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Abstract

Register promotion is an optimization that allocates
a value to a register for a region of its lifetime where it
is provably not aliased. Conventional compiler analysis
cannot always prove that a value is free of aliases, and
thus promotion cannot always be applied. This paper
proposes a new hardware structure, the store-load
address table (SLAT), which watches both load and
store instructions to see if they conflict with entries
loaded into the SLAT by explicit software mapping
instructions. One use of the SLAT is to allow values to
be promoted to registers when they cannot be proven to
be promotable by conventional compiler analysis. We
call this new optimization speculative register promo-
tion. Using this technique, a value can be promoted to a
register and aliased loads and stores to that value’s
home memory location are caught and the proper fixup
is performed. This paper will: a) describe the SLAT
hardware and software; b) demonstrate that conven-
tional register promotion is often inhibited by static
compiler analysis; c) describe the speculative register
promotion optimization; and d) quantify the perfor-
mance increases possible when a SLAT is used. Our
results show that for certain benchmarks, up to 35% of
loads and 15% of stores can potentially be eliminated by
using the SLAT.

1. Introduction
Register allocation is an important compiler optimization

for high-performance computing. Access to data stored in
machine registers avoids using the memory subsystem, which
is generally much slower than the processor.  Register promo-
tion allows scalar values to be allocated to registers for regions
of their lifetime where the compiler can prove that there are no
aliases for the value [3, 4, 5]. The value is promoted to a regis-
ter for that region by a load instruction at the top of the region.
When the region is finished, the value is demoted back to
memory. The region can be either a loop or a function body in
this work, though promotion can be performed on any pro-
gram region. The benefit is that the value is loaded once at the
start of the region and stored once at the end, and all other

accesses to it during the region are from a register allocated to
the value by the compiler.

Unfortunately, imprecise aliasing information and sepa-
rate compilation conspire to limit the types and amount of data
that can be safely allocated to registers. To allow a relaxation
of the compiler’s conservative nature, we introduce the store-
load address table (SLAT) and investigate its use in enabling
more effective register allocation. We also introduce a new
compiler transformation called speculative register promotion,
which makes use of the SLAT, and evaluate the performance
gains it can provide.

The SLAT and speculative register promotion introduce
several new opportunities for register allocation. Figure 1
shows the combinations that we consider in this paper. Figure
1(a) is conventional register allocation as done by most com-
pilers. Figure 1(b) shows the result of register promotion,
which requires more sophisticated compiler alias analysis.
(Throughout the paper we use the term alias somewhat loosely
to include all possible references to data though mechanisms
other than its primary name, including ambiguous pointers and
side-effects.) Figure 1(c) requires further compiler support
because in order to prove that the global can be allocated to a
register for its entire lifetime requires that the whole program
be analyzed at once. This allows the compiler to make the
determination that the variable global is only ever used
through its name, and never through a pointer. Previous work
has examined this optimization [17, 21].

Figure 1(d) shows another example using default register
allocation. This time the loop contains a function call, which
means that conventional promotion (with separate compilation
of functions) cannot be sure that foo() does not access the
global variable. Thus global cannot be promoted to a reg-
ister. Figure 1(e) shows how the SLAT allows promotion to
occur anyway. The compiler promotes global as in normal
register promotion but uses special opcodes to inform the
hardware that the promotion is speculative. Finally, link-time
global allocation can be done even under separate compilation
when the SLAT is used to protect the global variable. In this
case, the mapping operation occurs at the start of the program–
say at the top of main()–and is not shown in the figure. Table
1 gives a summary of these allocation strategies.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the logical organization of the SLAT. Section
3 introduces the speculative register promotion transforma-
tion. In Section 4 we describe our experimental setup, while
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our experimental results are analyzed in Section 5. Section 6
describes previous work in the areas of memory disambigua-
tion and register allocation. Finally, we discuss our conclu-
sions and directions for future work in Section 7.      

2. The Store-Load Address Table (SLAT)
The store-load address table (SLAT) is a hardware struc-

ture that allows the compiler to relax some of the conservative
assumptions made due to imprecise analysis of memory com-
munication. Logically, the SLAT is a table where each entry
contains a logical register number, memory address and some
information flags for bookkeeping. Speculative register pro-
motion uses the SLAT to associate a memory address with a
register. All references to this address will be forwarded to the
register file as long as the address is mapped in the SLAT.
Thus, the SLAT is indexed associatively by address.

