus was made that an efficiency as low as 12.5% in simulating

a MIMD program on SIMD hardware could still favor a SIMD hardware implementation.

It is not surpr ising that a carefully designed SIMD program can interpretively execute a

MIMD program with reasonable efficiency. The interpreter has a data structure,

replicated in each SIMD processing element, that corresponds to the internal registers of

each MIMD processor. Likewise, each PE’s memor y holds a copy of the MIMD code to

be executed. Hence, the interpreter structure can be as simple as that shown in Figure

1.

The only difficulty in implementing an interpreter is that the simulated machine will be

very inefficient. A number of researchers have dev eloped a wide range of “tricks” to

produce more efficient MIMD interpreters either through software methods [NiT90],

[WiH91], and [DiC92] or through modifying the hardware [Abu97].

1. Each PE fetches an “instruction” into its “instruction register” (IR) and updates

its “program counter” (PC).

2. Each PE decodes the “instruction” from its IR.

3. Repeat steps 3a-3c for each “instruction” type:

3.a Disable all PEs where the IR holds an “instruction” of a different type.

3.b Simulate execution of the “instruction” on the enabled PEs.

3.c Enable all PEs.

4. Go to step 1.

Figure 1: Basic MIMD Interpreter Algorithm

Unfor tunately, the program for a nanocontroller could be quite complex. Program

complexity need not slow the SIMD interpreter’s execution, but it does require that each

SIMD processing element have enough local memory to hold its MIMD program code.

Many single-chip SIMD computers had few enough processing elements on a chip that a

single, reasonably wide, interface to an off-chip RAM could provide perhaps 16KB of

local memory per processing element (e.g., as in the MasPar MP1), thus allowing

reasonably complex programs to be associated with each processing element.

Conversely, placing Processors In Memory (PIM) could provide a modest number of

processing elements with significant local memory for each. For nanocontrollers,

however, neither of those solutions is viable. To keep nanocontroller size to a minimum,

we cannot afford to waste local memory space on holding programs.

Fortunately, an alter native to MIMD-on-SIMD simulation was developed by us in the

ear ly 1990s, primar ily targeting the MasPar MP1. The technique literally converts the

MIMD processor programs into a single SIMD program with similar relative timing

proper ties. We call this process Meta-State Conversion (MSC) [DiK93].

4. Meta-State Conversion (MSC)

In MIMD execution, each processor has its own state. Although these states are

generally considered to be independent entities, it also is possible to view the set of

processor states at a particular time as single, aggregate, Meta State. Using static

analysis based on the timing described in [DiZ91], a compiler can convert the MIMD

program into an automaton based on meta states, which is directly executed as pure

SIMD code.

4.1. Proper ties Of Meta-State Conver ted Code

Once a program has been converted into the for m of a meta-state automaton, it is no

longer necessary for each PE to fetch and decode instructions, nor is it necessary that

each PE have a copy of the program in local memory. Only the SIMD control unit needs

to have a copy of the meta-state automaton.

Because in execution the meta-state automaton moves from each meta-state to one

meta-state successor, there is a single thread of program memor y addresses fetched.

This makes it relatively easy to utilize a large off-chip RAM to hold the meta-state

program. This RAM interface easily can take advantage of nearly all the standard

architectural optimizations used to access program memor y for moder n

microprocessors, including caches, branch prediction, and even prefetch. The fact that

each meta-state wor th of instructions is not just a single instruction, but is an entire block

of instructions, also opens the possibility for each block to contain explicit instructions for

the SIMD control unit to execute to directly manage caching and prefetch of instruction

blocks.

The result is that a SIMD-based nanocontroller can be programmed independently of the

other nanocontrollers (2.5). The MSC compiler technology must ensure that timing is

preser ved (2.2) through this transfor mation, and changing one processor’s program (2.6)

is implemented by recompiling the entire set of MIMD programs whenever a new

program is introduced.

Just as interpretation has drawbacks, so too does MSC:

• If there are N processors each of which can be in any of S states, then it is possible

that there may be as many as S!/(S-N)! states in the meta-state automaton. Without

some means to ensure that the state space is kept manageable, the technique is not

practical. For tunately, we have dev eloped a number of techniques that are effective

in controlling the state space explosion.

