
The Dream of a Lifetime: A Lazy Variable Extent Mechanism

Guy Lewis Steele Jr.* and Gerald Jay Sussman**

Massachusetts Institute of Technology
Artificial Intelligence Laboratory

545 Technology Square
Cambridge, Massachusetts 02139

We define a "rack", a data abstraction hybrid of a
register and a stack. It is used for encapsulating the
behavior of the kind of register whose contents may have
an extent which requires that it be saved during the
execution of an unknown piece of code. A rack can be
implemented cleverly to achieve performance benefits over
the usual implementation of a stack discipline. The basic
idea is that we interpose a state machine controller
between the rack abstraction and its stack/registers. This
controller can act as an on-the-fly run-time peephole
optimizer, eliding unnecessary stack operations.

We demonstrate the sorts of savings one might expect
by using cleverly implemented racks in the context of a
particular caller-saves implementation of an interpreter for
the SCHEME dialect of LISP. For sample problems we
can expect that only one out of every four pushes that
would be done by a conventional machine will be done by
the clever version.
Keywords: registers, stack discipline, stack architecture,

register saving, procedure calling conventions, data
abstraction

The Problem

We deal here with the problem of managing the use of
a finite set of fast registers. Because the set of registers is
finite and in fact usually much smaller than the total set
of quantities of interest to the computation, the registers
must be time-multiplexed, holding different quantities at
different times. This leads immediately to the problem of
how and when to move quantities to and from registers.

This problem is especially severe in the case of large
systems of mutually recursive procedures. For small
systems it may be possible to perform a complete analysis
of all the procedures and their interactions and so find an
optimal allocation of registers, but this is infeasible for
large systems. Hence one usually adopts some standard
method which always works but which may be overly
conservative.

This report describes research done at the Artificial
Intelligence Laboratory of the Massachusetts Institute of
Technology. This work was supported in part by the
National Science Foundation under Grant MCS77-04828.
* Fannie and John Hertz Fellow ** Jolly Good Fellow

A typical technique is to use a push-down stack to
preserve the contents of a register while it is being used to
hold a new value for another purpose. The new value
may in turn be preserved on the stack if a third purpose
for that register arises. A value is saved by "pushing" it
onto the stack at some time before the register is used for
another purpose; it is restored by "popping" it back into
the register after the new purpose has ended. The range
of t ime during which a register is used for a given purpose
(possibly interrupted by other, interpolated purposes) may
be called an extent of a use the register (by analogy with
the term when applied to the variables of a high-level
programming language such as ALGOL). A stack can be
used because a discipline is imposed requiring that the
extents of quantities kept in a register be nested.

The nesting discipline is typically carried out by tying it
to the nesting of procedure calls. There are two common
conventions for using stacks in this context. In one, the
"Caller Saves" convention, the calling procedure is
responsible for pushing any values it will want later, and
for retrieving them when the called procedure has
returned. In this way a called procedure always has the
full set of registers available for arbitrary use. In the
other, the "Callee Saves" convention, the called procedure
is responsible for preserving any registers that it uses. In
this way a calling procedure can use any registers it
pleases without worrying about called procedures
destroying them.

There has been some debate as to which of these
conventions is better. This debate has not been resolved
because there is no good answer. Each convention is
nonoptimal, and can perform much worse than the other
for particular procedures. The Caller Saves convention is
justly criticized because the caller may well save a register
it did not have to (because, unknown to it, the called
procedure does not use that register anyway). The Callee
Saves convention is equally justly criticized because the
called procedure may save the contents of a register which
was not actually in use.

The problem of minimizing stack operations can be
important because stack operations are usually significantly
more expensive than register operations. This is true for
typical computer systems using a hierarchy of memory
devices; stacks, being of potentially unbounded size, are
likely to overflow into slower memories. We are especially
concerned with this problem in the context of hardware

163

interpreters for high-level languages. (See [SCHEME
Chip 0], [SCHEME Chip 1].) If the language allows closed
procedures (FUNARGs) to be a first-class data type,
which can be passed as an argument and returned as a
value, and if we also allow control continuations to be
similarly manipulated, then these problems are magnified
because our stacks must be in garbage-collectable heap
memory. (Cf. [SCHEME], [Revised Report], [Moses],
[CONNIVER], and [Bobrow and Wegbreit].)

In this paper we will outline automatic methods of
saving and restoring the values of registers which combine
the good features of the classical conventions and which
perform in every case as well as or better than either of
the two classical conventions. We will demonstrate the
effectiveness of our techniques for use of registers and
stacks in the context of an interpreter for a dialect of
LISP. We will compare the performance under various
implementat ion choices. We will also describe how racks
may be used in conventional computer architectures.

Other researchers have investigated and used techniques
for improving the performance of stacks. [Burroughs]
[LISP Machine] Such techniques generally implement
modified push and pop operations which use registers to
buffer the stack data. Our techniques are a generalization
of those previously reported.

Al though compiler optimizations can ameliorate the
problem of optimal use of registers and stacks, the
problem can not be fully resolved before run time, even if
procedural arguments are disallowed (i.e. even if the
targets of all procedure invocations are known at compile
time). Which registers are in use and which are needed
can depend on (a) which of several procedures is the
caller, and (b) which of several data-dependent execution
paths is taken within the called procedure. Hence in
general not even the most complex optimizing compiler
using either of the classical conventions can fully optimize
register usage. If procedural, arguments are to be
implemented, then the problem is even more impossible.

Some negotiation must occur dynamically, at run time,
between the various users of a register. Only if both the
caller and the called procedure need to use a register
should it be preserved for the caller's sake. More
generally, the called procedure may not need a register,
but one that it calls (or one indefinitely far down the call
chain) may need the register. The negotiation protocol
therefore cannot be just between caller and called
procedure, but must extend over more then one level of
call. The technique we present is actually independent of
any procedure call mechanism; it invoh'es associating state
informat ion with each register describing whether or not it
is in use.

