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Abstract 

The pervasive use of pointers with complicated 
patterns in C programs often constrains compiler alias 
analysis to yield conservative register allocation and 
promotion. Speculative register promotion with hardware 
support has the potential to more aggressively promote 
memory references into registers in the presence of 
aliases. This paper studies the use of the Advanced Load 
Address Table (ALAT), a data speculation feature defined 
in the IA-64 architecture, for speculative register 
promotion. An algorithm for speculative register 
promotion based on partial redundancy elimination is 
presented. The algorithm is implemented in Intel's Open 
Research Compiler (ORC). Experiments on SPEC 
CPU2000 benchmark programs are conducted to show 
that speculative register promotion can improve 
performance of some benchmarks by 1% to 7%. 

1. Introduction 

In a typical optimizing compiler, register allocation is 
carried out in two phases: the register allocation phase 
and the register assignment phase. In the register 
allocation phase, the candidate memory references are 
identified and allocated to an unlimited number of pseudo 
registers. In the register assignment phase, the allocated 
pseudo registers are mapped to a limited number of 
physical registers. Many compilers adopted the graph- 
coloring algorithm in the register assignment phase [1, 2, 
3]. 

In the register allocation phase, the compiler identifies 
as many memory references as possible to be allocated to 
pseudo registers. In order to be allocated to a pseudo 
register, a candidate memory reference should not be 
aliased with other memory references. A compiler may 
simply allocate registers based on local information within 
a statement or a basic block. Such simple register 
allocation can be improved by allocating scalar variables 
that have no aliases within a procedure [4]. To further 
improve register allocation, register promotion techniques 
[5] are commonly used for potentially aliased memory 

references. More general register promotion is often 
applied in the framework of partial redundant elimination 
[6] to handle control flow structures. 

If the compiler has a precise alias analysis, many more 
memory references may be allocated to registers. 
Although the static pointer analysis has made significant 
progress in recent year, a highly accurate alias analyzer is 
still rather difficult to develop for C programs due to their 
intensive use of pointers [7]. The imprecise pointer 
analysis in typical C compilers often results in many 
possible aliases [8] and prohibits effective register 
promotion. Furthermore, a compiler must be 
conservatively correct in register allocation. Even if the 
probability of a memory reference pair being aliased is 
very low, the compiler still cannot allocate them to 
registers. On the other hand, modern processors tend to 
provide a large register file to allow more memory 
references to be allocated to registers. It is important to 
address the disparity. 

The alias analysis could be improved, for example, by 
inter-procedural analysis [9, 10, 11, 27]. However, the 
extensive use of pointers with complex patterns, 
especially pointers for dynamically allocated memory 
objects, requires comprehensive inter-procedural alias 
analysis, which is known to be complicated and expensive 
[11]. Separate compilation and the extensive use of shared 
library makes inter-procedural alias analysis even more 
challenging. 

One alternative to a more precise alias analysis is to 
have hardware support for allocating aliased memory 
references to registers. For example, the compiler may 
speculatively promote possibly aliased memory references 
into pseudo registers as long as the special hardware can 
ensure the correctness of data when such ambiguous 
memory references turn out to be aliased during runtime. 
Various hardware supports and their respective compiler 
solutions [12, 13, 14, 18] have been proposed and studied. 
If there is no special hardware support, the compiler can 
still speculatively promote possible aliased variables to 
registers by generating instructions to check addresses at 
runtime to ensure the correctness of data [30]. 

In this paper, we focus on using the Advanced Load 
Address Table (ALAT), as defined in the IA-64 
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architectures and implemented in Itanium processors [ 15], 
to help speculative register promotion. ALAT with the 
corresponding advanced load and check instructions were 
originally designed to hide load latency by moving load 
instructions speculatively ahead of potentially aliased 
store instructions. ALAT has the following advantages in 
register promotion: 

Only store operations need to be checked. In previous 
designs, such as C-regs and SLAT, all memory operations, 
including both loads and stores, need to be checked for 
potential conflicts. The requirement of checking all 
memory operations could become a performance 
bottleneck in wide-issue processors. 

The ALAT only needs to detect address conflicts, not 
to maintain the correctness and consistence of the data 
stored in registers, and, thus, the hardware complexity of 
the ALAT is much lower. If  address conflicts occur, load 
operations are executed to reload latest data into registers. 
This design can be very cost-effective as long as the 
speculation is correct most of the time. 