• Meta-state transitions are N-way branches keyed by the aggregate of the MIMD state

transitions. This is conceptually simple, but requires some hardware support, e.g.,

the “global or” of the MasPar MP-1 [Bla90]. There is also a register-allocation-like

problem to be solved by the compiler in assigning fixed-size bit masks to distinguish

between processors executing different portions of MIMD state within a given SIMD

meta state.

4.2. The MSC Algorithm

The first step in MSC of a set of nanocontroller programs is essentially to create a

unifor m statespace by converting the set of nanocontroller programs into a single MIMD-

parallel program. This is trivially accomplished by merging all the independent processor

programs into a single MIMD-parallel program which selects the appropriate code for

each processor based on a distinguishing parameter. Classically, the distinguishing

parameter is a hardwired processing element number, but it can instead be any

identifying value that is initialized within each processing element before entering the

user program. An example of this transfor mation is given in Listing 1.

From this point, the algorithm is essentially that which we presented in detail in [DiK93].

However, in the current paper, we will briefly outline the process.

The next step in the MSC processing is to convert the MIMD program into a conventional

state machine. This is done by converting the code into a control flow graph in which

each node, or original state, represents a basic block [CoS70]. We assume that these

basic blocks are made maximal by a combination of simple local optimizations, removal

if (nanocontroller_is_0) { program_0 }

else if (nanocontroller_is_1) { program_1 }

else if (nanocontroller_is_2) { program_2 }

...

else if (nanocontroller_is_last) { program_last }

Listing 1: Creation Of MIMD-Parallel Program

of empty nodes, and code straightening [CoS70]. However, in order to represent

arbitrar y global and interprocedural control flow, a few tricks are needed.

One might expect that supporting arbitrar y global control flow would be a problem, but it

is not. In practice, it is most common that each state will have zero, one, or two exit arcs.

Zero exit arcs mark ter mination of the program — for example, a block ending with

exit(0) in a unix C program. Two arcs most often correspond to the then and else

clauses of an if statement or to the exit and continuation of a loop. How ever, constr ucts

like C’s switch or For tran’s computed-goto can yield more than two exit arcs. For

MSC, there is no algorithmic restriction on the number of control flow exit arcs a state

may have. Of course, state machines representing loops, even irreducible ones, also are

perfectly valid. Likewise, function calls are treated precisely as gotos, even if they are

recursive; return statements are treated as computed-gotos that select among the

possible return addresses.

if (A) {

do { B } while (C);

} else {

do { D } while (E);

}

F

Listing 2: Simple Example

Listing 2 gives C code for a simple example taken from the MIMD-to-SIMD MSC paper

[DiK93]. The result of mechanically constructing the MIMD state graph is given in Figure

2.

0

2 6

9

Figure 2: MIMD State Graph for Simple Example

The basic MSC algorithm then applies a process that looks remarkably like that used in

constr ucting lexical analyzers by converting a Nondeterministic Finite Automaton (NFA)

into a Deterministic Finite Automaton (DFA). The only difference is in the definition of

reaching a state: SIMD meta-states are created for every possible combination of next

states. Thus, basic MSC converts Figure 2 into Figure 3.

0

2 2,6 6

6,92,6,92,9

9

Figure 3: Basic Meta-State Graph for Simple Example

For example, the node labeled with 2,6 contains the code from both or iginal state 2 and

6. In SIMD execution, nanocontrollers that were logically in MIMD state 2 would disable

themselves while instructions from 6 were broadcast; nanocontrollers in state 6 would do

exactly the opposite. If there are any instr uctions that appear in both original state 2 and

6, they can be factored-out so that those instructions are broadcast by the SIMD control

unit once and executed by both nanocontrollers in MIMD state 2 and those in MIMD

state 6. A supplementar y compiler transfor mation called Common Subexpression

Induction (CSI) [Die92] is applied to restructure the code within each meta-state to

maximize the sharing of instructions... with a SIMD instruction set designed to facilitate

instr uction matching, CSI is ver y effective.

When the end of state 2,6 is reached, there are no few er than 5 possible next meta-

states: 2,6, 2,6,9, 2,9, 6,9, and 9. Deter mining which meta-state the SIMD control unit

should broadcast next is done by a global voting process. In essence, the SIMD control

unit collects a 3-bit globalor of the next state choices for all nanocontrollers; these bits

respectively answer the questions:

• Does any nanocontroller want to enter MIMD state 2?

