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Abstract

To exploit instruction level parallelism, compilers for VLIW

and superscalar processors often employ static code schedul-

ing. However, the available code reordering may be severely

restricted due to ambiguous dependence between memory

instructions. This paper introduces a simple hardware mech-

anism, referred to as the memory conj7ict buffer, which fa-

cilitates static code scheduling in the presence of memory

storelload dependence. Correct program execution is en-

sured by the memory conflict buffer and repair code provided

by the compiler. With this addition, significant speedup over

an aggressive code scheduling model can be achieved for both

non-numerical and numerical programs.

1 Introduction

A compile-time code scheduler improves the performance of

VLIW and superscalar processors by exposing simultane-

ously executable instructions to the hardware. To be effec-

tive, the scheduler must be able to freely reorder instructions

within the scheduling scope. Unfortunately, code reordering

is often inhibited by ambiguous memory dependence, the
situation where the relationship between a pair of memory
references cannot be determined accurately at compile time.
Because memory dependence often occur on program crit-
ical paths, such loss of code reordering opportunities can
severely impair the effectiveness of code scheduling.

The problem of ambiguous memory dependence can be
addressed by static dependence analysis, dynamic memory
disambiguation, or some combination of the two. Static de-
pendence analysis attempts to determine, at compile time,
the relationship between pairs of memory references. In
many cases, this analysis is able to determine the reference
pairs are either definitely dependent or definitely indepen-
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dent, enabling the compiler to perform optimizations or code

reordering. However, static analysis is limited in two situ-

ations: 1) when memory dependence are truly ambiguous

at compile time; or 2) when the reference pairs are some-

times dependent during execution, e.g. only for some loop

iterations. Additionally, accurate static analysis requires a

significant compile-time investment and may be inappropri-

ate for some applications.

Dynamic memory disambiguation resolves memory depen-

dence during program execution. It is a viable alternative

when sophisticated static analysis is not available, when

rapid compile time is required, or when the application is

dominated by references for which static analysis is ineffec-

tive. Both hardware and software approaches to dynamic

disambiguation have been proposed. Out-of-order execution

architectures allow the instruction issue unit to calculate

run-time memory addresses and reorder memory operations

based upon actual dependence [1]. However, the code re-

ordering in these architectures is limited by the size of the

visible instruction window.

A software-only approach to dynamic disambiguation is

run-time disambiguation proposed by Nicolau [2]. By in-

serting explicit address comparison and conditional branch

instructions, run-time memory disambiguation allows gen-

eral code movement across ambiguous memory stores. The

approach is illustrated in Figure 1. The original code seg-

ment in Figure 1(a) has two store operations followed by an

ambiguous load. In Figure 1(b), the load has been moved

above both stores, and explicit address comparison code has

been added. With run-time disambiguation, however, the

number of address comparison and conditional branch in-

structions inserted can be prohibitive as a result of aggressive

code reordering: if m loads bypass n stores, m x n compar-

isons and branches would be required.

The Memory Conflict Buffer (MCB) scheme, first pre-

sent ed in Chen’s thesis [3], extends the idea of run-time

memory disambiguation by introducing a set of hardware

features to eliminate the need for explicit address compar-

ison instructions. The MCB approach involves the intro-

duction of at most two new instructions: 1) preload, which

performs a normal load operation, but signals the hardware

that a possible dependence violation exists for this load 1;

1The preload instruction is presented here to facilitate expla-

nation of the MCB. We show in Section 4.3 that explicit p reload
opcodes are not necessarily required.

183



RI= R2” R3 RI= R2*R3

M(R9+R1O)=R11 R4 = M(R5+R8)

M(R3+R7) = RI M(R9+R1O)=R11

R4 = M(R5+R8)
If (R5+R8 == R9 + R1O)

R6=R4+I
R4=R11

M(R3+R7) = RI

If (R5+R8 == R3 + R7)

R4=R1

R6=R4+1

a) Original Code b) Runtime Cede

Figure 1: Runtime Memory Disambiguation Example.

R1=R2*R3 RI= R2*R3

M(R9+R1O)=R11 R4 = M(R5+R8) (preload)

M(R3+R7) = R1 R6=R4+1

R4 = M(R5+R8) M(R9+R1O)=R11

R6=R4+1 M(R3+R7) = R1

Check R4, Correction
Back

Correction: R4 = M(R5+R8)

R6=R4+1

Jmp Back

a) Ongmsf Code b) MCB Cnde

Figure 2: Memory Conflict Buffer Example.

and 2) check, which directs the hardware to determine if a

violation has occurred and to branch to conflict correction

code if required. Figure 2 demonstrates the MCB approach

using the previous code example. In Figure 2(b), both the

load and its dependent add have bypassed the ambiguous

stores. Note the load is now a preload, and a check in-

struction has been inserted at the origirml location of the

load. Ifthe hardware determines an address conflict hasoc-

curred, the check instruction will branch to correction code,

which re-executes the load and any dependent instructions.

In contrast to run-time memory disambiguation, only one

check operation is required regardless of the number of store

instructions bypassed by the preload. As a result, the MCB

scheme allows the compiler to perform aggressive code re-

ordering with significantly less code expansion and execution

overhead than run-t ime memory disambiguation.

2 Architectural Support

With the introduction of the preload and check opcodes, the

compiler is free to move load instructions and their depen-

dent operations past ambiguous stores. The MCB hardware

supports such code reordering by 1) detecting the situation

in which the ambiguous reference pair access the same loca-

tion and 2) invoking a correction code sequence supplied by

the compiler to restore the correctness of program execution.

