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We define a "rack", a data abstraction hybrid of a 
register and a stack. It is used for encapsulating the 
behavior of the kind of register whose contents may have 
an extent which requires that it be saved during the 
execution of an unknown piece of code. A rack can be 
implemented cleverly to achieve performance benefits over 
the usual implementation of a stack discipline. The basic 
idea is that we interpose a state machine controller 
between the rack abstraction and its stack/registers. This 
controller can act as an on-the-fly run-time peephole 
optimizer, eliding unnecessary stack operations. 

We demonstrate the sorts of savings one might expect 
by using cleverly implemented racks in the context of a 
particular caller-saves implementation of an interpreter for 
the SCHEME dialect of LISP. For sample problems we 
can expect that only one out of every four pushes that 
would be done by a conventional machine will be done by 
the clever version. 
Keywords: registers, stack discipline, stack architecture, 

register saving, procedure calling conventions, data 
abstraction 

The Problem 

We deal here with the problem of managing the use of 
a finite set of fast registers. Because the set of registers is 
finite and in fact usually much smaller than the total set 
of  quantities of interest to the computation, the registers 
must be time-multiplexed, holding different quantities at 
different  times. This leads immediately to the problem of 
how and when to move quantities to and from registers. 

This problem is especially severe in the case of large 
systems of mutually recursive procedures. For small 
systems it may be possible to perform a complete analysis 
of  all the procedures and their interactions and so find an 
optimal allocation of registers, but this is infeasible for 
large systems. Hence one usually adopts some standard 
method which always works but which may be overly 
conservative. 
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A typical technique is to use a push-down stack to 
preserve the contents of a register while it is being used to 
hold a new value for another purpose. The new value 
may  in turn be preserved on the stack if a third purpose 
for that  register arises. A value is saved by "pushing" it 
onto  the stack at some time before the register is used for 
another  purpose; it is restored by "popping" it back into 
the register after the new purpose has ended. The range 
of  t ime during which a register is used for a given purpose 
(possibly interrupted by other, interpolated purposes) may 
be called an extent of a use the register (by analogy with 
the term when applied to the variables of a high-level 
programming language such as ALGOL). A stack can be 
used because a discipline is imposed requiring that the 
extents of quantities kept in a register be nested. 

The nesting discipline is typically carried out by tying it 
to the nesting of procedure calls. There are two common 
conventions for using stacks in this context. In one, the 
"Caller Saves" convention, the calling procedure is 
responsible for pushing any values it will want later, and 
for retrieving them when the called procedure has 
returned. In this way a called procedure always has the 
full set of  registers available for arbitrary use. In the 
other,  the "Callee Saves" convention, the called procedure 
is responsible for preserving any registers that it uses. In 
this way a calling procedure can use any registers it 
pleases without worrying about called procedures 
destroying them. 

There  has been some debate as to which of these 
conventions is better. This debate has not been resolved 
because there is no good answer. Each convention is 
nonoptimal,  and can perform much worse than the other 
for particular procedures. The Caller Saves convention is 
justly criticized because the caller may well save a register 
it did not have to (because, unknown to it, the called 
procedure does not use that register anyway). The Callee 
Saves convention is equally justly criticized because the 
called procedure may save the contents of a register which 
was not actually in use. 

The  problem of minimizing stack operations can be 
important  because stack operations are usually significantly 
more expensive than register operations. This is true for 
typical computer systems using a hierarchy of memory 
devices; stacks, being of potentially unbounded size, are 
likely to overflow into slower memories. We are especially 
concerned with this problem in the context of hardware 
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interpreters for high-level languages. (See [SCHEME 
Chip 0], [SCHEME Chip 1].) If the language allows closed 
procedures (FUNARGs) to be a first-class data type, 
which can be passed as an argument and returned as a 
value, and if we also allow control continuations to be 
similarly manipulated, then these problems are magnified 
because our stacks must be in garbage-collectable heap 
memory.  (Cf. [SCHEME], [Revised Report], [Moses], 
[CONNIVER],  and [Bobrow and Wegbreit].) 

In this paper we will outline automatic methods of 
saving and restoring the values of registers which combine 
the good features of the classical conventions and which 
perform in every case as well as or better than either of 
the two classical conventions. We will demonstrate the 
effectiveness of our techniques for use of registers and 
stacks in the context of an interpreter for a dialect of 
LISP. We will compare the performance under various 
implementat ion choices. We will also describe how racks 
may  be used in conventional computer architectures. 

Other  researchers have investigated and used techniques 
for improving the performance of stacks. [Burroughs] 
[LISP Machine] Such techniques generally implement 
modified push and pop operations which use registers to 
buffer  the stack data. Our techniques are a generalization 
of  those previously reported. 

Al though compiler optimizations can ameliorate the 
problem of optimal use of registers and stacks, the 
problem can not be fully resolved before run time, even if 
procedural arguments are disallowed (i.e. even if the 
targets of all procedure invocations are known at compile 
time). Which registers are in use and which are needed 
can depend on (a) which of several procedures is the 
caller, and (b) which of several data-dependent execution 
paths is taken within the called procedure. Hence in 
general not even the most complex optimizing compiler 
using either of the classical conventions can fully optimize 
register usage. If procedural, arguments are to be 
implemented,  then the problem is even more impossible. 

Some negotiation must occur dynamically, at run time, 
between the various users of a register. Only if both the 
caller and the called procedure need to use a register 
should it be preserved for the caller's sake. More 
generally, the called procedure may not need a register, 
but  one that it calls (or one indefinitely far down the call 
chain) may need the register. The negotiation protocol 
therefore cannot be just between caller and called 
procedure, but must extend over more then one level of 
call. The technique we present is actually independent of 
any procedure call mechanism; it invoh'es associating state 
informat ion with each register describing whether or not it 
is in use. 

