
CRegs: A New Kind of Memory

for Referencing Arrays and Pointers

Henry Dietz

School of Electrical Engineering
Purdue University

West Lafayette, IN 47907
hankd@ee.ecn.purdue.edu

(317)494 3357

Often, pointer and subscripted array references touch
memory locations for which there are several possible aliases,
hence these references cannot be made from registers.
Although conventional caches can increase performance some-
what, they do not provide many of the benefits of registers, and
do not permit the compiler to perform many optimizations
associated with register references. The CReg (pronounced
“C-Reg”) mechanism combines the hardware structures of
cache and registers to create a new kind of memory structure,
which can be used either as processor registers or as a replace
ment for conventional cache memory. By permitting aliased
names to be grouped together, CRegs resolve ambiguous alias
problems in hardware, resulting in more efficient execution
than even the combination of conventional registers and cache
can provide.

This paper discusses both the conceptual CReg hardware
structure and the compiler analysis and optimization tech-
niques to manage that structure.

Keywords: cache, register, register-allocation, data-aliasing,
compiler-optimization.

1. Concepts

TO explain how and why CRegs’ improve performance, it

is first necessary to analyze how and why conventional registers
and cache can fail to improve performance (as well as how and

why they can improve performance).

1.1. Registers

A register array is a relatively small, fast, local memory
residing in an address space separated from that of main
memory. The structure of a register memory cell is given in
Figure 1.

Figure 1: Register Memory Cell Structure

1 A patent application for the CReg invention is currently in progrnr.

Chi-Hung Chi

Phillips Laboratories
345 Scarborough Road

Briarcliff Manor, NY 10510

By placing a value in a register, one can reap at least four
benefits:

[l] The fast access time of values in registers reduces latency.
[2] A reference to a register typically does not interfere with

references along the path(s) to main memory, thereby
effectively increasing usable bandwidth to main memory.

[3] Typically, the predictability of register references aids in
compile-time optimization of code and simplifies
hardware. Optimizations are aided in that reference
times can be known at compile time; hardware is
simplified in that register references in most machines
cannot cause pipeline bubbles.

[4] Because register names are typically shorter than memory
addresses, referencing values in registers actually
decreases the required instruction-fetch bandwidth -
even though registers typically cannot hold instructions.

The “catch” is that, for most programs, many values cannot
benefit from being kept in registers. Although it is true that

sometimes a value cannot be kept in a register because the

hardware provided too few registers, even given an infinite
number of registers, a large fraction of the values computed
within any program should not be kept in registers. To under-
stand why some values should not be kept in registers, one
must understand a little bit of compiler flow analysis.2

Suppose a particular segment of a program refers to two
names, one called cy and the other called /% If one of CY and j3 is
a pointer, or one is a call-by-address argument to this routine
and the other is a variable which was accessible in the caller’s
scope, or both are elements of the same array (such as a [i]

and a [j I), etc., then it is possible that even though IY and p
look like different names, they refer to the same object. In
other words, changing the value of one might change the value
of the other, i.e., cr and /3 might be aliases for the same object.

If compile-time analysis can prove that a and ,f3 cannot be
aliases for the same object, then d and p can each be aasigned
to a register and each can be kept there indefinitely. Instead, if
the compiler can prove that (Y and p are always aliases for the
same object, then LY and ,0 are assigned to share a single regis-

* The description given here of the nmbiguour aliar problem ir a grow oversimpli6crtion intended only to give
an intuitive introduction to the problem. This issue is currentiy one of the richest research areu within compiler
technology; more detailed discussions of this problem appear in [All33], [Burlll], [BuCBB], [Al186], [Ste66], and
[DieW].

360
CH2617-9/88/0000/0360$01.00 0 1988 IEEE

ter, and again the object can be kept in a register indefinitely.
However, if the compiler isn’t sure if cr and /3 refer to the same
object, or if CY and p only sometimes refer to the same object,
we say that CY and /3 are ambiguously aliased to each other.

