
A Locality Sensitive Multi-Module Cache
with Explicit Management

Jestis Sgnchez and Antonio Gonzalez

Department of Computer Architecture
Universitat Politkcnica de Catalunya

Barcelona - SPAIN

E-mail: {fran,antonio}@ac.upc.es

Abstract

Cache memories are often inefficiently managed, which results in
significant memory penalties. An important reason for this poor
performance is the homogeneous management of all memory ref-
erences, even though different memory references may exhibit a
very different locality. In this work, we present a novel data cache
architecture composed of different modules, each module exploit-
ing a particular type of locality. The information of which module
each fetched data is placed on is passed to the hardware by means
of a hint encoded in the memory instructions. This hint is set
based on a locality analysis that can be performed by the compiler
or using profiling data.

The proposed data cache organization exhibits a high-perfor-
mance for numerical codes, even with low capacity, A SKI3 cache
has a miss ratio that is about 0.4 times the miss ratio of an SKI3
direct-mapped cache and it is very close to that of a 64KB fully-
associative cache, when data prefetching is not considered. Fur-
thermore, the locality analysis allows for a selective one-block
lookahead prefetch scheme, just for those references that exhibit
spatial locality. This prefetch firther reduces the miss ratio to one
half of that of a 64KB fully-associative cache, with a negligible
increase in memory traffic compared with the non-prefetching
scheme, due to the locality-driven selective approach.

Although the proposed data cache organization is oriented
towards numerical codes, which usually suffer more memory
penalties than non-numerical ones, for the latest ones, a very sim-
ple profiling analysis results in a performance very close to a con-
ventional cache, in spite of its lower capacity.

1. Introduction

Memory performance has become one of the main bottlenecks for
the performance of current microprocessors. Since processor
speed improvement is expected to outpace memory bandwidth
increase in future generation microprocessors, this problem will
further worsen.

permission to make digital or hard topics of all or part of this work for
personal or classroom use is gymted without fee provided that copies
are not made 0~ distributed for profit or commercial advantage and that
copies hea7 this notice and the full citation on the lirst page. To copy
ot}lcnvisc, to wpublish, to post on sm’crs or to redistribute tO lists,
requires prior specific permission and/or a fee.
ICS ‘99 Rhodes Greece
Copyright ACM 1999 l-581 13-164~x/99/06...$5.00

Due to the great impact that cache performance has on the
overall processor performance, current processors assign a large
portion of its area to implement a first-level cache (typically split
into instruction and data caches). In this way, on-chip caches in
current processors occupy between l/3 and 314 of the total chip
area. However, the performance obtained by these caches can stil1
be insufficient for some applications, mainly numeric applications
that require large working sets. For instance, Cvetanovic and
Bhandarkar reported that the Alpha 2 1164 is stalled about 50% of
the time for the SPECfp92 and the majority of these stalls are due
to memory related issues [5].

Increasing the cache capacity/associativity may help but is
not necessarily the most cost-effective solution because both
capacity and associativity may increase the cycle time. Further-
more, there are several studies (see [10][2] for instance) that show
that the cache memory makes an inefficient use of its storage
capability. We claim that this inefficiency comes from the uniform
management of all memory references. That is, for every refer-
ence which is not in cache, the corresponding block of data is
fetched and placed using the same scheme for all references. The
cache must then be designed to exploit some average amount of
spatial and temporal locality, whereas there are references that
may exhibit a very different locality (higher or lower than on aver-
age>.

In this paper, we propose a new cache architecture that con-
sists of three modules, each of them being specialized to exploit a
different type of locality. Unlike previous multi-module propos-
als, the hardware complexity is kept low since the compiler is
responsible for making explicit for each memory instruction the
suggested module allocation for the data that it references. The
proposed cache architecture is thereby called Locality Sensitive
Multi-module Cache (LSMCache).

For numerical programs, which are in general more affected
by cache hierarchy, the locality of each reference can be estimated
quite accurately at compile time using a data locality analy-
sis([6][23][3]). In this paper, we focus on this type of applications.
For other type of applications (non-numerical applications, with a
lot of pointers and dynamic structures) a static locality analysis
can be unfeasible to perform, and thus it is performed with profil-
ing data.

Including some hints in the memory instructions so that the
compiler can provide the hardware with relevant information
regarding the locality exhibited by each memory instruction is
becoming a common practice. For instance, the PA7200 memory
instructions have a bit in order to identify references with only
spatial locality [4]. The PowerPC provides the possibility of iden-
tifying memory instructions that exhibit low locality and thus, to
bypass the cache for such instructions [21]. In all these cases, the
compiler is responsible for providing the information that is
encoded in the memory instruction and that will determine during

51

SPEcfp95 SPEcf945 SPFcfp95

(a) Miss ratio (b) $vg.btched (c) Waste of bandwidth

Figure 1. Performance of conventional cache architectures aver-
aged for all programs

execution the proper action that the hardware must take. A more
general approach is taken by the HPL-Playdoh architecture [13].
This architecture emphasizes the philosophy of passing information
from the compiler/profiler to the hardware by making it explicit in
the ISA. This information may be related to several different issues,
such as dependences, speculation, data locality, etc.

The remainder of this paper is organized as follows. Section 2
points out the inefficiency of conventional cache architectures. Sec-
tion 3 reviews the related work and describes the contributions of
this work. The proposed cache architecture is presented in section
4 and some performance figures are shown in section 5 (for numer-
ical codes) and 6 (for non-numerical codes). Finally, section 7 pre-
sents a summary and the main conclusions.