The Strategy 

By a "register" we mean something which can hold a 
sitagle finite datum. There are two operations on registers: 
one can read the datum contained in the register, and one 

can store a new datum into it. The datum obtained by a 
read operation is always the datum most recently stored. 

By a "stack" we mean something which can hold an 
indefinitely large number of finite data. There are two 
operations on stacks: one can push a new datum onto the 
stack, and one can pop a datum from the stack. The 
da tum obtained by a pop operation is always the datum 
specified by the most recent matching push; that is, 
pushes and pops are "balanced" like parentheses. 

The  classical register-saving conventions deal with these 
two abstractions separately. A compiler typically issues 
read and store operations on registers for manipulating 
data ,  and issues push and pop operations for saving and 
restoring the registers. 

When a stack is used to maintain the nested extents of 
a register it is not the actual pushing and popping which is 
of  direct interest; it is the saving and restoring of the 
register. We introduce a composite abstraction (which we 
call a rack) which adds to the behavior of an ordinary 
register the ability to specify the beginning and ending of 
an extent (or, equivalently, to specify that the current 
value must be saved so as to be available later). Racks 
have four operations defined on them: fetch, assign, save, 
and restore. They are analogous to the read, store, push, 
and pop operations for a separate register and stack. 

Our new abstraction is in fact to be implemented in 
terms of  a stack and one or more registers. The save and 
restore operations appear to behave as push and pop stack 
operations, in that a restore operation causes to be 
available (to the fetch operation) that datum which was 
available before the corresponding save operation. 
However,  performing a save does not necessarily (indeed, 
in some implementations never does!) perform a push on 
the internal stack; similarly, performing a restore does not 
necessarily perform a pop. Instead, pushes and pops are 
delayed until the), are forced by subsequent operations. 
Hence a rack may be thought of as a kind of "lazy stack". 
In particular, a push or pop may occur during a fetch or 
assign operation. 

We will present a series of implementations which 
embody  different engineering tradeoffs. The 
implementations will be presented in approximately 
increasing order of complexity. 

Rack hnplementations 

Each of the implementations given here embodies the 
same abstraction: a single register-cure-stack which 
responds to the four operations FETCH, ASSIGN, SAVE, and 
RE BIORE. Each implementation will specify a set of 
internal  registers and a stack, and procedures which 
implement the four operations in terms of REAl3 and SIORE 
operations on the internal registers and PUSH and P0P 
operations on the internal stack. 

The  key idea is that each instance of a rack can have a 
state which encodes some of the history of previous 
operations. Each implementation is organized as a finite- 
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state  att tomaton which mediates between operation 
requests and the internal registers and stack. This 
au tomaton  serves as ;111 on-the-fly run-time peephole 
optimizer,  which recognizes certain patterns of operations 
within a small window of events and transforms them so 
as to reduce the actual number of stack operations 
l)erformed. Each rack has its own internal stack (as 
opposed to sharing one stack among several registers) so 
that  the optimization can be performed independently on 
the operations to be performed on each rack. This will be 
impor tan t  in minimizing the operations because otherwise 
operat ions on one rack could cause wasted operations on 
another .  (We see this kind of inefficiency in systems 
which have "framed stacks" where each entry (a single 
f rame)  on the stack is a fixed pattern of saved state, much 
of  which is irrelevant to the particular reason why that 
en t ry  was constructed.) 

We describe each implementation in the programtning 
language SCHEME [Revised Report], a dialect of LISP 
which is iexically souped and allows procedures to be 
passed as arguments and returned as values. The use of 

procedural  values allows us to describe a data abstraction 
as a procedural object which accepts and acts oll messages 
sent to it. (Cf. [Actors] [Smalltalk].) Each 
implementat ion is a function which, when called, 
constructs  and returns a fresh instance of the rack in the 
form of  a closed procedure. The instance can be operated 
upon using the following operations which send 
appropriate  messages to the instance: 
(DEFINE (FETCH R) (R 'FETCH)) 
(DEFINE (ASSIGN R NELI-VALUE) ((R 'ASSIGN) NELl-VALUE)) 
(DEFINE (SAVE R) (R 'SAVE)) 
(DEFINE (RESTORE R) (R 'RESTORE)) 
T h a t  is, if the variable ENV has as its value an instance of 
tile rack abstraction, then writing (FETCH ENV) will fetch 
the current  contents of the rack, (ASSIGN ENV 3) will 
make  the new contents of the current extent be 3, etc. 

Our  rack finplementations will contain registers and 
stacks. A register or stack will also be modelled by closed 
procedures which take messages. A register can have a 
value stored in it or it can be read out: 

(DEFINE (STORE REGISTER VALUE) ((REGISTER 'STORE) VALUE)) 
(DEFINE (READ REGISTER) (REGISTER 'READ)) 

(DEFINE (REGISTER) 
(LET ((V NIL)) 

(LAMBDA (OPERATION) 
(CASEQ OPERATION 

((READ) V) 
((STORE) 
(LAMBDA (NEWVALUE) 

(SETQ V NENVALUE))))))) 
A stack is similarly behaviorally described: 

(DEFINE (PUSH STACK TOP) ((STACK 'PUSH) TOP)) 
(DEFINE (POP STACK) (STACK 'POP)) 

iDef ine  a reg is te r  to be an ob jec t  
: which conta ins  a quan t i tg  V, and 

= responds to a reques t  bg d i s p a t c h i n g  
I on the s p e c i f i e d  o p e r a t i o n  t g p e .  
IFor READ, return the quan t i t g  V. 

~For STORE, return a f u n c t i o n  

= which w i l l  accept the new v a l u e  

I and save i t  in V. 

