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Often, pointer and subscripted array references touch 
memory locations for which there are several possible aliases, 
hence these references cannot be made from registers. 
Although conventional caches can increase performance some- 
what, they do not provide many of the benefits of registers, and 
do not permit the compiler to perform many optimizations 
associated with register references. The CReg (pronounced 
“C-Reg”) mechanism combines the hardware structures of 
cache and registers to create a new kind of memory structure, 
which can be used either as processor registers or as a replace 
ment for conventional cache memory. By permitting aliased 
names to be grouped together, CRegs resolve ambiguous alias 
problems in hardware, resulting in more efficient execution 
than even the combination of conventional registers and cache 
can provide. 

This paper discusses both the conceptual CReg hardware 
structure and the compiler analysis and optimization tech- 
niques to manage that structure. 

Keywords: cache, register, register-allocation, data-aliasing, 
compiler-optimization. 

1. Concepts 

TO explain how and why CRegs’ improve performance, it 

is first necessary to analyze how and why conventional registers 
and cache can fail to improve performance (as well as how and 

why they can improve performance). 

1.1. Registers 

A register array is a relatively small, fast, local memory 
residing in an address space separated from that of main 
memory. The structure of a register memory cell is given in 
Figure 1. 

Figure 1: Register Memory Cell Structure 

1 A patent application for the CReg invention is currently in progrnr. 

Chi-Hung Chi 

Phillips Laboratories 
345 Scarborough Road 

Briarcliff Manor, NY 10510 

By placing a value in a register, one can reap at least four 
benefits: 

[l] The fast access time of values in registers reduces latency. 
[2] A reference to a register typically does not interfere with 

references along the path(s) to main memory, thereby 
effectively increasing usable bandwidth to main memory. 

[3] Typically, the predictability of register references aids in 
compile-time optimization of code and simplifies 
hardware. Optimizations are aided in that reference 
times can be known at compile time; hardware is 
simplified in that register references in most machines 
cannot cause pipeline bubbles. 

[4] Because register names are typically shorter than memory 
addresses, referencing values in registers actually 
decreases the required instruction-fetch bandwidth - 
even though registers typically cannot hold instructions. 

The “catch” is that, for most programs, many values cannot 
benefit from being kept in registers. Although it is true that 

sometimes a value cannot be kept in a register because the 

hardware provided too few registers, even given an infinite 
number of registers, a large fraction of the values computed 
within any program should not be kept in registers. To under- 
stand why some values should not be kept in registers, one 
must understand a little bit of compiler flow analysis.2 

Suppose a particular segment of a program refers to two 
names, one called cy and the other called /% If one of CY and j3 is 
a pointer, or one is a call-by-address argument to this routine 
and the other is a variable which was accessible in the caller’s 
scope, or both are elements of the same array (such as a [ i ] 

and a [ j I), etc., then it is possible that even though IY and p 
look like different names, they refer to the same object. In 
other words, changing the value of one might change the value 
of the other, i.e., cr and /3 might be aliases for the same object. 

If compile-time analysis can prove that a and ,f3 cannot be 
aliases for the same object, then d and p can each be aasigned 
to a register and each can be kept there indefinitely. Instead, if 
the compiler can prove that (Y and p are always aliases for the 
same object, then LY and ,0 are assigned to share a single regis- 

* The description given here of the nmbiguour aliar problem ir a grow oversimpli6crtion intended only to give 
an intuitive introduction to the problem. This issue is currentiy one of the richest research areu within compiler 
technology; more detailed discussions of this problem appear in [All33], [Burlll], [BuCBB], [Al186], [Ste66], and 
[DieW]. 
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ter, and again the object can be kept in a register indefinitely. 
However, if the compiler isn’t sure if cr and /3 refer to the same 
object, or if CY and p only sometimes refer to the same object, 
we say that CY and /3 are ambiguously aliased to each other. 