2. Motivation

The basic goal of cache memories is to keep the most frequently
referenced data near the processor. In order to do that, cache mem-
ories exploit an intrinsic characteristic of memory references called
reuse. Reuse can be of two different types: i) temporal (different
dynamic instructions access the same data word), or ii) spatial (dif-
ferent dynamic instructions access nearby data words). Each one of
these two types of reuse can be further characterized as se[f-reuse
or group-reuse, depending on whether the reuse occurs among dif-
ferent references of the same instruction or among references of dif-
ferent static instructions respectively.

Conventional caches try to exploit spatial reuse by using a
block (also called fine) as a transfer unit between the different levels
of the hierarchy, and seek to exploit temporal reuse by keeping
some recently accessed blocks in the cache memory. All memory
references are handled in the same way, that is, they use the same
fetch, placement, replacement and write policies [9]. However, this
uniform management of all memory references can be very ineffi-
cient. In particular, some references can degrade the cache perfor-
mance by introducing blocks that will not be used in a near future,
or blocks where only a small portion of them is used. Such refer-
ences fetch an unnecessary number of words, wasting memory
bandwidth and polluting the cache.

For instance, Figure 1 shows the results of simulating several
conventional cache architectures for some SPECfp95 programs
(see Section 5.1 for further details about the simulation environ-
ment). The graphs show: a) the miss ratio; b) the average number of
fetched words (8 bytes) from the next memory level per memory
reference (that has a direct relation with the traffic); and c) the per-
centage of words that are brought into cache but not used before
being replaced. Four different capacities are considered; 8KB,
16KB, 32KB and 64KB; as well as three different degrees of asso-
ciativity: 1 (direct-mapped), 4 and full associativity. All configura-
tions use a typical line size of 32 bytes. The graphs show the results
averaged for all the analyzed programs. We can observe that

50

9 40

.s 30

4 20

s 10

0

16KB 32KB 16KB 32KB 16KB 32KB

tomcat” swim suzcor

Figure 2. Impact of cache line size on total miss ratio for some
SPECfn95 benchmarks

increasing the cache capacity reduces the miss ratio but the benefits
are small beyond 32KB (to obtain a further significant improve-
ment a very large capacity is required). Figure 1 also shows that
associativity helps but the benefits are more noticeable for small
caches. Finally, it can also be observed that for all the configura-
tions there is a high percentage of useless fetched words.

Another important observation is that the spatial locality of
each reference may be very different. References with very high
spatial locality will benefit from very large cache lines, whereas ref-
erences with poor spatial locality may favor small cache lines.
These differences in spatial locality may be observed if one consid-
ers the behavior of different references (or sections) in the same
program, or the global behavior of different programs. For instance,
Figure 2 shows the miss ratio of some SPECfp95 bechmarks (tom-
catv, swim and su2cor) for different direct-mapped caches (16KB
and 32KB) when the cache line size varies from 16 to 128 bytes. In
the graph, light-grey bars show the best line size for each particular
program and cache capacity. It can be seen that there are programs
that achieve the best miss ratio by using medium or long lines (such
as tomcatv and sdcor). On the other hand, some other programs
work better with shorter lines (such as swim). This behavior sug-
gests that a unique line size is not the best solution in order to imple-
ment a general-purpose cache.

3. Related Work on Multi-Module Caches

The distinguishing features of the cache architecture proposed in
this paper are the classification of memory references into three
types, according to their locality, in order to exploit them in three
different modules, and the explicit placement of data based on a hint
that is set at compile time.

Some other multi-module cache architectures have previously
been proposed. The stream buffers [121 are FIFO queues added
between the Ll and L2 caches. On a memory access, both the data
cache and the stream buffers are probed in parallel. If the data cache
misses but the stream buffer hits, the block is moved to the data
cache and a prefetch to the next block is performed and placed in
the buffer. Unlike our proposal, this scheme does not take into
account the particular type of reuse exploited by each reference, and
thus, unnecessary traffic and low performance can occur for only-
temporal and non-strided references.

The victim cache [121 has as a primary goal to remove conflict
misses. The basic idea is to have a small fully-associative module
where blocks discarded from the main cache are placed. If a hit
occurs in the victim cache, a swapping of blocks between the victim
and the main cache is performed. This scheme also makes a uni-
form management of the cache architecture since all references are
handled in the same way. The main drawback of the victim cache is
the “blind” swapping management (in the sense that all replaced
lines are moved to the victim cache), in addition to the increase in
cache port pressure due to the swapping traffic. A similar cache
architecture is the PA-7200 assist cache [4]. The management of

52

the two modules is somewhat different, being the software-con-
trolled selective swapping its most important difference. Memory
instructions in the PA-7200 have a flag that is set by the compiler
for those instructions that are expected to exhibit only spatial reuse.
The data accessed by these instructions is brought into the assist
cache but is not moved to the main cache.

There are also some works that propose different cache archi-
tectures composed of several modules, each one exploiting some
particular kind of locality, such as the dual data cache [7], the split
temporal/spatial cache [141, or the array cache [8]. All these
schemes basically attempt to reduce the negative effects of refer-
ences that exploit only temporal reuse, by just fetching a single
word and allocating it in a special module. However, such schemes
do not exploit the fact that some references exhibit just spatial
reuse.

Rivers and Davidson proposed the NTS cache [161. This archi-
tecture dynamically divides cache blocks into two groups: temporal
and non-temporal, based on their past reuse behavior. The decision
is made through a detection unit indexed by effective address. This
architecture has a separate small cache (accessed in parallel with
the main cache) where non-temporal blocks brought to cache are
placed. The basic goal of this scheme is to reduce conflict misses
caused by only-spatial references. In [17], it is proposed a modifi-
cation of the CNA cache presented by Tyson et al [22] that also con-
sists of two cache modules, but in this case the detection unit is
indexed by program counter.