(DEFINE (STACK) 
(LET ((S NIL)) 

(LAMBDA (OPERATION) 
(CASEQ OPERATION 

((PUSH) 
(LAMBDA (TOP) 

(SETO S (CONS TOP S)))) 

((POP) 
(IF (NOT (NULL S)) 

(LET ((V (CAR S))) 
(SETQ S (CDR S)) t 
V) = 

(ERROR "Stack ran out - POP")))) 

Ordinary  Stack hnplementation 
As a short example of an implementation, we express 

the classical save-must-push/restore-must-pop convention. 
This  is not very interesting except to demonstrate our 
n o t a t i o n  a n d  to serve as a benchmark for comparative 
per formance  measurements. 

=Define a STACK to be an o b j e c t  

I Hhich conta ins  a l i s t  S ( i n i t i a l l g  

= emptg) and responds to a r e q u e s t  

I bg d i s p a t c h i n g ,  
=For PUSH, r e t u r n  a f u n c t i o n  which  

= w i l l  accept a new v a l u e  and add i t  

I to the f r o n t  of  the l i s t  S. 

=For POP, 
t i f  the l i s t  S is not  emptg,  

= then save the f i r s t  e l e m e n t ,  

remove the f i r s t  e lement  f rom S, 
and r e t u r n  the former f i r s t  e l e m e n t .  

) ) )  =ERROR i f  S is emptg.  

In  this iml) iemenlation, each instance creates two 
internal  objects: a register R and a stack S. The current 
value is ahvays kept in R. When a save operation is 
requested,  the current value is always pushed onto S; 
dur ing  a restore operation, a pop always occurs. 
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(DEFINE (STANDARD-STACK) 
(LET ((R (REGISTER)) (S (STACK))) 

(LAMBDA (OPERATION) 
(CASEQ OPERATION 

((FETCH) (READ R)) 
((ASSIGN) 
(LAMBDA (NEWVALUE) (STORE R NEWVALUE))) 

((SAVE) (PUSH S (READ R))) 
((RESTORE) (STORE R (POP SIT))))) 

Optimizing Pushes 
The  next implementation has two states, called 

AVAILABLE and IN-USE. The value associated with the 
current  extent is always in the internal register R. The 
state encodes whether that value has been saved or not. 
T h a t  is, the state describes whether or not the internal 
register can be used freely or has been pressed into service 
as a virtual top-of-stack. The important idea here is that 
the state machine recognizes the operation sequence "SAVE; 
RESTORE" and treats it as a compound no-operation. It 
delays the pushing conceptually associated with a SAVE by 
moving to the state IN-USE. If the next operation is an 
ASSIGN (or another  SAVE) then the push is performed after 
all. If  the next operation is a RESTORE, however, then the 
state is simply reset to AVAILABLE, and a push and pop 
have been avoided. 
(DEFINE (PUSH-OPTI i l l  ZER) 

(LET ((R (REGISTER)) (STATE (REGISTER)) (S (STACK))) 
(STORE STATE 'AVAILABLE) = in i  t i n t  state 
(LArlBDA (OPERATION) 

(CASE(] OPERATION 
((FETCH) (READ RI) 
((ASSIGN) 
(LAHBDA (NEWVALUE) 

(CASEQ (READ STATE) 
((IN-USE) (PUSH S (READ RI) 

(STORE STATE 'AVAILABLE) 
(STORE R NEWVALUE)} 

((AVAILABLE) (STORE R NEI,,IVALUE) ) ) ) ) 
((SAVE) 
(CASEQ (READ STATE) 

((IN-USE) (PUSH S (READ R))) 
((AVAILABLE) (STORE STATE ' IN-USE)))) 

((RESTORE) 
(CASEO (READ STATE) 

((IN-USE) (STORE STATE 'AVAILABLE)) 
((AVAILABLE) (STORE R (POP S))))))))) 

Optimization of pushes can help considerably in a 
program which uses the Caller Saves convention. In this 
case, there are many calls to subprocedures which will not 
modify the registers of interest to the caller. The caller, 
however, will not in general know that these procedures 
are "safe". Even if we grant that the caller will know 
which registers important procedures can potentially 
modify (a dangerous violation of modular organization, 
but  one which is often made in highly optimized 
performance code), different subsets of the potentially 

modified registers will be actually modified depending on 
the arguments passed to the cailee. Thus, our push 
optimizer can do better than an optimizing compiler under 
some circumstances. The reason is that it recognizes 
( temporal)  sequences of relevant operations. Operations 
which do not affect the register of interest are not 
cluttering the view of our optimizer. Additionally, the 
optimizer can "see through" svbroutine calls and other 
module  boundaries. 

Optimizing Pushes and Pops 
The  next implementation augments the previou= 

implementat ion by recognizing some situations in which 
pops may be optimized as well as some pushes. It 
recognizes both "SAVE; RESTORE" and "RESTORE; SAVE" 
sequences and effectively elides them. The state machine 
has th ree  states: IN-USE, AVAILABLE, and ON-STACK. The 
new state encodes where the value associated with the 
current  extent is actually located: in the internal register 
or on the top of the internal stack. As before, if the 
value is not on the stack, it may either be protected (IN- 
USE) or the register may be available to accept a new 
va lue  (AVA I LADLE). 