At thia point, it is useful to point out that compile-time 

analysis techniques for determining if cu and @ are aliases for 
each other are, at best, complex to implement and easy to con- 
fuse. Confusion results in the “safe” assumption that cr and @ 

are ambiguously aliased to each other. In addition, in many 
ceses it is theoretically impossible for the compiler to determine 
whether cy and /9 are aliased, in which case the compiler must 
again assume that they are ambiguously aliased. A good exam- 
ple of such a case is determining whether a I. i ] and a I j I 
are aliased in code like Listing 1. 

readln(i, j); 
b := a[i] + a[j]; 

Listing 1: Compile-Time Unresolvable Aliasing Problem 

If the compiler’s best “guess” is that cr and /3 are ambigu- 
ously aliased, then placing either value in a register will require 
“flushing” that register whenever either cy or j3 is stored into. 
This “flushing” is usually needed so often that the cost of 

referencing cr and p from registers is actually greater than the 
cost of referencing them from main memory, hence, placing cr 
and p in registers would degrade, rather than improve, perfor- 
mance. 

1.2. Cache 

A cache is a “small” memory holding rapidly accessible 
copies of values addressed associatively by main memory 
addresses. The conceptual structure of a cache memory cell is 
shown in Figure 2. 

datum address 

Figure 2: Cache Memory Cell Structure 

Of the four benefits listed for placing a value in a register, how- 
ever, in general, caches only insure [I]: a reduction in access 
latency. Benefit [Z], which is based on the lack of interference 
between register and main memory data paths, does not hold 
for 8 traditional cache, except in that other processors in a 
multiprocessor system typically would not see interference from 
cache references on a particular processor’s cache. 

The predictable reference time for a register reference, 
benefit (31, is not echoed in cache reference because of the con- 
cept of a cache miss. Some would argue that, given a large 

enough cache, the probability of having a cache miss can be 
made arbitrarily low; however, we believe this misses the point. 

One reason we disagree with the very-large cache argument is 

that the access speed of a memory is related to the size of its 

address space (e.g., if one can fit the cache on the processor 
chip, it will probably function much faster than if it is refer- 
enced across several chips). Another reason is that the cost of 
implementing an arbitrarily large cache is also arbitrarily large 
- it isn’t very cost effecitive. In any case, unless the cache is 
as large as the entire virtual address space of the machine, one 
will occasionally suffer a cache miss, and this implies that extra 
hardware/software effort must be made to cope with thii situaF 
tion. 

Benefit [4] is based on the reduction of required 
instruction-fetch bandwidth due to use of short names in 
referencing values. This cannot be applied to cache because the 

register correspondence between short names (register 
numbers) and long names (memory addresses) must be expli- 
citly established by register Load and Store instructions, 
whereas the mapping in a cache is unknown to the software. In 
other words, a compiler cannot tell which cache line of a con- 
ventional cache will hold 8 copy of a particular value it is 
referencing - hence, it cannot use the cache line number to 
address the value. The desired value might not even be in the 
cache, either because it has not yet been placed there or 
because placing some other entry in cache “bumped” the 
desired entry out of cache. 

The above discussion might lead one to conclude that 
registers are far better than cache, so why use cache? The 
answer is simply that while ambiguously aliased values cannot 
be profitably placed in registers, they can be placed in cache. 

1.3. CRegs 

Unlike registers, cache-registers (CRegs) may be used to 
buffer values which may have ambiguous aliases; unlike cache, 
CRegs provide the ability to use short names for variables 
instead of addresses (thereby reducing instruction-fetch 

bandwidth requirements) and also provide for conceptually 
duplicate entries (many-to-one mapping of short names into 
addresses). CRegs provide all four advantages of registers; but 
CRegs provide these advantages for all values, ambiguously 

aliased or not. 

The conceptual structure of a CReg memory cell is a 
superset of both cache and register cell organizations, 8s illus- 
trated in Figure 3. 

nom.2 datum oddrera 

Figure 3: CReg Memory Cell Structure 
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Each CReg is a register which holds both address and 
data fields. When a CReg is referenced (by CReg number - a 
short name), an associative search is made to iind neighboring 
CRegs which have the same value in their address field. Any 
CRegs found by this association are aliases for the CReg 
directly named, and the CReg hardware simply maintains 
coherence of these entries. This associative function is imple- 

mented by hardware very similar to that implementing the 
associativity of a cache, however, unlike a cache, CRegs avoid 
making memory references on an aliased Load operation by 
using dupiicate entries in the CReg array. (The precise opera- 
tion of CRegs is described in greater detail in the example of 
the following section.) 