The situation where a preload and an ambiguous store access

the same location will be referred to as a conflict between

the reference pair. When this occurs, the reordered load and

Preload
Confhct Array
Vactor ( 8-W% .Ssocfative)

Check
Reg#

uHash

confltct preload
bit painter

,

Figure 3: Set Associative MCB Design.

+
PrelOad/
Store
Address

any dependent instructions which bypassed the store must

be re-executed.

In order to detect conflicts as they occur, the MCB hard-

ware maintains address information for each preload instruc-

tion ae it is executed. The addresses of subsequent store

instructions are then compared to this address information

to determine whether a conflict has occurred. The hardware

records the occurrence of the conflict; when the correspond-

ing check instruction is encountered, the hardware performs

a conditional branch to correction code if a conflict has been

recorded. The correction code re-execut es necessary inst ruc-

tions and then returns to normal program execution. In this

section, we present MCB hardware to detect and record load-

store conflicts and discuss other issues affecting the hard-

ware.

2.1 MCB Design

The MCB hardware is responsible for storing preload ad-

dress information for comparison to subsequent store ad-

dresses. Perhaps the most direct approach would be to store

all address bits in some form of fully-associative structure.

However, a fully-associative search of any reasonably-sized

MCB implementation would likely impose constraints upon

processor pipeline timing. Additionally, the hardware costs

to record 32 or more bits of address information for each

preload might prove prohibitive.

The MCB design presented in Figure 3 was developed with

scalability, access time, and physical size constraints in mind.

The MCB hardware consists of two primary structures, cor-

responding to the needs to store address information and to

record conflicts which occur: 1) the preload arm% and 2)

the conflict vector.

The preload array is a set-associative structure similar in

design to a cache. Each entry in the preload array contains

four fields: 1) the preload destination register number; 2)

the preload access width; 3) an address signature; and 4)

a vaiid bit indicating whether the entry currently contains

valid data. The preload register field simply contains the

register number of the preload destination. The address sig-

nature contains bits which contain a hashed version of the

preload address. The access width field contains two bits

to indicate whether the preload was of type character, half-

word, word, or double word; additionally, this field cent tins
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the three least significant bits of the preload address. The

use of the access width field will be discussed in a subsequent

section.

The conflict vector is equal in length to the number of

physical registers, with one entry corresponding to each reg-

ister. Each entry contains two fields: the conflict bit and

the preload pointer. The conflict bit is used to record that

a conflict has occurred for a preload to this register. The

preload pointer specifies which preload array line currently

holds the preload associated with this register and allows the

preload entries to be invalidated by the check instruction.

When a preload instruction is executed, the address of the

preload is hashed to select which set in the preload array

will store the preload. (The hardware to perform this hash-

ing, as well as address signature generation, is detailed in

the next section. ) The preload array is set-associative; se-

lecting an entry in which to store the preload information is

identical to selecting an entry in a set-associative cache. If

any entry within the set does not have its valid bit set, the

preload information can be placed in this entry. When no

invalid entry exists, a random replacement algorithm is used

to select which entry to replace. If a valid entry is replaced,

a load-load conflict has occurred; in this situation we can no

longer provide safe disambiguation for the preload which is

being removed from the array. We must therefore assume a

conflict has occurred for this entry and set the conflict bit

corresponding to the register number being removed. Note

that for processors which support the execution of multi-

ple preload instructions per cycle, the preload array must

be multiported to allow simultaneous insertion of multiple

preloads.

Having determined which entry in the preload array will

be used for the current preload instruction, the destination

register number and access width information are stored in

the array. A second, independent hash of the preload ad-

dress is performed to create the preload’s address signature,

which is stored in the signature field of the array. Unlike

the tag field of a cache which must provide exact match-

ing, this signature field can be hashed to reduce its size; the

MCB can tolerate the occasional false conflicts which result

from hashing. Simultaneous with storing the preload in the

preload array, the conflict vector associated with the load’s

destination register is updated, resetting the conflict bit and

establishing the pointer back to the preload array.

When a store instruction is executed, its address is hashed

identically to the preload to determine the corresponding set

in the preload array and to determine the st ore’s address

signature. The store’s access width data (2 size bits and 3

LSBS) is also presented to the array. The store’s signature

and access width information are compared with the data

stored within each entry of the selected set, to determine

whet her a conflict has occurred. For each entry in the set

which is determined to conflict with the store, the conflict bit

corresponding to the preload register is set; this requires that

the conflict array be multiported to a degree equivalent to

the associativity of the preload array. Two types of conflicts

can arise when a store instruction is executed. If the load

address and store address were identical or overlap, we say

a true conj?ict has occurred. However, if the two addresses
were different, and the conflict resulted from the hashing

scheme used, we call this a false loaci-sto r-e conjlict.

Thus, bits within the conflict vector can be set in one of

three ways: 1) a true conflict; 2) a false load-store conflict

resulting from the hashing scheme; or 3) a false load-load

conflict resulting from exceeding the set-associativity of the

preload array. Regardless of the source of the conflict, the

hardware must assume it is valid and execute correction code

to ensure program correctness. This is accomplished using

the check instruction. The format for the check instruction is

check Rd, Label, where Rd is a general purpose register num-

ber, and Label specifies the starting address of the correction

code supplied by the compiler. When a check instruction is

executed, the conflict bit corresponding to Rd is examined.

If the conflict bit is set, the processor performs a branch to

the correction code marked by Label. The correction code

provides for re-execution of the preload and its dependent in-

structions. A branch instruction at the end of the correction

code brings the execution back to the instruction immedi-

ately after the check, and normal execution resumes from

this point.