At thia point, it is useful to point out that compile-time

analysis techniques for determining if cu and @ are aliases for
each other are, at best, complex to implement and easy to con-
fuse. Confusion results in the “safe” assumption that cr and @

are ambiguously aliased to each other. In addition, in many
ceses it is theoretically impossible for the compiler to determine
whether cy and /9 are aliased, in which case the compiler must
again assume that they are ambiguously aliased. A good exam-
ple of such a case is determining whether a I. i] and a I j I
are aliased in code like Listing 1.

readln(i, j);
b := a[i] + a[j];

Listing 1: Compile-Time Unresolvable Aliasing Problem

If the compiler’s best “guess” is that cr and /3 are ambigu-
ously aliased, then placing either value in a register will require
“flushing” that register whenever either cy or j3 is stored into.
This “flushing” is usually needed so often that the cost of

referencing cr and p from registers is actually greater than the
cost of referencing them from main memory, hence, placing cr
and p in registers would degrade, rather than improve, perfor-
mance.

1.2. Cache

A cache is a “small” memory holding rapidly accessible
copies of values addressed associatively by main memory
addresses. The conceptual structure of a cache memory cell is
shown in Figure 2.

datum address

Figure 2: Cache Memory Cell Structure

Of the four benefits listed for placing a value in a register, how-
ever, in general, caches only insure [I]: a reduction in access
latency. Benefit [Z], which is based on the lack of interference
between register and main memory data paths, does not hold
for 8 traditional cache, except in that other processors in a
multiprocessor system typically would not see interference from
cache references on a particular processor’s cache.

The predictable reference time for a register reference,
benefit (31, is not echoed in cache reference because of the con-
cept of a cache miss. Some would argue that, given a large

enough cache, the probability of having a cache miss can be
made arbitrarily low; however, we believe this misses the point.

One reason we disagree with the very-large cache argument is

that the access speed of a memory is related to the size of its

address space (e.g., if one can fit the cache on the processor
chip, it will probably function much faster than if it is refer-
enced across several chips). Another reason is that the cost of
implementing an arbitrarily large cache is also arbitrarily large
- it isn’t very cost effecitive. In any case, unless the cache is
as large as the entire virtual address space of the machine, one
will occasionally suffer a cache miss, and this implies that extra
hardware/software effort must be made to cope with thii situaF
tion.

Benefit [4] is based on the reduction of required
instruction-fetch bandwidth due to use of short names in
referencing values. This cannot be applied to cache because the

register correspondence between short names (register
numbers) and long names (memory addresses) must be expli-
citly established by register Load and Store instructions,
whereas the mapping in a cache is unknown to the software. In
other words, a compiler cannot tell which cache line of a con-
ventional cache will hold 8 copy of a particular value it is
referencing - hence, it cannot use the cache line number to
address the value. The desired value might not even be in the
cache, either because it has not yet been placed there or
because placing some other entry in cache “bumped” the
desired entry out of cache.

The above discussion might lead one to conclude that
registers are far better than cache, so why use cache? The
answer is simply that while ambiguously aliased values cannot
be profitably placed in registers, they can be placed in cache.

1.3. CRegs

Unlike registers, cache-registers (CRegs) may be used to
buffer values which may have ambiguous aliases; unlike cache,
CRegs provide the ability to use short names for variables
instead of addresses (thereby reducing instruction-fetch

bandwidth requirements) and also provide for conceptually
duplicate entries (many-to-one mapping of short names into
addresses). CRegs provide all four advantages of registers; but
CRegs provide these advantages for all values, ambiguously

aliased or not.

The conceptual structure of a CReg memory cell is a
superset of both cache and register cell organizations, 8s illus-
trated in Figure 3.

nom.2 datum oddrera

Figure 3: CReg Memory Cell Structure

361

Each CReg is a register which holds both address and
data fields. When a CReg is referenced (by CReg number - a
short name), an associative search is made to iind neighboring
CRegs which have the same value in their address field. Any
CRegs found by this association are aliases for the CReg
directly named, and the CReg hardware simply maintains
coherence of these entries. This associative function is imple-

mented by hardware very similar to that implementing the
associativity of a cache, however, unlike a cache, CRegs avoid
making memory references on an aliased Load operation by
using dupiicate entries in the CReg array. (The precise opera-
tion of CRegs is described in greater detail in the example of
the following section.)