Special machine instructions are used by the compiler to
manage the SLAT. To initialize a speculative promotion, a spe-
cial map instruction is used. This instruction includes a mem-
ory address and a register number. A SLAT entry is created,
indicating that the data at the given memory address resides in
the given register. A load from memory is also executed to
place the desired data in the register. Likewise, an unmap
instruction removes an association from the SLAT, sending the
data in the register to the memory. The map and unmap oper-
ations are essentially just special load and store operations.

After a map instruction has associated a memory address
with a register, every subsequent memory operation examines
the SLAT, comparing its address operand with those in the

SLAT. When a match (conflict) is detected in the SLAT, the
memory operation is redirected to the register file. A load
retrieves its value from the SLAT-mapped register instead of
from memory; a store uses the mapped register as its destina-
tion instead of memory. An unmap instruction at the bottom
of the promotion region handles storing the updated register
out to memory.

Since the SLAT allows register allocation of potentially
aliased variables (including globals that may be used by callee
functions) whose scopes may exceed that of a single function,
special handling is necessary to close the “gap”  between func-
tion-scoped machine registers and registers containing mapped
data. One example of this problem occurs at function call
boundaries. On entry to the callee, all callee-save registers
used by the function are first spilled to the stack to preserve
existing values for the caller. These registers are restored upon
function exit. If one of these callee-save registers is mapped in
by the SLAT, the spill instruction must be dynamically modi-
fied to store the data to the “home” memory location of the
data (the global storage or stack location for an aliased local
variable). This home address is available in the SLAT entry for
the register being spilled. A reload operation likewise must be
modified to load from the home location. These operations
require two new memory instructions: spill and reload.
These are store and load instructions with special opcodes to
indicate their function (saving and restoring of callee-save reg-
isters).  These instructions must examine the SLAT to see if
the referenced register is mapped. Thus the SLAT is also
indexed directly by register number. We classify such registers
as callee-update, analogous to callee-save, because their val-

Figure 1. The results of using different register allocation strategies.  (a) The original source code, in a combi-
nation of C and assembler notation. It uses the default strategy for allocation, which does not allocate the global to a
register. (b) Register promotion moves the load and store outside of the loop. (c) After application of link-time global
variable allocation, each occurrence of global is replaced with r32 and unnecessary copies are removed. (d) Another
snippet of source code, which includes a function call, rendering the global not promotable by conventional means.
(e) The SLAT allows the promotion to occur in spite of the function call. (f) Link-time global variable allocation can
also be performed with help from the SLAT even when separate compilation is used.

while () {
  ld r5, global
  add r5, r5, 1
  st global, r5
}

while () {
  add r32, r32, 1
}

ld r5, global
while () {
  add r5, r5, 1
}
st global, r5

(b) Register promotion (c) Link-time global allocation(a) Original source

while () {
  ld r5, global
  add r5, r5, 1
  st global, r5
  foo();
}

(d) Original source

map r5, global
while () {
  add r5, r5, 1
  foo();
}
unmap r5, global

(e) SLAT-based promotion

while () {
  add r32, r32, 1
  foo();
}

(f) SLAT-based link-time
   global allocation
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ues are automatically updated by any memory accesses in the
callee function.

Because the reload instruction must have access to the
home memory address for the data, the processor must keep
every SLAT entry that is created until an unmap deallocates it.
Moreover, an address can be mapped to multiple registers or a
single register can be re-mapped to a new address. These cases
are simplified by the fact that only one mapping is active for a
particular function. The compiler can guarantee that no
address or register is mapped twice in the same region. It can
do this because it only speculatively promotes directly-named
scalar variables.

There are several strategies for dealing with these situa-
tions. One possibility is to have a large SLAT with a hardware-
controlled overflow spill mechanism, similar to that used in
the C-machine stack cache [24]. Another possibility is to
require compiler management of the SLAT. Instructions to
save and restore SLAT entries can be generated in the same
way instructions to save and restore callee-save registers are
generated. Our simulations assume an infinite-sized SLAT so
that we may evaluate its performance potential.