The Strategy

By a "register" we mean something which can hold a
sitagle finite datum. There are two operations on registers:
one can read the datum contained in the register, and one

can store a new datum into it. The datum obtained by a
read operation is always the datum most recently stored.

By a "stack" we mean something which can hold an
indefinitely large number of finite data. There are two
operations on stacks: one can push a new datum onto the
stack, and one can pop a datum from the stack. The
da tum obtained by a pop operation is always the datum
specified by the most recent matching push; that is,
pushes and pops are "balanced" like parentheses.

The classical register-saving conventions deal with these
two abstractions separately. A compiler typically issues
read and store operations on registers for manipulating
data , and issues push and pop operations for saving and
restoring the registers.

When a stack is used to maintain the nested extents of
a register it is not the actual pushing and popping which is
of direct interest; it is the saving and restoring of the
register. We introduce a composite abstraction (which we
call a rack) which adds to the behavior of an ordinary
register the ability to specify the beginning and ending of
an extent (or, equivalently, to specify that the current
value must be saved so as to be available later). Racks
have four operations defined on them: fetch, assign, save,
and restore. They are analogous to the read, store, push,
and pop operations for a separate register and stack.

Our new abstraction is in fact to be implemented in
terms of a stack and one or more registers. The save and
restore operations appear to behave as push and pop stack
operations, in that a restore operation causes to be
available (to the fetch operation) that datum which was
available before the corresponding save operation.
However, performing a save does not necessarily (indeed,
in some implementations never does!) perform a push on
the internal stack; similarly, performing a restore does not
necessarily perform a pop. Instead, pushes and pops are
delayed until the), are forced by subsequent operations.
Hence a rack may be thought of as a kind of "lazy stack".
In particular, a push or pop may occur during a fetch or
assign operation.

We will present a series of implementations which
embody different engineering tradeoffs. The
implementations will be presented in approximately
increasing order of complexity.

Rack hnplementations

Each of the implementations given here embodies the
same abstraction: a single register-cure-stack which
responds to the four operations FETCH, ASSIGN, SAVE, and
RE BIORE. Each implementation will specify a set of
internal registers and a stack, and procedures which
implement the four operations in terms of REAl3 and SIORE
operations on the internal registers and PUSH and P0P
operations on the internal stack.

The key idea is that each instance of a rack can have a
state which encodes some of the history of previous
operations. Each implementation is organized as a finite-

164

state att tomaton which mediates between operation
requests and the internal registers and stack. This
au tomaton serves as ;111 on-the-fly run-time peephole
optimizer, which recognizes certain patterns of operations
within a small window of events and transforms them so
as to reduce the actual number of stack operations
l)erformed. Each rack has its own internal stack (as
opposed to sharing one stack among several registers) so
that the optimization can be performed independently on
the operations to be performed on each rack. This will be
impor tan t in minimizing the operations because otherwise
operat ions on one rack could cause wasted operations on
another . (We see this kind of inefficiency in systems
which have "framed stacks" where each entry (a single
f rame) on the stack is a fixed pattern of saved state, much
of which is irrelevant to the particular reason why that
en t ry was constructed.)

We describe each implementation in the programtning
language SCHEME [Revised Report], a dialect of LISP
which is iexically souped and allows procedures to be
passed as arguments and returned as values. The use of

procedural values allows us to describe a data abstraction
as a procedural object which accepts and acts oll messages
sent to it. (Cf. [Actors] [Smalltalk].) Each
implementat ion is a function which, when called,
constructs and returns a fresh instance of the rack in the
form of a closed procedure. The instance can be operated
upon using the following operations which send
appropriate messages to the instance:
(DEFINE (FETCH R) (R 'FETCH))
(DEFINE (ASSIGN R NELI-VALUE) ((R 'ASSIGN) NELl-VALUE))
(DEFINE (SAVE R) (R 'SAVE))
(DEFINE (RESTORE R) (R 'RESTORE))
T h a t is, if the variable ENV has as its value an instance of
tile rack abstraction, then writing (FETCH ENV) will fetch
the current contents of the rack, (ASSIGN ENV 3) will
make the new contents of the current extent be 3, etc.

Our rack finplementations will contain registers and
stacks. A register or stack will also be modelled by closed
procedures which take messages. A register can have a
value stored in it or it can be read out:

(DEFINE (STORE REGISTER VALUE) ((REGISTER 'STORE) VALUE))
(DEFINE (READ REGISTER) (REGISTER 'READ))

(DEFINE (REGISTER)
(LET ((V NIL))

(LAMBDA (OPERATION)
(CASEQ OPERATION

((READ) V)
((STORE)
(LAMBDA (NEWVALUE)

(SETQ V NENVALUE)))))))
A stack is similarly behaviorally described:

(DEFINE (PUSH STACK TOP) ((STACK 'PUSH) TOP))
(DEFINE (POP STACK) (STACK 'POP))

iDef ine a reg is te r to be an ob jec t
: which conta ins a quan t i tg V, and

= responds to a reques t bg d i s p a t c h i n g
I on the s p e c i f i e d o p e r a t i o n t g p e .
IFor READ, return the quan t i t g V.

~For STORE, return a f u n c t i o n

= which w i l l accept the new v a l u e

I and save i t in V.

(DEFINE (STACK)
(LET ((S NIL))

(LAMBDA (OPERATION)
(CASEQ OPERATION

((PUSH)
(LAMBDA (TOP)

(SETO S (CONS TOP S))))

((POP)
(IF (NOT (NULL S))

(LET ((V (CAR S)))
(SETQ S (CDR S)) t
V) =

(ERROR "Stack ran out - POP"))))

Ordinary Stack hnplementation
As a short example of an implementation, we express

the classical save-must-push/restore-must-pop convention.
This is not very interesting except to demonstrate our
n o t a t i o n a n d to serve as a benchmark for comparative
per formance measurements.