Another approach of multi-module cache is the one proposed
by Johnson and Hwu [1 I]. This scheme, unlike previous proposals,
dynamically divides memory references based on their frequency
of reuse. In this case, structures are accessed by effective address,
and not by instruction address. Only frequently referenced data are
placed on the main cache, whereas the other bypass the main cache
and are placed in a small buffer in order to exploit its possible tem-
poral reuse.

Note that an important difference of the LSMCache with
respect to all these previous proposals is the explicit management
of the placement of fetched blocks and the clear differentiation of
three types of reuse: only-temporal, low-volume self-spatial and the
rest (they are later defined).

4. The LSMCache

The LSMCache is a cache architecture composed of three modules,
each one exploiting a particular type of locality. The selection of
where the data is placed when it is fetched from the next memory
level could be done by a static locality analysis or based on an anal-
ysis of some profiling data. Then, the information is passed to the
hardware by adding a special field or hint to the memory instruc-
tions. The cache architecture proposed in this work is oriented
towards numerical codes, for which module allocation can be com-
pletely based on a static locality analysis, due to its high accuracy.
However this static analysis is not appropriate for non-numerical
codes and a profiled-based analysis may be more effective. In Sec-
tion 6, some preliminary results for non-numerical applications
based on a simple profiled-data analysis are presented.

The working of the LSMCache is divided into two parts: (1) the
compile-time analysis and tagging of memory instructions, and (2)
the run-time behavior. Below we first discuss the hardware archi-
tecture of the LSAKache. Then, the compile-time support, which
basically consists of a static locality analysis, is explained.

4.1. Hardware Architecture

The hardware architecture of the LSMCache is shown in Figure 3.
It is composed of three modules that are referred to as spatial (S),
temporal (r) and spatial-temporal (So. Both modules S and Tare

L2 CACHE

CPU
(a) Cache hit access (b) Fetching a block from

the next level

Figure 3. Hardware architecture of the LSMCache

small fully-associative buffers, whereas module ST is direct-
mapped and has larger capacity. The goal of each module is the fol-
lowing:

Module S: it is oriented to exploit low-volume, self-spatial
reuse. A memory instruction is said to exhibit low-volume,
self-spatial reuse if it has self-spatial reuse for a given loop
and self-temporal reuse for all inner loops. Intuitively, this is
an instruction that has spatial reuse that requires a single
cache line to be exploited. For instance, the reference in the
next loop:

DO I = 1, N, 1
DO j = 1, M, 1

ENDDo~
A(I) . . .

ENDDO

has spatial reuse in loop I, and temporal reuse in loop J.
Thus, when a line is fetched and placed in the module S, all
iterations of loop J can take advantage of the temporal reuse
without increasing the number of fetched lines. Further itera-
tions of loop I will exploit the spatial reuse by accessing
other elements of the same line.
Note that either long lines or some simple hardware prefetch-
ing technique (prefetching the next or previous block, accord-
ing to the direction of the stride) may significantly increase
the exploitation of the locality exhibited by such references.
Both strategies have been evaluated in this work.
Module r it is oriented to exploit just temporal locality. In a
conventional cache, those references with just temporal local-
ity pollute the cache and waste memory traffic because only
one word of the entire line is used. This is avoided by using a
special module with short lines to keep these references.
Module STz this module acts as a conventional cache targeted
to exploit both temporal and spatial locality. It stores the data
not allocated to the previous modules, that is, data referenced
by instructions with both spatial and temporal reuse, such that
spatial reuse requires a high number of lines to be exploited.
Furthermore, it also stores the data referenced by those
instructions whose reuse is unknown. This is the case of ref-
erences outside loops or references for which the locality
analysis cannot determine their locality. Finally, this module
also caches those references that cannot be placed in the S or
Tmodules in spite of meeting the reuse requirement, due to
capacity constraints.

53

Note that due to the different line size, the same data element
can reside in several modules at the same time. This may happen
when some data is brought to a given module and later on, a refer-
ence to a nearby data element, brings it again as a part of a larger
data block that is placed into a different module. If a copy-back pol-
icy is used, the data brought from memory may be stale. Coherency
of data is kept in the following way.

For each load instruction, the three modules are checked in par-
allel. If the data is found in just one module, then it is returned to
the processor. In the case that the data is found in more than one
module, the data from the module with the smallest line size is
returned. Store instructions are also sent to the three modules and
those that contain the requested data are updated.

In case of a load/store miss, a new data block is brought into the
module indicated by the locality hint included in the instruction. If
the replaced line is dirty and it is present in any other module with
larger lines, this module is updated. The following simple example
can help to understand the coherency methodology:

PROGRAM Pl FUNCTION Fl(K) FUNCTION F2tB)
REAL*8 A(N) REAL*8 K REAL*8 B(N)

CAL; Fl(A(1)) ST&E K.T LO& B(2).ST
CALL F2tA)

RET&N
LOAi A(31.S END

RET&N
END

END

After STORE

After both LOADS

S D To ST,
After block in T
is replaced

In this example each load/store instruction is marked with its
hint (S, T or ST), and the D bit in a cache line indicates that the line
is dirty. First, the store brings A (1) to the module II: Then, A (2)
is referenced in fimction F2 and a new block is brought into the
module ST since it is not in cache, but this block contains a stale
copy of A (1) . Something similar happens to the following load to
A (3) , in the main program. The two stale copies of A (1) can
reside in cache together with the updated copy, because the data in
the smallest cache line will always be chosen. When the dirty line
of the module T that contains A (1) is replaced, the modules S and
ST are updated.

We will show in section 5 that the number of additional
accesses required by the coherency mechanism is very low since,
on average, only about 0.5% of dynamic memory references hit in
more than one module.

