
Speculative Register Promotion Using Advanced Load Address Table (ALAT)

Jin Lin, Tong Chen, Wei-Chung Hsu and Pen-Chung Yew
Department of Computer Science and Engineering

University of Minnesota
Email: {jin, tchen, hsu, yew} @cs.umn.edu

Abstract

The pervasive use of pointers with complicated
patterns in C programs often constrains compiler alias
analysis to yield conservative register allocation and
promotion. Speculative register promotion with hardware
support has the potential to more aggressively promote
memory references into registers in the presence of
aliases. This paper studies the use of the Advanced Load
Address Table (ALAT), a data speculation feature defined
in the IA-64 architecture, for speculative register
promotion. An algorithm for speculative register
promotion based on partial redundancy elimination is
presented. The algorithm is implemented in Intel's Open
Research Compiler (ORC). Experiments on SPEC
CPU2000 benchmark programs are conducted to show
that speculative register promotion can improve
performance of some benchmarks by 1% to 7%.

1. Introduction

In a typical optimizing compiler, register allocation is
carried out in two phases: the register allocation phase
and the register assignment phase. In the register
allocation phase, the candidate memory references are
identified and allocated to an unlimited number of pseudo
registers. In the register assignment phase, the allocated
pseudo registers are mapped to a limited number of
physical registers. Many compilers adopted the graph-
coloring algorithm in the register assignment phase [1, 2,
3].

In the register allocation phase, the compiler identifies
as many memory references as possible to be allocated to
pseudo registers. In order to be allocated to a pseudo
register, a candidate memory reference should not be
aliased with other memory references. A compiler may
simply allocate registers based on local information within
a statement or a basic block. Such simple register
allocation can be improved by allocating scalar variables
that have no aliases within a procedure [4]. To further
improve register allocation, register promotion techniques
[5] are commonly used for potentially aliased memory

references. More general register promotion is often
applied in the framework of partial redundant elimination
[6] to handle control flow structures.

If the compiler has a precise alias analysis, many more
memory references may be allocated to registers.
Although the static pointer analysis has made significant
progress in recent year, a highly accurate alias analyzer is
still rather difficult to develop for C programs due to their
intensive use of pointers [7]. The imprecise pointer
analysis in typical C compilers often results in many
possible aliases [8] and prohibits effective register
promotion. Furthermore, a compiler must be
conservatively correct in register allocation. Even if the
probability of a memory reference pair being aliased is
very low, the compiler still cannot allocate them to
registers. On the other hand, modern processors tend to
provide a large register file to allow more memory
references to be allocated to registers. It is important to
address the disparity.

The alias analysis could be improved, for example, by
inter-procedural analysis [9, 10, 11, 27]. However, the
extensive use of pointers with complex patterns,
especially pointers for dynamically allocated memory
objects, requires comprehensive inter-procedural alias
analysis, which is known to be complicated and expensive
[11]. Separate compilation and the extensive use of shared
library makes inter-procedural alias analysis even more
challenging.

One alternative to a more precise alias analysis is to
have hardware support for allocating aliased memory
references to registers. For example, the compiler may
speculatively promote possibly aliased memory references
into pseudo registers as long as the special hardware can
ensure the correctness of data when such ambiguous
memory references turn out to be aliased during runtime.
Various hardware supports and their respective compiler
solutions [12, 13, 14, 18] have been proposed and studied.
If there is no special hardware support, the compiler can
still speculatively promote possible aliased variables to
registers by generating instructions to check addresses at
runtime to ensure the correctness of data [30].

In this paper, we focus on using the Advanced Load
Address Table (ALAT), as defined in the IA-64

0-7695-1913-X/03 $17.00 © 2003 IEEE 125

architectures and implemented in Itanium processors [15],
to help speculative register promotion. ALAT with the
corresponding advanced load and check instructions were
originally designed to hide load latency by moving load
instructions speculatively ahead of potentially aliased
store instructions. ALAT has the following advantages in
register promotion:

Only store operations need to be checked. In previous
designs, such as C-regs and SLAT, all memory operations,
including both loads and stores, need to be checked for
potential conflicts. The requirement of checking all
memory operations could become a performance
bottleneck in wide-issue processors.

The ALAT only needs to detect address conflicts, not
to maintain the correctness and consistence of the data
stored in registers, and, thus, the hardware complexity of
the ALAT is much lower. If address conflicts occur, load
operations are executed to reload latest data into registers.
This design can be very cost-effective as long as the
speculation is correct most of the time.

However, using ALAT in speculative register
promotion has its limitations. It requires all store
operations be kept and explicit check instructions be
inserted in the code. On the surface, this approach does
not appear that it can reduce as many instructions as other
methods. However, with wide-issue processors, the major
performance concern is not on the number of instructions,
but the number of expensive operations, such as load
operations, in particular, cache-missing loads. Check
instructions are not real memory operations, and can be
processed like no-ops when the check is successful (i.e.
when no conflict is detected).