The conflict bits are reset in two ways. First, a check

instruction resets the conflict bit for register Rd as a side

effect. Second, any preload that deposits a value into a gen-

eral purpose register also resets the corresponding conflict

bit. The valid bits wit hin the preload array are reset upon

execution of the corresponding check instruction, using the

pointer within the conflict vector. Note that in the event

the flow of control causes the check instruction not to be

executed, the preload valid bits wiU remain set. However,

this causes no performance impact because another preload

of the destination register must occur before another check

instruction can occur, reset ting any spurious conflict.

Note that only preloads, stores, and checks need to access

the address registers and the conflict vector. Accesses to

the preload array are performed using the virtual address

to avoid address translation delay. For store instructions,

these accesses can be performed as soon as the store address

is calculated; it is unnecessary to wait until the store data

has been computed. For load instructions, MCB accesses are

performed in parallel with the data cache access. Because

the MCB is very similar to a cache in design and smaller

than most caches, we believe it is unlikely that the MCB

will affect the processor pipeline timing. However, further

study of MCB timing is required within the context of a

specific pipeline architect ure.

2.2 MCB Address Hashing

Incoming preload and store addresses are used to select a

corresponding set in the preload array. The most direct

method to select one of n MCB lines is to simply decode

log~n bits of the address. However, testing revealed that

this approach resulted in a higher rate of load-load conj%cts

than a baseline software hashing approach, most likely due

to strided array access patterns causing additional conflicts.

As a result, the MCB employs a permutation-based hard-

ware hashing scheme.

Mathematically, our hardware hashing approach can

be represented as a binary matrix multiplication prob-

lem, where matrix A is a non-singular matrix and
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hash-address = load~ddress *A. For example, consider

the following 4x4 A matrix, used to hash 4-bit addresses:

1001

0010

1110

0101

To mathematically compute the hash address for incoming

address 1011, we simply multiply this address by the matrix,

obtaining hash address 0010. If matrix A is non-singular, an

effective hash of the incoming address is assured [4]. When

mapping this scheme to hardware, each bit in the hash ad-

dress is simply computed by XORing several of the incoming

address bits, corresponding to the 1’s in each column of the

matrix. Thus h3, the most significant bit of the hash ad-

dress, isthe XORofa3 and al of the incoming address; h2

is the XOR of al and aO, etc. This simple hardware scheme

provides excellent hashing with only asmallcost in time and

hardware.

This same hashing approach is used to generate the ad-

dress signature for incoming preload and store instructions.

The signature is hashed in order to reduce the size of the

MCB and to speed signature comparison. The signature is

storedin the MCB for each preload, and is compared to the

signature for incoming store instructions to determine if a

conj?ict has occurred.

2.3 Handling Variable Access Sizes

Many instruction set architectures allow memory references

to have byte addressability and variable access sizes. Thus,

there arises the possibility that two memory references could

access slightly different addresses, yet actually conflict. For

example, the references:

store_int 0x40000000, R2

load_char RI, 0x40000001

represent a true load-store conflict. Although conflicts such

as this are rare, they can occur in real code. An exam-

ple where this might occur is in use of the zmion construct

in C. To provide correctness, any code reordering scheme

based upon memory disambiguation must account for the

possibility of conflicts by memory operations with different

access widths. One solution to this problem is to legislate it

away; hardware designers can simply declare that accessing

the same location with different width instructions is a poor

programming practice and decide their hardware will not

support it. A more general solution would require that any

disambiguation technique provide adequate checks to ensure

program correctness in the presence of variable width ac-

cesses.

Toprovide this capability, the MCBdoes notuse the three

LSBS of preload and store instructions when hashing to se-

lectthepreload array line corresponding tothememoryref-

erence. Instead, these three bits, as well as two bits indicat-

ing the access size, are stored within the array for preload

instructions. When a store occurs, its five bits are evalu-

ated with the five bits stored for the preload to determine

whether a conflict has truly occurred. A simple design for

determining conflicts for these two five-bit vectors requires

M(R1)=7 R3 = M (R2)

R3 = M (R2) R4=R41R3

R4=R41R3 M(R1)=7

Check R3, Correction

a) Original Code b) MCBCode

Figure4: Speculative Execution of Excepting Instructions.

only seven gates and two levels of logic, assuming the archi-

tecture enforces aligned memory accesses.

2.4 Handling Context Switches

Whenever a general purpose register needs to be saved to the
memory due to context switches, neither the conflict vector
nor the preload array must be saved. The only requirement
is for the hardware to set all the conflict bits when the regis-
ter contents are restored from memory. This simple scheme
causes performance penalty only when the context switch oc-
curs after a preload instruction has been executed but prior

to the corresponding check instruction. Setting all conflict

bits ensures all conflicts which were interrupted by the con-

text switch are honored, but may cause some unnecessary

invocations of correction code. The scheme also handles

virtual address aliasing across multiple contexts. However,

from our experience, this overhead is negligible for systems

with context switch intervals of more than 100k instructions.

2.5 Speculative Execution

Speculative execution has been used intheliterature to refer

to executing an instruction before knowing that its execution

is required. By moving an instruction above preceding con-

ditional branches, an instruction is executed speculatively.

In this paper, weextend the definition of speculative execu-

tiontorefer to executing an instruction before knowing that

it can be executed correctly. Instructions thus executed will

be referred to as speculative instructions. In particular, a

preload and its dependent instructions are executed before

knowing if the preload will conflict with a store. Theexecu-

tion of these speculative instructions must be corrected if a

conflict occurs.