=Define a STACK to be an o b j e c t

I Hhich conta ins a l i s t S (i n i t i a l l g

= emptg) and responds to a r e q u e s t

I bg d i s p a t c h i n g ,
=For PUSH, r e t u r n a f u n c t i o n which

= w i l l accept a new v a l u e and add i t

I to the f r o n t of the l i s t S.

=For POP,
t i f the l i s t S is not emptg,

= then save the f i r s t e l e m e n t ,

remove the f i r s t e lement f rom S,
and r e t u r n the former f i r s t e l e m e n t .

))) =ERROR i f S is emptg.

In this iml) iemenlation, each instance creates two
internal objects: a register R and a stack S. The current
value is ahvays kept in R. When a save operation is
requested, the current value is always pushed onto S;
dur ing a restore operation, a pop always occurs.

165

(DEFINE (STANDARD-STACK)
(LET ((R (REGISTER)) (S (STACK)))

(LAMBDA (OPERATION)
(CASEQ OPERATION

((FETCH) (READ R))
((ASSIGN)
(LAMBDA (NEWVALUE) (STORE R NEWVALUE)))

((SAVE) (PUSH S (READ R)))
((RESTORE) (STORE R (POP SIT)))))

Optimizing Pushes
The next implementation has two states, called

AVAILABLE and IN-USE. The value associated with the
current extent is always in the internal register R. The
state encodes whether that value has been saved or not.
T h a t is, the state describes whether or not the internal
register can be used freely or has been pressed into service
as a virtual top-of-stack. The important idea here is that
the state machine recognizes the operation sequence "SAVE;
RESTORE" and treats it as a compound no-operation. It
delays the pushing conceptually associated with a SAVE by
moving to the state IN-USE. If the next operation is an
ASSIGN (or another SAVE) then the push is performed after
all. If the next operation is a RESTORE, however, then the
state is simply reset to AVAILABLE, and a push and pop
have been avoided.
(DEFINE (PUSH-OPTI i l l ZER)

(LET ((R (REGISTER)) (STATE (REGISTER)) (S (STACK)))
(STORE STATE 'AVAILABLE) = in i t i n t state
(LArlBDA (OPERATION)

(CASE(] OPERATION
((FETCH) (READ RI)
((ASSIGN)
(LAHBDA (NEWVALUE)

(CASEQ (READ STATE)
((IN-USE) (PUSH S (READ RI)

(STORE STATE 'AVAILABLE)
(STORE R NEWVALUE)}

((AVAILABLE) (STORE R NEI,,IVALUE)))))
((SAVE)
(CASEQ (READ STATE)

((IN-USE) (PUSH S (READ R)))
((AVAILABLE) (STORE STATE ' IN-USE))))

((RESTORE)
(CASEO (READ STATE)

((IN-USE) (STORE STATE 'AVAILABLE))
((AVAILABLE) (STORE R (POP S)))))))))

Optimization of pushes can help considerably in a
program which uses the Caller Saves convention. In this
case, there are many calls to subprocedures which will not
modify the registers of interest to the caller. The caller,
however, will not in general know that these procedures
are "safe". Even if we grant that the caller will know
which registers important procedures can potentially
modify (a dangerous violation of modular organization,
but one which is often made in highly optimized
performance code), different subsets of the potentially

modified registers will be actually modified depending on
the arguments passed to the cailee. Thus, our push
optimizer can do better than an optimizing compiler under
some circumstances. The reason is that it recognizes
(temporal) sequences of relevant operations. Operations
which do not affect the register of interest are not
cluttering the view of our optimizer. Additionally, the
optimizer can "see through" svbroutine calls and other
module boundaries.

Optimizing Pushes and Pops
The next implementation augments the previou=

implementat ion by recognizing some situations in which
pops may be optimized as well as some pushes. It
recognizes both "SAVE; RESTORE" and "RESTORE; SAVE"
sequences and effectively elides them. The state machine
has th ree states: IN-USE, AVAILABLE, and ON-STACK. The
new state encodes where the value associated with the
current extent is actually located: in the internal register
or on the top of the internal stack. As before, if the
value is not on the stack, it may either be protected (IN-
USE) or the register may be available to accept a new
va lue (AVA I LADLE).

When does pop optimization buy anything? The state
machine elides RESTOREs followed by SAVEs with no
operations on that register in between. This is unlikely to
happen in a well-written program using the Caller Saves
convention because such sequences can be deleted' by
simple peephole optimization on the local data-flow of the
program. However, in Callee Saves situations, it is often
to be expected that two procedure calls occur in sequence,
each calling a procedure which will clobber some
par t icular register, which is not referenced by the code
between the procedure calls. In this case such a Useless
sequence will occur. Again we see how this technique is
very nice in that the code "removed" is not necessarily
lexically adjacent, just adjacent logically in the flow of
control.
(OEF 1 NE (PUSH-AND-POP-OPT I MI ZER)

(LET ((R (REGISTER)) (STATE (REGISTER)) (S (STACK)))
(STORE STATE 'AVAILABLE) ~ i n i t i a l s tate
(LAMBDA (OPERATION)

(CASEO OPERATI ON
((FETCH)

(CASEQ (READ STATE)
((IN-USE) (READ R))
((AVAILABLE) (READ RI)
((ON-STACK)
(STORE R (POP SIT
(STORE STATE 'AVAILABLE)
(READ R))))

((ASSIGN)
(LAHBDA (NEWVALUE)

(CASEO (READ STATE)
((1 N-USE)

(PUSH S (READ R))
(STORE STATE 'AVAILABLE)

166

(STORE R NEI,IVALUE))
((AVAILABLE)
(STORE R NEklVALUE))

((ON-STACK)
(POP S)
(STORE STATE ' AVAILABLE)
(STORE R NEI,,IVALUE)))))

((SAVE)
(CASEQ (READ STATE)

((IN-USE) (PUSH S (READ R)))
((AVAILABLE) (STORE STATE ' IN-USE))
((ON-STACK) (STORE STATE 'AVAILABLE))) I

((RESTORE)
(CASEO (READ STATE)

((IN-USE) (STORE STATE 'AVAILABLE))
((AVAILABLE) (STORE STATE 'ON-STACK))
((ON-STACK) (POP S))))))))

The important idea here is that the state machine
recognizes the operation sequence "RESTORE; SAVE" and
treats it as a compound no-operation. That is, it delays
the popping conceptually associated with a RESTORE by
moving to the state ON-STACK. If the next operation is a
FETCH or ASSIGN (or another RESTORE) then the pop is
performed after all. If the next operation is a SAVE,
however, the state machine recognizes that the relevant
value is already on the stack and so the rack reverts to
state AVAILABLE.