In addition to callee-save spills and reloads, spill and
reload operations are necessary to deal with excessive register
pressure within a function. Speculative register promotion can
increase the amount of this spilling. Since the spilling effec-
tively negates the benefit of register promotion the compiler
may simply reverse the promotion if spilling occurs. Memory
access size and overlap must also be considered in the SLAT;
the compiler can restrict promotions to ease this problem.

3. Speculative Register Promotion Using the 
SLAT

This section outlines how the SLAT can be used to allow
speculative register promotion. Preliminary exploration into
the limitations on static register promotion indicated that a sig-
nificant number of memory operations cannot be promoted
due to ambiguous or unseen memory accesses through func-
tion calls. This will be quantified later in the paper. To address
this problem, we consider a new optimization called specula-
tive register promotion which uses the SLAT to allow promo-
tions in these situations. It does this by providing a fallback
mechanism in the case that the promotion was too aggressive,
i.e. that there was a conflict where the promoted value was not
synchronized with its value in memory. When this occurs, the
hardware can provide the current value.

As we saw in Section 2, the SLAT is tailored to solve this
problem because the hardware compares each load and store
address against those stored in the SLAT. Once a value is pro-
moted to a register with a map instruction, it can be used or
defined several times before a conflicting memory load
appears. Since the value in memory could be out of date with
respect to the value promoted to the register, both load and
store operations have to be examined to see if they are attempt-
ing to access the value that was promoted to a register.

The register promoter in our C compiler, MIRV, can pro-
mote global scalar variables, aliased local scalar variables,
large constants, indirect pointer references (we call these
dereferences), and direct and indirect structure references. It

Allocation Strategy What is Allocated
Region in 

Register File
Is Whole-Program 
Information Used?

(a, d) Default Unaliased local scalars includ-
ing compiler temporaries.

Local No.

(b) Register Promotion Aliased local scalars or global 
scalars aliased or not. In either 
case, they are promoted for 
regions where they are prov-
ably unaliased.

Local Can be used to enhance alias analy-
sis so that extra candidates can be 
proven safe to promote.

(c) Link-time global allo-
cation

Unaliased global scalars. Global Required.

(e) SLAT-based promotion Aliased local scalars or global 
scalars. SLAT allows allocation 
even in aliased regions.

Mappable Can be used to reduce number of 
SLAT promotions necessary.

(f) SLAT-based link-time 
global allocation

Aliased and unaliased global 
scalars.

Mappable Can be used to reduce number of 
SLAT promotions necessary.

Table 1. Various strategies for allocating registers. In our usage, “aliased” means that the variable’s address
has been taken somewhere in the program or it could be referenced through a function-call side effect. The register
file regions are conceptual divisions of the registers into groups based on their function. The “local” region of the
register file is the region used for local variables in the function. The global region contains global variables for their
entire lifetime. The mappable region contains mapped (speculatively promoted variables). In our experiments, the
local and mappable regions are the same. The letters in column 1 correspond to the labels in Figure 1.
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can do so over loops or whole functions. The algorithm is
described in detail elsewhere [17]. Speculative register promo-
tion was a simple augmentation to the existing promoter. Any
directly-named value (global or local) which is not promoted
because of aliases can be promoted speculatively (based on
simple selection heuristics). This is accomplished by emitting
a promoting load (map) and demoting store (unmap) at the
boundaries of the region, with additional information indicat-
ing these are speculative promotion operations. The backend
of the compiler passes this through via annotation bits in the
instruction encoding and the simulator treats the map/unmap
operation as described in Table 2. Since global and aliased
data can reside in registers, the compiler was also restricted
from certain kinds of code motion around those accesses.

4. Experimental Setup
All the benchmarks used in this study were compiled with

the MIRV C compiler. The compiler takes a list of optimiza-
tions to run on the code as well as the number of registers that
are available on the architecture. We ran variants of the SPEC
training inputs in order to keep simulation time reasonable.
Our baseline timing simulator is the default sim-outorder con-
figuration. A description of MIRV, our compilation methodol-
ogy, and benchmark inputs is presented in the technical report
of [12]. 

All simulations were done using the SimpleScalar 3.0/
PISA simulation toolset [10]. We have modified the toolset
(simulators, assembler, and disassembler) to support up to 256

registers. Registers 0-31 are used as defined in the MIPS Sys-
tem V ABI [11] in order to maintain compatibility with pre-
compiled libraries. Registers 32-255 are used either as addi-
tional registers for global variables or additional registers for
local caller/callee save variables.