Although the STM (generalized Short Term Memory cell)
[Sit791 employs a memory cell structure similar to that of a

CReg, STMs did not support CReg-like associative function.
Likewise, the “rack” desciribed in [StS85], suggests a similar
cell structure, but is not associative. The register-addressed
stack cache mechanisms of various processors could be argued
to provide benefits similar to that of CRegs; however, they do
so only for items in the top few stack cells. Since these items
are a subset of the items which could have been kept in regis-
ters, stack caches also fail to provide a solution to the aliased-
item reference problem.

The implementation, and hence the circuit complexity, of
a CReg array is virtually identical to that of a similar-size
cache; the CReg array is slightly simpler because the hardware

is explicitly told where to make each entry (what CReg
number), whereas conventional caches use hardware-

implemented policies, such as LRU, to decide which line to
replace. However, CRegs can be managed as efficiently az
registers, hence, unlike cache, very small CReg arrays are quite
useful. For example, simply replacing the registers of a conven-
tional processor with CRegs (and, incidentally, not even chang-
ing the instruction set) is typically both feasible and effective to
the extent that the number of memory references made by the
processor can often be halved.

2. An Example

An example clearly illustrates the advantage of being able
to use CRegs for all value references, whether ambiguously
aliased or not. Consider the FORTRAN code of Listing 2.

C
C A call-by-address subroutine
C

SUBROUTINE NASTY(I, 3, K)
10 I = J * K
20 R = J + K

RETURN
END

Listing 2: FORTRAN Sample Code

The subroutine NASTY operates on three arguments, I, J,
and K, which are all passed using call by address. Since FOR
TRAN permits I, J, and K to reference the same cell of
main memory, the values of J and K cannot be blindly placed
in conventional registers in the code for line 10 and simply
reused in the code for line 20 - to do so would produce
incorrect results if I refers to the same main memory cell as
either J or K. To place these variables in conventional regie
ters, the compiler would need to know precisely which of the
arguments referenced the same cells - the classic ambiguous
alias problem discussed earlier. Hence, unless the compiler is
permitted to generate multiple encodings of NASTY (one for
each possible set of variable aliases), none of I, J, and K can

be kept in registers.

However, all of these variables can be placed in CRegs. In
fact, if this is done, the references in line 20 will dWUy8 be
served within CRegs - main memory will not be accessed.

Table 1 shows all possible combinations of aliases for I, 3,
and K, and, for each alias set, where the values of J and K

are to be found.

Table 1: CReg Place of Reference for J and K

.

Aliases Where J is Where K is

I, J, K disjoint CReg for J CReg for K

I is J Assoc. I,J CReg for K

I is K CReg for J Assoc. 1,K

J is K Assoc. J,K haoc. J,K

I is J is K Assoc. I, J,K Assoc. I, J,K

As indicated earlier, the read requests in line 20 for J

and K are always satisfied within the CReg array. The entries
in the table which say “CReg for” are simple CRegs acting as
ordinary registers (with no associative access); the entries which
say “Assoc.” are satisfied by the associative memory function
of the CRegs. (Notice that the associative function depends on
the existence of duplicate entries in the CReg array - which
would not be permitted in a conventional cache.) Further,

since all three variables can be placed in CRegs, the references
in line 20 would simply use the CReg names, rather than
memory addresses, because a CReg name implies a main
memory address. This fact also permits entire instructions to
disappear: Store instructions can be implicit, using a
“dirty bit” and a “lazy store” mechanism.

It can be argued that the references in line 20 might be
satisfied in a more conventional cache, thereby avoiding a main
memory reference in the same way that CRegs avoid the refer-
ence; however, only CRegs can guarantee that this occurs under
all circumstances (as we detailed in the previous section). Even

362

accepting that a conventional cache might avert the main
memory references as CRegs do, CRegs also reduce the in&rue
tion fetch bandwidth requirements by permiting short CReg
names to be used for I, J, and K rather than long main

memory addressee.

The next subsection briefly describes a simple RISC
register-baaed processor design and its adaptation to use CRega
instead of registers. In the subsection following that, the above
example is encoded and the execution traced for this RISC
machine.

2.1. A RISC Procearor wing CR.ege

There are many possible implementation techniques for
CRegs. In this section, we discuss a simple modification of a
RISC processor design which replaces a register array with a
CReg array3. The point here is not to propose a RISC archi-
tecture, but rather to show the difference between register-
based and CReg-based versions of the same architecture.