When does pop optimization buy anything? The state 
machine elides RESTOREs followed by SAVEs with no 
operations on that register in between. This is unlikely to 
happen in a well-written program using the Caller Saves 
convention because such sequences can be deleted' by 
simple peephole optimization on the local data-flow of the 
program. However, in Callee Saves situations, it is often 
to be expected that two procedure calls occur in sequence, 
each calling a procedure which will clobber some 
par t icular  register, which is not referenced by the code 
between the procedure calls. In this case such a Useless 
sequence will occur. Again we see how this technique is 
very nice in that the code "removed" is not necessarily 
lexically adjacent, just adjacent logically in the flow of 
control.  
(OEF 1 NE (PUSH-AND-POP-OPT I MI ZER) 

(LET ((R (REGISTER)) (STATE (REGISTER)) (S (STACK))) 
(STORE STATE 'AVAILABLE) ~ i n i t i a l  s tate 
(LAMBDA (OPERATION) 

(CASEO OPERATI ON 
((FETCH) 

(CASEQ (READ STATE) 
((IN-USE) (READ R)) 
((AVAILABLE) (READ RI) 
((ON-STACK) 
(STORE R (POP SIT 
(STORE STATE 'AVAILABLE) 
(READ R) ) ) )  

((ASSIGN) 
(LAHBDA (NEWVALUE) 

(CASEO (READ STATE) 
( ( 1 N-USE ) 

(PUSH S (READ R)) 
(STORE STATE 'AVAILABLE) 
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(STORE R NEI,IVALUE)) 
((AVAILABLE) 
(STORE R NEklVALUE)) 

((ON-STACK) 
(POP S) 
(STORE STATE ' AVAILABLE) 
(STORE R NEI,,IVALUE) ) ) ) ) 

((SAVE) 
(CASEQ (READ STATE) 

((IN-USE) (PUSH S (READ R))) 
((AVAILABLE) (STORE STATE ' IN-USE)) 
((ON-STACK) (STORE STATE 'AVAILABLE))) I 

((RESTORE) 
(CASEO (READ STATE) 

((IN-USE) (STORE STATE 'AVAILABLE)) 
((AVAILABLE) (STORE STATE 'ON-STACK)) 
((ON-STACK) (POP S ) ) ) ) ) ) ) )  

The important idea here is that the state machine 
recognizes the operation sequence "RESTORE; SAVE" and 
treats it as a compound no-operation. That is, it delays 
the popping conceptually associated with a RESTORE by 
moving to the state ON-STACK. If the next operation is a 
FETCH or ASSIGN (or another RESTORE) then the pop is 
performed after all. If the next operation is a SAVE, 
however, the state machine recognizes that the relevant 
value is already on the stack and so the rack reverts to 
state AVAILABLE. 

Now we have to be a little careful here. In describing 
the rack abstraction we never said whether a FETCH 
operation immediately after a SAVE operation is guaranteed 
to return the same value it would have before the SAVE 
was performed. If an implementation preserves value over 
SAVEs we will say that it "duplicates" the extent before 
saving it. The simple stack implementation and the push- 
optimizer are both duplicating implementations. The push- 
and-pop-optimizer implementation would appear, at first, 
to do no damage to the value in the register during a SAVE 
operation; but consider the following sequence: 

(ASSIGN FO0 I)  ;leaves the rack AVAILABLE (R=I) 
(SAVE FO0) ; t h i s  leaves i t  IN-USE (R=I) 
(ASSIGN FO0 2) =AVAILABLE (R=2~ 1 .as pushed) 
(RESTORE FO0) ; leaves i t  ON-STACK (R=2) 

[a FETCH at  t h i s  po in t  would re turn  1, but also 
= loop the stack and change s ta te  to AVAILABLE] 

(SAVE FO0) ; leaves  i t  AVAILABLE (R=2) 
(FETCH FO0) ; t h i s  re turns  2 

In a duplicating implementation, the result must be a 1, 
but in the implementation shown, the result will be 2! The 
duplication is an extra property which is needed in some 
applications and not in others. 

We might think that we could fix up the push-and-pop- 
optimizer implementation so that it duplicated extents by 
replacing the following code in the case for SAVE: 

((ON-STACK) (STORE STATE 'AVAILABLE)) 
with the somewhat more COml)lex: 

((ON-STACK) 
(STORE R (POP S)) 
(STORE STATE 'IN-USE)) 

This indeed makes the rack duplicate, but it kills the pop 
optimization. It is not usually necessary for a rack to 
have a duplicating save. However, sometimes we need this 
operat ion explicitly. In this case we may find it necessary 
to implement a separate DUPLICATE operation which is the 
same as SAVE in most rack implementations and has the 
complex code above in this rack implementation. 

Two-Cell Top-of-Stack Buffer 
This implementation is presented for comparison. It is 

similar in spirit to the top-of-stack buffer used in the 
B6500/B7500 series computers [Burroughs]. There are two 
internal registers, R1 and R2, which buffer the stack 
operations. The value associated with the current extent 
is always in one of these two registers.; there are two 
st;~tes IN-RI and IN-R2 indicating which is the case. An 
important  feature of this implementation is that FETCH and 
ASSIGN never perform push or pop operations; only SAVE 
ever pushes, and only RESTORE ever pops. The registers 
provide a sliding window, however, within which pushes 
and pops may be elided. 
(DEFINE (POL-BUFFER) 

(LET ((R1 (REGISTER)) (R2 (REGISTER)) 
(STATE (REGISTER)) (S (STACK))) 

(STORE STATE 'IN-R2) 
(LAMBDA (OPERATION) 

(CASEQ OPERATION 
((FETCH) 

(CASEQ (READ STATE) 

; i n i t i a l  state 

((IN-RI) (READ RI)) 
((IN-R2) (READ R2)))) 

((ASSIGN) 
(LAI'IBDA (NEklVALUE) 

(CASEQ (READ STATE) 
((IN-R() (STORE R1 NEIJVALUE)) 
((IN-R2) (STORE R2 NEIJVALUE) ) ) ) ) 

((SAVE) 
(CASEQ (READ STATE) 

((IN-R1) 
(PUSH S (READ R2)) 
(STORE R2 (READ R1))) 

((IN-R2) 
(STORE R1 (READ R2)) 
(STORE STATE ' IN-R() ) )-) 

((RESTORE) 
(CASECI (READ STATE) 

((IN-R() (STORE STATE 'IN-R2)) 
((IN-R2) (STORE R2 (POP S))))))))) 

This rack implementation is duplicating and optimizes 
both pushes and pops. On the other hand, it needs two 
registers per rack (besides the stack-pointer register). 