• Does any nanocontroller want to enter MIMD state 6?

• Does any nanocontroller want to enter MIMD state 9?

Given this vote, the SIMD control unit simply executes a computed-goto to jump to the

appropr iate next meta state based on the 3-bit value collected. The register-allocation-

like problem alluded to earlier arises if the set of MIMD states following a particular SIMD

meta-state is larger than the number of bits that can be directly managed; reassignment

of bits solves the problem.

Unfor tunately, the meta-state graphs (e.g., Figure 3) can have significantly more nodes

than the original MIMD state graphs (e.g., Figure 2). As with NFA to DFA conversion,

meta-state conversion can yield an exponential increase in the number of states! It

could be argued that, given SIMD instructions stored in off-chip RAM, the increase in

code size is not important. However, it is possible to dramatically decrease the number

of meta states by controlled merging into covering states. An extreme version of this

merging is shown in Figure 4; the only penalty is potentially less-effective CSI.

2,6,9

0

2,6

Figure 4: Merge-Compressed Meta-State Graph

4.3. Does MSC Have Predictable Execution Times?

The final MSC complication relates back to requirement 2.2: predictable execution timing

behavior. There are really two types of timing behavior : one whose solution was given

in [DiK93], the other is a new problem arising in the real-time nature of nanocontrollers.

the first type of timing is relative timing of MIMD states being executed: is progress made

fair ly by all nanocontrollers? This property can be preserved arbitrar ily accurately, but

doing so requires cracking states into smaller chunks to ensure more equal progress is

made. For example, if state 2 took twice as long to execute as state 6, we might first

crack state 2 into the state sequence 2a and 2b, then create a meta state for 2a,6.

Taken to extremes, this cracking can greatly magnify the number of meta states

generated.

As a test, over 30,000 randomly-generated MIMD programs involving if, while, and

operations on 8 registers were processed by the MSC algorithm with a time-splitting rule

that required no nanocontroller to make more than twice as much progress within any

given meta state as any other nanocontroller in that meta state. The results are plotted

as a scatter graph in Figure 5. The artifacts around 128 MIMD states are probably

caused by language-constr uct nesting-depth limits within the MSC’s C-dialect parser,

which rejected certain randomly-generated programs. Despite that defect, this level of

time-splitting for fair ness clear ly does not result in explosive growth in the number of

meta states.

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 4 16 64 256 1024

S
IM

D
 M

et
a

S
ta

te
s

MIMD Original States

Figre 5: MIMD Original States vs SIMD Meta States

The other aspect of predictable timing relates to the fact that nanocontroller programs

need to interact with the devices they control with precise real-time constraints. It is

theoretically possible to preserve precise instruction-level timing for specific instructions

as the MSC process is perfor med, but the complexity of doing so makes that solution

impractical. What is needed is a simple way to ensure specific instructions execute at

par ticular times.

The key to a simple solution is in our description of requirement 2.2: the level at which

real-time constraints must be met is expected to be several orders of magnitude larger

than the time taken to execute an instruction. For example, real-time resolution might be

a microsecond, with an instruction executed every nanosecond. By reser ving a small

fraction of SIMD instruction broadcast slots for precisely timed operations, nor mal

execution is virtually unaffected but cycle-accurate timing can be ensured. Given that

the precisely-timed operations always will involve I/O, it is ver y likely that all

nanocontrollers needing input can share a single reserved input cycle and all

nanocontrollers needing output can share a single reserved output cycle.

The original MSC algorithm did not have any provision for reserving SIMD instruction

slots, but it did include a method for converting synchronizations into meta state

constr uction constraints. An I/O reservation is nothing more than synchronization with

an “imaginary” nanocontroller whose sole purpose is to participate in a barrier

synchronization with every tick of the real-time clock.

5. Architecture Revisited

Given the large body of wor k on design of SIMD systems, it is not necessary to present

an overview. Neither would it be appropriate to present a detailed design at this time

because the details of the nanocontroller design should be tuned to the particular

application. However, having reviewed the basic properties of MSC, it is now appropr iate

to discuss how basic SIMD architecture can be modified to better match MSC-driven

nanocontroller applications in general.