Although the STM (generalized Short Term Memory cell) 
[Sit791 employs a memory cell structure similar to that of a 

CReg, STMs did not support CReg-like associative function. 
Likewise, the “rack” desciribed in [StS85], suggests a similar 
cell structure, but is not associative. The register-addressed 
stack cache mechanisms of various processors could be argued 
to provide benefits similar to that of CRegs; however, they do 
so only for items in the top few stack cells. Since these items 
are a subset of the items which could have been kept in regis- 
ters, stack caches also fail to provide a solution to the aliased- 
item reference problem. 

The implementation, and hence the circuit complexity, of 
a CReg array is virtually identical to that of a similar-size 
cache; the CReg array is slightly simpler because the hardware 

is explicitly told where to make each entry (what CReg 
number), whereas conventional caches use hardware- 

implemented policies, such as LRU, to decide which line to 
replace. However, CRegs can be managed as efficiently az 
registers, hence, unlike cache, very small CReg arrays are quite 
useful. For example, simply replacing the registers of a conven- 
tional processor with CRegs (and, incidentally, not even chang- 
ing the instruction set) is typically both feasible and effective to 
the extent that the number of memory references made by the 
processor can often be halved. 

2. An Example 

An example clearly illustrates the advantage of being able 
to use CRegs for all value references, whether ambiguously 
aliased or not. Consider the FORTRAN code of Listing 2. 

C 
C A call-by-address subroutine 
C 

SUBROUTINE NASTY(I, 3, K) 
10 I = J * K 
20 R = J + K 

RETURN 
END 

Listing 2: FORTRAN Sample Code 

The subroutine NASTY operates on three arguments, I, J, 
and K, which are all passed using call by address. Since FOR 
TRAN permits I, J, and K to reference the same cell of 
main memory, the values of J and K cannot be blindly placed 
in conventional registers in the code for line 10 and simply 
reused in the code for line 20 - to do so would produce 
incorrect results if I refers to the same main memory cell as 
either J or K. To place these variables in conventional regie 
ters, the compiler would need to know precisely which of the 
arguments referenced the same cells - the classic ambiguous 
alias problem discussed earlier. Hence, unless the compiler is 
permitted to generate multiple encodings of NASTY (one for 
each possible set of variable aliases), none of I, J, and K can 

be kept in registers. 

However, all of these variables can be placed in CRegs. In 
fact, if this is done, the references in line 20 will dWUy8 be 
served within CRegs - main memory will not be accessed. 

Table 1 shows all possible combinations of aliases for I, 3, 
and K, and, for each alias set, where the values of J and K 

are to be found. 

Table 1: CReg Place of Reference for J and K 

. 

Aliases Where J is Where K is 

I, J, K disjoint CReg for J CReg for K 

I is J Assoc. I,J CReg for K 

I is K CReg for J Assoc. 1,K 

J is K Assoc. J,K haoc. J,K 

I is J is K Assoc. I, J,K Assoc. I, J,K 

As indicated earlier, the read requests in line 20 for J 

and K are always satisfied within the CReg array. The entries 
in the table which say “CReg for” are simple CRegs acting as 
ordinary registers (with no associative access); the entries which 
say “Assoc.” are satisfied by the associative memory function 
of the CRegs. (Notice that the associative function depends on 
the existence of duplicate entries in the CReg array - which 
would not be permitted in a conventional cache.) Further, 

since all three variables can be placed in CRegs, the references 
in line 20 would simply use the CReg names, rather than 
memory addresses, because a CReg name implies a main 
memory address. This fact also permits entire instructions to 
disappear: Store instructions can be implicit, using a 
“dirty bit” and a “lazy store” mechanism. 

It can be argued that the references in line 20 might be 
satisfied in a more conventional cache, thereby avoiding a main 
memory reference in the same way that CRegs avoid the refer- 
ence; however, only CRegs can guarantee that this occurs under 
all circumstances (as we detailed in the previous section). Even 
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accepting that a conventional cache might avert the main 
memory references as CRegs do, CRegs also reduce the in&rue 
tion fetch bandwidth requirements by permiting short CReg 
names to be used for I, J, and K rather than long main 

memory addressee. 