In this paper, we focus on two key issues: the scheme
to use ALAT to help speculative register promotion, and
the algorithm to perform such promotion in a compiler.
The effectiveness of speculative register promotion is
evaluated with the Intel's ORC compiler [16] on the SPEC
CPU2000 benchmarks [17]. The results show that this
approach has a good potential to enhance the
performance.

The major contributions of this paper are:
• A scheme to use ALAT for speculative register

promotion. This scheme is able to speculatively
promote not only scalar variables but also indirect
memory references such as pointers, which were not
attempted in most of other schemes [14].

• An algorithm for speculative register promotion
based on partial redundancy elimination (PRE). In
addition to control speculation, this algorithm further
introduces alias speculation into register promotion.

• Implementation in the ORC compiler. We
implemented our algorithm in the ORC compiler. The
experimental results show that the execution time of

some SPEC CPU2000 benchmarks on Itanium
machines can be reduced by 1% to 7%.

The rest of this paper is organized as follows. The
scheme that applies the ALAT to speculative register
promotion is described in section 2. Section 3 discusses
the compiler algorithms for speculative register
promotion. We report our experiment results in section 4.
Related works are compared in section 5. Finally, we draw
our conclusions in section 6.

2. Schemes for speculative register promotion

2.1. Advanced load address table (ALAT)

ALAT, originated from the memory buffer concept
[31], is designed to support data speculation in code
scheduling. Both the Itanium and Itanium-2 processor
have implemented ALAT. We briefly describe the
functionality of the ALAT based on the Itanium
implementation [15].

When a speculative load is issued with a special load
instruction, Id.a, the target register number, the partial
memory address, and the size of the data are stored in an
entry for this speculative load. Every store operation
automatically compares its store address against all of the
addresses recorded in ALAT. If there is a match, the
corresponding entry of ALAT is invalidated. The case of
an address match is called a collision.

A check is performed by ld.c or chk.a before
speculatively loaded data is used. If a valid entry for the
advanced load indexed by the target register number is
present in ALAT at the time of the check, no conflicts
have occurred. The data in the target register is considered
valid and can be directly used. Otherwise, the check fails,
and the correct data must be reloaded. The ld.c instruction
simply reloads the data from memory. The chk.a
instruction will jump to a recovery routine specified in the
check instruction. The chk.a instruction provides more
flexibility for recovery because the instruction scheduler
may move the load instruction, as well as some
subsequent data-dependent instructions, across potential
aliased stores. If subsequent data-dependent instructions
are also moved speculatively, such operations must be re-
computed in the recovery routine when the check fails.
The overhead of the recovery routine may be very high if
the code scheduling is too aggressive. After the check is
performed, the corresponding entry in ALAT can be either
kept or cleared, depending on the clear or non-clear
completer specified in the check instructions. An entry can
also be explicitly cleared by the invalidation instruction,
invalva.

126

= p + l ; ld.a r l = [p] P= ; st [p]=r l = p + l ;
add r3=r l ,1 ld.a r l = [p] *q

*q *q *q *q
ld.c r l = [p] ld.c r l = [p] =p+3;

=p+3; add r 4 = r l , 3 =p+3; add r 4 = r l , 3 *q

=p-5;

a. read fo l lowing read b. read fo l lowing write c. mul t ip le

Figure 1. Examples of basic transformations

ld.a r l = [p]
add r3=r l ,1
* q = ...
ld.c.nc r l = [p]
add r 4 = r l , 3
* q = ...
ld .c .c lr r l = [p]
sub r5=r l , 5

redundant loads

2.2. Basic transformations

We start the description of the scheme for speculative
register promotion with the simplest case: a redundant
load following a load operation. Basic transformations are
as follows (Figure 1 (a)):
• The first load is replaced by an advanced load

instruction, ld.a.
• The second load is replaced by a check instruction,

ld.c.
The ld.a allocates an entry in ALAT. If there is no

conflict detected by the check, i.e., there is no aliased
stores occurred between the advanced load and the check,
ld.c is simply executed as a no-op. If there is a conflict,
the Id.c instruction will reload of the up-to-date data from
memory. Therefore, the correctness of speculative register
promotion is guaranteed.

Another case is a redundant load following a store
operation. In this case, a ld.a instruction is added after the
store instruction to secure an entry in ALAT (shown in
Figure l(b)). When there are multiple reads to the same
register, each read in the middle of the sequence should
use a check with the non-clear completer, for example,
ld.c.nc, so that the entry can remain in ALAT after each
check. An example of three read references is shown in
Figure l(c).

2.3. Trans format ions wi th control f lows

For partially redundant loads, such as the second load
in Figure 2(a), it is not always beneficial to eliminate them
because extra load instructions may be needed to cover all
control flow paths [9]. To avoid performance degradation,
the transformation is often guided by certain heuristic
rules or branch profiling information. The same approach
can be applied to speculative register promotion. There is
an instruction, invala, to invalidate a single entry of
ALAT. This instruction can be inserted at a dominating
point to handle partial redundancy, as shown in Figure
2(b). The invalidation instruction is not a memory
operation, so it is cheaper than a load instruction. Since no
memory address is specified in the invalidation
instruction, there are no data dependences involved in this

instruction. This means the invalidation instruction is
likely to be scheduled for free. The disadvantage of using
the invalidation instruction is that it may increase the
lifetime of a register. However, with a large register file as
in Itanium, the register pressure is usually not a big
problem.