There are two aspects of correcting the execution of specu-

lative instructions. Oneisto correct thevalues generated by

these instructions. The compiler algorithm describedin Sec-

tion 3 fulfills this requirement through intelligent compile-

time renaming and register assignment. The more difficult

aspect is to correctly handle exceptions. Since the value

preloaded into the register may not be correct, there is

a chance that a flow dependent instruction that uses the

preload result may cause an exception. In the example in

Figure 4, if rl equals T2, then the value 7 is loaded into

r3 in the original code segment. However, the value O may

be preloaded into T3, in which case the divide instruction

will cause an exception. Since the exception is due to an

incorrect execution sequence, it must be ignored.

A solution is to provide architectural support to suppress
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the exceptions for speculative instructions [5]. A potential

trap-causing instruction executed speculatively should be

converted into the non-trapping version of the instruction.

Therefore, the exception caused bythe divide instruction in

the example above would be ignored. However, the exceP-

tion should be reported if there is no conflict between the

preload and the store. Several schemes for precise exception

detection and recovery have been proposed [6] [7] [8].

3 Compiler Aspects

To take full advantage of the MCB hardware support, a

compiler must be able to intelligently reorder ambiguous

st oreiload pairs, insert check instructions, and generate cor-

rection code. The compiler must also take into account the

side-effects of aggressive code reordering. For example, over-

speculating preload instructions can significantly increase

register pressure and could result in a loss of performance

due to spilling. In this section, we discuss the algorithms

built into the IMPACT C compiler for exploiting the MCB

support.

3.1 Basic MCB Scheduling Algorithm

To expose sufficient instruction-level parallelism (ILP) to al-

low effective code scheduling, the compiler must be able to

look beyond basic block boundaries. In the IMPACT com-

piler, basic blocks are cordesced to form super-blocks [9], an

extension of trace scheduling [1 O], which reflect the most fre-

quently executed paths through the code. Superblocks have

a single entrance (at the beginning of the superblock), but

may have multiple side exits. The superblock is the basic

structure for scheduling in the IMPACT compiler.

The basic MCB algorithm involves the following steps for

each frequently executed superblock:

1.

2.

3.

4.

5.

Build the dependence graph.

Add a check instruction immediately following each load

instruction, inserting necessary dependence.

For each load, remove storelload memory dependence.

Schedule the superblock, removing any unnecessary

check instructions.

Insert required correction code.

The initial preparations for code scheduling, including build-

ing the dependence graph, are unchanged by the MCB algo-

rithm. After the dependence graph has been built, a check

instruction is added after each load instruction in the su-

perblock. The destination register of the load becomes the

source operand of the check, making the check instruction

flow dependent upon the load. Initially, the correction block

of the check is not defined. During code scheduling, the

check instruction must maintain correct dependence; thus,

it must be dependent upon the load and also inherit some

of the load’s dependence. Because we want flow depen-

dent instructions of the load to be able to bypass the check,

the check inherits only memory and control dependence

from the load. Dependence to the previous and subsequent

RI= R2*R3

M(R9+R1O) = RI I

M(R3+R7) = RI

R4 = M(R5+R8)

R6=R4+1

M(R9) = o

R20=RIO+1

a) Original Code

R1=R2*R3

R4 = M(R5+R8) (pmlmd)

R6=R4+1

M(R9+RIO) = RI 1

M(R3+R7) = RI

Check R4, Correction

M(R9) = o
R20=RIO+1

Correction’ R4 = M(R5+R8)

R6=R4+1

Jmp Tai_Dup

Tai_Dup M(R9) = O

R20=RIO+I

c) Tad Duplmahon Code

R1=R2*R3

G

M(R9+RIO) = RI I

M(R3+R7) = RI

R4 = M(R5+R8)

(

Check R4, -

R6=R4+I

M(R9) = o

R20=RIO+I

b) Dependencies to Check Instnwtion

RI= R2*R3

R4 = M(R5+R8) (@Od)

R6=R4+I

M(R9+R1O) = RI 1

M(R3+R7) = RI

Check R4, Correction

Back, M(R9) = O

R20 = RIO + I

Correction R4. M(R5+R8)

R6=R4+1

Jmp Back

d) Tail D.phcat]on Deleted

Figure 5: MCB Code Compilation.

branch instructions are also added to the check instruction to

ensure it remains within the load’s original basic block. Fig-

ures 5(a) and 5(b) show the code from our previous example,

and the code with the check instruction and its dependence

insert ed.

The next step in MCB scheduling is to remove store/load

dependence. For each load, the algorithm searches upward,

removing any dependence arcs to store instructions not de-

termined to have a definite dependency, Associated with

each load, the algorithm maintains a list of store instruc-

tions whose dependence has been removed. The algorithm

currently only removes dependence to stores which precede

the load, i.e. only removes flow dependence. Although

not hing prevents dependence to subsequent stores (anti-

dependences) from being removed, experience has shown

there is little or no benefit from removing these dependence.

To limit over-speculation of loads, the algorithm limits the

number of storefload dependence which can be removed

for each load. If too many dependence arcs are removed,

our greedy scheduling algorithm is likely to move the load

far ahead of its initial position, needlessly increasing reg-

ister pressure and the probability of false conflicts in the

MCB. Additionally, the algorithm ensures dependence are

formed between the load instruction and any subroutine call

in the superblock, preventing loads from bypassing subrou-

tine calls. Thus, no MCB information is valid across sub-

routine calls.

Next, the superblock is scheduled. Each time a load in-

struction is scheduled, the list of stores associated with the

load is examined. If all stores on the list have already been
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scheduled, the load did not bypass any stores during schedul-

ing, and the associated check instruction can be deleted. The

flow dependency between the load and the check ensures the

check cannot be scheduled prior to the load; thus deletion of

the check (and removal of its dependence) does not impact

instructions already scheduled. If the load is determined to

have bypassed a store during scheduling, the load is con-

verted to its preload form. In our current implementation,

one check instruct ion is required for each preload instruction.