4.2. Selection of the Target Module

This section explains the static locality analysis that is performed in
order to set the locality hint of every memory instruction for numer-
ical codes. This analysis is divided into three steps:

1) Choose candidate instructions for each module.
2) Sort the candidates in a priority order.
3) Tag each instruction with the appropriate hint.

The selection of the instructions whose referenced data are can-
didate to be placed in each module is based on a simple reuse anal-
ysis. This analysis is very similar to the one used in [23]. The results
of this analysis are two vectors that represent the self-reuse and the

group-reuse of each memory instruction. The self-reuse is repre-
sented by vector SRK The dimension of this vector represents the
nesting level of the memory instruction (that is, the number of loops
that enclose the reference). For each loop i (loop 0 represents the
outermost), the value of SRVfii) can be N (no reuse), T(self-tempo-
ral reuse) or S (self-spatial reuse). The first step of the algorithm is
to determine which memory instructions are candidates to be
tagged for each module.

The candidates for module S are those instructions that meet the
following condition:

3iISRV(i)=Sand~j>i,SRV(i)=T

These are those memory instructions that have self-spatial
reuse in a loop, and for all their inner loops, if any, they have self-
temporal reuse.

The candidates for module Tare those instructions that meet the
following condition:

3ilSRV(i)= T&-dj IS’RV(j)=S

These are those references that have self-temporal reuse in one
or several loops, but do not have self-spatial reuse for any of the
loops where they are enclosed.

The rest of the instructions are candidates for module ST,
including those instructions that are placed outside loops, or for
which the reuse analysis cannot be applied (i.e., non-affine refer-
ences).

Note that instructions with group reuse among them exhibit the
same self-reuse and thus, they are tagged as candidates for the same
module.

The second step, which orders the candidates for the same mod-
ule according to a priority function, is applied to the Sand T candi-
dates. There are three parameters that determine the order among
candidates: (i) placement of the memory instruction in the loop
nest; (ii) loop where the reuse has to be exploited; and (iii) stride of
the access (only for memory instructions with spatial reuse). The
ordering of candidates is based on the following heuristics:

1) The number of reuses for each line brought to the module S
increases as the nesting level of the loop where spatial reuse
is exploited decreases.

2) The volume required to exploit a given type of reuse
decreases as the nesting level of the loop that generates the
reuse increases.

3) The benefits of spatial reuse are higher as the stride is smaller
since the number of reuses for each cache block is higher.

In consequence, memory instructions are first sorted according
to their location in the loop nest, from innermost to outermost
instructions. For all instructions in the same nesting level, a second
step of ordering is applied according to the level of the loop where
the reuse is exploited (from outermost to innermost loops). If an
instruction can exploit reuse in different loops of the same nest, the
innermost of such loops is considered. Finally, instructions placed
in the same level of the nest and that exploit their reuse in the same
loop level are sorted according to their stride, from smaller to larger.
For instance, in the next code:

SRVS
DO I = 1, N, 1

0 A(I) (S)
8 A(I+l) (S)

DOJ=l,M, 1
8 B(J) S)

0 C(I) I:: T)
Kl

0 D(I,J) 1:: i;
0 ENDDO

x2 CT)
0 ENDDO

54

the allocation of candidates to the different modules and the final
ordering of candidates will be as follows:

S Candidates : Q-+0-+8+0
TCandidates : 8+@

ST Candidates : 0

The last step of the analysis is the final selection of the tag for
each memory instruction. In this step, a volume analysis is applied
for both Sand T candidates, in order to determine whether the local-
ity exhibited by each instruction can be exploited given the capacity
of the corresponding module. If a reference that was initially candi-
date for module S or T does not fit in it, it is finally allocated to mod-
ule ST

The volume analysis is based on the approach presented in [181,
and it is independently applied to both lists of candidates to mod-
ules S and T For each reference of the list, from highest to lowest
priority, the volume in cache lines that this reference contributes to
each loop where it is enclosed is computed and added to the accu-
mulated volume so far. If the accumulated volume of the loop
where this reference exploits its spatial/temporal reuse (for modules
S and T respectively) does not exceed the capacity of the module,
the memory instruction is tagged with the corresponding module (S
or T). Otherwise, it is allocated to the module ST and its contribu-
tion to the volume of each loop is subtracted from the accumulated
volumes.

For instance, the volume analysis for the S candidates in the
previous code is the next one:

Acwnuwted Acwn&tsd

Loo’ I Looi J
Condition

Q C(I) 1 1 1 I NLINES ?
@ B(J) l+M/4 2 2 5 NLINES ?
e, A(I+l) 2iM/4 2 2+M/4 5 NLINES ?
0 A(I) 2+M/4 2 2+M/4 I NLINES ?

In this example, instruction 4 requires just 1 line to exploit its
spatial reuse in loop J. If this instruction is tagged as S, then instruc-
tion 3 requires 2 cache lines to exploit its reuse. Since both instruc-
tions 4 and 3 have been allocated to module S, instruction 2 requires
2+M/4 lines in order to exploit its spatial reuse in loop I, which is
the volume contributed by instructions 4 and 3, in addition to the
line required by itself. Assuming that this volume is still lower than
the module S capacity, reference 2 is tagged as S, and then, refer-
ence I is considered. This reference does not contribute any addi-
tional volume to any loop, since it reuses the lines referenced by
instruction 2. Therefore, it is also tagged as S.