However, using ALAT in speculative register 
promotion has its limitations. It requires all store 
operations be kept and explicit check instructions be 
inserted in the code. On the surface, this approach does 
not appear that it can reduce as many instructions as other 
methods. However, with wide-issue processors, the major 
performance concern is not on the number of instructions, 
but the number of expensive operations, such as load 
operations, in particular, cache-missing loads. Check 
instructions are not real memory operations, and can be 
processed like no-ops when the check is successful (i.e. 
when no conflict is detected). 

In this paper, we focus on two key issues: the scheme 
to use ALAT to help speculative register promotion, and 
the algorithm to perform such promotion in a compiler. 
The effectiveness of speculative register promotion is 
evaluated with the Intel's ORC compiler [16] on the SPEC 
CPU2000 benchmarks [17]. The results show that this 
approach has a good potential to enhance the 
performance. 

The major contributions of this paper are: 
• A scheme to use ALAT for speculative register 

promotion. This scheme is able to speculatively 
promote not only scalar variables but also indirect 
memory references such as pointers, which were not 
attempted in most of other schemes [14]. 

• An algorithm for speculative register promotion 
based on partial redundancy elimination (PRE). In 
addition to control speculation, this algorithm further 
introduces alias speculation into register promotion. 

• Implementation in the ORC compiler. We 
implemented our algorithm in the ORC compiler. The 
experimental results show that the execution time of 

some SPEC CPU2000 benchmarks on Itanium 
machines can be reduced by 1% to 7%. 

The rest of this paper is organized as follows. The 
scheme that applies the ALAT to speculative register 
promotion is described in section 2. Section 3 discusses 
the compiler algorithms for speculative register 
promotion. We report our experiment results in section 4. 
Related works are compared in section 5. Finally, we draw 
our conclusions in section 6. 

2. Schemes for speculative register promotion 

2.1. Advanced load address table (ALAT) 

ALAT, originated from the memory buffer concept 
[31], is designed to support data speculation in code 
scheduling. Both the Itanium and Itanium-2 processor 
have implemented ALAT. We briefly describe the 
functionality of  the ALAT based on the Itanium 
implementation [15]. 

When a speculative load is issued with a special load 
instruction, Id.a, the target register number, the partial 
memory address, and the size of the data are stored in an 
entry for this speculative load. Every store operation 
automatically compares its store address against all of the 
addresses recorded in ALAT. If  there is a match, the 
corresponding entry of ALAT is invalidated. The case of 
an address match is called a collision. 

A check is performed by ld.c or chk.a before 
speculatively loaded data is used. If a valid entry for the 
advanced load indexed by the target register number is 
present in ALAT at the time of the check, no conflicts 
have occurred. The data in the target register is considered 
valid and can be directly used. Otherwise, the check fails, 
and the correct data must be reloaded. The ld.c instruction 
simply reloads the data from memory. The chk.a 
instruction will jump to a recovery routine specified in the 
check instruction. The chk.a instruction provides more 
flexibility for recovery because the instruction scheduler 
may move the load instruction, as well as some 
subsequent data-dependent instructions, across potential 
aliased stores. If  subsequent data-dependent instructions 
are also moved speculatively, such operations must be re- 
computed in the recovery routine when the check fails. 
The overhead of the recovery routine may be very high if 
the code scheduling is too aggressive. After the check is 
performed, the corresponding entry in ALAT can be either 
kept or cleared, depending on the clear or non-clear 
completer specified in the check instructions. An entry can 
also be explicitly cleared by the invalidation instruction, 
invalva. 
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= p + l ;  ld.a r l = [ p ]  P= ; st [p]=r l  = p + l ;  
add r3=r l ,1  ld.a r l = [ p ]  *q . . . .  

*q . . . .  *q . . . . .  *q . . . . .  *q . . . . .  
ld.c r l = [ p ]  ld.c r l = [ p ]  =p+3;  

=p+3;  add r 4 = r l ,  3 =p+3;  add r 4 = r l ,  3 *q . . . .  