The next subsection briefly describes a simple RISC 
register-baaed processor design and its adaptation to use CRega 
instead of registers. In the subsection following that, the above 
example is encoded and the execution traced for this RISC 
machine. 

2.1. A RISC Procearor wing CR.ege 

There are many possible implementation techniques for 
CRegs. In this section, we discuss a simple modification of a 
RISC processor design which replaces a register array with a 
CReg array3. The point here is not to propose a RISC archi- 
tecture, but rather to show the difference between register- 
based and CReg-based versions of the same architecture. 

The example architecture ls a M-register RISC machine 

whose register Rf (register 15) is also the PC (program 
counter). Replacing the registers with CRegs, we obtain the 
programmer’s model given in Figure 4. 

Figure 4: CReg RISC Programmer’s Model 

The first difference one notices is that each CReg has two 
fields, the data and address fields. Quite naturally, the PC is 
the address field of Rf, which implies that the data field of Rf is 
the IR (instruction register); although it is not a major point of 
this paper, prefetch of instructions beyond a branch is really 
just another flavor of ambiguous alias reference, and it too is 
handled using CReg associativity. 

The programmer’s model also reflects fragmentation of 
the 16 CRegs into four sets of four CRegs each. Since it may 
be difficult to construct cache-like hardware which is more than 
about 4way associative [Smi78], the WCReg array is broken 
into associative groups of four CRegs each’. For example, if 
CReg Rl holds D1=5, Al=601 and an instruction attempts to 
load the contents of memory location 601 into R2, an associa- 

tive load will occur (without a main memory reference) and R2 

will hold D2=5, &!=601. If one tried to load the contents of 
memory location 601 into R4 instead of R2, since Rl and R4 
are in different associative sets, a memory reference would be 
needed to load R4 and the value loaded might not match the 
value in Rl. Obviously, the “trick” is to always place names 
which are ambiguously aliased together in the same set . . . 
compiler techniques to accomplish this are discussed in sections 
3.2 and 3.3. If CReg hardware can be built without this seg- 

mentation, the only results are that compilation becomes easier 
and the CRege become more effective. 

The instruction sets of the RISC and CReg RISC 
machines are identical, hence there are no changes to describe. 

2.2. Code for the Example 

Using the original (conventional register-bssed) RISC 
design, the instruction sequence for the lines 10 and 20 of the 
FORTRAN program in listing 1 would be as given in listing 2. 
(To simplify the example, no special handling of delayed loads 
or other compiler optimizations are assumed.) 

Ld 
Ld 
Ld 
Ld 
MU1 

Ld 
St 
Ld 
Ld 
Add 
St 

RO,@argJ 
RI ,@RO 
R2 ,@argK 
R3,@R2 
R4,Rl,R3 
R5 ,@argI 
@R5,R4 
Rl,@RO 
R3,@R2 
R4,Rl ,R3 
@R2,R4 

;RO <- addr(J) 
;Rl <- J 
;R2 <- addr(K) 
;R3 <- X 
;R4 <- RI l R3 

ddr(1) 
<- R4 

;R5 <- a 
;mem(RS) 
;Rl <- J 
;R3 -z- K 
;R4 <- R 
;mem(R2) 

1 + R3 
<- R4 

Listing 3: Register RISC Code 

Listing 3 should be compared with the CReg RISC instruction 
sequence given in Listing 4. (As Listing 3, Listing 4 does not 
reflect the application of any compiler optimisations.) 

s This ia not implying, for urrmpla, that CRega could not be implemented in uxy other x*y - in fact, Cw 
can even be impleme.nkd by taking a convcntion~ &chip cache wad limply mapping nomc portion ol the 3llobal 
memory addrew npwx into literal cache addraw (cache line addrcua rather than urociatira cacba line addrcu 
lab&). A conventional processor could then UC abort oL& from an index rc&ter to refuence these CRega by 
num. 