Now we have to be a little careful here. In describing
the rack abstraction we never said whether a FETCH
operation immediately after a SAVE operation is guaranteed
to return the same value it would have before the SAVE
was performed. If an implementation preserves value over
SAVEs we will say that it "duplicates" the extent before
saving it. The simple stack implementation and the push-
optimizer are both duplicating implementations. The push-
and-pop-optimizer implementation would appear, at first,
to do no damage to the value in the register during a SAVE
operation; but consider the following sequence:

(ASSIGN FO0 I) ;leaves the rack AVAILABLE (R=I)
(SAVE FO0) ; t h i s leaves i t IN-USE (R=I)
(ASSIGN FO0 2) =AVAILABLE (R=2~ 1 .as pushed)
(RESTORE FO0) ; leaves i t ON-STACK (R=2)

[a FETCH at t h i s po in t would re turn 1, but also
= loop the stack and change s ta te to AVAILABLE]

(SAVE FO0) ; leaves i t AVAILABLE (R=2)
(FETCH FO0) ; t h i s re turns 2

In a duplicating implementation, the result must be a 1,
but in the implementation shown, the result will be 2! The
duplication is an extra property which is needed in some
applications and not in others.

We might think that we could fix up the push-and-pop-
optimizer implementation so that it duplicated extents by
replacing the following code in the case for SAVE:

((ON-STACK) (STORE STATE 'AVAILABLE))
with the somewhat more COml)lex:

((ON-STACK)
(STORE R (POP S))
(STORE STATE 'IN-USE))

This indeed makes the rack duplicate, but it kills the pop
optimization. It is not usually necessary for a rack to
have a duplicating save. However, sometimes we need this
operat ion explicitly. In this case we may find it necessary
to implement a separate DUPLICATE operation which is the
same as SAVE in most rack implementations and has the
complex code above in this rack implementation.

Two-Cell Top-of-Stack Buffer
This implementation is presented for comparison. It is

similar in spirit to the top-of-stack buffer used in the
B6500/B7500 series computers [Burroughs]. There are two
internal registers, R1 and R2, which buffer the stack
operations. The value associated with the current extent
is always in one of these two registers.; there are two
st;~tes IN-RI and IN-R2 indicating which is the case. An
important feature of this implementation is that FETCH and
ASSIGN never perform push or pop operations; only SAVE
ever pushes, and only RESTORE ever pops. The registers
provide a sliding window, however, within which pushes
and pops may be elided.
(DEFINE (POL-BUFFER)

(LET ((R1 (REGISTER)) (R2 (REGISTER))
(STATE (REGISTER)) (S (STACK)))

(STORE STATE 'IN-R2)
(LAMBDA (OPERATION)

(CASEQ OPERATION
((FETCH)

(CASEQ (READ STATE)

; i n i t i a l state

((IN-RI) (READ RI))
((IN-R2) (READ R2))))

((ASSIGN)
(LAI'IBDA (NEklVALUE)

(CASEQ (READ STATE)
((IN-R() (STORE R1 NEIJVALUE))
((IN-R2) (STORE R2 NEIJVALUE)))))

((SAVE)
(CASEQ (READ STATE)

((IN-R1)
(PUSH S (READ R2))
(STORE R2 (READ R1)))

((IN-R2)
(STORE R1 (READ R2))
(STORE STATE ' IN-R()))-)

((RESTORE)
(CASECI (READ STATE)

((IN-R() (STORE STATE 'IN-R2))
((IN-R2) (STORE R2 (POP S)))))))))

This rack implementation is duplicating and optimizes
both pushes and pops. On the other hand, it needs two
registers per rack (besides the stack-pointer register).

(On the third hand, it permits another kind of
optimization not supported by any of the previous
strategies: a sequence equivalent to "RESTORE; RESTORE;
SAVE" can be performed without an), popping if the rack
had been in state IN-R(. Such a compound operation is
typical of a binary arithmetic operation on a stack
machine (such as are the B6500/B7500 series); addition,

167

for example, is performed by effectively popping the top
two elements of the slack and pushing back their sum in
one operation. In st;tie IN-R1 this is done by placing the
sum of R1 and R2 in R2 and changing the state to IN-R2.
If such binary operations are interleaved with operand
fetches, then much slack arithmetic can be performed with
no actual pushes or pops.)

Collapsing Extents Using a Counter
In some applications the values held in a register during

successive nested extents often are identical, and change
only infrequently. Consider, for example, a situation
where the register is used to hold a parameter passed
down from one level to another, from one procedure to
another , without change. The idea here is that if several
consecutive values are the same, this fact can be encoded
by keeping only one copy of the value plus a count of the
replications. (We will exhibit an application below where
this idea yields a substantial performance improvement.)
One way to think about this is to consider the stack to be
"run-length encoded". Another way is to consider the
value to have a "protection count", somewhat like a
reference count as used in storage allocators [Weizenbaum]
(SLIP]; thus the same value can be "IN-USE" more than
once.

