
Manipulating MAXLIVE For
Spill-Free Register Allocation

Shashi Deepa Arcot, Henry Gordon Dietz, and Sarojini Priyadarshini Rajachidambaram

Electrical and Computer Engineering Department, University of Kentucky

Abstract. Many embedded systems use single-chip microcontrollers which have no on-chip RAM. In such a sys-
tem, the processor registers must hold all live data values.Nanocontrollersfurther reduce the controller circuit
complexity so that a nanocontroller can be embedded with each of thousands to millions of sensors, actuators, or
other devices on a single chip. This reduction in circuit complexity is accomplished by using a bit-serial multiplexor-
based SIMD architecture with just tens of one-bit local registers. These registers not only must hold all declared
and temporary values, but also are used to hold program state information in support of MIMD programmability.
Implementing word-level operations using bit-serial multiplexor operations often yields huge basic blocks with
very complex DAGs, apparently requiring even more registers. Spilling is not possible, so code that needs too many
registers simply cannot be run.
This paper explores new compilation methods, including Genetic Algorithms (GAs) and a new adaptation of Sethi-
Ullman numbering, to aggressively restructure the code and allocate registers so that the number of nanocontroller
registers used does not exceed the number available. The approach also is shown to be adaptable to solve the less
demanding problem of avoiding register spills for microcontrollers or general-purpose processors.

1 Introduction

The problem of efficiently allocating registers for temporary values is an old problem, but also is a topic of
ongoing research. In large part, the importance of register allocation has been increasing because:

– Although both logic and memory speeds have been exponentially improving, the exponents are different.
Main memory was once faster than processor logic for simple operations such as integer addition, but
modern processors can perform hundreds to thousands of integer additions in the time taken to make
one random address access to main memory.

– Registers play a key role in implementing instruction-level parallelism (ILP). Superscalar (multiple is-
sue) execution logic may require many operands each clock cycle. As compared to multi-port caches and
main memory interfaces, it is relatively straightforward to construct multi-port register files. Registers
also facilitate pipelined execution.

– A variety of automatic coding mechanisms tend to generate much larger basic blocks with more complex
dependence patterns than are commonly found in hand-written code. For example, many compilers now
use loop unrolling or unraveling; similar code sequences also are generated automatically by tools like
ATLAS[15].

While all three of the above increase the importance of register allocation, the first two primarily increase the
benefit in using a good allocation, while the third essentially implements a qualitative change in the register
allocation problem itself. In the general case, optimal allocation of registers is known to require more than
polynomial time, but it is only with the common use of huge basic blocks that the theoretical complexity
has become a serious practical constraint on basic block algorithms. Thus, register allocation has become
critical at the same time that the known optimal solutions have become intractable.

Beyond the needs of conventional computing systems, we have recently become focused on finding ways
to bring programmable intelligence to nanofabricated and MEMS devices; these very simple computing
elements are callednanocontrollers[8]. For the specific problem of allocating registers for nanocontroller
programs, the second of the above issues does not apply, but first and third are exceptionally severe. There
literally is no main memory in a nanocontroller system; thus, using memory to hold values that could not
be allocated to registers is not an option. Further, because nanocontrollers provide only a single type of
instruction which operates on one bit at a time, basic blocks often contain thousands of instructions. These
basic blocks are not the result of unrolling, but of bit-level logic optimization using the ternary 1-of-2
multiplexor operation. The dependence structure within a block is correspondingly more complex than that



generated by unrolling loops involving traditional binary operations. In summary, nanocontroller register
allocation is a much harder problem than conventional register allocation, but a good solution also may be
adapted to handle microcontrollers and future generations of conventional processors.

Our goal in this paper is to be able to generate spill-free code for any of a wide class of modern tar-
get processor instruction sets covering conventional, microcontroller, and even nanocontroller designs. The
techniques developed in this paper assume that we are successful in achieving this goal, i.e., no mechanism
is described for handling spills and reloads. However, the techniques are completely general in all other
respects. In particular, the techniques work well forvery largebasic blocks using any combination of unary,
binary, and ternary operations.

Section 2 reviews some of the traditional approaches and issues involving register allocation. Our first
and more conservative approach, which uses a Genetic Algorithm (GA) to reorder instructions, is detailed
in Section 3. An extreme, but amazingly effective, approach combining aspects of Sethi-Ullman numbering
with a Genetic Algorithm is described in Section 4. Brief conclusions are given in Section 5.

2 Traditional Approaches To Register Allocation

The term “register allocation” is commonly applied to a wide range of slightly different problems involving
making efficient use of registers. These problems include minimizing the estimated cost of spill/reload code,
allocation of registers across basic block boundaries, and reordering of instructions to improve the register
allocation.