When data is reused across an entire loop (see Figure
3(a)), the load operation can be moved speculatively out
of the loop. In speculative register promotion, such a load
is not only control speculative, but also data speculative.
The instruction ld.sa in IA-64 could be used here. We
only need one check instruction, such as chk.a, to check
both control and data speculation. The check instruction
should keep the entry in ALAT (i.e. the ld.c flag should be
set to not-clear) because each of the subsequent iterations
needs to use the allocated ALAT entry. Figure 3(b) shows
the code to speculatively promote a speculative loop
invariant to a register

if () { invala.e rl
=p+l if () {

} Id.a r l=p
*q = ... add r3=rl, 1
i f () { }
=p+3 *q = ...
} i f () {

ld.c r l=p
add r4=rl, 3

}

a. Original Code b. Speculative register promotion

Figure 2. An example of if statement

while 0 {
S q ~ . . .

=p+l
}

There is a possible alias
write in the loop that
may modify p.

(a)

ld.sa rl=[p]

while 0 {
*q = ...
chk.a.nc rl=[p]
add r3=rl, 1

}

(b)

Figure 3. An example of loop

127

2.4. Cascade failure

When a pointer reference and the data it points to are
both speculatively promoted to registers, a collision
detected by the check of the pointer reference will cause
both the pointer and the data it points to be reloaded. This
is called a cascade failure [25]. Such cases may happen
when the address part of the reference may have aliased
writes. For instance, *p, a[j] and **q have aliases in their
address part if p and q are global variables, or if their
addresses have been taken. The check instruction, chk.a,
can be used to handle cascade failures. When the
advanced load check fails, the instruction chk.a will jump
to a recovery routine. In the recovery routine, both the
address and the data can be reloaded. Figure 4(a) shows
the source code of such an example. Figure 4(b) shows the
transformation when only the address may be modified,
and Figure 4(c) shows the transformation when both the
address and the data may be modified. All previous
discussions on speculative register promotions are
applicable to pointer references. The main difference is
that the check instruction should be chk.a, instead of ld.c.

ld.a rl=p ld.a rl=p
= *p+l ld r2=[rl] ld.a r2=[rl]

* q = . . .

= * p + 3

*q *q
chk.a rl, #recovery chk.a rl, #recovery
add r3=r2, 3 ld.c r2=[rl]

add r3=r2, 3
#recovery:
ld rl=p
ld r2=[rl]

#recovery:
ld rl=p
ld.a r2=[rl]

a) source b) p, the address of c) both p and *p may
code *p, may be modified be modified

Figure 4. Example of cascade failure

2.5. Overhead for speculative register promotion

When the leading reference is a read, there is no
overhead because the original ld instruction is replaced by
ld.a. When the leading reference is a write, an additional
instruction, ld.a, is inserted after the store operation. With
a minor modification to the hardware, this operation could
be combined with the store instruction to save an extra
Id.a instruction. For example, we can define a new st.a
instruction. Like the ld.a instruction, a st.a allocates an
entry in ALAT.

The following data reads must be checked with Id.c or
chk.a. The ld.c can be executed concurrently with the
consumer instructions, and takes zero cycle if there is no
collision. The chk.a may not be scheduled in the same

bundle with its consumers However, its recovery scheme
supports more aggressive speculative code scheduling.

A check instruction will incur no overhead if there is
no check failure and there is a free slot to schedule it. If
the check fails, a Id.c will simply reload the data from the
memory and the load latency will be exposed. For the
chk.a, there is a relatively large penalty to jump to and
back from the recovery code. This penalty includes a
light-weighted trap and an unconditional branch.
Therefore, a mis-speculation, especially for address mis-
speculation, could be expensive.

3. Algorithm for speculative register
promotion

In this section, we discuss the algorithm used to
generate code for speculative register promotion, based on
the scheme described in the previous section. Our
algorithm is designed based on partial redundancy
elimination (PRE) so that control speculation can also be
handled. Though the algorithm is described in the context
of the ORC Compiler 's infrastructure, it can be applied to
other compilers. The ORC compiler adopts a powerful
SSA form to model the indirect references [23, 33]. The
PRE algorithm used in ORC is SSA based, called
SSAPRE [29]. We will start from how to incorporate alias
speculation in the SSA form for speculative register
promotion.

3.1. S p e c u l a t i v e S S A form

The original SSA form in the ORC compiler is
designed to represent indirect reference more precisely. It
is a location-factored representation enhanced by the use
of virtual variables [23, 33]. The update and the use
operations of indirect references are modeled by Z and ~t
operations.