A modified version of sim-profile was used to simulate
the behavior of a program compiled to use the SLAT. The sim-
ulator implements an infinite-sized SLAT with ideal replace-
ment. Table 2 shows the actions that are taken at various
instructions in the program. While the simulator is idealized
and is not particular to an implementation, it allows us to see
the potential benefits of the SLAT. Later work will address
specific implementation issues.  

5. Experimental Evaluation
This section presents our experimental results. Section

5.1 discusses the performance improvements possible with
conventional register promotion and shows how it is limited in
its applicability. Section 5.2 shows the performance improve-
ment that can be obtained when values can be promoted specu-
latively.

5.1. Register Promotion
Previous work showed the performance of basic register

promotion in the MIRV compiler [17]. That work found that
register promotion improves performance from 5% to 15% on
some benchmarks. Other benchmarks perform worse with reg-

Instruction Action

map reg, addr Add an entry to the SLAT. If there is a pre-existing mapping for the address 
in the SLAT, the data is forwarded from the previous register to the register 
currently being mapped. Otherwise, the data is loaded from memory.

unmap reg, addr Remove an entry from the SLAT. If there is a previously mapped but 
unspilled entry, store the data from reg to the previously mapped register.

spill If the register contains a value that was placed there by a previous map 
instruction, spill the value to the mapped address (home location) instead of 
the address specified to the stack spill location.

reload If the previous SLAT on the SLAT stack has a mapping for this register, 
reload the value from its mapped address. Otherwise, reload from the speci-
fied location on the stack.

load If any entry in the SLAT stack maps the load address, and has not been 
spilled, then copy from the mapped register to the load’s destination register. 
Increment slatLoadConflicts.

store If any entry in the SLAT stack maps the store address, and has not been 
spilled, then copy from the store source register to the register indicated in 
the SLAT entry. This implements the “callee update”  register convention (a 
modification of “callee save” . Increment slatStoreConflicts.

call Push a new SLAT onto the SLAT stack.

return Pop current SLAT from SLAT stack.

Table 2. Description of the actions that take place at various points in the SLAT simulator. 
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ister promotion. This is due to extra register pressure caused
by the promotion, which introduces spilling code.

The somewhat lackluster results for many benchmarks
led us to evaluate the reasons why promotion is not performing
well. The graph in Figure 2 shows statistics kept by the com-
piler which demonstrate that promotion is often limited by
aliasing and side-effects. The figure shows each benchmark
(along the X axis) in four different configurations. The first
configuration is -O2 with separate compilation of the pro-
gram’s files. The compiler produces the least detailed alias
information in this case. The second configuration is similar
except that a simple interprocedural side-effect analysis is
used to improve the precision of alias analysis at function call
sites. This increases the precision of the alias analysis and
allows the compiler to determine that more values are safe to

promote. For these two bars, the percentages indicate the num-
ber of static references that fall into each category.

The third and fourth bars are similar to the first and sec-
ond except that they estimate the effect of the un-promoted
values by weighting each value by the number of load and
store executions that would have been saved in a training run
of the benchmark if the value had been promoted. Thus the
percentages on the Y-axis change meaning for the third and
fourth bar, because they indicate the estimated percentage of
dynamic references that fall into each category.

The bars are divided into portions showing the reason that
a promotion could not occur. The legend of the graphs are
explained in Table 3. The last two categories–local and global
side effects–are of interest in this paper because the SLAT can
aid the compiler in promoting those references to registers. 

Figure 2. The reasons that scalar candidates could not be promoted. The bars shows the breakdown of reasons
that promotion could not occur. All compilations use -O2 optimization. The first bar is separate compilation of modules
with no interprocedural alias analysis. The second bar has interprocedural side-effect analysis information annotated
at each function call site for improved alias analysis precision. This increased information in turn increases the number
of candidates that are provably safe to promote. The percentages shown for these first two bars are percentages of
scalar promotion candidates. The third and fourth bars are analogous except that they estimate loss in performance by
weighting the counts by dynamic frequency of access to the candidate variables. The legend is explained in Table 3.
These numbers are based on compile-time estimates and unlike later figures are only indicative of trends.
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For example, for the compress95-sep bar, about 25% of
static references were promoted. About 15% of values were
not promotable because of local side effects, and about 60% of
values were not promoted because of a global side effect.
Local and global side effects are due to function call sites
within the promotion region.