2.1 Minimizing Spill/Reload Cost

The majority of research in register allocation centers on the allocation of values to registers and memory-
based temporaries so that the memory accesses required have minimal cost. Some of these techniques also
can be applied across basic block boundaries. Unfortunately, because nanocontrollers and some microcon-
trollers literally have no memory, any spill from a register to memory has essentially infinite cost. Thus,
these techniques do not apply unless they happen to find an allocation which has nothing allocated to mem-
ory temporaries.

Shortest Path Algorithms Although early computers did not have enough registers or compiler technology
to make automated register allocation a major concern, by the 1960s various methods were developed,
including an approach using a shortest path algorithm[10] for allocating registers within a basic block.
The technique involves creating a multi-stage acyclic graph in which theKth stage corresponds to possible
register file states at theKth programmed reference in the block. Each node represents the state of the register
file as the relevant register contents; arcs carry the execution-time costs for transitioning from one register
file state to the next. Thus, selecting the shortest path through the graph yields the time-optimal sequence of
register assignments using expected execution times for each potential memory spill/reload operation.

This shortest-path technique was extended in the late 1980s for compiler management of both registers
and cache[4,5]. The additional concept of cut-point states enables processing of very large basic blocks and
even code regions containing arbitrary control flow. Acut point is essentially a stage in which the register
file contents are specified, thus allowing the shortest path problem to be decomposed into independent
subproblems before and after the cut point. In some cases, the optimal set of register contents at a particular
reference is obvious, in which case a cut point occurs naturally without affecting optimality of the solution.
Various techniques for artificially inducing cut points allow the shortest-path problems to be bounded to a
specified maximum size with little or no reduction in the quality of the resulting allocation.

Graph Coloring In the early 1980s, it became popular to view register allocation as coloring of an inter-
ference graph, and this general approach still is used in many production compilers. Each node in the graph
represents either a unique value or a variable; arcs are drawn between nodes that have overlapping lifetimes.
Such an interference graph easily can be constructed for either a single basic block or code containing
arbitrary control flow.



Optimal graph coloring is hard, so various heuristics have been used. Chaitin’s node-removal algorithm[3]
is perhaps best known, although even a simple random walk typically outperforms it[4]. Many variations
now exist, including approaches using GAs [9]. However, the strength of the coloring approach also is
its weakness: the actual number of spill/reload events depends on the precise reference sequence, not just
(potential) overlap of lifetimes. Thus, costs are approximate.

Other Spill/Reload Cost Minimization Algorithms Work in register allocation, primarily centered on
spill/reload minimization, continues. For example, in 2003 a paper was published[11] showing that Belady’s
MIN algorithm for page replacement performed very well in reducing spill/reload costs for large basic
blocks. This is not surprising in that MIN actually is a degenerate case of the shortest path formulation in
which cost per spill/reload is assumed to be a constant. This assumption implies that minimizing the number
of spill/reload events is equivalent to minimizing the execution time. MIN accomplishes this very efficiently
by always spilling the value which will not be accessed again for the largest number of instructions.

2.2 Other Register Allocation Algorithms

As mentioned earlier, for nanocontrollers and some microcontrollers the sole concern is finding an allocation
which does not exceed the number of registers available. Any of the above techniques can be used, as
can techniques that use GAs or Genetic Programming (GP) to optimize the compiler optimization control
structure in the hope of obtaining better allocations [6], but only in the degenerate case where no spills are
needed.

Indeed, finding a spill-free register allocation is trivial provided thatMAXLIVE , the maximum number
of values (or variables) that must temporally coexist, never exceeds the number of registers available. Be-
cause nanocontrollers and some microcontrollers do not have ILP issues, such as pipeline schedule interlock
constraints, any spill-free allocation will result in the minimum possible execution time.

No register allocation scheme can achieve a spill-free allocation with fewer thanMAXLIVE registers.
Thus, register allocation for nanocontrollers is primarily a matter of reducingMAXLIVE so that the number
of registers is not exceeded. Only reordering of the instruction sequence or changing the computation can
changeMAXLIVE .

2.3 Sethi-Ullman Numbering

One of the most efficient general-purpose register allocation schemes is commonly known as Sethi-Ullman
Numbering (henceforth referred to as SUN)[14]. This algorithm, published in 1970, not only determines
how to allocate registers, but also how to order evaluation of an expression so that the number of registers
required and the number of instructions used for the computation both are provably minimal.

The assumptions made by SUN are straightforward and even today, 35 years after the algorithm was first
published, these assumptions can be met by most computer designs. There are assumed to beN>=1 general-
purpose registers, any of which may interchangeably be used as a source or destination in an operation.
The region of the program considered by the algorithm is a single arithmetic expression involving binary
operations. The relationships between these operations are expressed as a binary tree that links each binary
operation to the two operations that provide its operand values. Leaf nodes in the tree represent initial values
of variables and constants.