Since the static pointer analysis tends to be
conservative, we try to speculate the alias relationship in a
program to perform more aggressive register promotion.
In this paper, we focus on using the alias profiling
feedback for alias speculation. Other speculation methods,
such as using heuristic rules, can also applied in this
framework. We developed a tool on the top of ORC to
instrument the code, and then, to collect the target set of
every memory load or store operation at runtime [7, 8].

To represent the feedback from alias profiling in SSA
form, we introduce a new notion called speculative update
and speculative use. A speculative flag is added to these
operations to indicate that, according to the alias profile,
these operations may not occur at runtime and can be
speculatively ignored. The two new speculative operations
are denoted Z~ and Its, respectively. Figure 5 gives an
example of how to determine the speculative flags using

128

alias profiling feedback [7,8]. Those updates or uses
related to the targets that do not appear in the alias profile
are marked speculative.

*p =

b2=~(bt)
a2-~(al)
v2=x~(v0

~t(b,)

p.s(al),
~t~(v,)

= *p

The two examples assume that the points-to set of p
generated by compiler is { a, b }, the points-to set of
p obtained from alias profiling is {b}. v is the
virtual variable for *p. aj stands for version j of the
variable a.

Figure 5. Determine the speculative flag
according to alias profiling

3.2. Overview of register promotion based on
PRE

In order to identify more candidates for register
promotion in the context of control-flow structures,
register promotion is performed based on partial
redundancy elimination (PRE). There are two existing
partial redundancy elimination schemes: one is bit-vector
based [32] and the other is SSA form based [22, 29]. In
this paper, we focus on the SSA form based PRE
(SSAPRE) because it is adopted in the ORC compiler and
our implementation is based on ORC.

In SSAPRE, each expression is processed in a
bottom-up order in its syntax tree. For example, in the
syntax tree **p, p is processed first, then *p, and finally
followed by **p. When an expression is processed, the
SSA form for the values of this expression (called
hypothetical temporaries in SSAPRE) is constructed
based on the variable SSA form [29]. Therefore, the
occurrences of an expression with the same value can be
identified. These expressions may be redundant. For
partially redundant expressions, computations are added
along the incoming path with control speculation so that
the partial redundant computations become full redundant
and can be eliminated. In [29], there are 6 steps to identify
redundant expressions: 1) Phi-insertion, 2) Rename step,
3) DownSafety, 4) WillBeAvail, 5) Finalize and 6)
CodeMotion.

The first two steps are aimed to identify the
expressions that have the same value and are redundant.
The Phi-insertion step marks every point at which the
value of an expression may change, namely, the update
points for the hypothetical temporaries. The version
numbers for the hypothetical temporaries are assigned in

the Rename step. The following step 3 and step 4 are
intended to handle the partial redundancy in the control
flow graph. The DownSafty step checks whether a
hypothetical temporary may not be used later, and the
WillBeAvail step checks whether the value of a
hypothetical temporary is available from all the incoming
paths. The Finalize step determines the placement of
computation. The last step, the CodeMotion step
transforms the code. More details can be found in [29].

Our speculative register promotion work directly
affects the Rename step and the CodeMotion step. By
ignoring some points-to targets and consequent updates,
some occurrences of the hypothetical temporaries may
speculatively have the same version number and more
redundancy can be identified. In the CodeMotion step, we
generate speculative load and check instructions. We do
not modify the partial redundancy work because the data
speculation is orthogonal to the control speculation.
Details are discussed in the following sections.

3.3. Speculative rename step

In the Rename step, version numbers are assigned to
the hypothetical temporaries. To assign version numbers,
the Rename step keeps track of the current version of the
expression and the variables contained in the expression
by maintaining a rename stack for each of them while
conducting a preorder traversal of the dominator tree of
the program. The critical operation is to compare whether
all the variables in the current occurrence of the
expression have the same version number as those
variables in the expression on the top of the rename stack.

There are two cases that may cause the version number
to be changed: the merge of control flow or the update of
a variable contained in the expression. With data
speculation, there are two kinds of updates that may be
ignored: 1) speculative updates Zs, and 2) updates related
to the speculative use kts. These updates are unlikely to
change the value of the hypothetical temporaries
according to the speculation. As a result, more
occurrences of the expression are assigned with the same
version number speculatively in our original algorithm. In
order to generate correct code in the CodeMotion step, we
attach a speculative flag to the version number if it is
assigned speculatively.

Here we use the example in Figure 6(a) to show how
the speculative Rename step works. In this example, there
are two occurrences of the expression a which are
represented by the temporary variable h. The alias
analysis shows that there exists alias relation between the
expression *p and a. The value of the variable a is
updated which is represented by E operation after the store
of *p in the resulting SSA form. These two occurrences
of a are assigned with different version numbers in the
original Rename step. However, in our algorithm, if p

129

doesn't point to a in the alias profile or from some
heuristic rules, the X operation with a is marked with gs
and this update can be ignored in the Rename step. In
Figure 7 (b), the second occurrence of a is speculatively
assigned with the same version number as the first one. In
order to generate the check statement in the CodeMotion
step, the second occurrence of a is annotated with a
speculative flag.

