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Abstract 
High pe$ormance computer architectures use registers to 
provide high speed access to data operands, to provide 
short names for operands, and to reduce memory trafic 
for accesses to these operands. The possibility of aliasing 
in a program segment reduces the quality of code that a 
compiler can produce by necessitating that memory and 
register copies of variables that have been allocated to 
registers be kept consistent. A hardware support 
mechanism is presented that permits all classes of data 
objects, including dynamically allocated objects and 
array elements, to be held in registers without 
consideration of possible aliases and without requiring 
that the generated code maintain consisrency between 
register and memory copies of variables. Use of this 
approach permits programs to benefit from the speed 
advantages and reduced memory traffic associated with 
register storage, obviates the need to collect aliasing 
irgforman’on for use in register allocation, and reduces 
instruction trafic by eliminating code used solely to 
maintain register-memory consistency. The support 
hardware can be implemented using known hardware 
technology and without increasing the cycle time of the 
processor. 

Introduction 
High performance computer architectures usually 

include fast general purpose registers designed to act as 
storage for frequently accessed data. Register storage can 
improve the performance of a computer system by pro- 
viding substantial improvements in access time, by pro- 
viding short names for operands, and by reducing the 
number of requests for memory access. These factors 
increase throughput for simple uniprocessors and can 
have even greater impact on pipelined processors and 
multiprocessors where memory access contention is a 
significant consideration. While the hardware advantages 
of registers are clear, their effectiveness can be severely 
reduced if compilers are not capable of using them 
effectively. The presence of aliases in a program 
negatively affects the ability of a compiler to perform 

effective register allocation. These negative effects are 
accentuated when interprocedural register allocation is 
performed, both due to the increased difficulty in 
obtaining accurate aliasing information and due to the 
number of aliases present. 

An alias in a program arises whenever there are two 
or more distinct ways to refer to the same storage 
location. [l] When aliases are present, accesses to 
variables through names that appear to be independent 
may actually interfere because they refer to the same 
storage location. Aliases are introduced through the use 
of arrays, pointers, and call-by-reference parameters and 
thus occur in most programs in most programming 
languages. Aliasing introduces back-door access paths to 
variables that must be considered at compile-time in order 
to generate code that executes as expected. The 
possibility of back-door accesses forces a compiler to 
update the memory copies of variables held in registers to 
assure that accesses to the memory copies retrieve the 
current values of the variables. The possibility of back- 
door updates forces the compiler to re-load register copies 
from memory before each use due to the effects of aliased 
updates of the memory copy. The instructions generated 
to perform memory updates and re-load registers increase 
both the static and dynamic instruction count of the 
executable program and substantially increase memory 
traffic. 

When a variable has been allocated to a register, it is 
only safe to remove the code that guards against back- 
door accesses when all code that uses (or modifies) the 
variable has been identified and changed to refer to the 
register. This identification implies a need to detect all 
possible names for a storage location: hence all possible 
aliases must be detected for each variable. Unfortunately, 
this presents two problems that force the compiler to 
retain the guard code. First, depending on the ways 
aliases may be introduced in the programming language, 
and the level of precision desired from aliasing 
information, the determination of all possible aliases can 
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be an FIB-complete problem or can produce a solution set 
of exponential size, and thus is not effectively solvable. 
Second, as different a&sing relationships may be 
established while the program runs, appropriate 
modification of code to expect a variable in a register 
may depend on the context from which the code was 
invoked. In either of these circumstances, it is not 
possible to eliminate all back-door accesses and therefore 
it is not possible to omit the guard code. The presence of 
aliases in a program thus reduces the quality of code that 
can be generated. 