(On the third hand, it permits another kind of 
optimization not supported by any of the previous 
strategies: a sequence equivalent to "RESTORE; RESTORE; 
SAVE" can be performed without an), popping if the rack 
had been in state IN-R(. Such a compound operation is 
typical of a binary arithmetic operation on a stack 
machine (such as are the B6500/B7500 series); addition, 
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for  example, is performed by effectively popping the top 
two elements of the slack and pushing back their sum in 
one operation. In st;tie IN-R1 this is done by placing the 
sum of  R1 and R2 in R2 and changing the state to IN-R2. 
If  such binary operations are interleaved with operand 
fetches,  then much slack arithmetic can be performed with 
no actual pushes or pops.) 

Collapsing Extents Using a Counter 
In some applications the values held in a register during 

successive nested extents often are identical, and change 
only  infrequently. Consider, for example, a situation 
where  the register is used to hold a parameter passed 
down  from one level to another, from one procedure to 
another ,  without change. The idea here is that if several 
consecutive values are the same, this fact can be encoded 
by keeping only one copy of the value plus a count of the 
replications. (We will exhibit an application below where 
this idea yields a substantial performance improvement.) 
One  way to think about this is to consider the stack to be 
"run-length encoded". Another way is to consider the 
value to have a "protection count", somewhat like a 
reference  count  as used in storage allocators [Weizenbaum] 
(SLIP]; thus the same value can be "IN-USE" more than 
once. 

This  is not without associated overhead. When a value 
is eventual ly actually pushed onto the stack, two items 
must  be pushed: the value and the count. Hence if in 
pract ice consecutive values are not often identical, then 
this implementation performs twice as many stack 
operat ions as previous implementation we have presented 
( for  example PUSH-OPTIMIZER). There is also a complexity 
overhead:  though there are no explicit states (the value of 
the count  contains the state), the finite-state machine 
which mediates between user and actual stack must be 
capable  of  doing simple arithmetic (adding and subtracting 
one);  this may be important when implementing this 
technique in hardware. 
(DEFi NE {PUSH-COUNTER} 

(LET {{R {REGISTER}} {COUNT {REGISTER}) (S {STACK))) 
(STORE COUNT 0) ~ i n i t i a l  state 
(LAMBDA (OPERATION) 

(CASED OPERATION 
((FETCH} (READ R)} 
((ASSIGN) 

(LAMBDA {NEklVALUE} 
(BLOCK 

(IF (NOT 1= 0 {READ COUNT))) 
{BLOCK {PUSH S {READ R)) 

(PUSH S (- {READ COUNT) 1)) 
{STORE COUNT 0)))  

{STORE R NEklVALUE) ) ) ) 
({SAVE) ISTORE COUNT {+ I {READ COUNT)))) 
((RESTORE) 

( IF 1= {READ COUNT) 0) 
{BLOCK {STORE COUNT {POP S)) 

{STORE R {POP S))) 
(STORE COUNT (- (READ COUNT) 1 ) ) } ) ) )1 )  

Th e  critical idea is the code for ASSIGN. If the count is 
non-zero,  then the current value is serving for more than 
one nested extent (just as in previous implementations 
s ta te  IN-USE ilnplied that the value served for two 
extents) .  In this case one extent inust be de-collapsed 
f rom the others so that the assignment may be performed. 
(A very tricky inlplementation might first check to see 
whether  the new assigned value were the same as the old 
one  or the previous one, and attempt 1o collapse extents! 
It  is not at all clear that this is worthwhile.) This push- 
coun te r  implementation of racks has a duplicating SAVE 
opera t ion (after all, the whole point is to use this 
implementat ion in situations where consecutive extents are 
of ten  the same, and this probably occurs by algorithmic 
duplicat ion ralher than computational accident.) 

(Th e  code above assulnes that the counter can hold 
indefinitely large integer values. That assumption is 
legitimate for this code, because our SCHEME 
implementat ion supports arithmetic on integers of arbitrary 
size. However,  this is more difficult for a hardware 
implementat ion.  For a discussion of overflow checking 
and other  issues related to hardware implementations, see 
[Dream],  from which this paper was condensed.) 

The  hnpact  of Racks on lhe Performance 
of an Evaluator for SCHEME 

T h e  proof  of the pudding is in the eating, We have 
tr ied the idea of using racks to iml~lement the saving and 
restoring of  registers in a caller-saves implementation of an 
interpret ive evalnalor for (a dialect of) the SCHEME 
language (see Appendix 1 for a complete listing of the 
evaluator . )  This provides a non-trivial exercise of register 
saving because it performs a highly recursive operation 
whose precise actions depend in a complex way on the 
da ta  being processed (i.e. the SCHEME program being 
interpreted) .  We ran the interpreter on a set of test 
problems with those registers which are saved implemented 
as various kinds of racks. 

In the particular interpreter we used there are five 
registers which are saved at various points in the 
i n te rp re te r .  The)' are: RETPC, ENV, UNEV, ARGL, FUN. 

RETPC is used to hold the "return address" for an 
evaluat ion of a subexpression. The interpreter may 
recurse to evaluate a subexpression for one of a number of 
reasons. RETPC holds the reason for the current 
subevaluation. For example, it may be that the 
subexpression is an argument to a procedure call. In this 
case the evaluator will have to evaluate the following s (if 
any)  and then apply the procedure. The subexpression 
may be the predicate part of a conditional, in which case 
the evaluator  wants to use the value of this expression to 
decide whether to proceed with the consequent of the 
condit ional  or the alternative of the conditional. 