The target set of *p generated by the compiler is {a, b}
and v is the virtual variable for *p.
The target set of *p generated by the alias profiling is {b}.
h is the hypothetical temporary for the load of a.

. . . . al [hl]

*Pl
v2 ~-X (Vl)

a2 ~-X (al)
b2 <-X (bl)
. . . . a 2 [h2]

a) traditional Renaming

. . . . a 1 [hi]
*Pl
v4 ~"-X (v3)

a2 ~--Xs (al)
b2 ~---X (bl)
. . . . a2 [hl<speculative>]

(b) speculative Renaming

Figure 6. Example of speculative renaming

3.4. Generate advanced load and check
instructions

The CodeMotion step transforms the code according to
the SSA form for the hypothetical temporaries built in the
previous steps. In this step, when there are reuses, the
corresponding hypothetical temporaries become real
temporaries in order to hold the value for reuses. Other
hypothetical temporaries should be discarded.
Assignments to the real temporaries and the use of the real
temporaries are generated in CodeMotion step.

With data speculation, this step is responsible for
generating speculative load for the assignments to the real
temporaries and generating the check statements for the
uses of the real temporaries. The check statements are
needed at places where the speculative occurrence is
anticipated. At the same time, redundant checks should be
removed as much as possible.

Figure 7 gives an example that shows the effect of the
algorithm. In this example, the second occurrence of a is
annotated with a speculative flag in the Rename step to
indicate that the version number of the temporary variable
h is speculatively identical to the version number of the
first occurrence. In the original CodeMotion step, the
temporary variable t is generated to model the
hypothetical temporary variable h, the first occurrence of
a is replaced with an assignment statement to variable t,
and the second occurrence a is replaced with the use of
variable t according to the result of the Finalize step. In
addition, in our enhanced CodeMotion step, we insert an

assignment statement to t after the store of *p. This
statement is called check statement in this paper. The
expression a on the right hand side of check statement is
marked with ld.c flag. Since the value of the first
occurrence of a can reach the second occurrence, the
expression a at the first occurrence is marked with a ld.a
flag. The ld.a and ld.c flags are used to guide later code
generation.

. . . . a 1 [h l]
*Pl
v4 ~"-X (v3)

a2 ~Xs (al)
b4 ~'X (b3)

... =a 2
[h 1 <speculative>]

(a)Before Code Motion

t 1 = a 1 (ld.a flag)

. . . = t 1

*Pl
v4 ~"X (v3)

a2 <-'Xs (al)
b4 ~-X (b3)
t4 = a2 (ld.c flag)
. . . ~ t 4

(b) Final Output

Figure 7. Example of speculative code
generation

3.5. Recovery code generation

In this phase, all the statements marked with
speculative load and check flags are transformed into the
corresponding assembly instructions. The recoveries
codes are generated to ensure the correctness of the
original program should mis-speculation occur.

We used the recovery code generation approach
introduced in [21]. It can generate recovery code for
speculation during list scheduling as well as in other
optimization phases.

4. Performance evaluation of the speculative
register promotion using ALAT

We implemented the speculative register promotion
based on PRE in the Intel 's Open Research Compiler
(ORC) of version 1.1. The benchmarks used are selected
from SPEC CPU2000 benchmarks. Experiments were
conducted on an HP-i2000 workstation with a 733 MHz
Itanium processor with Linux 7.1 operation system.

The base line used for comparison in our experiments
is the code generated by ORC with - 0 3 option. In the
base line version, ORC performs a sequence of pointer
analyses, such as equivalence class based alias analysis
[24], flow sensitive pointer analysis and even the unsafe
type-based pointer analysis. Based on these alias analysis
results, ORC performs a powerful register promotion
based on partial redundancy elimination. The software
approach to check possible alias by compare instructions
at runtime [30] is also applied. Therefore, the further

130

improvement in register allocation can be regarded as the
contribution of our speculative register promotion.

In the experiment, the alias profiling information is
collected with the train input set, and then is fed back to
compiler to perform speculative register promotion. The
generated code is executed with the ref input. The
performance of the generated code is measured with the
pfmon [28] tool.

The performance result of ten benchmarks is reported
in Figure 8. We measure improvement using several
metrics: the total CPU cycles, the data access cycles and
the number of retired load instructions. As shown in
Figure 8, the total number of CPU cycles are reduced by
1% to 7%. The major contribution to the reduction of
CPU cycles comes from the reduction of data access
cycles, and the reduction of data access cycles comes from
reduced load instructions. The number of retired load
operations are reduced by more than 5% for half of the
benchmarks. The reduced load instructions are likely to be
cache hits. On Itanium, the latency of a L1 data cache hit
is two cycles. If those eliminated loads could be scheduled
to fully hide the two-cycle latency, then the performance
improvement would be minor. This explains why more
than 5% of load instruction reduction only translates into
1% to 7% of CPU cycle reduction. In some cases, the
eliminated loads reduce data cache misses, and contribute
more to the performance gain. As shown in Figure 8, the

performance gain of floating point benchmarks (ammp,
art, equake) is more significant than integer benchmarks.
This is because the latency of a floating point load on
Itanium is 9 cycles. Converting 9 cycle loads to 0 cycle
checks can contribute significantly to performance.