The SUN algorithm proceeds in two distinct phases. First, each node is labeled with a number, according
to a set of rules, such that the label corresponds to the minimal number of registers required to evaluate the
subtree rooted at that point without any stores (i.e., without register spill/reload). These labels are then used
to order node evaluation, allocate registers, and emit instructions.

A bottom-up walk of the binary tree is used to assign to each noden the labelL(n). The algorithm given
by Sethi and Ullman[14] uses the following two rules to assign labels to nodes:

1. If n is a leaf and a left descendant,L(n) = 1.
If it is a right descendant ,L(n) = 0;

2. If n has descendants with labelsl1 andl2,



(a) If l1!= l2, L(n) = max(l1, l2);
(b) If l1== l2, L(n) = l1+ 1

Rule 1 reflects the additional assumption that the binary instructions support a register-memory instruction
model in which the right descendant can be accessed directly from memory, provided that the left descendant
is loaded into a register. In other words, an instruction can be of the formregister = operation(register,
memory), absorbing the fetch of the right operand into the parent instruction.

Most current processor designs either have RISC-like instruction sets without support for memory
operands or, despite having instruction set support for memory operands, have recommended coding prac-
tices that avoid using memory operands. Such machines are trivially accommodated by removing the dis-
tinction between left and right descendants in rule 1; a leaf noden is always givenL(n) = 1 reflecting the fact
that any memory operand must be loaded into a register before use. Another minor change since the original
SUN was developed is that many compiler systems, including GCC and various compilers targeting micro-
controllers with special-purpose registers, now support pre-allocation of variables to specific registers; a leaf
noden which refers to a pre-allocated register’s value is always givenL(n) = 0 because it is not necessary to
move the value to a different register in order to operate on it.

Rule 2 reflects use of register-register operations for internal nodes of the tree and thus needs no modi-
fication.

After the tree is generated and the nodes labeled, the algorithm proceeds as a recursive walk starting at
the root node, selecting an evaluation order for the descendants of each node in which the operation with the
higher label is executed first. The actual register allocation and output of the instruction schedule is done as
the recursion unwinds from the leaf nodes of the tree. Since the label on each node is actually the maximum
number of live values (MAXLIVE ) in the subtree rooted at that node, provided that the label does not exceed
the number of registers available in the architecture, it is trivial to assign each node a register. If that number
is exceeded, then SUN provides a straightforward way in which values can be selected to be spilled from
registers into memory and reloaded when necessary.

This entire procedure visits each node at most a constant number of times, thus yieldingO(m)complexity
for scheduling and allocating registers formoperations. Despite this speed, the evaluation order and alloca-
tion both are optimal in that, given the assumptions made, SUN uses thefewest instructionsto accomplish
the tree’s computation. At the time SUN was developed, using the fewest instructions closely corresponded
to minimizing execution time, minimizing spills, and minimizing the number of registers used.

Given the simplicity of the algorithm and optimality of the results, it is rather surprising that SUN
is not in common use in modern compilers. There are several reasons why SUN is not used, foremost
being the fact that SUN cannot be directly used to analyze a code region that is more complex than a
tree computing a single value. Common Subexpression Elimination (CSE) greatly reduces the number of
instructions that need to be executed, but generates Directed Acyclic Graphs (DAGs) that are incompatible
with the original SUN algorithm and a multitude of attempts to extend SUN to handle DAGs have failed
to produce an algorithm that is both fast and effective[1]. Given how slow modern computers are to access
memory, perhaps it would be better to favor use of SUN over CSE, but that is not the path that compilers
have generally taken.

For nanocontrollers and some microcontrollers, the primary targets in this paper, the problem is qualita-
tively different: even a single spill renders a program unusable if there is no place to spill to. Thus, minimiz-
ing the number of instructions only is relevant if the code is spill free. Put another way, even increasing the
number of instructions to be executed is highly desirable if it makes the difference between being spill-free
and being unusable.

3 Genetic Algorithm For Reordering To Minimize MAXLIVE

Given that reordering the instruction sequence can significantly changeMAXLIVE , it seems appropriate to
investigate methods that can reasonably efficiently find a good instruction order. Even with good pruning,
it is not practical to use exhaustive search for reordering basic blocks containing thousands of instructions.
However, simulated evolutionary processes are very effective for many conceptually similar problems, so
we created a Genetic Algorithm (GA) for reordering.