The example architecture ls a M-register RISC machine

whose register Rf (register 15) is also the PC (program
counter). Replacing the registers with CRegs, we obtain the
programmer’s model given in Figure 4.

Figure 4: CReg RISC Programmer’s Model

The first difference one notices is that each CReg has two
fields, the data and address fields. Quite naturally, the PC is
the address field of Rf, which implies that the data field of Rf is
the IR (instruction register); although it is not a major point of
this paper, prefetch of instructions beyond a branch is really
just another flavor of ambiguous alias reference, and it too is
handled using CReg associativity.

The programmer’s model also reflects fragmentation of
the 16 CRegs into four sets of four CRegs each. Since it may
be difficult to construct cache-like hardware which is more than
about 4way associative [Smi78], the WCReg array is broken
into associative groups of four CRegs each’. For example, if
CReg Rl holds D1=5, Al=601 and an instruction attempts to
load the contents of memory location 601 into R2, an associa-

tive load will occur (without a main memory reference) and R2

will hold D2=5, &!=601. If one tried to load the contents of
memory location 601 into R4 instead of R2, since Rl and R4
are in different associative sets, a memory reference would be
needed to load R4 and the value loaded might not match the
value in Rl. Obviously, the “trick” is to always place names
which are ambiguously aliased together in the same set . . .
compiler techniques to accomplish this are discussed in sections
3.2 and 3.3. If CReg hardware can be built without this seg-

mentation, the only results are that compilation becomes easier
and the CRege become more effective.

The instruction sets of the RISC and CReg RISC
machines are identical, hence there are no changes to describe.

2.2. Code for the Example

Using the original (conventional register-bssed) RISC
design, the instruction sequence for the lines 10 and 20 of the
FORTRAN program in listing 1 would be as given in listing 2.
(To simplify the example, no special handling of delayed loads
or other compiler optimizations are assumed.)

Ld
Ld
Ld
Ld
MU1

Ld
St
Ld
Ld
Add
St

RO,@argJ
RI ,@RO
R2 ,@argK
R3,@R2
R4,Rl,R3
R5 ,@argI
@R5,R4
Rl,@RO
R3,@R2
R4,Rl ,R3
@R2,R4

;RO <- addr(J)
;Rl <- J
;R2 <- addr(K)
;R3 <- X
;R4 <- RI l R3

ddr(1)
<- R4

;R5 <- a
;mem(RS)
;Rl <- J
;R3 -z- K
;R4 <- R
;mem(R2)

1 + R3
<- R4

Listing 3: Register RISC Code

Listing 3 should be compared with the CReg RISC instruction
sequence given in Listing 4. (As Listing 3, Listing 4 does not
reflect the application of any compiler optimisations.)

s This ia not implying, for urrmpla, that CRega could not be implemented in uxy other x*y - in fact, Cw
can even be impleme.nkd by taking a convcntion~ &chip cache wad limply mapping nomc portion ol the 3llobal
memory addrew npwx into literal cache addraw (cache line addrcua rather than urociatira cacba line addrcu
lab&). A conventional processor could then UC abort oL& from an index rc&ter to refuence these CRega by
num.

’ Unlike crehcr which nn grouped into a& by addressnpw.e, the CRega in thin mubine sra grouped into rsk
by CRq nunaapace. Alternatively, CReg net) could be timerpus partitioned. For axmpb, uwci8tiva -B
to CRega (RO, Rl, RZ, R3) may complete in two cyden, for CRq {RRI, RS, RO, R7) in thra cycle+ etc.
Provided the number of cydcl (time-multiplexed uwxiativs nets) is not greatu than the main memory refarenu
time, l compiler can conaider this coat lunetion in dlocatinz CRcga #.a u to muimira probable bemilt.