Several software techniques have been developed 
that conservatively estimate the abases in a program. 
[4,5,6] These techniques reduce the negative effects of 
aliasing on the generated code by determining that some 
variables cannot be aliased, thus permitting them to be 
maintained in registers without the need to maintain 
consistency between their memory and register copies. 
These approaches usually produce an improvement in the 
code because they provide estimates of the actual aliasing 
patterns of a program instead of the worst-case 
assumption (that all type-compatible variables are 
aliases). However, because they produce only estimates 
of aliasing information, these techniques can be 
ineffective in worst-case scenarios. Even where these 
approaches are effective, they still require all variables 
that may exhibit aliasing to be maintained in memory. 

Another approach to reducing the difficulties 
associated with register allocation in the presence of 
aliasing is to eliminate registers altogether. Some 
processor architectures, such as the Intel iAPX432, use 
only memory-to-memory instructions and do not provide 
explicit user-accessible registersJ71 A cache is used to 
improve operand access time. The elimination of registers 
does obviate the need to perform alias analysis for 
register allocation. However this approach suffers from 
decreased utilization of high-speed memory because of 
the online, block oriented nature of the cache 
management problem. 

Another technique that has appeared in the literature 
suggests the use of hardware support in the form of 
“CRegs.” [23 CRegs are banks of four registers which 
have an associative memory used to check for back-door 
accesses. When a request is issued to load a register using 
a memory address that is associated with one of the 
registers in the same CReg set, the request is satisfied 
from the register. When two or more CRegs have the 
same associated address, they are accessed in parallel in 
order to cause consistency among the aliased values. It is 
this parallel associative access technique that limits the 
CReg set size to 4. This technique still requires alias 
analysis in order to assure that possible aliased variables 
are always allocated to registers in the same set. The 

technique cannot directly handle any variable with greeter 
than four possible aliases and must spill all elements of an 
alias set whenever it is necessary to access an element of 
the alias set in a different CReg associative set. The 
technique also requires that the register allocation scheme 
be cognizant of the organization of the machine registers 
into CReg associative sets. 

The work presented in this paper approaches the 
problems associated with register allocation in the 
presence of aliasing by utilizing hardware support to 
eliminate the possibility of back-door accesses to the 
memory copies of variables. The use of this approach, 
which does not require alias analysis, permits a compiler 
to generate improved object code by eliminating the need 
to maintain consistency between register and memory 
copies of variables. Additionally, this approach reduces 
the overhead of runtime accesses to variables that are 
abased by short-circuiting accesses using memory 
addresses and directing them to registers. When back- 
door accesses are removed from the runtime environment, 
it becomes permissible to freely allocate variables to 
registers without consideration of their possible aliasing 
relationships. The elimination of back-door accesses is 
accomplished by providing hardware to transparently 
note and recall the address associated with the value 
stored in each general purpose register and to monitor the 
addresses generated for memory references, redirecting 
references to the memory copy of variables to the register 
copy. We refer to this approach as variable forwarding. 

This approach is preferable to estimating the aliases 
in a program and denying abased variables promotion to 
registers because it allows even variables that have aliases 
to be allocated to registers safely. This approach 
maintains the problem of register allocation in a compile- 
time setting thus providing the possibility of better 
utilization of high-speed memory than can be achieved 
with cache management. A compiler targeted at a 
processor with variable forwarding hardware does not 
need to collect any aliasing information in order to 
perform register allocation. The elimination of 
instructions inserted to maintain consistency of register 
and memory copies of variables reduces both the static 
and dynamic instruction counts of a program and thus 
reduces memory traffic for both instructions and data. 
The added hardware maintains the table of addresses 
transparently, without added instructions in the code and 
does not extend the processor cycle time. 