However, multiple check instructions could potentially be co-

alesced to reduce the execution overhead and code expansion

incurred by the potentially large number of checks. Because

the check is a single-operand instruction, extra bits should

be available to accommodate amaskfield tospecifya set of

registers which are to be checked by this instruction. Forex-

ample, if a register bank with 64 registers is partitioned into

eight sets of eight registers each, the check instruction would

use three bits to specify which bank was being checked, and

eight bits to specify the register mask. The coalesced check

would branch to conflict correction code, which would have

to provide correct execution regardless of which preload in-

struction experienced a conflict. Further researches required

to assess the usefulness of coalescing check instructions.

3.2 Inserting Conflict Correction Code

The compiler provides conflict correction code for each

preload instruction. When a check instruction determines a

conflict hasoccurred, it branches tothe correction code. The

correction code re-executes the preload instruction and all

dependent instructions upto the point of the check. (In the

infrequent case that the load has bypassed a single store, the

correction code can replace the re-execution of the preload

with a simple move from the store’s source register. In fact,

the move itself may become unnecessary via forward copy

propagation. ) The original load instruction will not be a

preload within correction code (because its check has already

occurred), but any dependent instructions which happened

to be preloads must be re-executed as preloads. During in-

sertion of correction code, the compiler must check for any

anti-dependences which would over-write source operands,

such that these operands would not be available for exe-

cution within correction code. If anti-dependences are de-

tected, they are removed by virtual register renaming.

Because scheduling is performed on superblocks which do

not allow side entrances, the correction code cannot jump

back into the superblock after re-executing the required in-

structions. Instead, the correction code jumps to tail du-

placation code, which is simply a duplicate copy of all su-

perblock instructions subsequent to the check instruction.

This tail duplication code (Figure 5(c)) ensures all depen-

dence and register live ranges are calculated correctly dur-

ing register allocation and post-pass scheduling. Following

post-pass scheduling, however, the superblock structure is no

longer necessary to the compiler and the code can be restruc-

tured to allow jumps back into the superblock. At this point,

all jumps within correction code are redirected to jump back

into the superblock immediately following the check instruc-

tion, and all tail duplication code can be deleted. Thus, the

tail duplication code is only a temporary tool used by the
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Figure 6: Impact of Memory Disambiguation on Code

Scheduling.

compiler to maintain correct dependence and live ranges

during register allocation and post-pass scheduling, and is

removed prior to final code generation (Figure 5(d)).

4 Experimental Evaluation

To evaluate the MCB approach, experiments were conducted

on a set of twelve C benchmark programs, including pro-

grams from SPEC-CFP92, SPEC-CINT92, and common

Unix utilities. The need for better memory disambiguation

is first demonstrated, followed by a description of our simu-

lation methodology and the MCB performance results.

4.1 Potential Speedup from Memory Disam-

biguation

This current work is based on the premise that techniques

such as superblock formation and loop unrolling have re-

duced the impact of non-sequential operations, and thus

have increased the importance of memory disambiguation

in achieving ILP. To support this premise, our benchmark

suite was evaluated, using the three different types of dis-

ambiguation: 1) no memory disambiguation was performed,

i.e all memory operations were assumed to conflict; 2) our

compiler’s present static disambiguation; and 3) ideal dis-

ambiguation, where memory operations are assumed to be

independent unless static analysis indicates they are defi-

nitely dependent. The static disambiguation used by our

compiler is typical of the static analysis performed on inter-

mediate code by current commercial compilers. The analysis

is strictly intraprocedural and uses only information avail-

able within the intermediate code for its analysis, i.e. no

source-level information is used to aid the analysis. It is

designed to be fast and fully safe. Note that the ideal dis-

ambiguation model used in this experiment may result in

incorrect code if dependent instructions are reordered; it is

presented to demonstrate an upper bound on the speedup

available from memory disambiguation.

For this experiment, an 8-issue architecture with uniform

functional units is assumed. (A detailed description of the
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assumed architect ure is included in the next section. ) To es-

timate execution time, the code was profiled prior to schedul-

ing to determine the execution frequency of each superblock.

The code was then scheduled, using the various levels of

disambiguation, todetermine thenumber ofcycleseachsu-

perblock would take to execute. From this, an accurate es-

timate of required execution cycles can be determined, ex-

cluding cache effects and branch-misprediction penalties.

Theresults ofthis experiment areshownin Figure6. The

data reflects estimated execution time for the static and

ideal cases, normalized to the no-disambiguation case. The

speedup for the ideal case reflects only the effect from code

scheduling; all other compiler modules (e.g classic optimiza-

tion) use static disambiguation. Only limited speedup is

seen for the static case as the result of its inability to re-

solve many pointer accesses. Therefore, it is ineffective at

achieving significant overlap between unrolled iterations of

the inner loops in comparison to the ideal case. Overall,

the speedup in the ideal case indicates ambiguous memory

references are a significant impediment in a majority of the

benchmarks evaluated.

4.2 Simulation Methodology

Unlike the experiment described in the previous section
in which the resultant code could not be executed, all
subsequent experiments were performed using a detailed
emulation-driven simulation. Table 1 outlines the architec-
ture modeled for these experiments (the target architecture).

The instruction latencies used were those of the HP PA-

RISCTM 7100. The IMPACT simulator models in detail the

architecture’s prefetch and issue unit, instruction and data

caches, branch target buffer ( BTB ), and hardware interlocks.

This allows the simulator to accurately measure the number

of cycles required to execute a program, as well as provide

detailed analysis such as cache hit rates, BTB prediction

accuracy, and total MCB trueifalse conflicts.