Finally, the result of the whole locality analysis is reflected in
each memory instruction by means of one of the following tags (the
stride information is relevant just for those schemes that implement
prefetching, as discussed in section 5.3):

SPECfp95

Figure 4. Percentage of dynamic memory instructions allocated
to each module

5. Evaluation for Numerical Codes

5.1. Experimental Framework

The previously proposed locality analysis has been implemented in
the ICTINEO compiling platform [I]. The programs have been
compiled with full optimization (scalar optimizations such as con-
stant propagation, and common subexpressions, deadcode and
invariant removal) and the resulting code has been instrumented to
generate a trace that feeds a simulator of the cache architecture.

The LSMCuche has been tested with the following SPECfp95
programs: tomcatv, swim, su2cor, hydro2d, mgrid, applu and
turb3d. The programs have been executed by using the test input
data, and were run for the first 1,500 million of memory instructions
(except for programs with fewer instructions).

5.2. Schemes without Prefetching

The first experiment evaluates some LSMCuche architectures that
do not incorporate any prefetching scheme. The differences among
them are the total size and line size of the module S. Table 1 sum-
marizes the evaluated configurations. Modules Sand T have both 16
lines and use an LRU replacement. The label FA stands forfu$-
associative, whereas DM represents direct-mapped.

MODULES MODULE T MODULE ST
MTAL

I
MY-- ’

._...-
’ ---m-v

““I size 1 siae I”““1 size 1 size lAsSWl ,.:b)

1-1 FA (128bl 8b 1 PA IlKb(32b 1 DM lzi

Table 1. Basic LSMCuche configurations

We have compared the proposed architectures against two con-
ventional caches: (a) a SKB direct-mapped cache (IKB-DM), and
(b) a 64KB fully-associative cache (64KB-FA) (see Section 2 in
order to compare the results with other conventional cache architec-
tures
time k

The LSM architectures are comparable in area and access
to the 8KB-DMcache. A 64KB-FA cache requires much more

area and a much higher access time that the considered LSMCuche
architectures. This organization is used as a reference point of the
miss ratio and memory traffic that could be achieved with a very
powerful but also very expensive conventional organization.

Figure 4 shows the percentage of dynamic memory instructions
tagged as S, T or STfor the LSM-SI architecture. We can see that in

1. Fully-associative caches larger than the size of the modules S and T(also with
more lines), and with a one-cycle access time have been implemented in com-
mercial processors. An example is the 2KEt (64 lines) assist cache of the PA-
7200 [4].

55

tmeatv swim ru2eor hydro2d mgrM aPPln turb3d AVERAGE

2.**

1.0

B
g 0.8

B
p 0.6

d
2 0.4

$ 0.2

no _.-
tlnnfah swim su2cor hydro2d mgrid aPIJ!u kwb3d AVERAGE

SPECfp95

60 - ..-...............................”......

10nlC8N swim r”2car hydrotd m@d aPPlu tirb3d AVERAGE

SPECfp95

Figure 5. Comparison of LSMCache without prefetching against
two conventional caches

general, low-volume self-spatial reuse references are the dominant
type (these references are allocated to module S if there are not vol-
ume constraints). However, for some programs, the percentages of
references allocated to modules S and ST are also significant (note
that these results are for SPECfp95 programs and, although here the
majority of instructions are tagged as S, this is not necessary for
other codes).

Figure 5 depicts the miss ratio, average number of fetched
words per reference, and percentage of unused words brought into
cache, for the LSMCache and the two conventional caches. The
number of fetched words has a direct relation with the traffic gener-
ated between Ll and L2 caches. Moreover, the percentage on
unused words (or bandwidth waste) denotes the efficiency of this
traffic.

On average both LSMCache schemes significantly outperform
the 8KB-DM cache for the three performance figures. For instance,
the 8KB-DM miss ratio is about 2.6 times higher than that of the
LSM-S2 cache. Comparing the proposed schemes, LSM-S2 per-
forms better than LSM-Sf, mainly in miss ratio. This tendency is
quite unifo?m for each individual program. Moreover, note that for
some programs (tomcatv, swim and hydro2d), LSM-S2 achieves a
better miss ratio than the 64KB-FA cache even though the number
of fetched words is higher. This is due to a better usage of the
fetched words. Note also that, on average, the miss ratio of the
LSM-S2 is close to that of the 64KB-FA, in spite of its much smaller
capacity. To achieve this performance, LSWS2 requires a higher
number of fetched words (which is due to its smaller capacity) but

the fetch bandwidth efficiency (which is the reciprocal of band-
width waste) is comparable to that of the 64K&FA.

As explained in section 4.1, the LSMCache requires some
coherency operations when a data element resides in more than one
module. Note however that this event is rather infrequent. For the
LSM-Sl architecture, this percentage is 0.43% on average for all the
programs (the maximum is 2.50% for applu, and the minimum is
0.00% for tomcatv, swim and su2cor). Note that in this architecture
a datum can be in module T, or just in one of the other two since the
line size is the same. Regarding the LSM-S2 architecture, the aver-
age percentage is 0.65% (the maximum is 2.11% for applu, and the
minimum is 0.00% for tomcatv}.

5.3. Schemes with Prefetching

Prefetching data is beneficial provided that the cache may antici-
pate which data will be referenced in the near future. Otherwise,
prefetch may harm performance. The detailed characterization of
the locality exhibited by each reference allows for an efficient
implementation of a prefetch scheme.

We have considered a simple hardware prefetching scheme
based on the one-block lookahead schemes (OBL) [19], and
extended with a locality analysis. We call the schemeselective OBL
since the prefetch is performed only for those references that
exhibit low-volume, self-spatial reuse (i.e. those allocated to mod-
ule 5’). Note that this type of locality means that after accessing a
data block, it is very likely that the next or the previous block,
depending on the direction of the stride, is accessed too. The candi-
date references for which the prefetch is performed as well as the
direction of the stride are provided by the locality analysis
described in section 4.2.