Before presenting our approach in greater detail, we 
consider the ways that aliases can be introduced into a 
program, the algorithms and heuristics available to 
estimate a&sing, and the effects of aliasing on register 
allocation and code generation. 
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Aliases 
Aliases are introduced into a program in a variety of 

ways. When two or more pointer variables reference the 
same object in memory, the names for the fields of the 
referenced objects arc aliases. Subscript expressions for 
references to the elements of an array may differ in 
structure and content yet may evaluate to the same value. 
The use of pass-by-reference parameters can introduce 
aliases in several ways. The same variable may be passed 
to a procedure at several positions in the argument list. If 
at least two of these positions are pass-by-reference 
parameters, then the corresponding formal parameters are 
names for the same variable. If a variable which is non- 
local to a procedure but which is visible to that procedure 
under the scoping rules of the language is passed to the 
procedure as a pass-by-reference parameter, the non- 
local name and parameter are aliases. If a variable that 
has aliases is passed as a pass-by-reference parameter, it 
carries its aliases along to each formal parameter to which 
it can be bound. While the C programming language does 
not have an explicit pass-by-reference parameter 
mechanism, the use of pointer parameters introduces 
similar difficulties, 

Approximating Aliasing 
The parameter aliasing problem can be solved in an 

imprecise way using a simple deterministic polynomial 
time algorithm. A precise solution to this problem can 
also be achieved using a deterministic algorithm, but 
because the size of the solution set is potentially 
exponential in the number of nodes in the program’s call 
graph, this approach is generally too costly to be 
considered. The only way to make use of a precise 
solution to this problem would require a separate copy of 
each procedure, tailored for each possible aliasing 
circumstance, in order to accommodate varied aliasing 
circumstances on each distinct path through the call graph 
(infinite paths can be truncated safely). When 0nIy one 
copy of each procedure is used, an imprecise solution to 
the parameter a&sing problem is required in order to 
assure the correctness of the program. The merged 
information of an imprecise solution may yield results 
that are excessively pessimistic for a particular path and 
may include paths that are infeasible. Regardless of 
whether multiple copies of procedures are used with 
precise information or single copies are used with 
imprecise solutions, aliased variables must be maintained 
in memory, thus reducing the efficiency of the generated 
code. 

Other types of aliasing can be estimated as well. The 
complexity of performing these analyses increases with 
the generality of the aliasing problems presented by the 
language, while the quality of the solution decreases. 

Determining aliasing in a program with arrays or pointers 
is an NP-complete problem. [5,6] Several techniques are 
known that consider the relationship between the values 
of program variables and subscript expressions in order to 
detect cases in which array accesses occur independently. 
These techniques, generally known as array reference 
disumbiguation, are based on algebraic properties of the 
subscript expressions and can eliminate a class of 
expressions that occur when an array is being processed 
in a linear or systematic way. Processing orders based on 
random numbers, inputs, and contents of the array 
elements themselves cannot usually be disambiguated. 
Additionally, most disambiguation schemes can be led 
astray by the presence of infeasible paths. 

The problem of determining whether or not two 
pointers may point to the same object is NP-complete. [5] 
There are some heuristics that may be applied to this 
problem but these generally require substantial analysis 
time, while still producing only rough estimates of the 
actual aliasing present in the program. 

Effects of Aliasing on Generated Code 
Without register forwarding hardware, the 

possibility that an aliased reference may occur to the 
memory copy of a variable while the variable is loaded 
into a register must be taken into account by the register 
allocation strategy. There are two basic approaches to this 
end that may be safely adopted: 1) deny potentially 
aliased variables promotion to registers and 2) maintain 
consistency between the register and memory copies of a 
variable. Both of these approaches forfeit some, if not all, 
of the advantages of storing variables in registers. 

If variables that may have aliases are denied 
promotion to registers, most operations will require at 
least one memory access. If the compiler uses worst-case 
aliasing assumptions, the only variables that will be 
stored in registers are temporaries. 

If registers are used, the memory and register copies 
of the variable must be kept consistent at all times, 
implying that the register copy of a variable must be 
reloaded from memory before each use that follows any 
instruction that could have written to memory. This 
assures that the value in the register reflects any updates 
that may have occurred using an aliased name, directly 
reaching the memory copy. Additionally, any 
modification of the value stored in a register must be 
immediately followed by a write to the memory copy of 
the variable so that any direct use of the memory copy 
through an aliased name will retrieve the most recent 
value of the variable. 