ENV is used to hold the environment which is the map of 
identifiers to their values. Since SCHEME is lexically 
scoped, this map is never required at the moment a 
procedure  is called because the procedure is enclosed 
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within its own iexical environment ( that  is, the procedure 
object  contains an environment in which to execute the 
code for the procedure). The actual new enviromnent is 
made by binding the formal parameters of the procedure 
to the (evaluated) actual parameters of the call, and 
adding these bindings to the closure environment. The 
new environment is assigned to the environment register 
and execution begins on the body of the procedure. Thus, 
it is necessary to preserve the environment of an 
expression across a procedure call if more computations 
are to be done with that environment after the procedure 
returns.  This may happen if the subexpression is the 
predicate of a conditional, or is an argument in a 
procedure  call expression after which other arguments 
must  be evaluated before the procedure can be called. 

UNEV is a register which is used to remember the 
unevaluated part of an expression across the evaluation of 
a subexpression. Thus, UNEV is used to hold the 
consequent  and the alternative in a conditional and the 
rest of  the unevaluated arguments in a call. 

ARGL is used to hold the list of already evaluated 
arguments  for a procedure while the next argument is 
being evaluated. It eventually contains the entire list of 
arguments  and is used to construct the environment when 
binding the formal parameters to the actual parameters 
(s tored in ARGL) at the procedure invocation. 

gUN holds the procedure to be invoked after all of its 
arguments  are evaluated. It is necessary because the 
evaluator  we are using evaluates an expression from left to 
right, and in that syntax the procedure comes first, 
followed by its arguments. 

T h e  evaluator we are using has other registers for 
t emporary  storage of values and expressions. Those 
registers are not interesting for our test as they are never 
saved. 

T o  measure the performance of the evaluator we use the 
following doubly recursive method of computing Fibonacci 
numbers.  This test is interesting in that it exercises the 
recursion mechanism of the interpreter rather thoroughly 
and is thus a good indicator of the overhead of evaluating 
subexpressions. The problem is to evaluate (FIB 4) where 
we define: 
(DEFINE (FIB N) 

(COND (1= N 0) 0) 
((= N 1) I) 
(T (+ (FIB ( -N 1}) (FIB (-N 2)))))) 

The results are summarized in the following table. For 
each implementation, for each register, we give the actual 
number  of items pushed and popped in the execution of 
the test example. 

RETPC ENV UNEV ARGL FUN Total 
STANDARD-STACK 123 85 85 65 37 39S 
PUSH-OPTIMIZER 33 28 28 ~6 12 181 
PUSH-AND-POP-OPTIMIZER 33 20 28 IG 12 101 
PDL-BUFFER 33 20 28 16 12 181 
PUSH-COUNTER gg 8 48 32 24 178 

We can see that  the simple push-optimizer is 

t remendous  improvement over a simple unoptimizing stack. 
Addit ionally,  in this caller-saves discipline, the push-and- 
pop optimizer gives us no advantage for its added 
complexity.  The pdi-buffer, which requires an extra 
hardware  register, makes no difference either. The push 
opt imizer  is a simple two-state machine so it is trivial to 
implement  in hardware. 

Th e  push-counter is worse than the push-optimizer for 
every  register except the environment register ENV. In that 
case, it makes a remarkable difference. What has 
happened is that the evaluator does not save the 
envi ronment  unless it is logically necessary to do so to 
allow the computation to proceed. The only reason that 
the environment  is ever saved is because it will be needed 
af te r  a recursive call to the evaluator (and this happens to 
occur  only when evaluating an argument to a procedure 
(o ther  than the last argument) or the predicate of a 
conditional;  because SCHEME is lexically scoped, the 
envi ronment  is not needed to apply a procedure (in 
contras t  to the implementation of LISP 1.5 and its 
successors), because each procedure is enclosed with its 
own favorite environment). Wand has observed that a 
iexically scoped LISP evaluator need never save the 
envi ronment  over the evaluation of the last argument in a 
procedure  call (see [Wand]); this is called "evils tail- 
recursion".  Thus, in the Fibonacci evaluation the only 
reason to save the environment is when the first argument 

of  + is evaluated because the evaluation of the second 
a rgument  will need that environment. The environment 
will be assigned (and therefore pushed) upon applying the 
subcall to FIB so it must be saved. Thus we see that the 
envi ronment  must actually be pushed precisely 4 times: 

( za I) (Fza o) 

The Computat ion Tree for  (FIB 4).  
The doub led edges sho. recurs ions 

ove r  t4hich the environment must be saved. 

Wand 's  evlis tail-recursion technique is a special-case 
opt imizat ion based on a static analysis of the evaluation 
process. The  push-counter rack technique provides a 
dynamic  optimization of the environment of which evils 
tail-recursion is a special case. It is not just that the 
textual ly last argument is treated specially. If, for 
example,  the last three arguments to a four argument 
procedure  could be evaluated without modifying the 
envi ronment  (for example, if the), were made up of either 
prinlitive evaluations of constants or variables or calls to 
primitive procedures), then the enviromnent would never 
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be pushed after the evaluation of the first argument. 
Moreover,  the push-counter technique performs 
optimizations that would be impossible to determine ahead 
of  t ime by analyzing the text of a program. 
From this data, we infer that it is best, for this particular 
program (the interpreter), to let each rack be implemented 
by PUSH-OPTIMIZER, except for ENV, which should be 
implemented by PUSH-COUNTER. Let us call that 
implementat ion the OPTIMAL strategy for implementing the 
interpreter.  We will now compare the gains of using 
OPTirtAL racks over STANDARD-STACK racks. For the 
problem (FIB 6) the OPTIMAL strategy uses only 23% of 
the pushes required by the STANDARD-STACK strategy: 

(FIB 41 RETPC ENV UNEV ARGL FUN Total 
STANDARD-STACK 123 85 85 65 37 395 
OPT I IIAL 33 8 20 16 12 89 

and 89/395=. 225...  
Let  us see how this varies with the argument. The 
following is the data for (FIB SI. 