=p-5;  

a. read fo l lowing read b. read fo l lowing write c. mul t ip le  

Figure 1. Examples of basic transformations 

ld.a r l = [ p ]  
add r3=r l ,1  
* q =  ... 
ld.c.nc r l = [ p ]  
add r 4 = r l ,  3 
* q =  ... 
ld .c .c lr  r l = [ p ]  
sub r5=r l ,  5 

redundant  loads  

2.2. Basic transformations 

We start the description of the scheme for speculative 
register promotion with the simplest case: a redundant 
load following a load operation. Basic transformations are 
as follows (Figure 1 (a)): 
• The first load is replaced by an advanced load 

instruction, ld.a. 
• The second load is replaced by a check instruction, 

ld.c. 
The ld.a allocates an entry in ALAT. If  there is no 

conflict detected by the check, i.e., there is no aliased 
stores occurred between the advanced load and the check, 
ld.c is simply executed as a no-op. If  there is a conflict, 
the Id.c instruction will reload of the up-to-date data from 
memory. Therefore, the correctness of speculative register 
promotion is guaranteed. 

Another case is a redundant load following a store 
operation. In this case, a ld.a instruction is added after the 
store instruction to secure an entry in ALAT (shown in 
Figure l(b)). When there are multiple reads to the same 
register, each read in the middle of the sequence should 
use a check with the non-clear completer, for example, 
ld.c.nc, so that the entry can remain in ALAT after each 
check. An example of three read references is shown in 
Figure l(c). 

2.3. Trans format ions  wi th  control  f lows  

For partially redundant loads, such as the second load 
in Figure 2(a), it is not always beneficial to eliminate them 
because extra load instructions may be needed to cover all 
control flow paths [9]. To avoid performance degradation, 
the transformation is often guided by certain heuristic 
rules or branch profiling information. The same approach 
can be applied to speculative register promotion. There is 
an instruction, invala, to invalidate a single entry of 
ALAT. This instruction can be inserted at a dominating 
point to handle partial redundancy, as shown in Figure 
2(b). The invalidation instruction is not a memory 
operation, so it is cheaper than a load instruction. Since no 
memory address is specified in the invalidation 
instruction, there are no data dependences involved in this 

instruction. This means the invalidation instruction is 
likely to be scheduled for free. The disadvantage of using 
the invalidation instruction is that it may increase the 
lifetime of a register. However, with a large register file as 
in Itanium, the register pressure is usually not a big 
problem. 

When data is reused across an entire loop (see Figure 
3(a)), the load operation can be moved speculatively out 
of the loop. In speculative register promotion, such a load 
is not only control speculative, but also data speculative. 
The instruction ld.sa in IA-64 could be used here. We 
only need one check instruction, such as chk.a, to check 
both control and data speculation. The check instruction 
should keep the entry in ALAT (i.e. the ld.c flag should be 
set to not-clear) because each of the subsequent iterations 
needs to use the allocated ALAT entry. Figure 3(b) shows 
the code to speculatively promote a speculative loop 
invariant to a register 

if ( ) { invala.e rl  
=p+l if ( ) { 

} Id.a r l=p  
*q = ... add r3=rl,  1 
i f ( ) {  } 
=p+3 *q = ... 
} i f ( ) {  

ld.c r l=p  
add r4=rl,  3 

} 

a. Original Code b. Speculative register promotion 

Figure 2. An example of if statement 

while 0 { 
S q ~  . . .  

=p+l 
} 

There is a possible alias 
write in the loop that 
may modify p. 

(a) 

ld.sa rl=[p] 

while 0 { 
*q = ... 
chk.a.nc rl=[p] 
add r3=rl,  1 

} 

(b) 

Figure 3. An example of loop 
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2.4. Cascade failure 

When a pointer reference and the data it points to are 
both speculatively promoted to registers, a collision 
detected by the check of the pointer reference will cause 
both the pointer and the data it points to be reloaded. This 
is called a cascade failure [25]. Such cases may happen 
when the address part of the reference may have aliased 
writes. For instance, *p, a[j] and **q have aliases in their 
address part if p and q are global variables, or if their 
addresses have been taken. The check instruction, chk.a, 
can be used to handle cascade failures. When the 
advanced load check fails, the instruction chk.a will jump 
to a recovery routine. In the recovery routine, both the 
address and the data can be reloaded. Figure 4(a) shows 
the source code of such an example. Figure 4(b) shows the 
transformation when only the address may be modified, 
and Figure 4(c) shows the transformation when both the 
address and the data may be modified. All previous 
discussions on speculative register promotions are 
applicable to pointer references. The main difference is 
that the check instruction should be chk.a, instead of ld.c. 

ld.a rl=p ld.a rl=p 
= *p+l ld r2=[rl] ld.a r2=[rl] 

* q  = . . .  