363

Ld
Ld
Ld
Ld
Mu1

Ld
St
Add

R3 ,@argJ
RO ,@R3
R4 ,@argK
Rl,@R4
R2,RO,Rl
R5 ,@argI
@RS,R2
Rl,RO,Rl

;D3 <- addr(J), A3 <- argJ
;DO c- J, A0 <- addr(J)
;D4 +c- addr(K), A4 q- argK
;Dl <- K, Al <- addr(K)
;D2 *- RO l RI
;D5 <- addr(1). A5 q- arg1
;A2 (- D5, mem(A2) q- 02
;Dl c- DO + Dl, mem(A1) <- Dl

Listing 4: CReg RISC Code

The first seven instructions of both register and CReg code
sequences appear to serve the same purpose; however, they do

not imply the same memory references. Further, in the rest of
the code, a single instruction in the CReg version replaces four
instructions in the conventional register code.

To make these differences more visible, we will consider
the situation which occurs using CRegs when I is an alias of
K (i.e., addr(1) is addr(K)). Figure 5 shows the progression of
CReg contents as the CReg RISC code of Listing 4 is executed.
In each of the diagrams of Figures 5a-5h, CReg associative sets
which are not involved in the actions caused by this code
sequence are not shown. The additional field on each CReg in
Figures 5a-5h is the “dirty” bit - a 1 indicates a dirty value,
which may be lazily stored back to main memory, reseting the
dirty flag. Notice that dirty bits are also set/reset associa-
tively.

- -

R5: - - _

RB: - - _

Rl: - - _

addr(K) nrgK 0

R5: - - -

R8: - - _

R7: - - -

Figure Sd: CReg Contents after Executing Ld R 1 , @R4

Ro: J ad&(J) 0

R1: x add@) 0

R2: J’K - _

R3: sddr(J) argJ 0

R4: ddr(Y) ugK 0

I RS: - - -

Rg: - - -

R7: - - _
I

Figure Se: CReg Contents after Executing Mu1 R2, RO , El

ROT J sddr(J) 0

Rl: I add+) 0

R2: J’K - _

R3: =WJl ugJ 0

Figure Sf: CReg Contents after Executing Ld R5 , @argI

Figure 68: CReg Contents after Executing Ld R3 , @arg J

Figure 5g: CReg Contents after Executing St @R5, R2
Figure 6b: CReg Contents after Executing Ld RO , @R3

RO: J addr(J) 0 M: addr(K) u& 0

RI: J+(J*Io addr(H) 1 R5: &id?(K) ugl 0

R2: J+(J*K) addr(K) 1 R8: - - .

R3: sWJ1 ugJ 0 R7: - - .

Figure SC: CReg Contents after Executing Ld R4, gargK Figure Sh: CReg Contents after Executing Add R 1 , RO , R 1

364

It is interesting to note that the lazy store mechanism, in
the case traced above, would very likely avoid performing the
store to main memory which was implied in Figure 5g (since
the store implied in 5h makes 5g a “dead store” because I and
K are actually the same object).

3. Compiler Technology

The basic compiler technology needed to make good use of
CRegs is very similar to that needed to perform register allots
tion, however, there are a few complications. The first

complication is that names must be grouped according to which
other names they are ambiguously aliased with, henceforth
called an a&as net; this is discussed in the next subsection.
The subsection after that discusses the problem of reasonably
packing alias sets into CReg associative sets and of allocating
registers given such a packing.

Throughout this section, our intent is not to provide the
best possible CReg management, but rather to demonstrate
that reasonably good CReg management is not particularly
difficult to implement.

3.1. AIias Sets

As discussed above, the fundamental flaw in static
analysis of conventional-language programs is that it is not
possible to statically determine, for all variables, which ones
are aliaaed to which others at each point in the program. The
CReg mechanism does not aid in solving this problem; however,
it changes the problem into one which can be solved. The alias
problem for CRegs is simply finding which items can be aliased
to each other. We call this problem the construction of alias
sets.

The basic tools with which alias sets are constructed are
the familiar algorithms of compiler flow analysis (including
dependence analysis). These tools have been particularly well-
honed in pursuit of efficient automatic parallelization. The
presentation here is intended merely to provide a brief overview
to the analysis involved in creating alias sets.

3.1.1. Names

The first issue to resolve in grouping names into alias sets
is the basic question of what constitutes a name. Each variable
could be considered a name, however, this is not the most uae-
ful definition. The difficulty is rooted in the fact that a vari-
able cr may be an alias for a variable /3 within one region of a
program, while cr may be an alias for 6 in another section of the
code. In such a case, considering Q to be a name used for
grouping into alias sets, it would be necessary either to make
the alias set containing Q be {(Y,@} or to make the alias set for

or be {o,a} in one region of code and {o,6} in another. Ideally,
names should be chosen so that each name is a member of an
alias set whose contents are independent of position in the pro-
gram, yet where no names are included unnecessarily.