Overall, it is evident that of all promotion candidates,
only 20% to 30% of potential promotions are actually per-
formed. Some outliers, such as li have almost no promotable
values, and some have a large portion of candidates that are
promotable. More advanced alias analysis (shown in the sec-
ond bar of each group) increases the number of promotion suc-
cesses by 20% in many cases. Still, 20% to 50% of promotion
candidates are not promotable using the side-effect analysis.

For the non-promotable candidates, the primary reason is
side effects due to function calls (both local and global side
effects). This implies that any mechanism that allows promo-
tion in such regions will have to handle call sites very well.

The dynamic estimates in the third and fourth bars of the
graphs in Figure 2 show slightly different results because the
frequency count of loop bodies is taken into consideration
when weighting the effect of a successful or missed promo-
tion. The results are very benchmark dependent, sometimes
showing that the static estimate was good, as is the case with
vortex and art. In many cases the dynamic estimate shows
that the missed promotion opportunities were not significant
factors in performance.

There are a significant number of promotion opportuni-
ties that are missed because of poor alias analysis. This obser-

vation led us to develop speculative register promotion, which
is evaluated below.

5.2. Speculative Register Promotion using the 
SLAT

The main shortcoming of register promotion is the num-
ber of cases where promotion cannot happen because of alias-
ing. In this section, we evaluate the performance benefits
possible from allowing more promotion via the SLAT.

5.2.1. Loop and Function Promotion. Table 4 shows the
improvements possible with the SLAT. The first two numeric
columns show improvement possible on top of MIRV at -O2
optimization, which includes only loop-level promotion. The
numbers were collected by modifying the register promoter in
MIRV to annotate the candidates that could not be promoted.
Each such candidate variable reference (load or store) was
annotated and each occurrence was counted during the simula-
tion. The numbers in the table are the percentage of all load
and store instructions that were thus annotated, meaning that if
we had “perfect”  register promotion, all of these loads and
stores would have been transformed by the compiler into reg-
ister references. Note that these percentages are different than
shown in Figure 2 because those percentages are only of pro-
motion candidates, not all load and store operations. One other
caveat with regard to these numbers is that they are overly
conservative because they count store operations that may not
be necessary because the promoted variable is not actually
defined in the promotion region. Therefore, several of the

Legend Entry Explanation

Successful The transformation was not restricted.

AliasAmbiguous A possible manipulation of some data through a pointer prevented the trans-
formation. In other words, there is a pointer that might point to something the 
restricts the transformation, but the compiler does not know for sure.

AliasAnon A manipulation of code involving dynamically allocated memory was 
restricted by some other possible manipulation of dynamic memory.

AliasArray A transformation involving an array was restricted by some other use of the 
array. Because MIRV does not track individual array elements, any reference 
to an array element is considered to reference the entire array.

GlobalSideEffect A manipulation of code involving a global variable was prevented by a func-
tion call. Usually this is because a function is assumed to define and use all 
global variables when it is called. If, however, the compiler is performing 
whole-program analysis, this means that the called function references the 
global variable somewhere in its body, or in the body of some function fur-
ther down the call chain.

LocalSideEffect A possible manipulation of some data through a pointer passed to a function 
prevented the transformation. In other words, a pointer argument to the call 
might point to a local variable. The compiler must assume that variable is 
both used and defined by the call, preventing transformations across the call 
site.

Table 3. An explanation of the legend in Figure 2. 
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“ improvements”  in store instruction counts are actually nega-
tive, indicating that more stores were counted after the optimi-
zation than before. The actual performance will be better than
these numbers show.

Even with those caveats, the compress, art, gzip,
parser, and vpr benchmarks all exhibit significant potential
for improvement for both load and store instructions–with
10% to 20% reductions possible in several cases. This substan-
tiates our earlier conclusion that conventional promotion is
unable to take advantage of many opportunities. The other
results are not very significant, which is not a surprise since
this optimization is very dependent on the benchmark.   