This is not without associated overhead. When a value
is eventual ly actually pushed onto the stack, two items
must be pushed: the value and the count. Hence if in
pract ice consecutive values are not often identical, then
this implementation performs twice as many stack
operat ions as previous implementation we have presented
(for example PUSH-OPTIMIZER). There is also a complexity
overhead: though there are no explicit states (the value of
the count contains the state), the finite-state machine
which mediates between user and actual stack must be
capable of doing simple arithmetic (adding and subtracting
one); this may be important when implementing this
technique in hardware.
(DEFi NE {PUSH-COUNTER}

(LET {{R {REGISTER}} {COUNT {REGISTER}) (S {STACK)))
(STORE COUNT 0) ~ i n i t i a l state
(LAMBDA (OPERATION)

(CASED OPERATION
((FETCH} (READ R)}
((ASSIGN)

(LAMBDA {NEklVALUE}
(BLOCK

(IF (NOT 1= 0 {READ COUNT)))
{BLOCK {PUSH S {READ R))

(PUSH S (- {READ COUNT) 1))
{STORE COUNT 0)))

{STORE R NEklVALUE))))
({SAVE) ISTORE COUNT {+ I {READ COUNT))))
((RESTORE)

(IF 1= {READ COUNT) 0)
{BLOCK {STORE COUNT {POP S))

{STORE R {POP S)))
(STORE COUNT (- (READ COUNT) 1)) })))1)

Th e critical idea is the code for ASSIGN. If the count is
non-zero, then the current value is serving for more than
one nested extent (just as in previous implementations
s ta te IN-USE ilnplied that the value served for two
extents) . In this case one extent inust be de-collapsed
f rom the others so that the assignment may be performed.
(A very tricky inlplementation might first check to see
whether the new assigned value were the same as the old
one or the previous one, and attempt 1o collapse extents!
It is not at all clear that this is worthwhile.) This push-
coun te r implementation of racks has a duplicating SAVE
opera t ion (after all, the whole point is to use this
implementat ion in situations where consecutive extents are
of ten the same, and this probably occurs by algorithmic
duplicat ion ralher than computational accident.)

(Th e code above assulnes that the counter can hold
indefinitely large integer values. That assumption is
legitimate for this code, because our SCHEME
implementat ion supports arithmetic on integers of arbitrary
size. However, this is more difficult for a hardware
implementat ion. For a discussion of overflow checking
and other issues related to hardware implementations, see
[Dream], from which this paper was condensed.)

The hnpact of Racks on lhe Performance
of an Evaluator for SCHEME

T h e proof of the pudding is in the eating, We have
tr ied the idea of using racks to iml~lement the saving and
restoring of registers in a caller-saves implementation of an
interpret ive evalnalor for (a dialect of) the SCHEME
language (see Appendix 1 for a complete listing of the
evaluator .) This provides a non-trivial exercise of register
saving because it performs a highly recursive operation
whose precise actions depend in a complex way on the
da ta being processed (i.e. the SCHEME program being
interpreted) . We ran the interpreter on a set of test
problems with those registers which are saved implemented
as various kinds of racks.

In the particular interpreter we used there are five
registers which are saved at various points in the
i n te rp re te r . The)' are: RETPC, ENV, UNEV, ARGL, FUN.

RETPC is used to hold the "return address" for an
evaluat ion of a subexpression. The interpreter may
recurse to evaluate a subexpression for one of a number of
reasons. RETPC holds the reason for the current
subevaluation. For example, it may be that the
subexpression is an argument to a procedure call. In this
case the evaluator will have to evaluate the following s (if
any) and then apply the procedure. The subexpression
may be the predicate part of a conditional, in which case
the evaluator wants to use the value of this expression to
decide whether to proceed with the consequent of the
condit ional or the alternative of the conditional.

ENV is used to hold the environment which is the map of
identifiers to their values. Since SCHEME is lexically
scoped, this map is never required at the moment a
procedure is called because the procedure is enclosed

168

within its own iexical environment (that is, the procedure
object contains an environment in which to execute the
code for the procedure). The actual new enviromnent is
made by binding the formal parameters of the procedure
to the (evaluated) actual parameters of the call, and
adding these bindings to the closure environment. The
new environment is assigned to the environment register
and execution begins on the body of the procedure. Thus,
it is necessary to preserve the environment of an
expression across a procedure call if more computations
are to be done with that environment after the procedure
returns. This may happen if the subexpression is the
predicate of a conditional, or is an argument in a
procedure call expression after which other arguments
must be evaluated before the procedure can be called.

UNEV is a register which is used to remember the
unevaluated part of an expression across the evaluation of
a subexpression. Thus, UNEV is used to hold the
consequent and the alternative in a conditional and the
rest of the unevaluated arguments in a call.

ARGL is used to hold the list of already evaluated
arguments for a procedure while the next argument is
being evaluated. It eventually contains the entire list of
arguments and is used to construct the environment when
binding the formal parameters to the actual parameters
(s tored in ARGL) at the procedure invocation.

gUN holds the procedure to be invoked after all of its
arguments are evaluated. It is necessary because the
evaluator we are using evaluates an expression from left to
right, and in that syntax the procedure comes first,
followed by its arguments.

T h e evaluator we are using has other registers for
t emporary storage of values and expressions. Those
registers are not interesting for our test as they are never
saved.

T o measure the performance of the evaluator we use the
following doubly recursive method of computing Fibonacci
numbers. This test is interesting in that it exercises the
recursion mechanism of the interpreter rather thoroughly
and is thus a good indicator of the overhead of evaluating
subexpressions. The problem is to evaluate (FIB 4) where
we define:
(DEFINE (FIB N)

(COND (1= N 0) 0)
((= N 1) I)
(T (+ (FIB (-N 1}) (FIB (-N 2))))))

The results are summarized in the following table. For
each implementation, for each register, we give the actual
number of items pushed and popped in the execution of
the test example.