’ Unlike crehcr which nn grouped into a& by addressnpw.e, the CRega in thin mubine sra grouped into rsk 
by CRq nunaapace. Alternatively, CReg net) could be timerpus partitioned. For axmpb, uwci8tiva -B 
to CRega (RO, Rl, RZ, R3) may complete in two cyden, for CRq {RRI, RS, RO, R7) in thra cycle+ etc. 
Provided the number of cydcl (time-multiplexed uwxiativs nets) is not greatu than the main memory refarenu 
time, l compiler can conaider this coat lunetion in dlocatinz CRcga #.a u to muimira probable bemilt. 
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Ld 
Ld 
Ld 
Ld 
Mu1 

Ld 
St 
Add 

R3 ,@argJ 
RO ,@R3 
R4 ,@argK 
Rl,@R4 
R2,RO,Rl 
R5 ,@argI 
@RS,R2 
Rl,RO,Rl 

;D3 <- addr(J), A3 <- argJ 
;DO c- J, A0 <- addr(J) 
;D4 +c- addr(K), A4 q- argK 
;Dl <- K, Al <- addr(K) 
;D2 *- RO l RI 
;D5 <- addr(1). A5 q- arg1 
;A2 (- D5, mem(A2) q- 02 
;Dl c- DO + Dl, mem(A1) <- Dl 

Listing 4: CReg RISC Code 

The first seven instructions of both register and CReg code 
sequences appear to serve the same purpose; however, they do 

not imply the same memory references. Further, in the rest of 
the code, a single instruction in the CReg version replaces four 
instructions in the conventional register code. 

To make these differences more visible, we will consider 
the situation which occurs using CRegs when I is an alias of 
K (i.e., addr(1) is addr(K)). Figure 5 shows the progression of 
CReg contents as the CReg RISC code of Listing 4 is executed. 
In each of the diagrams of Figures 5a-5h, CReg associative sets 
which are not involved in the actions caused by this code 
sequence are not shown. The additional field on each CReg in 
Figures 5a-5h is the “dirty” bit - a 1 indicates a dirty value, 
which may be lazily stored back to main memory, reseting the 
dirty flag. Notice that dirty bits are also set/reset associa- 
tively. 

- - 

R5: - - _ 

RB: - - _ 

Rl: - - _ 

addr(K) nrgK 0 

R5: - - - 

R8: - - _ 

R7: - - - 

Figure Sd: CReg Contents after Executing Ld R 1 , @R4 

Ro: J ad&(J) 0 

R1: x add@) 0 

R2: J’K - _ 

R3: sddr( J) argJ 0 

R4: ddr(Y) ugK 0 

I RS: - - - 

Rg: - - - 

R7: - - _ 
I 

Figure Se: CReg Contents after Executing Mu1 R2, RO , El 

ROT J sddr(J) 0 

Rl: I add+) 0 

R2: J’K - _ 

R3: =WJl ugJ 0 

Figure Sf: CReg Contents after Executing Ld R5 , @argI 

Figure 68: CReg Contents after Executing Ld R3 , @arg J 

Figure 5g: CReg Contents after Executing St @R5, R2 
Figure 6b: CReg Contents after Executing Ld RO , @R3 

RO: J addr(J) 0 M: addr(K) u& 0 

RI: J+(J*Io addr(H) 1 R5: &id?(K) ugl 0 

R2: J+(J*K) addr(K) 1 R8: - - . 

R3: sWJ1 ugJ 0 R7: - - . 

Figure SC: CReg Contents after Executing Ld R4, gargK Figure Sh: CReg Contents after Executing Add R 1 , RO , R 1 
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It is interesting to note that the lazy store mechanism, in 
the case traced above, would very likely avoid performing the 
store to main memory which was implied in Figure 5g (since 
the store implied in 5h makes 5g a “dead store” because I and 
K are actually the same object). 

3. Compiler Technology 

The basic compiler technology needed to make good use of 
CRegs is very similar to that needed to perform register allots 
tion, however, there are a few complications. The first 

complication is that names must be grouped according to which 
other names they are ambiguously aliased with, henceforth 
called an a&as net; this is discussed in the next subsection. 
The subsection after that discusses the problem of reasonably 
packing alias sets into CReg associative sets and of allocating 
registers given such a packing. 