Algorithm 1 Steady-State Island GA For Scheduling
Repeat the following until the allotted time or number of trials has elapsed:

1. If the population is not yet full, create a new valid, but randomly-ordered, instruction schedule; goto step 5
2. Pick a number of population members at random and identify the two selected members with the worst and best metrics (a

form of tournament selection); an island model may be enforced at this stage by biasing selections to stay within the same
static subdivision of the population

3. If random choice selects mutation or if the two schedules selected are duplicates, perform mutation by replacing the poorest-
metric selected member with a new schedule created by mutation of the other selected member; goto step 5

4. By default perform crossover by picking an additional population member at random, sorting the three selected members by
metric value, and replacing the poorest-metric one with the crossover product of the other two

5. Evaluate the metric for the newly-created population member
6. Determine if the newly-created population member is a new best and mark it accordingly; it is the new best if it is the only

member of the population or if a symmetric "better than" comparison function finds its metric to be better than that of the
previous best schedule

3.1 Structure Of The GA

The use of a GA to generate code is commonly referred to as Genetic Programming (GP)[13], however,
neither the data structures standardly used with GP nor with traditional GA systems is efficient in solving
the instruction rescheduling problem. Despite that, the overall structure of the GA used for rescheduling to
minimize MAXLIVE , as shown in Algorithm 1, is relatively conventional. An island model is used in order
to allow subdivisions of the population to converge to different solutions in relative isolation, thus making
the system somewhat more robust. A non-generational steady-state formulation is used primarily to simplify
the coding and reduce execution overhead.

Fundamentally, the problem in making the GA efficient is one of maintaining good adjacency properties
through mutation and crossover operations; a new schedule should have many properties in common with
its parent(s). In the particular case of instruction scheduling, it also is important to consider only valid
schedules, e.g., only schedules in which no instruction is scheduled before an instruction that produces one
of its inputs. Even using simplifications such and earliest and latest slot markings for instructions, checking
validity of a schedule is relatively expensive. Discovering that a schedule is not valid also wastes the effort
of creating and checking that schedule. Thus, the preferred solution is to generate only valid schedules.

This is done by using an unusual geneome representation which we have recently used for several types
of scheduling GAs: rather than representing an instruction schedule directly, a schedule is represented by
giving each instruction an integer “scheduling priority.” The schedule is generated using these priorities to
break ties in an otherwise conventional list scheduling procedure. The schedule is created by starting with
the first instruction slot and working toward the last, at each slot updating the set of schedulable instructions
and then inserting the highest priority schedulable instruction in that slot. Clearly, only valid schedules are
produced in this way. Further, most adjacency properties are inherited from parent(s) even though the actual
schedules may differ in what appear to be complex ways; changes in priorities may rearrange, spread, insert,
or delete subsequences of instructions, but before/after relationships between instructions with priorities
that were not changed by mutation or crossover are most often preserved. It also is trivial to compute a
MAXLIVE -based metric while generating the schedule.

The mutation and crossover operations are straightforward. Mutation replaces some priorities with ran-
dom values, whereas crossover mixes priorities from two parents. Interestingly, as a schedule is being as-
sembled for evaluation, it is easy to tag each instruction with the number of live values at its position in
the schedule, and hence to know which instructions are involved in subsequences requiringMAXLIVE reg-
isters. Thus, we can bias the mutation and crossover operations to change priorities for instructions in those
regions, significantly improving the speed of convergence.

3.2 Experimental Procedure

In order to determine just how well the reordering GA works, we constructed a test framework which we
have used for all the data presented in this paper. The framework consists of:



– A simple program to generate pseudo-random BitC programs containing a single basic block each. BitC
is a simple C dialect designed from programming nanocontrollers[8]; it differs from C primarily in that
it allows bit precisions to be specified for each variable and incorporates some additional operators, such
as binary minimum and maximum (?< and?>).

– The base BitC compiler which we earlier developed for our research in nanocontrollers,bitcc . This
compiler converts each variable-precision word-level operation into a multitude of single-bit operations
implemented using the only operation provided by nanocontrollers, the ITE (If-The-Else) 1-of-2 mul-
tiplexor function. The operations are then optimized by a variant of BDD (Binary Decision Diagram)
logic minimization methods[2,12], yielding better code than simple bit-slice formulations would, but
with very complex DAG structures. In thebitcc output used for the current study, storage of final
values into registers is done by separate explicit store operations.

– An ITE+store to SITE (Store-If-Then-Else) converter constructed specially for this research. This pro-
gram removes the explicit stores, combining them with ITEs in an optimal way. Thus, sets of operations
like temp=(i?t:e); s=temp; are converted intos=(i?t:e); . The SITE-only DAG, which incorpo-
rates a reference sequential order, is then coded as a set of C data structures and output todag.h . This
“pre-cooked” set of data structures makes it much easier to perform register allocation experiments by
avoiding the need to integrate the algorithm under test with the rest of the compiler.