The third and fourth numeric columns show what hap-
pens when loops and functions are considered as regions. If a
variable can be promoted in a loop, it is done first. Then, if the
variable is still profitably promotable over the whole function
body, this transformation is made. The result is that function-
promoted variables are loaded once at the top of the function
and stored once before the function exits, and all other refer-
ences are to a register instead of to memory. Function-level
promotion increases the number of candidate loads and stores
for the promoter to examine and we see a corresponding
increase in the number of loads and stores that could have been

eliminated with speculative promotion, but that were not
removed because of aliasing problems. In this case, what has
happened is that the pool of promotion candidates has been
enlarged by examining the whole function body, but very few
of those additional candidates are actually promoted. We veri-
fied this by comparing the overall performance of function-
level promotion with the base -O2 configuration. There was
not any significant difference (less than 1% for all bench-
marks). This indicates that while function-level promotion
found more candidates it wanted to promote, it could not pro-
mote most of them due to aliasing concerns. The SLAT is
effective in allowing these promotions to occur.

5.2.2. Whole-Program Global Variable Promotion. 
Previous work demonstrates that link-time allocation of

global variables to registers is an important performance opti-
mization [17, 21]. The previous work has only considered “un-
aliased”  global variables, i.e. those whose addresses are not
taken anywhere in the program. The SLAT could further
improve the performance of link-time global variable alloca-
tion by allowing global variables whose addresses are taken to
reside in registers for their entire lifetime. If an enregistered

mirvcc -O2
mirvcc -O2 with function level 

promotion

Category Benchmark
Reduction in 

Loads %
Reduction in 

Stores %
Reduction in 

Loads %
Reduction in 

Stores %

SPECint95

compress 18.9 12.8 36.6 14.2

gcc 1.3 -2.7 1.6 -5.5

go 1.3 -1.8 1.9 -5.2

ijpeg 0.3 -0.4 0.3 -0.4

li 6.5 2.2 8.1 2.6

m88ksim 0.8 0.0 3.8 -0.2

perl 0.0 0.0 1.5 -0.1

vortex -1.7 -3.1 -1.1 -5.8

SPECfp2000

ammp 4.6 -0.1 4.7 -0.1

art 13.6 12.2 13.6 12.2

equake 4.6 -0.1 4.7 -0.1

mesa 0.5 0.0 0.5 0.0

SPECint2000

bzip 5.3 -0.4 7.3 -1.4

gcc 2.0 -2.5 2.3 -5.0

gzip 24.2 12.2 31.4 18.1

mcf 6.8 1.2 6.9 1.2

parser 14.0 -0.5 16.9 0.5

vortex -1.7 -3.1 -1.1 -5.8

vpr 7.8 -4.4 13.2 -6.3

Table 4. Reductions in dynamic loads and stores possible for missed promotion candidates with the
SLAT. The baseline in columns 3 and 4 is compiled with loop-level register promotion The baseline in columns 5
and 6 is compiled with loop- and then with function-level promotion. The percentages give the number of loads
and stores that could be removed if the promotion could take advantage of the SLAT.
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global variable is accessed through a pointer, the SLAT will
correctly redirect the memory operation to the register file.

Experiments showed that most benchmarks are not gener-
ally improved by such a scheme. This result indicates that
most global variables (or at least the important ones) do not
have their address taken. This is intuitive, since the global
variables are directly accessible and thus need not be used
through a level of indirection. This is still promising for the
SLAT, however, in a separate compilation environment. In
such an environment, the compiler cannot determine which
globals are aliased and which are not because modules are not
visible as in our link-time, whole-program allocation scheme.
Therefore, the SLAT can allow us to approach the good perfor-
mance of link-time global variable allocation (as in [17]) with-
out needing to compile the whole program as a single unit.

5.2.3. SLAT Size Considerations. The next question we
examine is how many entries the SLAT needs to achieve the
performance improvements above. The simulator keeps track
of the current number of SLAT entries in use and also tracks
the high water mark of this number, which indicates the most
SLAT entries that would ever be in use concurrently. The high
water mark results are presented in Table 5. Except for li and
vortex, none of the benchmarks require more than 50 SLAT
entries to speculatively promote all aliased variables. These
two benchmarks are exceptional because of their deep function
call chains (li is a recursive descent program). Most bench-
marks require less than 30 entries. This indicates that the
SLAT should be effective while still very small in size. This is
important since the SLAT must be fully associative. As
described in the caption of the table, the third column is for
loop-based register promotion, while the fourth column adds
function-level promotion to the normal loop based promotion.
Function-level promotion produces more candidates in the
function bodies and, as we found earlier, not many of those are
promotable because of alias problems. Thus the number of
SLAT entries required to accommodate function level promo-
tion is higher than for loop-level promotion–by a large margin
in some benchmarks.