To further evaluate the impact on reduced loads for
speculative register promotion, we study the relative
percentage of indirect load and direct load among the
reduced loads for each benchmark. In Figure 9, we
observe that the indirect loads account for the majority of
the reduced load for ammp, gzip, mcf, and parser.

We also report the percentage of load checks that
failed during runtime over the total loads retired, which
indicates the amount of data speculation opportunities
having been exploited in each program. We also reported
the percentage of check loads that failed dunng runtime,
and this metric is called the mis-speculation ratio. A high
mis-speculation ratio can decrease the benefit of
speculative optimization or even degrade performance. In
Figure 10, we observe that the mis-speculation ratio is
generally very small. For gzip, although the mis-
speculation ratio is at 5%, the total number of check
instructions is nearly negligible compared to the total
number of load instructions. Therefore, there is little
performance impact from the high mis-speculation ratio.

0
12.0%
10.0%
8.0% 0

i 6.0% 4.0%
2.0%
0.0%

~" -2.0%

14.0% ..

)
i .

L- - i
[] cpu cycle

• data access cycle

[] oads ret red

Figure 8. Performance of speculative register promotion

100%

80%

"~ 60%

o 40%

8, 20,/=
¢l

t . 2 0 ~ ~ , 3 ~ . . - ~ . , p ~ . . m . . . o p , , , _ _ ~ . . ~ _ ~ , . ~

I N direct load

[] ind i rect load

Figure 9. Percentage of different types of load among total reduced load

131

25.0%

! "
o 15.0°/o

10.0O/o
m 5.0%

0.0% , , ra_

• Idc-c hk instructions
compared to ioads retired

• mis-speculat ion

Figure 10. The mis-speculation in speculative register promotion

o l

[

3 .0%

2 .5%

2 .0%
1.5%

1.0%

0 .5%

0 .0%

-0 .5%

-1 .0 °/,~

55 .4% 10 .6%

2 3 ~ / 0 - 1 . 9 %

Figure 11. RSE memory cycles increase

Another concern for speculative register promotion is
that it might increase the register pressure, thus cause
excessive register spilling. On Itanium, register spilling
has not been a major issue because of the use of a
flexible register stack. Increased use of register will
result in a larger number of registers allocated at the
procedure prologue. Register stack overflow is handled
by the RSE (Register Stack Engine). In Figure 11, we
can see that the RSE cycles reported are barely changed,
which indicates essentially very little increased register
save/restore cost. For ammp and gzip, although the
increase of RSE cycles is up by 55.4% and 10.6%,
respectively, the total RSE cycles are only 0.001% of the
total execution cycles. Hence, increased RSE cycles can
be ignored.

The implementation of the speculative register
promotion is not a trivial task. It has a large amount of
inter-dependence with other optimizer components such
as the instruction scheduler, the loop optimization phase,
the software pipeliner, and the regular register
allocation. In the current version, such interaction among
optimizations has not been tuned, and the register
promotion is limited to expressions that will not cause
cascaded failure. The potential of speculative register
promotion would be higher than what we have achieved.

5. R e l a t e d w o r k a n d d i s c u s s i o n s

Several hardware designs have been proposed to
support speculative register promotion. Ben, Heggy and
Mary Lou Sofia [12] presented a hardware design that
maintains the data coherence between registers and
memory. The address of each memory access is checked
and the access may be redirected to registers. C-reg [13]
is another design that simplifies the register forwarding.
The Store-Load Address Table (SLAT) [14] supports
speculative register promotion in which a separate table
records the addresses of data that have been allocated to
registers. These schemes maintain the coherence of
values in registers when memory aliases do exist. The
ALAT scheme uses a recovery mechanism to restore the
correct value when the check instructions failed. As a
result, ALAT requires fewer entries than the register file,
and is not part of the architecture states. Partial
addresses are used in ALAT to be space and time
efficient while other schemes must use full address.
SLAT can only promote scalar variables while ALAT
can be used to promote both scalar and indirect
references. One of the drawbacks of the ALAT scheme
is that only load operations can be reduced.

The alias problem in speculative register promotion
can also be solved by pure software approach [30]. This
approach has been implemented in the ORC compiler.

132

When two references may be aliased, their address
values are compared and a predicated instruction for
register forwarding is added. This transformation also
avoids redundant load operations when aliased writes
occur at runtime. Redundant loads are removed at the
cost of a comparison and a conditional register copy
instruction. The major advantage of using ALAT is that
the comparison of addresses is done implicitly by
hardware. The software approach has to generate an
explicit compare instruction for every possible alias
reference after every aliased store operation. It is
enabled at 03 level in ORC and our results include this
optimization.