RETPC ENV UNEV ARGL FUN Total
STANDARD-STACK 123 85 85 65 37 39S
PUSH-OPTIMIZER 33 28 28 ~6 12 181
PUSH-AND-POP-OPTIMIZER 33 20 28 IG 12 101
PDL-BUFFER 33 20 28 16 12 181
PUSH-COUNTER gg 8 48 32 24 178

We can see that the simple push-optimizer is

t remendous improvement over a simple unoptimizing stack.
Addit ionally, in this caller-saves discipline, the push-and-
pop optimizer gives us no advantage for its added
complexity. The pdi-buffer, which requires an extra
hardware register, makes no difference either. The push
opt imizer is a simple two-state machine so it is trivial to
implement in hardware.

Th e push-counter is worse than the push-optimizer for
every register except the environment register ENV. In that
case, it makes a remarkable difference. What has
happened is that the evaluator does not save the
envi ronment unless it is logically necessary to do so to
allow the computation to proceed. The only reason that
the environment is ever saved is because it will be needed
af te r a recursive call to the evaluator (and this happens to
occur only when evaluating an argument to a procedure
(o ther than the last argument) or the predicate of a
conditional; because SCHEME is lexically scoped, the
envi ronment is not needed to apply a procedure (in
contras t to the implementation of LISP 1.5 and its
successors), because each procedure is enclosed with its
own favorite environment). Wand has observed that a
iexically scoped LISP evaluator need never save the
envi ronment over the evaluation of the last argument in a
procedure call (see [Wand]); this is called "evils tail-
recursion". Thus, in the Fibonacci evaluation the only
reason to save the environment is when the first argument

of + is evaluated because the evaluation of the second
a rgument will need that environment. The environment
will be assigned (and therefore pushed) upon applying the
subcall to FIB so it must be saved. Thus we see that the
envi ronment must actually be pushed precisely 4 times:

(za I) (Fza o)

The Computat ion Tree for (FIB 4).
The doub led edges sho. recurs ions

ove r t4hich the environment must be saved.

Wand 's evlis tail-recursion technique is a special-case
opt imizat ion based on a static analysis of the evaluation
process. The push-counter rack technique provides a
dynamic optimization of the environment of which evils
tail-recursion is a special case. It is not just that the
textual ly last argument is treated specially. If, for
example, the last three arguments to a four argument
procedure could be evaluated without modifying the
envi ronment (for example, if the), were made up of either
prinlitive evaluations of constants or variables or calls to
primitive procedures), then the enviromnent would never

169

be pushed after the evaluation of the first argument.
Moreover, the push-counter technique performs
optimizations that would be impossible to determine ahead
of t ime by analyzing the text of a program.
From this data, we infer that it is best, for this particular
program (the interpreter), to let each rack be implemented
by PUSH-OPTIMIZER, except for ENV, which should be
implemented by PUSH-COUNTER. Let us call that
implementat ion the OPTIMAL strategy for implementing the
interpreter. We will now compare the gains of using
OPTirtAL racks over STANDARD-STACK racks. For the
problem (FIB 6) the OPTIMAL strategy uses only 23% of
the pushes required by the STANDARD-STACK strategy:

(FIB 41 RETPC ENV UNEV ARGL FUN Total
STANDARD-STACK 123 85 85 65 37 395
OPT I IIAL 33 8 20 16 12 89

and 89/395=. 225...
Let us see how this varies with the argument. The
following is the data for (FIB SI.

(FIB S) RETPC ENV UNEV ARGL FUN Total
STANDARD-STACK 209 145 145 111 63 673
OPTIMAL 56 14 34 28 21 1S3

and 153/673=. 227...
It still seems to be about 23%, independent of the input
argument! This should not be too surprising. Giving a
larger argument to FIB merely causes the same code to be
executed more times. The use of racks does not optimize
the algorithm being interpreted; it merely gains a constant
factor of speed for the interpreter. Now it gains different
constant factors for different parts of the interpreter, so
the speed-up factor may be different for interpreting a
program other than FIB. For example, if we define
factorial by the standard singly recursive definition:
(DEFINE (FACT N)

(COND ((= N 0) 1)
(T (* N (FACT (- N i)) })))

then the savings on (FACT 4) are more substantial.
(FACT 4) RETPC ENV UNEV ARGL FUN Total

STANDARD-STACK 59 40 40 31 18 188
OPTIHAL 14 0 S 8 8 3S

and 35/188=. 186...
The optimal strategy does only 19% as many pushes as
the standard stack implementation. This figure remains
the same for (FACT B):

(FACT 5) RETPC
STANDARD-STACK 72
OPTIMAL 17

Note that there are
required to compute
however very sensitive

ENV UNEV ARGL FUN Total
49 49 38 22 230
0 6 10 18 43

and 43/238=. 186...
precisely zero environment pushes

factorials. This optimization is,
to the exact form of the code being

interpreted (and thus to the particular execution paths
taken within the interpreter). If we instead defined
factorial with the order of arguments to • reversed:
(DEFINE (FACTI N)

(COND ((= N O) I)
(T (. (FACT1 (- N I)) N))))

the environment would have to be saved over each
recursive call because it would be needed after the
recursive evaluation to access the value of N.

For an iterative implementation of factorial the savings
are even greater:
(DEFINE (FACT2 N) (FACT-ITER 1- N 11 N))
(DEFINE (FACT-I TER COUNT ANSI

(COND ((= COUNT 0) ANSI
(T (FACT-ITER (- COUNT 1) (* COUNT ANS)))I}

For (FACT2 4) the figures are:
(FACT2 41 RETPC ENV UNEV ARGL FUN Total

STANDARD-STACK 5S 28 38 31 16 178
OPTIMAL 12 O 8 7 4 31

and 31/178=.174...

Here the OPTIMAL strategy requires only about 17'7o of the
pushes required by the STANDARD-STACK strategy.

Conclusions

We have defined a data abstraction which we call a
" rack" which may be thought of as a hybrid of a register
and a stack. It is useful for encapsulating the behavior of
the kind of register whose contenls may have an extent
which requires that it be saved during the execution of an
unknown piece of code.