Throughout this section, our intent is not to provide the 
best possible CReg management, but rather to demonstrate 
that reasonably good CReg management is not particularly 
difficult to implement. 

3.1. AIias Sets 

As discussed above, the fundamental flaw in static 
analysis of conventional-language programs is that it is not 
possible to statically determine, for all variables, which ones 
are aliaaed to which others at each point in the program. The 
CReg mechanism does not aid in solving this problem; however, 
it changes the problem into one which can be solved. The alias 
problem for CRegs is simply finding which items can be aliased 
to each other. We call this problem the construction of alias 
sets. 

The basic tools with which alias sets are constructed are 
the familiar algorithms of compiler flow analysis (including 
dependence analysis). These tools have been particularly well- 
honed in pursuit of efficient automatic parallelization. The 
presentation here is intended merely to provide a brief overview 
to the analysis involved in creating alias sets. 

3.1.1. Names 

The first issue to resolve in grouping names into alias sets 
is the basic question of what constitutes a name. Each variable 
could be considered a name, however, this is not the most uae- 
ful definition. The difficulty is rooted in the fact that a vari- 
able cr may be an alias for a variable /3 within one region of a 
program, while cr may be an alias for 6 in another section of the 
code. In such a case, considering Q to be a name used for 
grouping into alias sets, it would be necessary either to make 
the alias set containing Q be {(Y,@} or to make the alias set for 

or be {o,a} in one region of code and {o,6} in another. Ideally, 
names should be chosen so that each name is a member of an 
alias set whose contents are independent of position in the pro- 
gram, yet where no names are included unnecessarily. 

The solution to this naming problem is simply to incor- 
porate control and data flow information in the names: how- 
ever, the mapping from user variable names into these 
zdiased-object namea is surprisingly complex. For example, 
if the user has declared i to be an int variable and p to be 
an int + which is initially set to point at i (e.g., 
p= (hi ) ;), then references to both i and l p use the same 
aliased-object name: user names are mapped many-to-one into 
aliased-object names. This means that if the compiler can 
detect that two user names are unambiguously aliased to each 
other, these two user names will share a single aliased-object 
name. The rule is more precisely expressed as: 

Definition 1: User-Name Merging 
The user-created names cu and /3 can be merged into a sin- 
gle abased-object name within some region of code ifi the 
values associated with the names cy and /3 are known to be 
the same throughout that region of code. 

which also implies that explicitly made copies of values can all 
share a single aliased-object name (i.e., the compiler can per- 
form copy propagation). 

On the other hand, in a code sequence like 
i=j; . . . i = k ; , the user name i will be mapped into 

multiple aliased-object names, one for each different value 

stored into i. This rule is best expressed in terms of D-U 
chains and U-D chains [AbS86]: 

Definition 2: User-Name Spliting 
Let U be the set of uses of (loads from) the user name (Y. 
For each use u.cU, let the U-D chain rooted at ui be called 
d, If, for any’i and i, dnd#@, then let d=dUd. and 
dklete d, When no rnoie iuch merger/delehoni ch be 
performid, each of the remaining sets (di) can be 
represented by a separate aliased-object name. 

Notice that values which do not have programmer-assigned 
names, such as intermediate results within an expression, also 
may be assigned aliased-object names by the above rules. 

3.1.2. Formation of AIii Sets 

Given the above definitions, it is relatively easy for a com- 

piler to generate a set of names appropriate for grouping into 
alias sets; but what is an alias set? There are actually several 
compile-time distinguishable types of aliases: 

111 

I21 

(31 

A name LY is a true sliaa of the name p if cx is known to 
always be associated with the same value that is associ- 
ated with ,0. (Notice that, if this is so, the two names 
may be merged by Definition 1 given above.) 
A name cr is an intersection alias of the name p if (Y and 
/3 are known to share some elements of their values, how- 
ever, perhaps not all elements. For example, if a is a 
struct containing members called b and c, then a 
and a. b are intersection aliases. Intersection aliases 
occur most often in code referring to arrays. 
A name CY is a l ometirnea rliaa of the name /3 if Q is 
known to be a true or intersection alias for ,8 under some 
circumstances at runtime, however, (Y is not an alias for /3 
under other circumstances. For example, references to 
a [ i ] and a [ 5 ] are sometimes aliases if i could be 
equal to 5. 
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(41 A name (Y is an ambiguous &as for p if CY is an intersec- 
tion alias or sometimes alias for p, or if the compiler is 
unable to determine the relationship between (Y and p. 