– The GA reordering code described above. Thanks to includingdag.h , this code can be modified and
re-run without the overhead of BitC compilation; the entire program is just over 300 lines of C code.

– The SUN-based GA described in Section 4. Again, thanks to includingdag.h , this entire program is
short: just under 600 lines of C code.

– A variety of shell scripts and filters to run tests and collect data. Relatively simple cases occur very often
in randomly-generated code, for example, when a later store into a variable overwrites the value stored
by a more complex computation very little code results. Thus, our methodology includes a filtering step
that removes all cases withMAXLIVE less than 3. Additionally, filters are applied to remove statistically
redundant cases.

Using this framework, we collected data on millions of test cases. Our scripts allow large numbers of test
cases to be executed serially or in parallel on cluster supercomputers.

The results presented in scatter plots in this paper were computed using KASY0 (Kentucky ASYmmetric
Zero), a 128-node 2GHz Athlon XP system. All the GAs were given the same fast-running parameters:
population size of 50, subdivided among 4 islands, with crossover 3 times more likely than mutation, and a
limit of evaluating only 1,000 individuals. There are 32,912 cases in the filtered test case set presented.

3.3 Results

At the outset, in early 2004, we had hoped that reordering instructions would be sufficient to dramatically
reduceMAXLIVE , but experimental results are mixed.

For relatively modest basic block sizes, such as those commonly arising from hand-written code in lan-
guages like C for targets like IA32, the GA reordering does well. However, ternary instructions and larger
basic blocks tend to yield not just larger, but also more complex DAG structures. Our preliminary tests
showed that, for the large ternary instruction basic blocks common in nanocontroller code, GA reorder-
ing reducedMAXLIVE significantly in absolute terms, but not enough to make a qualitative difference for
our nanocontroller compilation problem. These (unpublished) early observations are echoed in the more
extensive data presented here.

The GA reordering of instructions does not change the total number of instructions which must be
executed (assuming no register spill/reload operations are needed), nor does it alter the underlying DAG
structure. Thus, the only relevant issue is the reduction inMAXLIVE , which is shown in the scatter-plot of
Figure 1. Note that both axes in this graph are logarithmically scaled. As observed in preliminary experi-
ments, althoughMAXLIVE is reduced more in absolute terms for the larger cases, the relative reduction for
relatively small cases is significantly larger than for larger cases. The average reduction over all 32,912 cases
is approximately 18%. Thus, while these results clearly confirm that GA reordering is well worth applying,
it alone is not sufficient for nanocontroller targets – which are expected to provide only about 64 registers.



Fig. 1.GA-Reordered Vs. OriginalMAXLIVE

4 SUN With GA-Reenabling Of CSEs

Given that even GA reordering of instructions is not sufficient to make big blocks spill free, it is necessary
to consider techniques that trade execution of more instructions for a more dramatic reduction inMAXLIVE .

The approach is based on the SUN algorithm, but makes considerable extensions to it. The first extension
is the generalization of SUN to manage up to three operands per instruction. This modification is required
because the SUN algorithm as originally presented assumes each single-instruction operation takes precisely
two source operands, yet the only instruction supported by current nanocontroller designs takes three source
operands and different operand counts may be useful for other types of specialized processors.

As suggested earlier, the lack of register-memory instructions requires only a minor adjustment to the
SUN algorithm, but three other issues are more difficult to resolve. There have been many attempts to extend
SUN to handle optimal register allocation and instruction scheduling for DAGS. Although, under certain re-
stricted conditions, DAGs can be handled using a modified SUN algorithm, the optimality of the solution is
a casualty in every reasonably efficient scheme. The fact that DAGs for nanocontroller programs are excep-
tionally large and complex makes the algorithm’s execution time significant and yields a very small fraction
of the DAG for which special-case extensions of SUN can be applied. Our solution is to convert the DAG to
a tree by logically replicating every common subexpression in every place from which it is referenced. This
solution may seem extreme, but the DAG generally has an inherently higherMAXLIVE than a tree; given the
extreme pressure to fit in a limited register file, it is natural to focus first on minimizingMAXLIVE and only
secondarily to attempt to retrieve some of the benefits of common subexpression elimination.

4.1 Generalization Of SUN Labeling For Ternary Instructions

The labeling method used in the original SUN algorithm is focused on binary operations: instructions with
two input operands. Unary operations are trivially labeled using the rule that any operation noden with only
one input operand is labeled withL(n) = 1. It is not trivial to extend SUN labeling to three or more input
operands. However, digital nanocontrollers as currently proposed have an instruction set consisting of only
a single instruction which happens to take three input operands. Three-input operations, generally involving
multiplexor-like functionality used to simulate enable masking, also have become common in multimedia
instruction set extensions to many modern processors[7].