(FIB S) RETPC ENV UNEV ARGL FUN Total 
STANDARD-STACK 209 145 145 111 63 673 
OPTIMAL 56 14 34 28 21 1S3 

and 153/673=. 227... 
It still seems to be about 23%, independent of the input 
argument! This should not be too surprising. Giving a 
larger argument to FIB merely causes the same code to be 
executed more  times. The use of racks does not optimize 
the algorithm being interpreted; it merely gains a constant 
factor  of  speed for the interpreter. Now it gains different 
constant  factors for different parts of the interpreter, so 
the speed-up factor may be different for interpreting a 
program other than FIB. For example, if we define 
factorial by the standard singly recursive definition: 
(DEFINE (FACT N) 

(COND ((= N 0) 1) 
(T (* N (FACT (- N i ) ) } ) ) )  

then the savings on (FACT 4) are more substantial. 
(FACT 4) RETPC ENV UNEV ARGL FUN Total 

STANDARD-STACK 59 40 40 31 18 188 
OPTIHAL 14 0 S 8 8 3S 

and 35/188=. 186... 
The  optimal strategy does only 19% as many pushes as 
the standard stack implementation. This figure remains 
the same for (FACT B): 

(FACT 5) RETPC 
STANDARD-STACK 72 
OPTIMAL 17 

Note  that  there are 
required to compute 
however very sensitive 

ENV UNEV ARGL FUN Total 
49 49 38 22 230 
0 6 10 18 43 

and 43/238=. 186... 
precisely zero environment pushes 

factorials. This optimization is, 
to the exact form of the code being 

interpreted (and thus to the particular execution paths 
taken within the interpreter). If we instead defined 
factorial with the order of arguments to • reversed: 
(DEFINE (FACTI N) 

(COND ((= N O) I) 
(T (. (FACT1 (- N I)) N)))) 

the environment would have to be saved over each 
recursive call because it would be needed after the 
recursive evaluation to access the value of N. 

For an iterative implementation of factorial the savings 
are even greater: 
(DEFINE (FACT2 N) (FACT-ITER 1- N 11 N)) 
(DEFINE (FACT-I TER COUNT ANSI 

(COND ((= COUNT 0) ANSI 
(T (FACT-ITER (- COUNT 1) (* COUNT ANS)))I} 

For  (FACT2 4) the figures are: 
(FACT2 41 RETPC ENV UNEV ARGL FUN Total 

STANDARD-STACK 5S 28 38 31 16 178 
OPTIMAL 12 O 8 7 4 31 

and 31/178=.174... 

Here the OPTIMAL strategy requires only about 17'7o of the 
pushes required by the STANDARD-STACK strategy. 

Conclusions 

We have defined a data abstraction which we call a 
" rack"  which may be thought of as a hybrid of a register 
and a stack. It is useful for encapsulating the behavior of 
the kind of register whose contenls may have an extent 
which requires that it be saved during the execution of an 
unknown piece of code. 

A rack can be implemented in many ways, the simplest 
being just a register which is saved on a stack in the usual 
wily, but with other choices of implementation leading to 
increased efficiency (if we assume that stack accesses are 
expensive by comparison to register accesses). The basic 
idea is that  we interpose a state machine controller 
between the rack abstraction and its stack/registers. This 
controller can act as an on-the-fly run-time peephole 
optimizer, eliding unnecessary stack operations. 

Each of  the implementations we have exhibited has 
different  virtues. The push-optimizer implelnentation is 
simple, requiring only a single state bit, and works well for 
code which uses a Caller Saves convention. The push-and- 
pop-optimizer also works for a Callee Saves convention. 
The  pdl-buffer implementation requires one more register 
than  push-optimizer, but works just as well, and in 
addit ion supports binary stack-arithmetic operators well. 
The  push-counter imlSlementalion requires a counter rather 
than a one- or two-bit state, but run-length-encodes the 
stack, which can substantially improve performance if 
nested extents often have identical values. 

There  are many other possible implementations of racks. 
m rack is an abstract data structure. Just as a set may be 
implemented its a linked list of elements, a bit string with 
l-bits indicating contained elements, or a membership 
predicate, so a rack may be implemented in many ways, 
which will have different performance characteristics under 
various conditions of use. 

We have demonstrated the sorts of savings one might( 
expect by using cleverly implemented racks. On a 
particular caller-saves implementation of an interpreter for 
the SCHEME dialect of LISP, we have seen that if push- 
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optimization (a. simple 2-state machine) is used on all 
registers except the enviromnent register and if a push- 
counter  is used on the environment register, then for 
sample problems we can expect that typically only one out 
of  every four pushes that would be done by a conventional 
machine will be done by the clever version. Indeed, this 
can be very significant if the stacks are expensive. (This 
is the case in the MIT-AI/XEROX-PARC SCHEME-79 
single-chip LISP interpreter [SCHEME Chip 2], a VLSI 
microprocesssor which directly interprets LISP code, 
atttomatically manages storage as a garbage-collected heap, 
and keeps its stacks in the heal). Dealing with external 
memory  is much slower than manipulating an on-chip state 
bit. We intend to design a version of this chip which uses 
racks to improve performance (indeed, the notion of a 
rack as a generalized data abstraction was developed in an 
a t tempt  to optimize earlier versions of the chip.) We 
expect that the savings can become even larger with 
slightly different designs for our interpreter. For example, 
if we use a nunlber of separate racks to hold arguments 
for specific primitive operators, rather than collecting a list 
of  them in a single rack ARGL, then performance may be 
even further improved.) 

Historical Note 

The  basic idea for a rack came suddenly to one of the 
authors  (Sussman) in a dream at three o'clock in the 
morning. He had been worrying about the lifetimes of 
quantities saved on the stack in a LISP interpreter. From 
this is derived the lille of this paper. Also, we have come 
to refer informally to the general technique of delaying 
stack pushes as "dreaming", an appropriate activity for 
lazy computers. We wish to thank Robin Stanton, 
Richard Stalhnan, Jonaihan Rees, and Richard Zippel for 
being the first readers of this paper and for making 
important  suggestions, and Phil Agre for finding a bug. 