= * p + 3  

*q . . . .  *q . . . .  
chk.a rl,  #recovery chk.a rl,  #recovery 
add r3=r2, 3 ld.c r2=[rl] 

add r3=r2, 3 
#recovery: 
ld rl=p 
ld r2=[rl] 

#recovery: 
ld rl=p 
ld.a r2=[rl] 

a) source b) p, the address of c) both p and *p may 
code *p, may be modified be modified 

Figure 4. Example of cascade failure 

2.5. Overhead for speculative register promotion 

When the leading reference is a read, there is no 
overhead because the original ld instruction is replaced by 
ld.a. When the leading reference is a write, an additional 
instruction, ld.a, is inserted after the store operation. With 
a minor modification to the hardware, this operation could 
be combined with the store instruction to save an extra 
Id.a instruction. For example, we can define a new st.a 
instruction. Like the ld.a instruction, a st.a allocates an 
entry in ALAT. 

The following data reads must be checked with Id.c or 
chk.a. The ld.c can be executed concurrently with the 
consumer instructions, and takes zero cycle if there is no 
collision. The chk.a may not be scheduled in the same 

bundle with its consumers However, its recovery scheme 
supports more aggressive speculative code scheduling. 

A check instruction will incur no overhead if there is 
no check failure and there is a free slot to schedule it. If 
the check fails, a Id.c will simply reload the data from the 
memory and the load latency will be exposed. For the 
chk.a, there is a relatively large penalty to jump to and 
back from the recovery code. This penalty includes a 
light-weighted trap and an unconditional branch. 
Therefore, a mis-speculation, especially for address mis- 
speculation, could be expensive. 

3. Algorithm for speculative register 
promotion 

In this section, we discuss the algorithm used to 
generate code for speculative register promotion, based on 
the scheme described in the previous section. Our 
algorithm is designed based on partial redundancy 
elimination (PRE) so that control speculation can also be 
handled. Though the algorithm is described in the context 
of the ORC Compiler 's  infrastructure, it can be applied to 
other compilers. The ORC compiler adopts a powerful 
SSA form to model the indirect references [23, 33]. The 
PRE algorithm used in ORC is SSA based, called 
SSAPRE [29]. We will start from how to incorporate alias 
speculation in the SSA form for speculative register 
promotion. 

3.1. S p e c u l a t i v e  S S A  form 

The original SSA form in the ORC compiler is 
designed to represent indirect reference more precisely. It 
is a location-factored representation enhanced by the use 
of virtual variables [23, 33]. The update and the use 
operations of indirect references are modeled by Z and ~t 
operations. 

Since the static pointer analysis tends to be 
conservative, we try to speculate the alias relationship in a 
program to perform more aggressive register promotion. 
In this paper, we focus on using the alias profiling 
feedback for alias speculation. Other speculation methods, 
such as using heuristic rules, can also applied in this 
framework. We developed a tool on the top of ORC to 
instrument the code, and then, to collect the target set of 
every memory load or store operation at runtime [7, 8]. 

To represent the feedback from alias profiling in SSA 
form, we introduce a new notion called speculative update 
and speculative use. A speculative flag is added to these 
operations to indicate that, according to the alias profile, 
these operations may not occur at runtime and can be 
speculatively ignored. The two new speculative operations 
are denoted Z~ and Its, respectively. Figure 5 gives an 
example of how to determine the speculative flags using 

128 



alias profiling feedback [7,8]. Those updates or uses 
related to the targets that do not appear in the alias profile 
are marked speculative. 

*p = 

b2=~(bt) 
a2-~(al) 
v2=x~(v0 

~t(b,) 

p.s(al), 
~t~(v,) 

= *p 

The two examples assume that the points-to set of p 
generated by compiler is { a, b }, the points-to set of 
p obtained from alias profiling is {b}. v is the 
virtual variable for *p. aj stands for version j of the 
variable a. 