[5] A name (Y is mutually exclurivc of p if cr and p are not 
related by any of the above alias types. If, for all p, cr is 
mutually exclusive of j3, then (Y is unamblguoum. 

For the purpose of CReg assignment, an alias set is a set of 
names grouped by “closure” of the ambiguous alias relation. 
In other words, given a name n, the alias set for n consists of n 
U (all names which are ambiguous aliases of n) U (all names 
which are ambiguous aliases of those names) LJ . . . , Notice 
that these alias sets have several useful properties: 

Uniqueness 

If cr is a name in alias set S, then (Y is in no other alias set. 
This assignment is also independent of the region of code 

in which cy is referenced. 

Completeness 
If (Y is a name, it is a member of some alias set; if (Y is 
mutually exclusive of all other names, then the alias set 

which contains (Y is a singleton set containing cr. 

Relationship to CReg Assignment 
The number of elements in an alias set is the maximum 
possibIe number of CRegs which that set could use 
beneficially (i.e., it is the upper bound on CRegs needed, 

achieved only if all names are simultaneously live 
[AhS86]). In fact, the elements of an alias set arc the 
items which are assigned to CRegs. 

3.2. CReg Allocation 

Given that the source program has been analyzed and 
that the collection of alias sets is known, the next step is to 
assign values to CRegs and to generate code reflecting that 
assignment. Since CRegs closely resemble registers, it is not 
surprising that the allocation schemes for CRegs closely resem- 
ble those for register allocation, except for the need to operate 
on alias sets. If, for example, all alias sets obtained from a pro- 
gram are singleton sets, CReg allocation is precisely register 

allocation. 

Due to limitations of hardware circuit complexity, the 
(simultaneous) assocativity of a CReg array is constrained to be 
a small number: typically four (just like the associativity of 
cache). However, it is quite reasonable to have an array much 
larger than just four CRegs - breaking the CReg array into 
associative sets as described in the example CReg RISC proces- 
sor of section 2.1. Consequently, the first and the most impor- 
tant rule of CReg allocation is to put all elements from each 
particular alias set into the same CReg associative set. At first, 
this sounds overly constrained, since an alias set containing 
more than four elements cannot possibly “fit” into a four- 
element CReg associative set, however, experience with com- 

piler automatic paralleliration technology [Ste86] has shown 
that the average number of simultaneously active (“live”) 
names within an alias set is very rarely more than threes. 

Another key issue in CReg allocation is CReg spiIIing. 
An item is spilled from a register if a register is needed for 
some other item, yet no registers are empty. Here, the problem 
is that if a single name from an alias set is to be referenced 
from a CReg associative set other than that which contains the 
other elements of the alias set, all elements of the alias set must 
first be flushed from the CRegs. This makes spilling of alias 
sets highly undesirable: spills defeat the benefits gained from 

CReg hardware automatically maintaining consistency across 
multiple names in an alias set. 

As an illustration of the above guidelines, the following 
subsection presents an easily implementable CReg allocation 
scheme baaed on usage counts [Fre74]. Although good enough 
to demonstrate the advantages of CRegs, this CReg allocation 
scheme is far from optimal (measuring optimality in terms of 
minimising the total execution time for all references). An 
optimal CReg allocation scheme based on machine state transi- 
tion modeling [ChD87] is currently under investigation within 
the Compiler-oriented Architecture Research group at Purdue 
University (CARP). 

3.3. Example CR.eg Allocation Scheme 

The main modification to conventional register allocation 
based on usage counts [Fre74] is that CReg allocation is 
effectively heirarchical: one first allocates alias sets to CReg 
associative sets and then allocates individual CRegs within each 
5et. 