The compilation path required for simulation consists of

several steps. Intermediate code is first run through the ini-

tial phase of our HP PA-RISC code generator, which trans-

forms the code such that there is nearly a one-to-one corre-

spondence between our intermediate form and HP assembly

code. The code is then run through pre-pass scheduling,

register allocation, and post-pass scheduling for the target

architecture. MCB code is added during this stage of com-

pilation. The output of this stage is the code which wiU

actually be simulated. However, to create an executable file

to drive the simulation, the functionality of the MCB must

be emulated to allow the code to execution the host archi-

tecture, an HP PA-RISC 7100 workstation.

Following code scheduling, the code contains preload and

check instructions, which are not executable by the host ar-

chitecture. Thus, we must transform the code to accurately

emulate MCB code. The MCB code is modified with explicit

address comparisons similar to Nicolau’s run-time memory

disambiguation. Figure 7 illustrates the code changes re-

quired to emulate the MCB. To improve readability, the code

is presented in pseudo-code instead of HP PA-RISC assem-

bly format. Register R30 holds the addresses of the preload,

and R40 and l?50 hold the addresses of the store. Registers

Architectural Features

In-order execution superscalar processor

Uniform functional units (4 or 8)

Extended version of HP PA-RISC instruction set

- Extensions for MCB

- Silent versions of all trapping instructions

64 integer, 64 floating point registers

Dcache: 32k, direct mapped, blocking, 64 byte blocks,

12 cycle miss penalty, write-thru, no write allocate

Icache: 32k, direct mapped, blocking, 64 byte blocks,

12 cycle miss penalty

BTB: lk entries, direct mapped, 2-bit counter,

2 cycle misprediction penalty

MCB support

Table I: Simulated Architecture.

R1=R2*R3

R4 = M(R5+R8) (pteload)

R6=R4+1

M(R9+R1O)=R11

M(R3+R7) = R1

Check R4, Correction
Back

Correction, R4 = M(R5+R8)

R6=R4+1

Imp Back

RI= R2*R3

R30 = R5 + R8

R4 = M(R5+R8)

R35 = O

R6=R4+1

R4O=R9+R1O

M(R9+R1O)=R11

R45 = (R30 eq R40)

R35 = R35 or R45

R50 = R3 + R7

M(R3+R7) = RI

R55 = (R30 eq R50)

R35 = R35 or R55

Beq (R35, 1), Correction

Back

Correction. R4 = M(R5+R8)

R6=R4+1

Jmp Back

a) Target Architecture Code b) Emulation Cede

Figure 7: MCB Emulation Code.

R45 and R55 are set by an explicit comparison of the load

address to the two store addresses. Because the preload in-

struction has bypassed numerous store instructions, R35 is

used to record whether any of the stores caused a conflict.

During emulation, the check instruction becomes a condi-

tional branch based upon the value of R35.

Following insertion of emulation code, the code is probed

to gather address and branch direction data for the simu-

lation, and then the final phases of the code generation are

performed to create an executable file. This executable file

was run for all benchmarks and shown to produce correct

results, verifying the correctness of the MGB code.

Simulation is performed on the target machine code, us-

ing probe data from the emulation path to determine actual

run-time addresses and branch directions. The result is a

highly accurate measure of the number of cycles required

to execute the program on the target architecture. Due to

the complexity of simulation, sampling[11] is used to reduce

simulation time for large benchmarks. For sampled bench-

1
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marks, a minimum of 10 million instructions are simulated,

with at least 50 uniformly distributed samples of 200,000 in-

structions each. Testing has shown sampling error to be less

than l~o for all benchmarks.

4.3 MCB Evaluation

The performance of the MCB scheme was evaluated using

the simulation technique described in the previous section.

Evaluation was accomplished for both 4- and 8-issue pro-

cessors, using various MCB configurations. Speedup in all

figures is calculated as the ratio of MCB performance to the

baseline architecture performance, i.e. a speedup of 1 indi-

cates no performance gain. A set of twelve C benchmark

programs was used, including programs from SPEC-CFP92,

SPEC-CINT92, and common Unix utilities.

MCB Size and Associativity

The first MCB experiment was to measure MCB perfor-

mance for various sizes of M CB. For this experiment, set

associativity and signature field size were held constant (8-

way set associativit y and 5 signature bits) while the MCB

size was varied from 16 to 128 entries, i.e. 2 to 16 sets.

Additionally, performance for the perfect MCB case (i.e.

false conflicts never occur) was measured to show asymp-

totic performance. Figure 8 shows the results from the six

benchmarks evaluated. These six benchmarks were selected

for this experiment because ambiguous memory dependence

were shown to be major performance impediments for them

in Figure 6. Speedup is shown for the MCB 8-issue archi-

tecture, relative to a baseline 8-issue architecture with no

MCB. For most benchmarks, an MCB size of 32 or 64 en-

tries was sufficient to approach perfect performance. The

performance for cmp and ear, however, dropped significantly

for sizes below 64 entries. This was the result of excessive

load-load conflicts caused by several variables hashing to the

same MCB location. Note that cmp did not show asymptotic

performance even for an 128-entry MCB.

The results of MCB associativity testing are somewhat

compiler-specific and are not shown. For most benchmarks,

8-way set associativity is required to achieve best MCB per-

formance. Two factors heavily influence this need: 1) our

compiler often unrolls loops up to 8 times; and 2) because

the 3 LSBS of the load address are not used during hashing,

up to 8 sequential single-byte loads will hash to the same

MCB location. Thus, 8-way set associativity is needed to

reduce the number of false load-load conflicts. Even at this

associativit y, the performance of c mp was impacted as a re-

sult of load-load conflicts caused by sequential loads and by

independent variables hashing to the same location.