The labeling of three-input operation trees is significantly more complex than that of two-input operation
trees because the number of possible relationships between subtree labels grows exponentially as the number
of inputs per operator increases. To each noden, the labelL(n) is assigned as:

1. If n is a leaf,L(n) = 0;



2. If n has descendants with labelsl1, l2, andl3 sorted into order such thatl1>= l2>= l3 ,

(a) If l1> l2> l3 , L(n) = l1;
(b) If l1> l2== l3 == 0,L(n) = l1;
(c) If l1> l2== l3 != 0 andl1- l2== 1,L(n) = l1+ 1;
(d) If l1> l2== l3 != 0 andl1- l2> 1, L(n) = l1;
(e) If l1== l2> l3, L(n) = l1+ 1;
(f) If l1== l2== l3!= 0, L(n) = l1+ 2;
(g) If l1== l2== l3== 0,L(n) = 1;

Rule 1 reflects the now-common simplifying fact that modern processors avoid using memory operands
directly. For example, leaf nanocontroller operations always can be labeled with L(n) = 0 because there
literally is no way for an instruction to reference data other than making a register reference. Constants are
referenced from pre-allocated registers; given bit-wide data paths and operations, only the constants 0 and
1 are possible, so hardwiring just two pre-allocated registers suffices. Nanocontrollers have only registers in
which to store data, so in fact all user-defined variables become preallocated registers. Nanocontrollers even
perform input/output (I/O) operations using pre-allocated registers that are really I/O channels; for example,
register 6 might be a “global OR” output signal and register 7 might be an analog zero-crossing detector
input. Data can be directly used from a pre-allocated register identically to how it would be used from any
other register; no load instruction in needed (or even exists for nanocontrollers).

Rule 2 reflects register needs for non-leaf nodes. As complex as this rule is, the complexity is signifi-
cantly reduced by the fact that it is expressed in terms of the labels of the three input subtrees in an order that
is sorted by label. Thus,l1, l2, andl3are the descendant labels in decreasing label order, not subtree position
order. The complexity of this rule is still high primarily because equal labels and labels of 0 are both special
cases. However, in practice, the complexity of the rule has little impact on the feasibility of the technique.
It also is useful to note that the ternary node case also handles both binary and unary node labellings by
allowing the missing descendants to be treated as if they had 0 labels.

4.2 Tree Generation

At the time the SUN algorithm was proposed, it was quite natural to use trees as the intermediate form.
However, coding styles have significantly changed, so that various compiler optimizations yielding DAGs
are now essentially mandatory. For nanocontroller programs, these DAGs are particularly large and com-
plex thanks to treatment of each bit position separately and target hardware support for only one type of
instruction (which corresponds to a 1-of-2 multiplexor).

As stated earlier, nanocontroller programs generate optimized DAGs which are large and complex. Each
SITE that is generated is a node in the DAG. The root node(s) of every DAG corresponds to a SITE that is a
final store into a variable. All the interior nodes correspond to the temporary SITEs which represent the ITE
operations. By convention, our tools number these starting at 64, the default number of physical nanocon-
troller registers available. The leaf nodes are the ITEs 0 and 1 or the ITEs that correspond to the initially
defined user-variables – nodes numbered less than 64. Trees are generated by conceptually converting all
the DAGs to trees in such a way that each node is replicated at every point that it is referenced.

To demonstrate the treatment of a DAG as a tree, consider the following simple example:

64: 2 0 1
65: 4 64 2
66: 3 0 1
67: 3 2 64
68: 4 67 66

The above 5-ITE basic block not only provides a default sequential order, but also naturally embeds the
perhaps surprisingly complex DAG shown in Figure 2. Ternary nodes tend to yield more complex DAGs
than do binary nodes.

Although the SUN algorithms cannot operate on a DAG, it is easy to treat the DAG as a tree. Logically,
the transformation is simply that, whenever a node has more than one exit arc, the node is replicated to make



Fig. 2.Simple ITE DAG

one copy per exit arc. As a node is thus replicated, any entry arcs must also be replicated to point at the
copies. This in turn makes the nodes behind those entry arcs have multiple exit arcs, thus requiring them to
be replicated in the same fashion. The result of this transformation is shown in Figure 3.

Fig. 3.Trees Derived From Simple ITE DAG

A subtle point in this transformation is the fact that a single DAG becomes multiple trees. Even if the
original DAG had unconnected components, the default sequential order (as listed above) can yield a default
execution order. For our purposes, the SUN algorithm will provide the order within each tree, but ordering
across trees must be provided in another way. The solution used in this paper is to order the tree walks in
the same order as the nodes without exit arcs were originally ordered. Thus, in Figure 3, the tree ending in
65 (right) would be evaluated before the one ending in 68 (left).