To describe the algorithm, it is first necessary to define 
some measures which will be used to define allocation priorities 
in the algorithm. The usage count of an alias set is defined as 
the total number of references to names within the alias set 
which appear in the program segment under consideration. 
For best results, each reference which appears in the program 
text should be weighted according to its expected frequency of 

execution relative to other references. Expected execution fre- 
quencies can be estimated by examining the program control 
flow [Die87]; for example, references in the then clause of an 

if statement have about one half the execution frequency of 
those which precede the branch. References inside a loop are 
weighted by the expected number of times the loop will iterate. 
The coat-savings estimate of an alias set is therefore: 

cost = ((Usage Count) + 
((Cost of Memory Reference) - 

(Cost of CReg Reference))) - 
((Size of Alias Set) + 

(Cost of CReg Load)) 



The sire of an alias set is equal to the maximum number of 
simultaneously live values in that set within its live range 
period (ss suggested earlier, the upper bound on this number is 
the number of names in the alias set, and this is an acceptable 
approximation). The live range of an alias set is set of refer- 
ences during which any name within the alias set is live, 

Given these definitions, the CReg allocation scheme is: 

[1] Compute the alias sets for references within the program. 
This was described in section 3.1. Siae and cost estimates 
are associated with each alias set, as described above. 

[2] Assign alias sets to CReg sets. The assignment procedes 
to allocate alias sets in the following way: 
[Za] The unallocated alias set with the largest cost- 

savings estimate is allocated first. 
(2b] If multiple alias sets have the same cost-savings esti- 

mate, the one with the largest size is allocated first. 
[2c] If there is more than one CReg set which can fit the 

current alias set, the CReg set which is the “best fit” 
is chosen. 

[2d] If there is no CReg set which can fit the current alias 
set, then the alias set is placed in the CReg set for 
which the estimated spill cost to make space for the 
alias set is the lowest. The estimated spill cost for a 
CReg set to fit a new alias set is computed by sum- 
ming the costs to remove alias sets (in reverse order 
of allocation) from that CReg set until the number 
of free CRegs in the set is 2 the size of the alias set. 
If an alias set is larger than the number of CRegs in 
a CReg set, then, for the purpose of allocating CReg 
sets, the estimated spill cost for a CReg set to fit 
that alias set is computed by summing the costs to 
remove all alias sets from that CReg set. 

[3] Perform the CReg allocation within each CReg set 
independently as: 
[3a] Keep all CRegs in use aa much as possible. 
[3b] When CRegs must be spilled, the alias set(s) with the 

minimum total cost-savings estimate should .be 
chosen. 

4. ConcluLlions 

In this paper, the CReg, a new architectural concept, is 
introduced. The first section argued that registers and cache 

are inherently unable to provide good efficiency in accessing 
aliased objects because neither structure embodies the concept 
of an abased object in such a way ae to allow a compiler to 
manage aliased references. The second section presented a 
detailed discussion of the operation of CReg hardware in 
managing abased references; an outline of the new compilation 
technology associated with managing CRegs - in particular, 
operating on alias sets - is given in section 3. 

At the writing of this paper, the performance of CRegs 
has been examined directly for only a few small examples. Per- 
formance for these examples has been very encouraging. Table 
2 gives a etatic comparison of using registers only, registers 
plus an arbitrarily large cache, or CRegs only, for the RISC 
machine mentioned earlier. The FORTRAN benchmark is that 
given in Listing 2, considering only the code for the assignment 
statements; the C benchmark is a typical encoding of quicksort 

in C, using pointers to mark the start and end of the subarray 
to be sorted. 

Table 2: Static Comparison of CRegs with Registers and Cache 

Benchmark 

FORTRAN assignments 
Total Instruction Words 
Total Memory References (Min) 
Total Memory References (Max) 

C quicksort 
Total Instruction Words 

Total Memory References (Min) 
Total Memory References IMax) 

Flegisters Registers CRegs 

only + Cache Only 

14 14 11 

23 20 12 
23 23 17 

94 94 50 

157 124 72 

157 157 30 

Ongoing work at Purdue University includes the construc- 
tion of a simulator and a compiler so that dynamic results can 
be obtained for a much larger set of benchmarks and so that 
CReg design tradeoffs can be investigated. 
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