Figure 5. Determine the speculative flag 
according to alias profiling 

3.2. Overview of register promotion based on 
PRE 

In order to identify more candidates for register 
promotion in the context of control-flow structures, 
register promotion is performed based on partial 
redundancy elimination (PRE). There are two existing 
partial redundancy elimination schemes: one is bit-vector 
based [32] and the other is SSA form based [22, 29]. In 
this paper, we focus on the SSA form based PRE 
(SSAPRE) because it is adopted in the ORC compiler and 
our implementation is based on ORC. 

In SSAPRE, each expression is processed in a 
bottom-up order in its syntax tree. For example, in the 
syntax tree **p, p is processed first, then *p, and finally 
followed by **p. When an expression is processed, the 
SSA form for the values of this expression (called 
hypothetical temporaries in SSAPRE) is constructed 
based on the variable SSA form [29]. Therefore, the 
occurrences of an expression with the same value can be 
identified. These expressions may be redundant. For 
partially redundant expressions, computations are added 
along the incoming path with control speculation so that 
the partial redundant computations become full redundant 
and can be eliminated. In [29], there are 6 steps to identify 
redundant expressions: 1) Phi-insertion, 2) Rename step, 
3) DownSafety, 4) WillBeAvail, 5) Finalize and 6) 
CodeMotion. 

The first two steps are aimed to identify the 
expressions that have the same value and are redundant. 
The Phi-insertion step marks every point at which the 
value of an expression may change, namely, the update 
points for the hypothetical temporaries. The version 
numbers for the hypothetical temporaries are assigned in 

the Rename step. The following step 3 and step 4 are 
intended to handle the partial redundancy in the control 
flow graph. The DownSafty step checks whether a 
hypothetical temporary may not be used later, and the 
WillBeAvail step checks whether the value of a 
hypothetical temporary is available from all the incoming 
paths. The Finalize step determines the placement of  
computation. The last step, the CodeMotion step 
transforms the code. More details can be found in [29]. 

Our speculative register promotion work directly 
affects the Rename step and the CodeMotion step. By 
ignoring some points-to targets and consequent updates, 
some occurrences of the hypothetical temporaries may 
speculatively have the same version number and more 
redundancy can be identified. In the CodeMotion step, we 
generate speculative load and check instructions. We do 
not modify the partial redundancy work because the data 
speculation is orthogonal to the control speculation. 
Details are discussed in the following sections. 

3.3. Speculative rename step 

In the Rename step, version numbers are assigned to 
the hypothetical temporaries. To assign version numbers, 
the Rename step keeps track of the current version of the 
expression and the variables contained in the expression 
by maintaining a rename stack for each of them while 
conducting a preorder traversal of the dominator tree of 
the program. The critical operation is to compare whether 
all the variables in the current occurrence of the 
expression have the same version number as those 
variables in the expression on the top of the rename stack. 

There are two cases that may cause the version number 
to be changed: the merge of control flow or the update of 
a variable contained in the expression. With data 
speculation, there are two kinds of updates that may be 
ignored: 1) speculative updates Zs, and 2) updates related 
to the speculative use kts. These updates are unlikely to 
change the value of the hypothetical temporaries 
according to the speculation. As a result, more 
occurrences of the expression are assigned with the same 
version number speculatively in our original algorithm. In 
order to generate correct code in the CodeMotion step, we 
attach a speculative flag to the version number if it is 
assigned speculatively. 

Here we use the example in Figure 6(a) to show how 
the speculative Rename step works. In this example, there 
are two occurrences of the expression a which are 
represented by the temporary variable h. The alias 
analysis shows that there exists alias relation between the 
expression *p and a. The value of the variable a is 
updated which is represented by E operation after the store 
of *p in the resulting SSA form. These two occurrences 
of a are assigned with different version numbers in the 
original Rename step. However, in our algorithm, if p 
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doesn't  point to a in the alias profile or from some 
heuristic rules, the X operation with a is marked with gs 
and this update can be ignored in the Rename step. In 
Figure 7 (b), the second occurrence of a is speculatively 
assigned with the same version number as the first one. In 
order to generate the check statement in the CodeMotion 
step, the second occurrence of a is annotated with a 
speculative flag. 

The target set of *p generated by the compiler is {a, b} 
and v is the virtual variable for *p. 
The target set of *p generated by the alias profiling is {b}. 
h is the hypothetical temporary for the load of a. 