The solution to this naming problem is simply to incor-
porate control and data flow information in the names: how-
ever, the mapping from user variable names into these
zdiased-object namea is surprisingly complex. For example,
if the user has declared i to be an int variable and p to be
an int + which is initially set to point at i (e.g.,
p= (hi) ;), then references to both i and l p use the same
aliased-object name: user names are mapped many-to-one into
aliased-object names. This means that if the compiler can
detect that two user names are unambiguously aliased to each
other, these two user names will share a single aliased-object
name. The rule is more precisely expressed as:

Definition 1: User-Name Merging
The user-created names cu and /3 can be merged into a sin-
gle abased-object name within some region of code ifi the
values associated with the names cy and /3 are known to be
the same throughout that region of code.

which also implies that explicitly made copies of values can all
share a single aliased-object name (i.e., the compiler can per-
form copy propagation).

On the other hand, in a code sequence like
i=j; . . . i = k ; , the user name i will be mapped into

multiple aliased-object names, one for each different value

stored into i. This rule is best expressed in terms of D-U
chains and U-D chains [AbS86]:

Definition 2: User-Name Spliting
Let U be the set of uses of (loads from) the user name (Y.
For each use u.cU, let the U-D chain rooted at ui be called
d, If, for any’i and i, dnd#@, then let d=dUd. and
dklete d, When no rnoie iuch merger/delehoni ch be
performid, each of the remaining sets (di) can be
represented by a separate aliased-object name.

Notice that values which do not have programmer-assigned
names, such as intermediate results within an expression, also
may be assigned aliased-object names by the above rules.

3.1.2. Formation of AIii Sets

Given the above definitions, it is relatively easy for a com-

piler to generate a set of names appropriate for grouping into
alias sets; but what is an alias set? There are actually several
compile-time distinguishable types of aliases:

111

I21

(31

A name LY is a true sliaa of the name p if cx is known to
always be associated with the same value that is associ-
ated with ,0. (Notice that, if this is so, the two names
may be merged by Definition 1 given above.)
A name cr is an intersection alias of the name p if (Y and
/3 are known to share some elements of their values, how-
ever, perhaps not all elements. For example, if a is a
struct containing members called b and c, then a
and a. b are intersection aliases. Intersection aliases
occur most often in code referring to arrays.
A name CY is a l ometirnea rliaa of the name /3 if Q is
known to be a true or intersection alias for ,8 under some
circumstances at runtime, however, (Y is not an alias for /3
under other circumstances. For example, references to
a [i] and a [5] are sometimes aliases if i could be
equal to 5.

365

(41 A name (Y is an ambiguous &as for p if CY is an intersec-
tion alias or sometimes alias for p, or if the compiler is
unable to determine the relationship between (Y and p.

[5] A name (Y is mutually exclurivc of p if cr and p are not
related by any of the above alias types. If, for all p, cr is
mutually exclusive of j3, then (Y is unamblguoum.

For the purpose of CReg assignment, an alias set is a set of
names grouped by “closure” of the ambiguous alias relation.
In other words, given a name n, the alias set for n consists of n
U (all names which are ambiguous aliases of n) U (all names
which are ambiguous aliases of those names) LJ . . . , Notice
that these alias sets have several useful properties:

Uniqueness

If cr is a name in alias set S, then (Y is in no other alias set.
This assignment is also independent of the region of code

in which cy is referenced.

Completeness
If (Y is a name, it is a member of some alias set; if (Y is
mutually exclusive of all other names, then the alias set

which contains (Y is a singleton set containing cr.

Relationship to CReg Assignment
The number of elements in an alias set is the maximum
possibIe number of CRegs which that set could use
beneficially (i.e., it is the upper bound on CRegs needed,

achieved only if all names are simultaneously live
[AhS86]). In fact, the elements of an alias set arc the
items which are assigned to CRegs.