Of course, the transformation to create a tree does not merely enable SUN analysis, but also provides
a key relationship between nodes that are the roots of common subexpressions in the DAG. We can use
the rules of our modified SUN to label tree nodes for walking, thus implying a walk order, but then not
actually duplicate the common subexpression nodes. This is the core idea behind the SUN-based GA: to
use a Genetic Algorithm (GA) to selectively re-enable CSE (Common Subexpression Elimination); where
MAXLIVE will not be too adversely affected using the walk order determined using the tree, do not replicate
the common subexpression node.

4.3 GA Optimization Of Subexpression Instantiation

It should not be surprising that the basic steady-state island GA structure of Algorithm 1 also serves well for
the SUN-based GA. The details are surprisingly straightforward, as outlined in Algorithm 2.

Whereas the GA-reordering algorithm described in Section 3 required a fairly complex data structure,
our SUN-based GA for selective reinstantiation of CSEs can effectively use a very conventional bit-sequence
geneome. Each geneome is a bit vector with one bit for each potential CSE; a 1 means instantiate (i.e., the
CSE is enabled), a 0 means duplicate to make a tree.

To evaluate the merit of a geneome, the DAG is recursively walked as a sequence of trees (as per Section
3). The walk uses the labels and ordering of operand evaluation created by treating the DAG as a tree



Algorithm 2 SUN-Based GA Procedure Overview
1. Use the tree interpretation (Section 4.2) of the DAG to label nodes as described in Section 4.1. Note that interpreting the

DAG as a tree does not require literally duplicating nodes; no node copies are made in our coding. The labeling can even take
advantage of the fact that CSEs need only be traversed once to be labeled, because additional traversals would yield the same
labels.

2. Apply the steady-state island GA (Algorithm 1),with the following adjustments:

(a) The initial population is loaded with both the tree (no CSEs instantiated) and original DAG (all CSEs instantiated) as
members in addition to random members.

(b) As the search progresses, the evaluation of any population member can be truncated when its value ofMAXLIVE reaches
a “terrible” level that can be specified as input to the GA and also can be dynamically updated as betterMAXLIVE values
are encountered in the search.

and applying the rules in Section 4.1. As each node is visited, it is allocated a register if needed. Nodes
representing enabled CSEs are walked only the first time they are encountered. After the value of a non-
CSE node has been used, the register allocated to it is freed. The register allocated to an enabled CSE node
is freed only after no reference to that CSE remains, which is determined by decrementing a reference count
associated with that node. The value ofMAXLIVE and number of instructions that would be generated by
the walk are both tracked during the evaluation; as noted in Algorithm 2, the recursive walk can be aborted
early if MAXLIVE becomes too large. The metric favors generating fewer instructions once theMAXLIVE

constraint has been met.
The mutation and crossover operations are very standard GA bit-geneome operations. The only notable

difference is that random choices are made for each bit position in crossover, rather than using the even more
common subsequence interchange. The randomly generated (initial) population members are created using
a two-step process that first selects a random target “loading” and then randomly turns on bit positions to
achieve that loading; this yields a better coverage of the full range of CSE enable densities.

Overall, the SUN-based GA is a very standard GA that has an unusual merit evaluation process.

4.4 Results

Testing the SUN-based GA for selectively enabling common subexpression elimination immediately re-
vealed that the concept of allowing some redundant evaluation was able to dramatically reduceMAXLIVE .
In fact, the reduction possible for large blocks is nothing short of shocking, with nearly every nanocontroller
test case collapsing to a form using approximately a dozen temporary registers despite initially having a
MAXLIVE of hundreds or even thousands.

In order to expose the general relationship between enabling CSEs and increasingMAXLIVE , a series
of experiments were conducted using our SUN-based GA to optimize a moderately complex nanocontroller
basic block for various targetMAXLIVE values. This basic block, with all possible common subexpressions
eliminated, consists of 3,041 ternary SITE instructions and yields aMAXLIVE of 561 in its default ordering.
In this particular case, our GA reordering the instructions is able to reduceMAXLIVE only slightly, to 553.
However, disabling all CSEs results in a pure tree which, using our modified SUN algorithm requires only
12 registers. Unfortunately, the pure tree contains 23,819 SITEs – nearly 8 times as many instructions.

Figure 4 shows how the number of enabled CSEs varies with theMAXLIVE target using our SUN-based
GA. All of the CSE counts plotted are for the coding yielding the lowest number of SITEs for the given
MAXLIVE target. Surprisingly, the SUN-based GA was able to achieve aMAXLIVE of 12 with 662 CSEs
enabled. However, the impact of enabling these 662 CSEs on reducing the number of SITEs is minimal;
because some CSEs are nested and the subtree sizes saved by enabling a CSE vary widely, the relationship
between the number of CSEs enabled and the total number of SITEs remaining is not direct.