These numbers double-count any overlap that occurs
because a variable gets allocated to the SLAT more than once.
This can happen for global variables promoted in two different
functions which are active at the same time on the procedure
call stack. Overlap can also happen if a variable is promoted
over a loop region and then the function promoter decides to
promote it over the whole function body. If we corrected for
this effect, the values in the graph would be even lower, mean-
ing that an even smaller SLAT will provide the benefits we
seek from speculative register promotion.

We also tracked the variation in the required size of the
SLAT over the benchmark run. The resulting distribution (not
included in this paper) showed that 90% of the instructions
were executed under conditions requiring about 1/2 to 3/4 of
the maximum number of SLAT entries to capture most of the
benchmark’s execution. This gives a tighter bound on the
required size of the SLAT, although it does still count dupli-
cates.

At this point it may be questioned why the SLAT would
ever need more entries than there are architected registers.
This is a valid question because at most only one aliased vari-
able can be allocated to a given register at any given time, so
the most active SLAT entries would be equal to the number of
registers. However, at any given time, there are more values
alive than there are registers because there are multiple func-
tions “alive”  on the procedure linkage stack. Each function
could have promoted several values. While these values are
not in the registers (they have been spilled out by the calling
convention) they are nonetheless active in the sense that they
will be coming back into registers when the procedure stack
unwinds as functions are completed. Some sort of SLAT man-
agement (similar to callee/caller save registers) would allow
the SLAT to be limited in size but we do not consider that in
detail in this work.

5.2.4. Other Considerations. When a load or store finds
that its operand is mapped by the SLAT, a conflict has
occurred and fixup needs to be performed to retrieve the latest
value (on a load) or update the mapped register (on a store).
Our simulations showed that for compress, gzip, and
parser, this happened roughly 2%, 3%, and 5% of memory
operations. The rest of the benchmarks were well under 1%.

SLAT Entries 
Actually Required

Category Benchmark -O2
-O2 with 
function  

promotion

SPECint95

compress 7 19

ijpeg 23 27

m88ksim 11 37

perl 10 26

SPECfp2000

ammp 2 11

art 11 19

equake 16 36

mesa 4 5

SPECint2000

bzip 23 32

gzip 11 25

mcf 5 7

parser 26 44

vpr 10 16

Table 5. Summary of SLAT utilization for select
benchmarks.  The third and fourth columns show the
maximum number of SLAT entries ever used concur-
rently in the benchmark, not accounting for duplicates.
The third column (mirvcc -O2) is for register promotion
over loop bodies. The fourth column adds promotion
over whole function bodies.
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6. Background and Related Work
This section reports on a number of proposals that com-

bine software and hardware approaches to disambiguation,
allocation, and scheduling.

Several previous proposals have discussed methods to
allow register allocation for aliased variables. CRegs solves
the aliasing problem by associating address tags with each reg-
ister [18, 19, 20]. These tags are checked against loads and
stores to keep the registers and memory consistent. On a store,
an associative lookup must update all copies of the data in the
CReg array. Variable forwarding was proposed as an improve-
ment to CRegs [22]. This technique allows the elimination of
compiler alias analysis, simplifying the software side of the
problem but complicating the hardware because a value can be
mapped to any registers in the register file. Chiueh proposed
an improvement on both CRegs and variable forwarding [23].
Aliased data items are kept in the memory hierarchy (data
cache) and accessed indirectly through registers. The registers
contain the address of the value and the compiler specifies a
bit on each operand in the instruction to direct the hardware to
use that register indirectly.

The weakness of CRegs is that writes must associatively
update several registers. The SLAT does not require this asso-
ciative write-update to the register file because the compiler
guarantees that only one copy of the data is mapped to a regis-
ter within a function. This vastly simplifies register access
compared to CRegs.

Nicolau proposed a purely software disambiguation tech-
nique where a load could be scheduled ahead of potentially
dependent stores [2]. This technique is called runtime disam-
biguation because the hardware checks conditions at runtime
to determine if a conflict has occurred.