Three alternative prefetching schemes, based on those consid-
ered in [191, have been implemented:

1) Alwaysprefetching (A): every time a reference tagged as S is
performed, a prefetch to the next/previous block is issued.

2) Preftching on miss (IV): every time a reference tagged as S
misses (in all modules), a prefetch to the next/previous block
is issued as well.

3) Tagged prefetching (7’): every time a reference tagged as S
accesses a block for the first time since it has been brought to
cache, a prefetch to the next/previous block is issued as well.

Note that a prefetch access behaves like an ordinary access, that
is, all modules are probed. Table 2 summarizes the different LSM-
Cache architectures with prefetching that are considered in this
paper.

MODULES MODULE T MODULE ST
TOTAL

MODEL
Total Line
Slzs Size Assoc pref’

$;g Assw FB’ ;g Assoc

CAPACITV

WW

L!Shl-PA A

LSM-PM lKb 32 FA M
- 128b 8b FA 4Kb 32b DM 5.125

LSM-PT T

Table 2. LSMCache architectures with prefetching

Both modules S and T use an LRU replacement. The label FA
stands forfilly-associative, whereas DM represents direct-mapped.
Note that the module S has 32 lines but the compile-time analysis
supposes that it has 16 lines, because some accesses to this module
fetch a pair of lines due to prefetching. Thus, the instructions allo-
cated to each module are the same as those in the previous experi-
ments (LSM-SI and LSM-S2).

56

SPECfp95

tomcm swim ruzcor bydm2d AVERAGE

SPECfp95

rv2cor bydro2d mgrid tw43d AVERAGE

SPECfp95

tOnICaN sw‘rn su2cor bydro2d mgrid arwh t”rb3d AVERAGE

SPECfp95

Fiwre 7. Imnact of mefetching on fetched words

cient policy since prefetches are very effective, as shown below,
because they are driven by a locality analysis.

The effectiveness of prefetching can be evaluated by measuring
the additional traffic that they generate. This is shown in Figure 7,
which depicts the average number of fetched words per reference
for the previous configurations and the same cache architectures
without incorporating prefetch. It can be seen that the increase in
memory traffic due to the prefetch schemes is very low.

As for the schemes without prefetching, the percentage of
dynamic references that hit in more than one module has been also
obtained, being very low for all three prefetching schemes (0.49%
for LSM-PA, 0.43% for LSM-PM, and 0.35% for LSM-PT).

Finally, a drawback of prefetching is an increase in the cache
port pressure. Each time a prefetch is issued, all the modules in the
cache have to be probed. Table 3 shows the average number of
cache memory accesses for each dynamic memory reference (with-
out prefetching this number is 1 .OO):

Figure 6. Comparison of LSMCache schemes with prefetching MODEL
I

A

against two conventional caches I
M T

Always Prefetch Prefekh on Miss Tagged P&etch

Figure 6 depicts the miss ratio, average number of fetched
words per reference, and percentage of unused words brought into
cache, for the LSMCache architectures with prefetching, and com-
pares them with the two conventional caches.

Regarding miss ratio, LSMCache schemes perform much better
than the KB-DM cache, achieving an average reduction in miss
ratio by a factor of about 7.0 (LSM-PA). Note that for some pro-
grams the miss ratio is very close to zero. The average reduction in
memory traffic is also significant although for two programs
(su2cor, and mgrid) it is somewhat increased. However, the lines
brought into cache are better used, as denotes the bandwidth waste
graph. Note that these LSMCache architectures achieve a lower
miss ratio than a fully-associative cache with a capacity twelve
times Iarger (LSM-PA has a miss ratio that is 2.5 times lower than
that of the 64KB-FA cache). This requires an increase in the mem-
ory traffic by a factor of about two to compensate for the much
smaller capacity, but this traffic is efficiently used since the band-
width waste is of the same order as that of the 64KB-FA cache.

Among the different LSMCache architectures, the best perfor-
mance is achieved by LSM-PA, that is, by the scheme that always
prefetches for those data allocated in the S module. This scheme
generates about the same traffic as the LSM-PM (prefetch on miss)
scheme but achieves a miss ratio that is 2.7 times lower. The LSM-
PT (tagged prefetching) scheme has an intermediate miss ratio but
generates slightly more traffic. A positive effect of always prefetch-
ing is that prefetched data is kept at the top of the LRU stack, and
therefore it is usually not evicted before being used. This is an effi-

tomcahr t 2.00 1 1.07 1 1.22

swim 1.98 1.06 t 1.08

su2cor 1.81 t 1.08 I.14

hydro2d 1 1.84 1 1.08 1 1.16

mgrid 1.90 1.05 1.09

wlu 1.20 1.00 1.06

turb3d 1 1.54 t 1.03 I 1.23

AVERAGE 1 1.75 1 1.05 1 1.14

Table 3. Averaged number of cache accesses per reference

In this table we can see that the always prefetch scheme is the
one than achieves the lowest miss ratio but at the expense of a
higher pressure on cache ports. If this resource is critical, the tagged
prefetch scheme may be the best trade-off when both miss ratio and
port pressure are considered.

5.4. Comparison with Other Multi-Module Caches

We have compared the LSMCache with three other multi-module
schemes: (a) an 8KB direct-mapped cache with a 512B victim-
cache (16 lines of 32 bytes each one)(BKM-VC); (b) an 8KB direct-
mapped cache with 4 stream-buffers (each one with 4 entries of 32
bytes) with the optimizations proposed by Palacharla et al. [15]
(8KB-SB); and c) an 8KB 4-way set-associative cache (SKB-4WA).