Our speculative register promotion approach does not
conflict with the original design objective of ALAT, i.e.
to hide the latency of loads. The advanced loads are
intended to speculatively move individual loads as early
as possible [15]. When the advanced loads are used for
speculative register promotion, groups of references are
handled together. Therefore, not only the latency of
loads is hidden, but also redundant loads are removed.
After the speculative register promotion, the scheduler
could still use the advanced loads to hide the latency of
the loads for the first producer references.

The potential of using data speculation in register
promotion has been suggested by [22]. We present a
compiler framework to support speculative register
promotion. Our design and implementation of alias
speculation is based on the SSA form as proposed in
[23]. This SSA form models indirect references more
precisely than the assignment-factor representation and
more efficient than other location-factor representations.
We introduce a new concept, the alias speculation, into
the SSA form. Speculative register promotion is one
optimization that can make effective use of alias
speculation.

Our register promotion algorithm is based on the
partial redundancy elimination algorithm [6, 29]. The
conventional PRE algorithm focuses on how to use
control speculation to eliminate partially redundant
operations, regarding to the control flow paths. Now we
can also identify speculative redundancies with the alias
speculation support.

6. Summary

Register promotion is an important optimization in a
compiler. The effectiveness of register allocation is often
limited by imprecise alias analysis in C compilers due to
intensive use of pointers. Although much progress have
been made on improving pointer analysis in C
compilers, analyzing heap-oriented pointers remains a
challenge to current compilers. Speculative register
promotion is a technique to assist register allocation

when the compiler fails to allocate memory objects with
unresolved aliases to registers. This paper examines the
use of the Advanced Load Address Table (ALAT), as
defined in the IA-64 architecture, to perform speculative
register allocation.

The code generation issues of speculative register
promotion using ALAT are discussed. Examples on how
to perform speculative register promotion are provided
for basic blocks, various control flow structures, and
indirect reference chains. A compiler algorism, based-on
PRE, for speculative register promotion is presented.
This algorithm is able to perform both control and data
speculation in register promotion.

The Intel ORC compiler is used to evaluate the
performance of speculative register promotion using
ALAT. The PRE part in ORC is modified to perform
speculative register promotion. The experiments show
that the proposed scheme is quite effective on a set of
selected benchmark programs. The integration of this
scheme with other optimization phases in the ORC
compiler is currently under development.

Acknowledgements

This work was supported in part by the U.S. National
Science Foundation under grants EIA-9971666, CCR-
0105571, CCR-0105574, and EIA-0220021, and grants
from Intel.

The authors wish to thank Roy Ju, Sun Chan (Intel
Corporation), Raymond Lo, Shin-Ming Liu (Hewlett-
Packard) and Peiyi Tang (University of Arkansas at
Little Rock) for their valuable suggestions and
comments, and the conference reviewers, whose
comments significantly improved this paper.

References
[1] G.J. Chaitin. Register allocation and spilling via graph

coloring. In Proceedings of the ACM SIGPLAN 82
Symposium on Compiler Construction, pages 98-105,
New York, NY, 1982. ACM.

[2] P. Briggs, K. Cooper, K. Kennedy, and L. Torczon.
Coloring heuristics for register allocation. In ASCM
Conference on Program Language Design and
Implementation, pages 275-284, 1989.

[3] F. Chow and J.L. Hennessy. The priority-based coloring
approach to register allocation. ACM Transactions on
Programming Languages and Systems, 12(4):501-536,
1990.

[4] D.W. Wall. Global register allocation at link time. In
Proceedings of the ACM SIGPLAN '86 Conference on
Programming Language Design and Implementation,
pages 264--75, 1986.

[5] K. D. Cooper and J. Lu. Register Promotion in C
Programs. In Proceedings of the ACM SIGPLAN '97
Conference on Programming Language Design and

133

Implementation, pages 308--319, Las Vegas, NV, June
1997.

[6] R. Lo, F. Chow, R. Kennedy, S. Liu, and P. Tu. Register
promotion by sparse partial redundancy elimination of
loads and stores. In Proceedings of the ACM SIGPLAN
'98 Conference on Programming Language Design and
Implementation (PLDI), pages 26--37, Montreal, Canada,
17--19 June 1998.

[7] T. Chen, J. Lin, W.C. Hsu and P.C. Yew, On the Impact
of Naming Methods for Heap-Oriented Pointers in C
Programs, In Proceedings of the International
Symposium on Parallel Architectures, Algorithms, and
Networks, 2002

[8] T. Chen, J. Lin, W.C. Hsu and P.C. Yew, "The Empirical
Study of the Granularity of Pointer Analysis in C
programs. In Proceeding of the 15th Workshop on
Languages and Compilers for Parallel Computing, 2002.