. . . .  al [hl] 

*Pl . . . .  
v2 ~-X (Vl) 

a2 ~-X (al) 
b2 <-X (bl) 
. . . .  a 2 [h2] 

a) traditional Renaming 

. . . .  a 1 [hi] 
*Pl . . . .  
v4 ~"-X (v3) 

a2 ~--Xs (al) 
b2 ~---X (bl) 
. . . .  a2 [hl<speculative>] 

(b) speculative Renaming 

Figure 6. Example of speculative renaming 

3.4. Generate advanced load and check 
instructions 

The CodeMotion step transforms the code according to 
the SSA form for the hypothetical temporaries built in the 
previous steps. In this step, when there are reuses, the 
corresponding hypothetical temporaries become real 
temporaries in order to hold the value for reuses. Other 
hypothetical temporaries should be discarded. 
Assignments to the real temporaries and the use of the real 
temporaries are generated in CodeMotion step. 

With data speculation, this step is responsible for 
generating speculative load for the assignments to the real 
temporaries and generating the check statements for the 
uses of the real temporaries. The check statements are 
needed at places where the speculative occurrence is 
anticipated. At the same time, redundant checks should be 
removed as much as possible. 

Figure 7 gives an example that shows the effect of the 
algorithm. In this example, the second occurrence of a is 
annotated with a speculative flag in the Rename step to 
indicate that the version number of the temporary variable 
h is speculatively identical to the version number of the 
first occurrence. In the original CodeMotion step, the 
temporary variable t is generated to model the 
hypothetical temporary variable h, the first occurrence of 
a is replaced with an assignment statement to variable t, 
and the second occurrence a is replaced with the use of 
variable t according to the result of the Finalize step. In 
addition, in our enhanced CodeMotion step, we insert an 

assignment statement to t after the store of *p. This 
statement is called check statement in this paper. The 
expression a on the right hand side of check statement is 
marked with ld.c flag. Since the value of the first 
occurrence of a can reach the second occurrence, the 
expression a at the first occurrence is marked with a ld.a 
flag. The ld.a and ld.c flags are used to guide later code 
generation. 

. . . .  a 1 [h l] 
*Pl . . . .  
v4 ~"-X (v3) 

a2 ~Xs (al) 
b4 ~'X (b3) 

... =a  2 
[h 1 <speculative>] 

(a)Before Code Motion 

t 1 = a 1 (ld.a flag) 

. . . = t  1 

*Pl . . . .  
v4 ~"X (v3) 

a2 <-'Xs (al) 
b4 ~-X (b3) 
t4 = a2 (ld.c flag) 
. . . ~ t  4 

(b) Final Output 

Figure 7. Example of speculative code 
generation 

3.5. Recovery code generation 

In this phase, all the statements marked with 
speculative load and check flags are transformed into the 
corresponding assembly instructions. The recoveries 
codes are generated to ensure the correctness of the 
original program should mis-speculation occur. 

We used the recovery code generation approach 
introduced in [21]. It can generate recovery code for 
speculation during list scheduling as well as in other 
optimization phases. 

4. Performance evaluation of the speculative 
register promotion using ALAT 

We implemented the speculative register promotion 
based on PRE in the Intel 's Open Research Compiler 
(ORC) of version 1.1. The benchmarks used are selected 
from SPEC CPU2000 benchmarks. Experiments were 
conducted on an HP-i2000 workstation with a 733 MHz 
Itanium processor with Linux 7.1 operation system. 

The base line used for comparison in our experiments 
is the code generated by ORC with - 0 3  option. In the 
base line version, ORC performs a sequence of pointer 
analyses, such as equivalence class based alias analysis 
[24], flow sensitive pointer analysis and even the unsafe 
type-based pointer analysis. Based on these alias analysis 
results, ORC performs a powerful register promotion 
based on partial redundancy elimination. The software 
approach to check possible alias by compare instructions 
at runtime [30] is also applied. Therefore, the further 
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improvement in register allocation can be regarded as the 
contribution of our speculative register promotion. 

In the experiment, the alias profiling information is 
collected with the train input set, and then is fed back to 
compiler to perform speculative register promotion. The 
generated code is executed with the ref input. The 
performance of the generated code is measured with the 
pfmon [28] tool. 