Figure 5 shows how the total number of SITEs varies with theMAXLIVE target for the same test case
used in Figure 4. Note that in both figures,MAXLIVE is plotted on the X axis using a log scale. Clearly,
although large reductions inMAXLIVE are possible, they come at a high price in additional instructions to
be executed. The decrease inMAXLIVE is approximately linear with the increase in SITEs. However, the
slope is favorable; as the number of additional instructions increases by nearly an order of magnitude, close
to two orders of magnitude reduction inMAXLIVE is realized.



Fig. 4.Enabled CSEs Vs.MAXLIVE For A Nanocontroller Basic Block

The search space is sufficiently large so that exhaustive evaluation of any but the smallest examples
is impractical; ignoring the ordering problem, any problem withk potential CSEs has 2kdifferent code
structures to evaluate. For basic blocks of nanocontroller code,k commonly exceeds 1,000 – as it does
in this example. Thus, we do not have known optimal solutions for typical problems and cannot make
specific claims about the absolute quality of the SUN-based GA results. For Figures 4 and 5, the search was
constrained to take approximately one minute to optimize for each targetMAXLIVE (running compiled C
code on a 1.4GHz Athlon XP system under Linux), and this restriction has no doubt contributed to the noise
level visible in the curves for this one test case.

Fig. 5.Number Of SITEs Vs.MAXLIVE For A Nanocontroller Basic Block

In addition to the detailed study of how a specific DAG’s processing changes with different target values
for MAXLIVE , it is useful to examine the statistical behavior of the algorithm over a large set of cases. For



this purpose, we used the exact same cases that we employed to evaluate the GA for reordering instructions
(Section 3.3). This enables direct comparison of the two approaches, as well as statistical evaluation of each
independently.

Fig. 6.SUN-Based GA Vs. OriginalMAXLIVE

Perhaps the most important statistic is how wellMAXLIVE can be reduced by the SUN-based GA. Figure
9 shows that the performance in this respect is nothing short of amazing; none of the 32,912 test cases needed
more than 18 registers – well within our nominal nanocontroller goal of fitting within 64 registers. Note the
logarithmic scale in the X axis of this graph. Even a DAG having a default-orderMAXLIVE of 3,409 still fit
in 18 registers – more precisely, that case fit in just 12 registers!

Fig. 7.SUN-Based GA Vs. Original Instruction Counts (SITEs)

Of course, there has to be a catch, and there is. As Figure 9 clearly shows, makingMAXLIVE as small
as possible often requires executing many more instructions than the original DAG would have required.
Note that both axes in this graph are logarithmic, but the largest original block had 15,309 instructions
(SITEs) while the largest produced by SUN-based GA had 1,431,548. On average, there was a factor of



8X expansion in code size to obtain the lowest possibleMAXLIVE . As dramatic as this tradeoff is, such a
code size expansion can be acceptable if it is the difference between being able to use the code and not
being able to; even on desktop processors, the penalty for accessing main memory may be high enough to
occasionally warrant executing 8X more instructions. Further, recall from Figure 5 that the SUN-based GA
is able to efficiently target a specificMAXLIVE target, so it is not necessary to suffer code expansion beyond
that needed to reach the targetMAXLIVE value.

Fig. 8.SUN-Based GAMAXLIVE Vs. CSEs Enabled

Given that the SUN-based GA approach selectively enables CSEs, one might expect that the number of
CSEs enabled is essentially zero in order to achieve the minimumMAXLIVE value, but Figure 8 shows that
is not the case. A modest reduction in the number of instructions generated is generally possible, without
adversely affectingMAXLIVE , by carefully selecting to enable some CSEs.

Fig. 9.SUN-Based GA Vs. GA-ReorderedMAXLIVE



5 Conclusion

This paper has presented two very aggressive methods for attempting to force an extremely complex block
to meet a very smallMAXLIVE constraint. One technique, GA reordering, clearly works well and should be
widely applied; there is no major penalty. The other technique, SUN-based GA, offers amazing reductions
in MAXLIVE , but at the expense of significant code expansion. Figure 9 shows that the SUN-based GA is
able to handle extremely complex blocks exponentially better than GA reordering.

If the goal is simply to be spill free, the lowest-cost method that results in a viableMAXLIVE should
be used. Often, GA reordering will suffice. When it does not, the SUN-based GA should be used with an
explicit cut-off value equal to the number of registers available. Adapting these methods to achieve goals
more complex than just freedom from spills, such as simultaneously optimizing pipeline performance or
minimizing power consumption, is future work.
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