Signature Field Size

To reduce the number of false load-store conflicts, the MCB

cent ains a hashed signature field. The required width of this

signature field was evaluated, holding MCB size constant at

64 entries, 8-way set associative. Performance was measured

for field sizes of O, 3, 5, and 7 bits, and performance for a

full 32-bit signature is shown for comparison. MCB 8-issue

speedup is again shown relative to the baseline architecture.

4
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Figure 8: MCB Size Evaluation. Speedup of an 8-issue ar-

chit ect ure for various size MC Bs vs. an 8-issue architecture

without MCB (8-way set-associative, 5 signature bits).
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Figure 9: MCB Signature Size. Speedup of an 8-issue ar-

chitecture with various size address signature fields vs. an

8-issue architecture without MCB (8-way set-associative, 5

signature bits).

Figure 9 shows the results; a signature size of 5 bits ap-

proached asymptotic performance of the full signature for

all benchmarks.

MCB Performance

MCB performance for all twelve benchmarks was measured,

using a 64 entry, 8-way set associative MC B wit h 5 signature

bits. Figure 10 shows the performance for an 8-issue MCB

architecture relative to the baseline 8-issue architecture us-

ing our static disambiguation wit bout MCB. M CB achieved

significant speedup for six of the twelve benchmarks. Note

the correspondence to the upper bound for speedup from

Figure 6; MCB achieved good speedup for all benchmarks

for which memory disambiguation was a significant impedi-

ment to ILP. Note also that the speedups for the two numeric

benchmarks from SPEC-CFP92, aluinn and ear, were among

the best achieved. This result is not surprising since these

benchmarks are dominated by array accesses which are rela-

tively difficult to disambiguate using only information avail-

able within the intermediate code (i.e. without interprocedu-

ral analysis or source-level information). Benchmarks such
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Figure 10: MCB 8-Issue Results. Speedup of an 8-issue

architecture with MCB vs. without MCB (64 entries, 8-way

set-associative, 5 signature bits).

Figure 11: MCB 4-Issue Results. Speedup of a 4-issue ar-

chitecture with MCB vs. without MCB (64 entries, 8-way

set-associative, 5 signature bits).

as sc and eqntott essentially achieved no speedup because

the inner loops do not contain any store operations. For

several benchmarks, including compress and espresso, MCB

performance gains were somewhat masked by cache effects.

In experiments using a perfect cache, compress achieved a

12% speedup and espresso achieved 7%. MCB code suf-

fers slightly worse from cache effects because it experiences

a greater overall number of cache misses. This increase in

cache misses is because MCB’s greater scheduling freedom

allows more speculative execution of loads above branches;

load misses from these speculative loads would not be expe-

rienced in less aggressively scheduled code.

Figure 11 shows the performance of a 4-issue MCB archi-

tecture relative to a baseline 4-issue architecture. As ex-

pected, performance gains are less than the 8-issue case;

however, MCB still achieves moderate speedup for bench-

marks for which memory disambiguation was significant,

Note the performance of sc actually degraded on the 4-

issue MCB architecture, as the result of increased data cache

misses due to increased speculation of loads above branches.

Table 2 shows the conflict statistics for the 8-issue MCB

architect ure, using the same MC B configuration as Fig-

ure 10. The second column shows the total dynamic check

instructions executed, followed by the number of true con-

flicts, false load-load conflicts, and false load-store conflicts.

The final column shows the percentage of dynamic check

instructions which branched to correction code. For most

benchmarks, the percentage of time the correction code is

executed is very low; the exception is espresso, which suf-

fered from a large number of true conflicts. Note for all

benchmarks except eqn and espresso, false conflicts were the

primary cause of taken checks.

Table 3 shows the effect of the MCB compiler techniques

on static and dynamic code size, again using an 8-issue ar-

chitecture with a 64-entry, 8-way set-associative, 5 signature

bit configuration. The addition of MCB code increased the

static code size an average of 15.770 across the benchmarks.

The benchmarks which showed the worst static code expan-

sion were the very small benchmarks, in which the addition

of a small number of check instructions and correction code

to the most-frequently executed blocks made a significant

Benchmark

alvinn

cmp

compress
ear

eqn

eqntott
espresso

grep
Ii
Sc

Wc
yacc

Total
Checks

802hf

1023K
2881K

2174M

4653K

4178K
11.5M

96.3K
1778K
301K

321K
11.oM

Time
Corlfs

o

0
28

0

43.2K

o
323K

o
0
0

0
11.5K

False
Ld-Ld
Confs

1708K

6632
248

14.2M

42.OK
11.8K
94.7K

o
112

0

0
95. 7K

False
Ld-St
Confs

2374K

1004
13.3K
11.IM

3362

4356
32.7K

501
11.3K

967
440

1230

%
Checks
Taken

0.51

0.75
0.47

1.17

1.90
0.39
3.93

0.52
0.64
0.30

0.14
0.98

TabIe2: MCB Conflict Statistics (8-issue, 64 entries, 8-way

set-associative, 5 signature bits).

change in the static code size. Note that the addition of

check instructions resulted in a significant increase in the

dynamic number of instructions executed for most bench-

marks. However, the greater scheduling freedom allowed by

MCB was in general able to pack this increased number of

instructions into a tighter schedule and achieve speedup for

many of the benchmarks.