The performance result of ten benchmarks is reported 
in Figure 8. We measure improvement using several 
metrics: the total CPU cycles, the data access cycles and 
the number of retired load instructions. As shown in 
Figure 8, the total number of CPU cycles are reduced by 
1% to 7%. The major contribution to the reduction of 
CPU cycles comes from the reduction of data access 
cycles, and the reduction of data access cycles comes from 
reduced load instructions. The number of retired load 
operations are reduced by more than 5% for half of the 
benchmarks. The reduced load instructions are likely to be 
cache hits. On Itanium, the latency of a L1 data cache hit 
is two cycles. If those eliminated loads could be scheduled 
to fully hide the two-cycle latency, then the performance 
improvement would be minor. This explains why more 
than 5% of load instruction reduction only translates into 
1% to 7% of CPU cycle reduction. In some cases, the 
eliminated loads reduce data cache misses, and contribute 
more to the performance gain. As shown in Figure 8, the 

performance gain of floating point benchmarks (ammp, 
art, equake) is more significant than integer benchmarks. 
This is because the latency of a floating point load on 
Itanium is 9 cycles. Converting 9 cycle loads to 0 cycle 
checks can contribute significantly to performance. 

To further evaluate the impact on reduced loads for 
speculative register promotion, we study the relative 
percentage of indirect load and direct load among the 
reduced loads for each benchmark. In Figure 9, we 
observe that the indirect loads account for the majority of 
the reduced load for ammp, gzip, mcf, and parser. 

We also report the percentage of load checks that 
failed during runtime over the total loads retired, which 
indicates the amount of data speculation opportunities 
having been exploited in each program. We also reported 
the percentage of check loads that failed dunng runtime, 
and this metric is called the mis-speculation ratio. A high 
mis-speculation ratio can decrease the benefit of 
speculative optimization or even degrade performance. In 
Figure 10, we observe that the mis-speculation ratio is 
generally very small. For gzip, although the mis- 
speculation ratio is at 5%, the total number of check 
instructions is nearly negligible compared to the total 
number of load instructions. Therefore, there is little 
performance impact from the high mis-speculation ratio. 

0 
12.0% 
10.0% 
8.0% 0 

i 6.0% 4.0% 
2.0% 
0.0% 

~" -2.0% 

14.0% .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

) 
i . 

L- - i  
[ ]  cpu cycle 

• data access cycle 

[] oads ret red 

Figure 8. Performance of speculative register promotion 

100% 

80% 

"~ 60% 

o 40% 

8, 20,/= 
¢l 

t . 2 0 ~  . . . . . . . . . . . . . .  ~ , 3 ~ . . - ~ . , p  . . . . . . . . . . .  ~ . . m . . . o p . . . . . . . . . . . , , , _ _ ~ . . ~ _  ~ . . . . . . . .  , . ~  . . . . . .  

I N direct load 

[ ] ind i rect  load 

Figure 9. Percentage of different types of load among total reduced load 

131 



25.0% 

! " 
o 15.0°/o 

10.0O/o 
m 5.0% 

0.0% , , ra_ 

• Idc-c hk instructions 
compared to ioads retired 

• mis-speculat ion 

Figure 10. The mis-speculation in speculative register promotion 

o l 

[ 

3 .0% 

2 .5% 

2 .0% 
1.5% 

1.0% 

0 .5% 

0 .0% 

-0 .5% 

-1 .0  °/,~ 

55 .4% 10 .6% 

2 3 ~ / 0  - 1 . 9  % 

Figure 11. RSE memory cycles increase 

Another concern for speculative register promotion is 
that it might increase the register pressure, thus cause 
excessive register spilling. On Itanium, register spilling 
has not been a major issue because of the use of a 
flexible register stack. Increased use of register will 
result in a larger number of registers allocated at the 
procedure prologue. Register stack overflow is handled 
by the RSE (Register Stack Engine). In Figure 11, we 
can see that the RSE cycles reported are barely changed, 
which indicates essentially very little increased register 
save/restore cost. For ammp and gzip, although the 
increase of RSE cycles is up by 55.4% and 10.6%, 
respectively, the total RSE cycles are only 0.001% of the 
total execution cycles. Hence, increased RSE cycles can 
be ignored. 

The implementation of the speculative register 
promotion is not a trivial task. It has a large amount of 
inter-dependence with other optimizer components such 
as the instruction scheduler, the loop optimization phase, 
the software pipeliner, and the regular register 
allocation. In the current version, such interaction among 
optimizations has not been tuned, and the register 
promotion is limited to expressions that will not cause 
cascaded failure. The potential of speculative register 
promotion would be higher than what we have achieved. 