3.2. CReg Allocation

Given that the source program has been analyzed and
that the collection of alias sets is known, the next step is to
assign values to CRegs and to generate code reflecting that
assignment. Since CRegs closely resemble registers, it is not
surprising that the allocation schemes for CRegs closely resem-
ble those for register allocation, except for the need to operate
on alias sets. If, for example, all alias sets obtained from a pro-
gram are singleton sets, CReg allocation is precisely register

allocation.

Due to limitations of hardware circuit complexity, the
(simultaneous) assocativity of a CReg array is constrained to be
a small number: typically four (just like the associativity of
cache). However, it is quite reasonable to have an array much
larger than just four CRegs - breaking the CReg array into
associative sets as described in the example CReg RISC proces-
sor of section 2.1. Consequently, the first and the most impor-
tant rule of CReg allocation is to put all elements from each
particular alias set into the same CReg associative set. At first,
this sounds overly constrained, since an alias set containing
more than four elements cannot possibly “fit” into a four-
element CReg associative set, however, experience with com-

piler automatic paralleliration technology [Ste86] has shown
that the average number of simultaneously active (“live”)
names within an alias set is very rarely more than threes.

Another key issue in CReg allocation is CReg spiIIing.
An item is spilled from a register if a register is needed for
some other item, yet no registers are empty. Here, the problem
is that if a single name from an alias set is to be referenced
from a CReg associative set other than that which contains the
other elements of the alias set, all elements of the alias set must
first be flushed from the CRegs. This makes spilling of alias
sets highly undesirable: spills defeat the benefits gained from

CReg hardware automatically maintaining consistency across
multiple names in an alias set.

As an illustration of the above guidelines, the following
subsection presents an easily implementable CReg allocation
scheme baaed on usage counts [Fre74]. Although good enough
to demonstrate the advantages of CRegs, this CReg allocation
scheme is far from optimal (measuring optimality in terms of
minimising the total execution time for all references). An
optimal CReg allocation scheme based on machine state transi-
tion modeling [ChD87] is currently under investigation within
the Compiler-oriented Architecture Research group at Purdue
University (CARP).

3.3. Example CR.eg Allocation Scheme

The main modification to conventional register allocation
based on usage counts [Fre74] is that CReg allocation is
effectively heirarchical: one first allocates alias sets to CReg
associative sets and then allocates individual CRegs within each
5et.

To describe the algorithm, it is first necessary to define
some measures which will be used to define allocation priorities
in the algorithm. The usage count of an alias set is defined as
the total number of references to names within the alias set
which appear in the program segment under consideration.
For best results, each reference which appears in the program
text should be weighted according to its expected frequency of

execution relative to other references. Expected execution fre-
quencies can be estimated by examining the program control
flow [Die87]; for example, references in the then clause of an

if statement have about one half the execution frequency of
those which precede the branch. References inside a loop are
weighted by the expected number of times the loop will iterate.
The coat-savings estimate of an alias set is therefore:

cost = ((Usage Count) +
((Cost of Memory Reference) -

(Cost of CReg Reference))) -
((Size of Alias Set) +

(Cost of CReg Load))

The sire of an alias set is equal to the maximum number of
simultaneously live values in that set within its live range
period (ss suggested earlier, the upper bound on this number is
the number of names in the alias set, and this is an acceptable
approximation). The live range of an alias set is set of refer-
ences during which any name within the alias set is live,

Given these definitions, the CReg allocation scheme is:

[1] Compute the alias sets for references within the program.
This was described in section 3.1. Siae and cost estimates
are associated with each alias set, as described above.

[2] Assign alias sets to CReg sets. The assignment procedes
to allocate alias sets in the following way:
[Za] The unallocated alias set with the largest cost-

savings estimate is allocated first.
(2b] If multiple alias sets have the same cost-savings esti-

mate, the one with the largest size is allocated first.
[2c] If there is more than one CReg set which can fit the

current alias set, the CReg set which is the “best fit”
is chosen.

[2d] If there is no CReg set which can fit the current alias
set, then the alias set is placed in the CReg set for
which the estimated spill cost to make space for the
alias set is the lowest. The estimated spill cost for a
CReg set to fit a new alias set is computed by sum-
ming the costs to remove alias sets (in reverse order
of allocation) from that CReg set until the number
of free CRegs in the set is 2 the size of the alias set.
If an alias set is larger than the number of CRegs in
a CReg set, then, for the purpose of allocating CReg
sets, the estimated spill cost for a CReg set to fit
that alias set is computed by summing the costs to
remove all alias sets from that CReg set.