[9] R.P. Wilson and M.S. Lam. Efficient context-sensitive
pointer analysis for C program. In Proceedings of the
ACM SIGPLAN'95 Conference on Programming
Language Design and Implementation, pagesl-12, La
Jolla, California, Jun 18-21, 1995.

[10] Michael Hind. Pointer analysis: Haven't we solved this
problem yet? In 2001 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering (PASTE'01), Snowbird, UT, June 2001.

[11] R. P. Wilson and M. S. Lam. Efficient context-sensitive
pointer analysis for C programs. In Proceedings of the
ACM SIGPLAN'95 Conference on Programming
Language Design and Implementation, pages 1-12, June
1995.

[12] B. Heggy and M. L. Soffa. Architectural Support for
Register Allocation in the Presence of Aliasing. Proc.,
Supercomputing '90: November 12-16.

[13] H. Dietz and C.-H. Chi. CRegs: A New Kind of Memory
for Referencing Arrays and Pointers. Proc.,
Supercomputing '88: November 14-18.

[14] M. Postiff, D. Greene, Greene and T. Mudge. The Store-
Load Address Table and Speculative Register Promotion.
Proc.33rd Annual Intl. Syrnp. Microarchitecture
(Micro33), Monterrey, CA. December 10-13, 2000, pp.
235-244.

[15] Intel software college:
h ttp://developer.intel .com/software/products/college/itani
um/

[16] R. D.-C. Ju, S. Chan, and C. Wu. Open Research
Compiler for the Itanium Family. Tutorial at the 34th
Annual International Symposium on Microarchitecture.

[17] Spec CPU2000, http//www specbench.or¢los,~lcpu2000/
[18] P. Dahl and M. O'Keefe. Reducing Memory Traffic with

CRegs. In Proceeding of the 27th International
Symposium on Microarchitecture, pp. 100-104, Nov,
1994.

[19] M. Emami, R. Ghiya, and L. J. Hendren. Context-
Sensitive Interprocedural Points-to Analysis in the
Presence of Function Pointers. In Proceedings of the

ACM SIGPLAN'94 Conference on Programming
Language Design and Implementation, pages 242-256,
June 1994.

[20] E.Morel and C. Renvoise. Global optimization by
suppression partial redundancies. Comm. ACM 22(2):
96-103, February 1979.

[21] R. D.-C. Ju, K. Nomura, U. Mahadevan, and L.-C. Wu,
"A Unified Compiler Framework for Control and Data
Speculation," Proc. of 2000 Int'l Conf. on Parallel
Architectures and Compilation Techniques (PACT), pp.
157 - 168, Oct. 2000.

[22] R. Krishnaiyer, D. Kulkarni, D. Lavery, W. Li, C.-C.
Lim, J. Ng, D. Sehr, An advanced optimizer for the IA-64
architecture, IEEE Micro, Vol. 20, No. 6, Nov. 2000.

[23] F. Chow, R. Lo, S. Liu, S. Chan, and M. Streich,
Effective Representation of Aliases and Indirect Memory
Operations in SSA Form, Proc. of 6th Int'l Conf. on
Compiler Construction, April 1996, pp. 253-257

[24] B. Steensgaard. Points-to analysis in almost linear time.
In Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages,
Pages 32-41, January, 1996.

[25] W. Landi and B.G. Ryder. A safe approximate algorithm
for interprocedural pointer aliasing. In proceedings of the
SIGPLAN'92 Conference on Programming Language
Design and Implementation, page 235-248, July 1992.

[26] L.Carter, B.Simon, B.Calder, L.Carter, and J.Ferrante.
Predicated static single assignment. In Proceedings of the
International Conference on Parallel Architectures and
Compilation Techniques, October 1999.

[27] R. Ghiya, D. Lavery and D. Sehr. On the Importance of
Points-To Analysis and Other Memory Disambiguation
methods For C programs. In Proceedings of the ACM
SIGPLAN'01 Conference on Programming Language
Design and Implementation, page 47-58, June 2001.

[28] pfmon: ftp-//ftp.hpl.hp.com/pub/linux-ia64/pfmon- 1.0-
1 .ia64.rpm

[29] R.Kennedy, S. Cban, S. Liu, R. Lo, P. Tu, Partial
Redundancy Elimination in SSA Form. ACM Trans. On
Programming Languages and systems, 1999.

[30] A. Nicotau. Run-time disambiguation: Coping with
statically unpredictable dependencies. IEEE Transactions
on Computers, 38(5):663--678, 1989.

[31] D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C.
Gyllenhaal, and W. W. Hwu. Dynamic memory
disambiguation using the memory conflict buffer. In
Proceeding of the 6th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 183-193, Oct. 1994.

[32] J. Knoop, O. Ruthing, and B. Steffen. Lazy code motion.
In Proceedings of the ACM SIGPLAN '92 Conference on
Programming Language Design and Implementation, San
Francisco, California, June 1992.

[33] R. Ju, S. Chan, F. Chow, X. Feng, Open Research
Compiler (ORC): Beyond Version 1.0, tutorial presented
in PACT 2002.

134