57

SPECfp95

Figure 8. Comparison of the LSMCache with other multi-mod-
ule caches

SPECinbS

Figure 9. Comparison of the LSMCclche with a direct-mapped
cache for integer codes

Figure 8 compares the miss ratio for a direct-mapped cache
(8KB-DM), three multi-module caches (8KB-4WA, 8KB-VC and
8KB-SB) and two LSMCache schemes (LSM-S2 and LSM-PA),
without/with prefetching.

We can see in these graphs that on average LSX4Cuche schemes
perform better than all the other schemes. Looking at individual
benchmarks, only for the last two programs (u&u and turb3d), the
LSMCache architecture is not the best multi-module scheme.

6. Preliminary Results for Non-Numerical
Codes

Although the LSMCache is oriented towards numerical codes, in
which an accurate data locality analysis can be easily performed at
compile time, this analysis may be rather inaccurate for non-numer-
ical codes. The dynamic nature of data structures used by non-
numerical programs (linked lists, dynamic graphs, etc.), typically
written in C language, makes unfeasible a static data locality anal-
ysis.

Thus, we propose to use the results of a profiled-data analysis.
In this section, we just try to show that with a very simple profiling,
the miss ratios obtained by the LSMCache of 5 KB are not degraded
when compared with a direct-mapped cache of 8KB. Taking into
account the large benefits observed for numerical codes, we can
conclude that the proposed architecture is an effective alternative.
Improving the data locality analysis based on profiled data is by
itself a research topic of great importance for many application
areas.

6.1. Experimental Framework

The LSMCuche has been tested with the following SPECint95 pro-
grams: go, m88ksim, gee, compress, li andperl. The programs have
been compiled with full optimization (-04) with the DEC compiler,
and the resulting code has been instrumented with ATOM [20]. In
order to generate the profiling data, the programs are executed with
the test input data, and run for the first 1,500 million of memory
instructions (except for programs with fewer instructions).

Based on the information obtained by the profiler, each static
memory instruction is accordingly tagged. Then, the programs are
executed with the refinput data, and run for the first 1,500 million
of memory instructions (except for programs with fewer instruc-
tions).

The idea is to use the same type of heuristics applied by the
static analysis but to a small window of references. Each memory
reference is compared with the N previous references. If the N
previous references contain any reference to an address that is
different from the current one and its difference is less than a half
of the line size (they are neighbours), the spatial counter is
increased. If this condition does not hold but the last N references
contain any reference to the same address as the current one, then
the temporal counter is increased.

The following example may help to better understand the
mechanism (SC stands for Spatial Counter and TC represents Tem-
poral Counter, both for any particular memory instruction):

Block Size = 4 elements

QUEUE CASE I CASE 2 CASE 3
PC ADDR ADDR = loa ADDR = s ADDR = 40

tAl

The queue shows the previous N addresses referenced by the
processor and each case illustrates the actions that are taken when a
particular reference follows the N references in the queue. In the
first case, address 102 finds in the queue other references to close
locations (they differ in less that 2, that is, half of the line size). This
happens for addresses 100 and 104. In this case, the spatial counter
of the memory instructions that fetched that addresses are
increased. There is also a reference to the same address and thus, its
temporal counter is increased. In the second case, address 5 only
finds in the queue addresses equal to it (no neighbors), and thus, the
temporal counter is increased. Finally, in the last case, address 40

has neither neighbors nor equal addresses in the queue, so the
counters of the memory instructions are not modified.

After this process, each static memory instruction will have two
values, one for each counter. Then, if the ratio of temporal refer-
ences with respect to the total number of references for this memory
instruction is greater than a give threshold tx, the instruction is
tagged as T, Likewise, the spatial counter is checked against
another threshold ty to tag the instruction as S. In the case that none
of the previous conditions are met, the instruction is tagged as ST.

6.3. Results
6.2. Profiled-Data Analysis

The proposed analysis is fed with the addresses of memory refer-
ences obtained by profiling. For each static memory instruction two
counters are allocated, which are referred to as temporal and spatial
counters.

The previous profiled-data analysis has been applied with N=128,
tpO.75 and tFO.75. This analysis has been used to manage the
LSMS2 cache of 5KB (as described in Table 1) and the results are
compared with an 8KB direct-mapped cache in Figure 9, where the
miss ratios for both schemes are shown. We can see that on average

the performance is very close. Looking at individual benchmarks,
for three programs the behavior of the LSMS2 is slightly worse (go,
compress andperl), whereas for the other three it is slightly better
(m88ksim, gee and Ii).

7, Conclusions

This paper proposes a novel cache architecture composed of three
modules, each module being specialized to exploit a particular type
of locality. The management of the cache is driven by some hints in
the memory instructions that are set at compile time to reflect the
type of locality that they exhibit. In this paper we propose a static
locality analysis and present some preliminary results for a pro-
filed-data analysis.

The main conclusion of this work is that the implementation of
smaller caches with a more clever management can be an effective
approach to reduce the large area occupied by this component in
current microprocessors and its access time.

We have observed that for numerical codes the proposed cache
architecture eliminates the majority of cache misses with just 5KB
of capacity. It has a miss ratio that is about the same as that of a 12
times larger (64KB) fully-associative cache when data prefetching
is not incorporated and 2.5 times lower when data prefetching is
added (for the most aggressive prefetching scheme). Prefetching is
very effective since it is driven by the locality analysis. We have
shown that prefetching hardly increases the memory traffic.

For non-numerical codes, which are much less affected by
memory penalties, we have shown that with a very simple profiled-
data analysis to tag memory instructions, the proposed cache archi-
tecture with a 5KB can achieve about the same performance as a
direct-mapped cache of 8KB. This suggests that further research in
the area of profiled-data analysis may significantly improve the per-
formance of the proposed cache architecture for this type of codes.