[3] Perform the CReg allocation within each CReg set
independently as:
[3a] Keep all CRegs in use aa much as possible.
[3b] When CRegs must be spilled, the alias set(s) with the

minimum total cost-savings estimate should .be
chosen.

4. ConcluLlions

In this paper, the CReg, a new architectural concept, is
introduced. The first section argued that registers and cache

are inherently unable to provide good efficiency in accessing
aliased objects because neither structure embodies the concept
of an abased object in such a way ae to allow a compiler to
manage aliased references. The second section presented a
detailed discussion of the operation of CReg hardware in
managing abased references; an outline of the new compilation
technology associated with managing CRegs - in particular,
operating on alias sets - is given in section 3.

At the writing of this paper, the performance of CRegs
has been examined directly for only a few small examples. Per-
formance for these examples has been very encouraging. Table
2 gives a etatic comparison of using registers only, registers
plus an arbitrarily large cache, or CRegs only, for the RISC
machine mentioned earlier. The FORTRAN benchmark is that
given in Listing 2, considering only the code for the assignment
statements; the C benchmark is a typical encoding of quicksort

in C, using pointers to mark the start and end of the subarray
to be sorted.

Table 2: Static Comparison of CRegs with Registers and Cache

Benchmark

FORTRAN assignments
Total Instruction Words
Total Memory References (Min)
Total Memory References (Max)

C quicksort
Total Instruction Words

Total Memory References (Min)
Total Memory References IMax)

Flegisters Registers CRegs

only + Cache Only

14 14 11

23 20 12
23 23 17

94 94 50

157 124 72

157 157 30

Ongoing work at Purdue University includes the construc-
tion of a simulator and a compiler so that dynamic results can
be obtained for a much larger set of benchmarks and so that
CReg design tradeoffs can be investigated.

Reference8

[AbS86]

(All831

(Al1861

(BuC86]

[Burg41

[ChDI?]

[Die871

[Fre’lrl]

[Sit791

[Smi78]

[Ste86]

[StS85]

A. V. Aho, R. Sethi, and J. D. Wllman, Compilers:
Principles, Techniques, and Tools, Addison Wesley,
Reading, Massachusetts, 1986.
J. R. Allen, Dependence Analysis for Subscripted
Variables and its Application to Program Transfor-
mations, Rice University, Ph.D. Thesis, April 1983.
F. Allen, “The Parallel Translator Project,” NASA
/ ICASE Parallel Languages and Environments
Workshop, November 1986.

M. Burke, R. Cytron, “Interprocedural Dependence
Analysis and Parallelization,” SIGPLAN Sympo-
sium on Compiler Construction, 1986, pages 162-
175.
M. Burke, An Interval Analysis Approach Toward
Interprocedural Data Flow, IBM, Yorktown Heights,
New York, Research Report .RC 10640 (#47724),
July 1984.
C. H. Chi and H. Diets, Compiler-Driven Cache
Policy (Known Reference String), Purdue Univer-
sity Technical Report TR-EE 87-21, June 1987.
H. Dietz, The Refined-Language Approach to Com-
piling for Parallel Supercomputers, Polytechnic
University, Ph.D. Thesis, June 1987.
R. A. Freurghouse, “Register Allocation Via Usage
Counts,” Communications of the ACM, Vol. 17, No.
11, November 1974, pp. 638-642.
Richard Sites, “How To Use 1000 Registers,” Cal-
tech conference on VLSI, January 1979.
A. J. Smith, “A Comparitive Study of Set Associa-
tive Memory Mapping Algorithms and Their Use
for Cache and Main Memory,” IEEE TranrJactions
on Software Engineering, Vol. 4, No. 2, March 1978,
pp. 121-130.
K. Stein, Refined C Compiler Status Report, Inter-
nal Report, Stevens Institute of Technology, 1986.

G. L. Steele Jr. and G. J. Sussman, “The Dream of
a Lifetime: A Lazy Variable Extent Mechanism,”
ACM SIGPLAN order number 552800, 1985, pp.
163-172.

367