Ever y SIMD processing element needs some kind of Arithmetic/Logic Unit (ALU). The

ALU does not need to directly perfor m a wide range of operations within a single clock

cycle, nor does it need to wor k on more than 1 bit per value, but over multiple clock

cycles it must be capable of perfor ming a complete set of 2-input bitwise logic functions

(e.g., NAND would suffice). The fundamental building block of moder n computer

ar ithmetic is 2’s complement binary addition, which at the bit level is actually a function

of three inputs generating two outputs: given two data values and a value carried from

less significant bit positions, compute the resulting sum and carry outputs. Simulating a

three-input, two-output, function using single-output two-input logic takes multiple steps,

so virtually every SIMD design incorporates a 3-input “Full Adder” circuit or a

generalization thereof (e.g., the CM2 uses two 8-input multiplexors [TMC89]).

There must be some amount of local data storage. How much is appropriate will var y

widely depending on the application, but most nanocontroller applications probably will

need few er than 100 bits in registers local to each processing element. Keep in mind

that data held by other processors or by the SIMD control logic also can be accessed

(more slowly), so data space is not really limited to that which is kept local but is

multiplied by the number of processing elements. It also is possible to trade data space

for control space, and control space is not replicated per SIMD processing element. For

example, stor ing the value 8 can be accomplished either by stor ing the value 8 in a local

register or by jumping into a state in which 8 is assumed to be the value. The SIMD

meta-state program may get ver y large and processing somewhat inefficient, but the

theoretical minimum number of bits needed local to a processing element is literally just

enough to hold a unique identifier (e.g., enough to hold a processing element number).

To increase the efficiency of CSI within MSC, there are a few impor tant perfor mance

tweaks we can make to both ALU and local register file/memory designs. Recall that

CSI attempts to recognize (or coerce) multiple different program fragments to have as

many instr uctions in common as possible; thus, CSI is ver y sensitive to how operations

and data references are encoded in instructions. Generally, CSI is more effective when:

• The commonly-used set of instruction bit patterns is small. If there are few bit

patter ns used, repeats in different code segments are more likely. Encoding multi-bit

constants in instructions makes CSI less effective; this is true whether the constants

are immediate values, register numbers or memory addresses, or opcode options.

• Modal instruction encoding is used. If an ALU operation is set with each instruction,

then each step of an Add is different from each step of an Or. Alter natively, if the Add

operation is set in some processing elements and Or in others, then the bitwise

repeats of both operations can use the same instructions.

• Indirect addressing is used. For example, a stack Add instruction pairs with another

stack Add even if the stacks in the processing elements contain different numbers of

elements, whereas Add r1,r2 would not pair with Add r1,r3. A stack is just one

example of indirect addressing; the general concept is to locally modify the broadcast

reference. Especially for bitwise ALUs, it may be wor thwhile to use shift registers to

shift data past ALU I/O connections rather than to use decoding logic to address the

desired cell.

The last aspect of SIMD design to discuss is the Control Unit (CU). There are just two

pr imary issues involving design of the CU:

• In constr ucting SIMD supercomputers that span multiple chips, the CU broadcast

speed often limited the maximum clock rate for the processing elements; a similar

phenomenon now occurs within a single chip containing many processing elements.

The result is that rather than a single CU, a hierarchy of CUs should be used to

distr ibute ever-finer-grain control infor mation. Only the sub-CUs nearest the

processing elements should be broadcasting at the full clock rate.

• The CU should employ sophisticated block-or iented optimizations in accessing off-

chip RAM. For example, each block could be tagged with CU-only instructions that

explicitly managed prefetch and caching of future blocks. An additional complication

is that the caching must be such that no time-critical operations can be delayed by a

cache miss; thus, reser ved instr uction slots should be handled separately if a

disturbance from a cache miss would otherwise be possible.

Finally, it is widely known that bit-serial processing elements often can achieve better

perfor mance by making use of bit-level optimizations rather than blindly expanding word-

level operations into fixed bit-level translations. A similar benefit can be obtained by

perfor ming CSI (and perhaps MSC) on bit-level instr uctions.