5. R e l a t e d  w o r k  a n d  d i s c u s s i o n s  

Several hardware designs have been proposed to 
support speculative register promotion. Ben, Heggy and 
Mary Lou Sofia [12] presented a hardware design that 
maintains the data coherence between registers and 
memory. The address of each memory access is checked 
and the access may be redirected to registers. C-reg [13] 
is another design that simplifies the register forwarding. 
The Store-Load Address Table (SLAT) [14] supports 
speculative register promotion in which a separate table 
records the addresses of data that have been allocated to 
registers. These schemes maintain the coherence of 
values in registers when memory aliases do exist. The 
ALAT scheme uses a recovery mechanism to restore the 
correct value when the check instructions failed. As a 
result, ALAT requires fewer entries than the register file, 
and is not part of the architecture states. Partial 
addresses are used in ALAT to be space and time 
efficient while other schemes must use full address. 
SLAT can only promote scalar variables while ALAT 
can be used to promote both scalar and indirect 
references. One of the drawbacks of the ALAT scheme 
is that only load operations can be reduced. 

The alias problem in speculative register promotion 
can also be solved by pure software approach [30]. This 
approach has been implemented in the ORC compiler. 
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When two references may be aliased, their address 
values are compared and a predicated instruction for 
register forwarding is added. This transformation also 
avoids redundant load operations when aliased writes 
occur at runtime. Redundant loads are removed at the 
cost of a comparison and a conditional register copy 
instruction. The major advantage of using ALAT is that 
the comparison of addresses is done implicitly by 
hardware. The software approach has to generate an 
explicit compare instruction for every possible alias 
reference after every aliased store operation. It is 
enabled at 03  level in ORC and our results include this 
optimization. 

Our speculative register promotion approach does not 
conflict with the original design objective of  ALAT, i.e. 
to hide the latency of loads. The advanced loads are 
intended to speculatively move individual loads as early 
as possible [15]. When the advanced loads are used for 
speculative register promotion, groups of references are 
handled together. Therefore, not only the latency of 
loads is hidden, but also redundant loads are removed. 
After the speculative register promotion, the scheduler 
could still use the advanced loads to hide the latency of 
the loads for the first producer references. 

The potential of using data speculation in register 
promotion has been suggested by [22]. We present a 
compiler framework to support speculative register 
promotion. Our design and implementation of alias 
speculation is based on the SSA form as proposed in 
[23]. This SSA form models indirect references more 
precisely than the assignment-factor representation and 
more efficient than other location-factor representations. 
We introduce a new concept, the alias speculation, into 
the SSA form. Speculative register promotion is one 
optimization that can make effective use of alias 
speculation. 

Our register promotion algorithm is based on the 
partial redundancy elimination algorithm [6, 29]. The 
conventional PRE algorithm focuses on how to use 
control speculation to eliminate partially redundant 
operations, regarding to the control flow paths. Now we 
can also identify speculative redundancies with the alias 
speculation support. 

6. Summary 

Register promotion is an important optimization in a 
compiler. The effectiveness of register allocation is often 
limited by imprecise alias analysis in C compilers due to 
intensive use of pointers. Although much progress have 
been made on improving pointer analysis in C 
compilers, analyzing heap-oriented pointers remains a 
challenge to current compilers. Speculative register 
promotion is a technique to assist register allocation 

when the compiler fails to allocate memory objects with 
unresolved aliases to registers. This paper examines the 
use of the Advanced Load Address Table (ALAT), as 
defined in the IA-64 architecture, to perform speculative 
register allocation. 

The code generation issues of speculative register 
promotion using ALAT are discussed. Examples on how 
to perform speculative register promotion are provided 
for basic blocks, various control flow structures, and 
indirect reference chains. A compiler algorism, based-on 
PRE, for speculative register promotion is presented. 
This algorithm is able to perform both control and data 
speculation in register promotion. 

The Intel ORC compiler is used to evaluate the 
performance of speculative register promotion using 
ALAT. The PRE part in ORC is modified to perform 
speculative register promotion. The experiments show 
that the proposed scheme is quite effective on a set of 
selected benchmark programs. The integration of this 
scheme with other optimization phases in the ORC 
compiler is currently under development. 
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