Acknowledgements

This work has been supported by the Spanish Ministry of Education
under contract CICYT-TIC 51 l/98, the ESPRIT Project MHAO-
TEU (EP24942), and by the Catalan CIRIT under grant 1996FI-
3083-APDT.

PI

PI

r31

[41

rfJ1

References

E. Ayguade, C. Barrado, A. Gonzhlez, J. Labarta, D. Lopez,
S. Moreno, D. Padua, F. Reig, Q. Riera and M. Valero, “ICTI-
NEO: a Tool for Research on ILP”, in Supercomputing’
Conf (SC’96), Research Exhibit ‘Polaris at Work’, 1996
DC. Burger, J.R. Goodman and A. Kiigi, “Memory Band-
width Limitations of Future Microprocessors”, in Procs. of
23th Int. Symp. on Computer Architectuve (ISCA’96), May
1996
S. Carr, K.S. McKinley and C-W. Tseng, “Compiler Gptimi-
zations for Improving Data Locality”, in Procs. of the V Int.
Conf on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-V), pp. 252-262, Oct. 1994
K.K. Chan, C.C. Hay, J.R. Keller, G.P. Kurpanek, F.X. Schu-
macher and J. Zheng, “Design of the HP PA 7200 CPU”,
Hewlett-Packard Journal, Feb. 1996
Z. Cvetanovic and D. Bhandarkar, “Performance Character-
ization of the Alpha 2 1164 Microprocessor Using TP and
SPEC Workloads”, in Prwcs. of 2nd. Int. Symp. on High-Per-
formance Computer Architecture (HPCA-2), pp. 270-280,
1996

[6] D. Gannon, W. Jalby and K. Gallivan, “Strategies for Cache
and Local Memory Management by Global Program Trans-
formations”, Journal of Parallel and Distributed Computing,
5, pp. 587-616, 1988

[7] A. Gonzalez, C. Aliagas and M. Valero, “A Data Cache with
Multiple Caching Strategies Tuned to Different Types of
Locality”, in Procs. of 9th Int. Conf on Supercomputing
(ICS’95), pp. 338-347, 1995

[8] S. Hadjiyannis, M. Tomasko and W. Najjar, “An Evaluation
of Split Scalar/Array Caches”, Technical Report CS-TR-97-
104, CS Department, Colorado State University, Jan. 1997

[9] J.L. Hennessy and D.A. Patterson, “Computer Architecture.
A Quantitative Approach”, Morgan Kaufmann Publishers,
2nd. Edition, San I?-ancisco, 1996

I: lo] AS. Huang and J.P. Shen, “A Limit Study of Local Memory
Requirements Using Value Reuse Profiles”, in Procs. of 28th
Int. Symp. on Microarchitecmre (MICRO-28), pp. 71-8 1,
1995

1 111 T. Johnson and W.W. Hwu, “Run-Time Adaptive Cache Hier-
archy Management via Reference Analysis”, in Procs. of 24th
Int. Symp. on Computer Architecture (ISCA-24), pp. 3 15-326,
June 1997

[121 N.P Jouppi, “Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and
Prefetch Buffers”, in Procs. of 17th Int. Symp. on Computer
Architecture (ISCA-I 7), pp. 364-373, 1990

[13] V. Kathail, M. Schlansker and B. Rau, “HPLabs PlayDoh
Architecture Specification: Version 1 .O”, Technical Report
HPL-93-80, Hewlett-Packard Labs., March 1994

[14] V. Milutinovic, B. Markovic, M. Tomasevic and M. Trem-
blay, “The Split Temporal/Spatial Cache: Initial Performance
Analysis”, in Procs. of SCZzzL-5 Workshop, pp. 63-70, March
1996

[151 S. Palacharla and R.E. Kessler, “Evaluating Stream Buffers as
a Secondary Cache Replacement”, in Procs. of the 2lst Int.
Symp. on Computer Architecture (ISCA-2I), pp. 24-33, Apr.
1994

[161 J.A. Rivers and E.S. Davidson, “Reducing Conflicts in Direct-
Mapped Caches with Temporality-Based Design”, in procs.
of 1996 Int. Conf on Parallel Processing (lCPP’96), pp. 93-
103, Dec. 1996

[171 J.A. Rivers, S. Tam, G.S. Tyson and E.S. Davidson, “Utilizing
Reuse Information in Data Cache Management”, in Procs. of
12th Int. Conf on Supercomputing (ICS’98), July I998

[181 J. Sanchez, A. Gonz&lez and M. Valero, “Static Locality Anal-
ysis for Cache Management”, in Procs. of Int. Conf on Par-
allel Architectures and Compiler Techniques (PACT’97), pp.
261-271, Nov. 1997

[191 A.J.. Smith, “Cache Memories”, Computing Surveys, Vol. 14,
No. 3, PQ. 473-530, Sept. 1982

[20] A. Srivastava and A. Eustace, “ATOM: a Flexible Interface
for Building High Performance Program Analysis Tools”, in
Procs. of Conf on Programming Language Design and
Implementation (PLDI’94), pp. 196-205, June 1994

[21] J.M. Stone and R.P. Fitzgerald, “Storage in the PowerPc”,
IEEE Micro, vol. IS, no. 2, pp. 50-58, April 1995

[22] G. Tyson, M. Farrens, J. Matthews and A.R. Pleszkun, “A
Modified Approach to Data Cache Management”, in Procs. of
28th Int. Symp. on Microarchitecture (MICRO-28), pp. 93-
103,1995

[23] M.E. Wolf and M.S. Lam, “A Data Locality Optimizing Algo-
rithm”, in Procs. of Conf on Programming Languages
Design and Implementation (PLDI’91), pp. 30-44, 199 1

59