A rack can be implemented in many ways, the simplest
being just a register which is saved on a stack in the usual
wily, but with other choices of implementation leading to
increased efficiency (if we assume that stack accesses are
expensive by comparison to register accesses). The basic
idea is that we interpose a state machine controller
between the rack abstraction and its stack/registers. This
controller can act as an on-the-fly run-time peephole
optimizer, eliding unnecessary stack operations.

Each of the implementations we have exhibited has
different virtues. The push-optimizer implelnentation is
simple, requiring only a single state bit, and works well for
code which uses a Caller Saves convention. The push-and-
pop-optimizer also works for a Callee Saves convention.
The pdl-buffer implementation requires one more register
than push-optimizer, but works just as well, and in
addit ion supports binary stack-arithmetic operators well.
The push-counter imlSlementalion requires a counter rather
than a one- or two-bit state, but run-length-encodes the
stack, which can substantially improve performance if
nested extents often have identical values.

There are many other possible implementations of racks.
m rack is an abstract data structure. Just as a set may be
implemented its a linked list of elements, a bit string with
l-bits indicating contained elements, or a membership
predicate, so a rack may be implemented in many ways,
which will have different performance characteristics under
various conditions of use.

We have demonstrated the sorts of savings one might(
expect by using cleverly implemented racks. On a
particular caller-saves implementation of an interpreter for
the SCHEME dialect of LISP, we have seen that if push-

170

optimization (a. simple 2-state machine) is used on all
registers except the enviromnent register and if a push-
counter is used on the environment register, then for
sample problems we can expect that typically only one out
of every four pushes that would be done by a conventional
machine will be done by the clever version. Indeed, this
can be very significant if the stacks are expensive. (This
is the case in the MIT-AI/XEROX-PARC SCHEME-79
single-chip LISP interpreter [SCHEME Chip 2], a VLSI
microprocesssor which directly interprets LISP code,
atttomatically manages storage as a garbage-collected heap,
and keeps its stacks in the heal). Dealing with external
memory is much slower than manipulating an on-chip state
bit. We intend to design a version of this chip which uses
racks to improve performance (indeed, the notion of a
rack as a generalized data abstraction was developed in an
a t tempt to optimize earlier versions of the chip.) We
expect that the savings can become even larger with
slightly different designs for our interpreter. For example,
if we use a nunlber of separate racks to hold arguments
for specific primitive operators, rather than collecting a list
of them in a single rack ARGL, then performance may be
even further improved.)

Historical Note

The basic idea for a rack came suddenly to one of the
authors (Sussman) in a dream at three o'clock in the
morning. He had been worrying about the lifetimes of
quantities saved on the stack in a LISP interpreter. From
this is derived the lille of this paper. Also, we have come
to refer informally to the general technique of delaying
stack pushes as "dreaming", an appropriate activity for
lazy computers. We wish to thank Robin Stanton,
Richard Stalhnan, Jonaihan Rees, and Richard Zippel for
being the first readers of this paper and for making
important suggestions, and Phil Agre for finding a bug.

Appendix 1
The Test Interpreter

The following is a listing of the interpreter we used for
developing the results of the tests we have displayed, using
racks to implement the saveable registers. The interpreter
evah, ates expressions written in (a subset of) SCHEME
[Revised Report]. The environment register, ENV, is the
only one which dem;mds a duplicating save; this is
i nd i ca ted in the code by using the DUPLICATE operator
r a t h e r than SAVE.

W h i l e the code given here for the interpreter is itself
w r i t t e n in S C H E M E , it is so coded that it does not use
the variable-binding and recursive procedure-call
mechanisms of SCHEME. Instead, racks are used to save
and restore items in a stack-like discipline; the items so
saved include both data objects and "return addresses". In
effect, the recursive evaluation algorithm is implemented in
terms of an explicit stack (i.e. a rack), just as it would be
in an assembly language.
(DEFINE (EVAL-E×P-RESULI-IO PC)

(ASSIGN REI,PC PC)
(SAVE RETPC)
(EVAL-DI SPATCH))

(DEFINE (POP J) ; r e tu rn to saved REI,PC
(RESTORE REI,PC)
((FETCH RETPC))) ; t h i s is a funct ion ca l l

(OEFINE (EVAL-DISPAICH) ;d ispatch on type of FORM
(CONO ((ATOM (FETCH FORM))

(CONO ((NUMBERP (FETCH FORM))
(ASSIGN VAL (FETCH FORM))
(POP J))

(l, (ASSIGN VAL (VALUE (FETCH FORM)
(FETCH ENV)))

(POP J))))
((EQ (CAR (FETCH FORM)) 'QUOTE)
(ASSIGN VAL (CADR (FETCH FORM)))

(POP J))
(lEO (CAR (FETCH FORM)) 'LAMBDA)

(ASSIGN VAL
(LI ST ' &PROCEDURE

(CADR (FETCH FORM))
(CAODR (FETCH FORM))
(FETCH ENV)))

(POP J))
((EQ (CAR (FETCH FORM)) 'COND)

(ASSIGN UNEV (FETCH FORM))
(EVCOND-PREO))

((NULL (CDR (FETCH FORM)))
(ASSIGN FORM (CAR (FETCH FORM)))
(EVAL-EXP-RESULT-TO APPLY-NO-ARGS))

(T (ASSIGN LINEV (FETCH FORM))
(ASSIGN FORM (CAR (FETCH FORM)))
(DUPLICATE ENV)
(SAVE UNEV)
(EVAL-EXP-RESULT-TO EVAL-ARGS))))

171

(DEFINE (EVCONO-PRED} ;UNEV=IiBt of COND clauses
(ASSIGN UNEV (CDR (FETCH UNEV)))
(ASSIGN FORM (CAAR (FETCH UNEV)I)
(DUPLICATE ENV)
(SAVE UNEV)

(EVAL-E×P-RESLILT-TO EVCOND-OECIDE))
(DEFINE (EVCONO-DECIDE) :make dec is ion for COND