Appendix 1 
The Test Interpreter 

The following is a listing of the interpreter we used for 
developing the results of the tests we have displayed, using 
racks to implement the saveable registers. The interpreter 
evah, ates expressions written in (a subset of) SCHEME 
[Revised Report]. The environment register, ENV, is the 
only one which dem;mds a duplicating save; this is 
i nd i ca ted  in the code by using the DUPLICATE operator 
r a t h e r  than  SAVE. 

W h i l e  the code given here for the interpreter is itself 
w r i t t e n  in S C H E M E ,  it is so coded that it does not use 
the variable-binding and recursive procedure-call 
mechanisms of SCHEME. Instead, racks are used to save 
and restore items in a stack-like discipline; the items so 
saved include both data objects and "return addresses". In 
effect,  the recursive evaluation algorithm is implemented in 
terms of an explicit stack (i.e. a rack), just as it would be 
in an assembly language. 
(DEFINE (EVAL-E×P-RESULI-IO PC) 

(ASSIGN REI,PC PC) 
(SAVE RETPC) 
(EVAL-DI SPATCH) ) 

(DEFINE (POP J) ; r e tu rn  to saved REI,PC 
(RESTORE REI,PC) 
((FETCH RETPC))) ; t h i s  is a funct ion ca l l  

(OEFINE (EVAL-DISPAICH) ;d ispatch on type of FORM 
(CONO ((ATOM (FETCH FORM)) 

(CONO ( (NUMBERP (FETCH FORM) ) 
(ASSIGN VAL (FETCH FORM)) 
(POP J) ) 

(l, (ASSIGN VAL (VALUE (FETCH FORM) 
(FETCH ENV) ) ) 

(POP J) ) ) ) 
((EQ (CAR (FETCH FORM)) 'QUOTE) 
(ASSIGN VAL (CADR (FETCH FORM))) 

(POP J) ) 
( lEO (CAR (FETCH FORM)) 'LAMBDA) 

(ASSIGN VAL 
(LI ST ' &PROCEDURE 

(CADR (FETCH FORM) ) 
(CAODR (FETCH FORM)) 
(FETCH ENV))) 

(POP J) ) 
((EQ (CAR (FETCH FORM)) 'COND) 

(ASSIGN UNEV (FETCH FORM)) 
(EVCOND-PREO)) 

((NULL (CDR (FETCH FORM))) 
(ASSIGN FORM (CAR (FETCH FORM))) 
(EVAL-EXP-RESULT-TO APPLY-NO-ARGS) ) 

(T (ASSIGN LINEV (FETCH FORM)) 
(ASSIGN FORM (CAR (FETCH FORM))) 
(DUPLICATE ENV) 
(SAVE UNEV) 
(EVAL-EXP-RESULT-TO EVAL-ARGS) ) ) ) 
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(DEFINE (EVCONO-PRED} ;UNEV=IiBt of COND clauses 
(ASSIGN UNEV (CDR (FETCH UNEV))) 
(ASSIGN FORM (CAAR (FETCH UNEV)I) 
(DUPLICATE ENV) 
(SAVE UNEV) 

(EVAL-E×P-RESLILT-TO EVCOND-OECIDE)) 
(DEFINE (EVCONO-DECIDE) :make dec is ion  for  COND 

(GONG ((FETCH VAL) 

(RESTORE ENV) 

(RESTORE UNEV) 

(ASSIGN FORM (CAOAR (FETCH UNEV))) 
(EVAL-OISPATCH)) 

(T (RESTORE UNEVl 
(RESTORE ENV) 
(EVCONO-PREO)))) 

(DEFINE (APPLY-NO-ARGS) ; app l y  VAL, a fn of no args 
(ASSIGN FUN (FETCH VAL)) 
(ASSIGN ARGL NILI  
(|NTERNAL-APPLY)) 

(DEFINE (EVAL-ARGS) ; l o o p  for  eva lua t ing  args 
(ASSIGN FUN (FETCH VAL)) 
(SAVE FUN) 
(ASSIGN ARGL NIL) 
(EVAL-ARGS[)) 

(DEFINE (EVAL-ARGS1) 

(SAVE ARGL) 

(RESTORE UNEV) 

(ASSIGN UNEV (CDR (FETCH UNEV))) 
(ASSIGN FORM (CAR (FETCH UNEV))) 
(RESTORE ENV) 

(COND ((NULL (CDR (FETCH UNEV))) 

(EVAL-EXP-RESULT-TO EVAL-LAST-AR0)) 
(T (DUPLICATE ENVI 

(SAVE UNEV) 

(EVAL-EXP-RESULT-TO EVAL-ARGS2)))) 
(DEFINE (EVAL-ARGS2) ;have evaluated one arg 

(RESTORE ARGL) 

(ASSIGN ARGL (CONS (FETCH VAL) (FETCH ARGL))) 
(EVAL-ARGS1)) 

(DEFINE (EVAL-LAST-ARG) ~have evaluated last  arg 
(RESTORE FUN) 

(RESTORE ARGL) 

(ASSIGN ARGL (CONS (FETCH VAL) (FETCH ARGL))) 
(INTERNAL-APPLY)) 

(DEFINE (INTERNAL-APPLY) :apply FUN to ARGL 

(COND ((PRIMOP? (FETCH FUN)) 

(ASSIGN VAL (PRIMOP-APPLY (FETCH FUN) 

(FETCH ARGL))) 
(POPJ)) 

((EQ (CAR (FETCH FUN)) '&PROCEDURE} 
(ASSIGN ENV 

(BIND (CAOR (FETCH FUN)) 

(FETCH AROL) 
(CADODR (FETCH FUN)))) 

(ASSIGN FORM (CADOR (FETCH FUN))) 
(EVAL-OISPATCHII 

(f (BREAK IUNKNOWN FUNCTION TYPEI)))) 
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