Evaluating The Need for Preload Opcodes

The MCB approach adds the check instruction and preload

versions of all load instructions. Because of the need to min-

imize the introduction of new opcodes, in this experiment

the MCB approach was evaluated using no special preload

opcodes. For this experiment, loads which have been moved

above ambiguous stores are given no special annotation. The

MCB design was modified such that all load instructions are

processed by the MCB. Performance was evaluated for an

8-issue architecture, using a 64-entry MCB, 8-way set asso-

ciative, with 5 signature bits.

Figure 12 shows the results of sending all load operations

to the MCB. The graph compares the speedup achieved us-

ing preload instructions to the speedup when all loads are
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Benchmark

alvinn
cmp

compress
ear

eqn
eqntott
espresso

grep

li
Sc

Wc

vacc

22EE
Increase

40.3
48.5

13.6
10.6
5.8

12.8
6.5
2.7
6.2
1.1

30.6

9.3

0 Dynamic

Instruction

Increase

23.9

38.9

7.0
22.2
10.9

0.2

8.5
10.0
7.2
1.7

16.8

3.8

Table 3: MCB Static and Dynamic Code Size (8-issue, 64

entries, 8-way set-associative, 5 signature bits).

E Prel.ads ❑ No Prebad Opcfl.s

Benchmark

Figure 12: Impact of No Preload Opcodes. Speedup of

an 8-issue MC B architecture with preload opcodes vs. the

speedup of the same architecture without preload opcodes

(64 entries, 8-way set-associative, 5 signature bits).

considered preloads. In both cases, speedup is calculated

relative to the baseline 8-issue architecture wit bout MCB

support. For most benchmarks, only minimal performance

degradation was experienced due to the absence of speciaJ

preload opcodes. As seen in earlier experiments, cmp heav-

ily tasks the MCB, and sending the additional non-preload

instructions to the MCB increases the number of load-load

conflicts, decreasing performance. In general, results indi-

cate special preload opcodes are not required for MCB to

achieve significant speedups.

5 Related Work

A great deal of research effort has been applied to static

dependence analysis. Dependence analysis for arrays has

reached a fair level of maturity for array references with lin-

ear subscripts [12] [13] [14] [15] [16]. Dependence analysis

for pointers and recursive data structures is less mature, but

is currently receiving a lot of attention [17] [18] [19]. How-

ever, static dependence analysis substantially increases com-

pile time and may not be able to obtain exact dependence

relations in all situations.

Dynamic memory disambiguation has received signifi-

cantly less attention than static analysis. Dietz and Chi

have proposed a combined hardware and compiler solution

to avoid the overhead caused by ambiguous dependence re-

lations [20]. Their approach was subsequently extended by

Heggy and Soffa [21]. A set of aliasing registers called CRegs

is used to store both the data and its corresponding memory

address. The CRegs approach was envisioned to allow the

elimination of redundant loads, despite the presence of inter-

vening ambiguous stores. However, this approach might be

extended to reorder ambiguous reference pairs during code

scheduling. One limitation of this approach is the more com-

plicated register file design, which may impact register access

time.

Preioad register update allows memory loads to be moved

above any number of ambiguous stores, in order to better

tolerate first-level cache hit latency [22]. Rather than trying

to allow potentially aliased variables to simultaneously reside

in registers as in the C Regs approach, preload register up-

date is primarily designed to support compile-time reorder-

ing of ambiguous reference pairs. Simple address matching

hardware is used to update the destination registers of the

memory loads after code reordering.

A major limitation of the two compile-time code reorder-

ing approaches discussed above is that dependent instruc-

tions of a load may not be scheduled above any ambiguous

stores, severely restricting code motion. Huang et al have

proposed speculative disambiguation [23], to allow aggres-

sive code reordering using predicated instructions. Similar

to run-time disambiguation, it employs compiler techniques

which allows both a load and its dependent instructions to

bypass an ambiguous store. The method also allows two

ambiguous stores to be reordered. In contrast to speculative

disambiguation, the MCB approach does not require predi-

cated execution support.

6 Conclusion

A great deal of research has been focused toward reduc-

ing the impact of control transfer instructions on instruc-

tion level parallelism. However, the success of those efforts

has exposed ambiguous memory dependence as a significant

impediment to exploiting ILP. This paper proposes a com-

bined hardware and compiler approach, the memory con-

flict buffer (MCB), which performs dynamic memory dis-

ambiguation. The MCB allows aggressive code scheduling

in the presence of ambiguous memory dependence. This

is achieved by the compiler removing the dependence be-

tween ambiguous store fload pairs, allowing a memory load

and its dependent instructions to be moved above any num-

ber of memory stores. The MCB hardware supports such

code reordering by detecting situations when the ambiguous

reference pair access the same location, and subsequently in-

voking a correction code sequence supplied by the compiler.

In a detailed simulation, MCB was shown to obtain sub-

st antial speed up for six of the twelve benchmarks evaluated.

The MCB, or any other memory disambiguation approach,

is not a panacea which will provide speedup for all programs.

For some programs, cent rol transfer instructions remain the
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primary bottleneck, and ambiguous dependence are not a

significant problem. However, test results demonstrate that

MCB provides substantial speedup for those programs whose

ILP is limited by ambiguous memory dependence. One par-

ticularly significant result is that the MCB approach pro-

vides substantial speedups even if preload versions of load

instructions are not provided. In this case, only one new

instruction, the check, is necessary to support MCB.

This paper addresses the application of the MCB to code

scheduling. We anticipate, however, that the MCB could

also be successfully applied to the area of code optimization.

For example, loop-invariant load or store removal is often

hindered by ambiguous memory operations, and redundant

load elimination may be prevented by ambiguous stores. We

are currently studying the application of MCB to these prob-

lems and anticipate these opportunities for optimization will

result in additional code speedup.
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