The Memory Conflict Buffer (MCB) is designed as an
extension of Nicolau’s runtime disambiguation. It allows the
compiler to avoid emitting explicit (software) checks of
address operands [8, 9]. Instead, addresses that need to be pro-
tected are communicated to the hardware by special load oper-
ations and then special check operations ask the hardware
whether a conflict has occurred for the given address. Hard-
ware does the address comparisons instead of software. Like
for runtime disambiguation, the goal is to perform code sched-
uling in the presence of ambiguous memory operations.

The SLAT is different from the MCB in that it must retain
information across function calls to be effective–as was
shown, this is important because many aliases are due to
assumed side effects of function calls, so that SLAT must han-
dle function calls elegantly. The information stored in the
MCB is not valid across function calls [8].

The IA64 architecture provides hardware support for
compiler-directed data speculation through use of an
Advanced Load Address Table (ALAT) [12]. It allows static
scheduling of loads and dependent instructions above poten-
tially aliased stores. The compiler is responsible for emitting
check and fixup code for the (hopefully rare) event that a con-
flict occurs.

The SLAT is different than the ALAT in a number of
respects. The most notable difference is that the hardware must

compare not only store addresses to all SLAT entries (as with
the ALAT), but in addition it must compare all load addresses
as well. This is because the most current value for the memory
location could be housed in a register and any loads that access
that memory location need to receive the current value. The
ALAT cannot provide this functionality because the hardware
only checks the addresses of store instructions with the entries
in the ALAT.

Another difference is that the SLAT must retain all the
information ever entered into it whereas ALAT entries can be
replaced because of overflow, conflicts, or context switches.
This is because the ALAT requires an explicit check instruc-
tion to determine if the fixup code needs to be run. If an entry
is missing from the ALAT, the check instruction runs the fixup
code. Thus the ALAT is “safe”  even when it loses information.
On the other hand, if the SLAT “ loses”  an entry, load and store
instructions could be executed without detection of conflicts,
which would produce incorrect program output.

Another difference between the SLAT and ALAT is that
SLAT fixup is not initiated at the point of transformation but at
the point where the conflict occurs. For the ALAT, fixup is
always initiated at the point of the original load (which has
been converted to a check load). For the SLAT, since the cor-
rect data is in a register, the hardware can forward the data for
a load from the register or for a store to the register.

Transmeta Corporation recently introduced a line of pro-
cessors that is designed to run unmodified x86 programs using
dynamic binary translation [1, 6]. Capability similar to the
ALAT is provided by special hardware and instructions to
allow load and store reordering. Two instructions are neces-
sary for this: load-and-protect (ldp) and store-
under-alias-mask (stam). The ldp instruction “pro-
tects”  a memory region. The stam instruction then checks if it
would store to a previously protected region. If it would, it
traps so that fixup can be performed. The main purpose of this
system is to allow Transmeta’s code morphing software to
allocate stack variables to host registers.

The SLAT differs from this approach in that it is designed
for a static compilation environment, hardware corrects con-
flicts instead of taking an exception, and memory does not
necessarily need to be kept up to date since the latest value is
in the register.

7. Conclusions
This paper has described the design of the store-load

address table, its use in a new optimization we call speculative
register promotion, and the reductions in load and store opera-
tions possible when using this optimization. We began by
showing that register promotion was often limited by compiler
alias analysis. The number of loads and stores can be signifi-
cantly reduced for several of the benchmarks with the addition
of a SLAT and speculative register promotion–up to 35%
reduction in loads and 15% reduction in stores. Applying the
SLAT to link-time global variable allocation does not produce
much benefit for most benchmarks. It is more important in this
case to note that the SLAT effectively allows link-time alloca-
tion even in the face of separate compilation, so that the SLAT
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can achieve most or all of the benefit of link-time allocation
while doing so in a separate compilation environment. Finally,
we showed that the SLAT can be modestly sized and achieve
the benefits reported here.

There are several important avenues of future work. In
addition to providing more detailed performance numbers, we
will investigate strategies for determining when the compiler
should use the SLAT. We will also address specific SLAT
hardware implementation issues as well as compiler manage-
ment of the SLAT storage. Future work will also include
investigating other ways the hardware can help the compiler
do aggressive, potentially unsafe operations.
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