6. Conclusions and Future Work

This paper introduced a vision of nanocontrollers as ver y low circuit complexity

controllers that are fully programmable. It was suggested that SIMD-based

architectures, combined with Meta-State Conversion (MSC) compiler technology, could

provide a viable implementation method, and a detailed overview of the approach was

given.

As a “straw man” design, consider using MSC to support a full MIMD, C-dialect,

nanocontroller programming model using an architecture based on the Thinking

Machines CM2 [TMC89]. With data storage per processing element reduced to 64 bits,

circuit complexity per nanocontroller should be well under 500 transistors. Current

technology would allow a clock rate of at least 1GHz with 3 clock cycles/bit operated on.

These numbers do not quite reach our goals for a nanocontroller, but they are several

orders of magnitude closer than traditional approaches.

Aside from wor king toward further development of nanocontrollers along the lines

descr ibed in this paper, it is interesting to note that analog technology can be directly

useful in building nanocontrollers. For example, the carry logic of a Full Adder can easily

be replaced by a single threshold logic gate — after all, the carry output is simply the

answer to “is the sum greater than 1?” More aggressive use of analog elements may be

the way to achieve one more order of magnitude reduction in circuit complexity.

References

[Abu97] Nael B. Abu-Ghazaleh, Shared Control Multiprocessors - A Paradigm for

Suppor ting Control Parallelism on SIMD-like Architectures, PhD Dissertation,

University of Cincinnati, July 1997.

[Bat74] K. Batcher, “STARAN Parallel Processor System Hardware,” Proc. of the 1974

National Computer Conference, AFIPS Conference Proceedings, vol. 43, pp.

405-410.

[Bat80] K. Batcher, “Architecture of a Massively Parallel Processor,” Proc. of

IEEE/ACM International Conference on Computer Architecture, 1980, pp.

168-173.

[Bla90] T. Blank, “The MasPar MP-1 Architecture,” 35th IEEE Computer Society Inter-

national Conference (COMPCON), Febr uary 1990, pp. 20-24.

[CoS70] J. Cocke and J.T. Schwar tz, Programming Languages and Their Compilers,

Courant Institute of Mathematical Sciences, New Yor k University, Apr il 1970.

[DiC92] H.G. Dietz and W.E. Cohen, “A Control-Parallel Programming Model

Implemented On SIMD Hardware,” in Proceedings of the Fifth Wor kshop on

Programming Languages and Compilers for Parallel Computing, August 1992.

[Die92] H.G. Dietz, “Common Subexpression Induction,” Proceedings of the 1992

Inter national Conference on Parallel Processing, Saint Charles, Illinois, August

1992, vol. II, pp. 174-182.

[DiK93] H. G. Dietz and G. Krishnamur thy, “Meta-State Conversion,” Proceedings of

the 1993 International Conference on Parallel Processing, vol. II, pp. 47-56,

Saint Charles, Illinois, August 1993.

[DiZ91] H.G. Dietz, M.T. O’Keefe, and A. Zaafrani, “An Introduction to Static

Scheduling for MIMD Architectures,” Advances in Languages and Compilers

for Parallel Processing, edited by A. Nicolau, D. Geler nter, T. Gross, and D.

Padua, The MIT Press, Cambr idge, Massachusetts, 1991, pp. 425-444.

[NiT90] M. Nilsson and H. Tanaka, “MIMD Execution by SIMD Computers,” Jour nal of

Infor mation Processing, Infor mation Processing Society of Japan, vol. 13, no.

1, 1990, pp. 58-61.

[Par95] Behrooz Parhami, “SIMD Machines: Do They Have A Significant Future?

Repor t on a Panel Discussion,” IEEE Frontiers ’95: The Fifth Symposium on

the Frontiers of Massively Parallel Computation, McLean, VA, Feb. 6-9, 1995.

[TMC89] Thinking Machines Corporation, Connection Machine Model CM-2 Technical

Summar y, Version 5.1, May 1989.

[WiH91] P.A. Wilsey, D.A. Hensgen, C.E. Slusher, N.B. Abu-Ghazaleh, and D.Y.

Hollinden, “Exploiting SIMD Computers for Mutant Program Execution,”

Technical Report No. TR 133-11-91, Department of Electrical and Computer

Engineer ing, University of Cincinnati, Cincinnati, Ohio, November 1991.