(GONG ((FETCH VAL)

(RESTORE ENV)

(RESTORE UNEV)

(ASSIGN FORM (CAOAR (FETCH UNEV)))
(EVAL-OISPATCH))

(T (RESTORE UNEVl
(RESTORE ENV)
(EVCONO-PREO))))

(DEFINE (APPLY-NO-ARGS) ; app l y VAL, a fn of no args
(ASSIGN FUN (FETCH VAL))
(ASSIGN ARGL NILI
(|NTERNAL-APPLY))

(DEFINE (EVAL-ARGS) ; l o o p for eva lua t ing args
(ASSIGN FUN (FETCH VAL))
(SAVE FUN)
(ASSIGN ARGL NIL)
(EVAL-ARGS[))

(DEFINE (EVAL-ARGS1)

(SAVE ARGL)

(RESTORE UNEV)

(ASSIGN UNEV (CDR (FETCH UNEV)))
(ASSIGN FORM (CAR (FETCH UNEV)))
(RESTORE ENV)

(COND ((NULL (CDR (FETCH UNEV)))

(EVAL-EXP-RESULT-TO EVAL-LAST-AR0))
(T (DUPLICATE ENVI

(SAVE UNEV)

(EVAL-EXP-RESULT-TO EVAL-ARGS2))))
(DEFINE (EVAL-ARGS2) ;have evaluated one arg

(RESTORE ARGL)

(ASSIGN ARGL (CONS (FETCH VAL) (FETCH ARGL)))
(EVAL-ARGS1))

(DEFINE (EVAL-LAST-ARG) ~have evaluated last arg
(RESTORE FUN)

(RESTORE ARGL)

(ASSIGN ARGL (CONS (FETCH VAL) (FETCH ARGL)))
(INTERNAL-APPLY))

(DEFINE (INTERNAL-APPLY) :apply FUN to ARGL

(COND ((PRIMOP? (FETCH FUN))

(ASSIGN VAL (PRIMOP-APPLY (FETCH FUN)

(FETCH ARGL)))
(POPJ))

((EQ (CAR (FETCH FUN)) '&PROCEDURE}
(ASSIGN ENV

(BIND (CAOR (FETCH FUN))

(FETCH AROL)
(CADODR (FETCH FUN))))

(ASSIGN FORM (CADOR (FETCH FUN)))
(EVAL-OISPATCHII

(f (BREAK IUNKNOWN FUNCTION TYPEI))))

References

[Actors] Hewitt, Carl. "Viewing Control Structures as
Patterns of Passing Messages." AI Journal 8, 3 (June
1977), 323-364.

[Bobrow and Wegbreit] Bobrow, Daniel G. and Wegbreit,
Ben. "A Model and Stack hnplemenlation of Multiple
Environments." Comm. ACM 16, 10 (October 1973)
pp. 591-603.

[Burroughs] Hauck, E.A., and Dent, B.A. "Burroughs'
B6500/B7500 Stack Mechanism." Proc. AFIPS Spring
Joint Computer Conference Vol. 32 (1968), 245-251.

[CONNIVER] McDermott, Drew V. and Sussman, Gerald
Jay. The CONNIVER Reference Manual. AI Memo
295a. MIT AI Lab (January 1974).

[Dream] Steele, Guy Lewis Jr., and Sussman, Gerald Jay.
The Dream of a Lifetime: A Lazy Scoping
Mechanism. AI Memo 527. MIT AI Lab (Cambridge,
November 1979).

[Interpreters] Steele, Guy Lewis Jr., and Sussman, Gerald
Jay. The Art of the Interpreter; or~ The Modularity
Complex (Parts Zero, One, and Two). MIT AI Memo
453 (May 1978).

[LISP Machine] Bawden, Alan; Greenblatt, Richard;
Hoiloway, Jack; Knight, Thomas; Moon, David; and
Weinreb, Daniel. LISP Machine Progress Report. AI
Memo 444. MIT AI Lab (August 1977).

[Moses] Moses, Joel. The Function of FUNCTION in
LISP. AI Memo 199. MIT AI Lab (June 1970).

[Revised Report] Steele, Guy Lewis Jr., and Sussman,
Gerald Jay. The Revised Report on SCHEME: A
Dialect of LISP. MIT AI Memo 452 (Jan. 1978).

[SCHEME] Sussman, Gerald Jay, and Steele, Guy Lewis
Jr. SCHEME: An Interpreter for Extended Lambda
Calculus. AI Memo 349. MITAAI Lab (Dec. 1975).

[SCHEME Chip 0] Steele, Guy I~.~wis Jr., and Sussman,
Gerald Jay. "Storage Management in a LISP-Based
Processor." Proc. Caitech Conference on Very Large
Scale Integration (Pasadena, January 1979).

[SCHEME Chip 1] Steele, Guy Lewis Jr., and Sussman,
Gerald Jay. Design of LISP-Based Processors... AI
Memo 514. MIT AI Lab (March 1979).

[SCHEME Chip 2] Holioway, Jack; Steele, Guy L., Jr.;
Sussman, Gerald Jay; and Bell, Alan. The SCHEME-
79 Chip. AI Memo 559. MIT AI Lab (Dec. 1979).

[SLIP] Weizenbaum, J. "Symmetric list processor."
Comm. ACM 6, 10 (September 1963), 524-544.

[Smalltalk] Goidberg, Adele, and Kay, Alan. Smalhalk-72
Instruction Manual. Learning Research Group, Xerox
Paid Alto Research Center (March 1976).

[Wand] Wand, Mitchell. Continuation-Based Program
Transformation Strategies. TR 61. Computer Science
Dept., Indiana U. (Bloomington, March 1977). Also in
J. ACM 27, 1 (Jan. 1980), 164-180.

[Weizenbaum] Weizenbaum, J. "Knolled list structures."
Comm. ACM 5, 3 (March 1962), 161-165.

1 72