Both of these approaches produce code that uses 
registers in a very inefficient manner and generates a 
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significant number of memory access requests. As an 
example of this situation, consider Figure I. In Figure la, 
we present a small Pascal-like program fragment. In 
Figure lb, we present one possible intermediate code 
sequence for the fragment. Figure lc presents code 
generated using registers, with the insertion of loads and 
stores as required to maintain consistency of the 
register and memory copies of all variables. Figure Id 
presents code that maintains variables in memory. 
. . . 
fori:=ltolO 

T := T t i; 
ArA’i; 

. . . 

(a) Source Fragment 

. . . 
i*l 

Ll: ifJnpl0 
hot u 
T:=T+i 
A:=A’i 
iii+1 
ip Ll 

I2 . . . 

(b) Intermediate Code 
. . . 
load m,Xl 
store m,i . . . 

Li: cmp m,%l 0 mov #l ,i 
imt L2 Ll: cmp MO 
load rl,T jmt f2 
add m,rl add i,T,T 
store rl ,T mul i,A,A 
load m,i add i,%l ,i 
load r2,A jp L1 
mul m,R L2: . . . 
store r2.A 
load m,i (d) Memory Only 
inc m 
stDr8 m,i 
jp L1 

I2 . . . 

(c) Consistent Copies 

Figure 1 
Example Code Generation with Aliases 

When code is generated placing 1 oads and s t ores 
around variable uses and definitions, a total of 72 load 

and store instructions will be executed thus generating 
72 memory operations (31 writes and 41 reads). In the 
case where variables are not promoted to registers, no 
load or store operations are executed, but implicit 
accesses in other instructions generate 81 memory 
operations (3 1 writes and 50 reads). 

Variable Forwarding 
The architectural features of variable forwarding 

assure that accesses to the memory copy of a variable 
retrieves the most recent value, even if that value is stored 
in a register. These features also assure that modification 
of the memory copy of a variable that is loaded into a 
register will affect the value stored in the register. These 
features permit the register allocator and code generator 

to make best-case assumptions about aliasing in the 
program without any danger of producing a program that 
does not operate correctly. 

. . . 
load m,i 
nwf#i,m 

Ll: cmp fo,#lO 
imt D 
Mrl,T 
add m,rl 
store ri ,T 
kad r2,A 
mul m,t2 
store r2,A 
incm 
store m,i 
j&l 

I2 . . . 

(a) Local Allocation 

. . . 
load m,i 
movwi,ro 
load rl,T 
load r2,A 

Ll: anp IQ,110 
imt u 
add m,rl 
mul m,c2 
incm 
jpL1: 

I2 store m.i 
store rl ,T 
store R,A 
. . . 

(b) Global Allocation 

Figure 2 
Example Code Generation with Variable Forwarding 

In Figure 2, we present the code that could be 
generated for a processor with variable forwarding 
hardware for the example program presented in Figure 1. 
Figure 2a presents code generated using only local 
register allocation. This code segment will execute 52 
load and store operations resulting in 52 memory 
operations (31 writes and 21 reads). Figure 2b presents 
code generated using global register allocation, that will 
move load and store operations to the beginning and 
end of spans, and thus out of the loop body. This code 
will perform only 6 load and store operations 
resulting in only 6 memory accesses. Even from this 
simple example, it is clear that the ability to perform 
register allocation on the assumption that there are no 
aliases can provide for significant improvement of the 
generated code and significant reduction of both 
instruction and data memory traffic. 

Forwarding Hardware 
Figure 3 presents a schematic layout of the register 

forwarding hardware. The variable forwarding technique 
has two parts: memory forwarding, that detects back-door 
accesses to memory copies of variables and substitutes 
accesses to their register copies, and register forwarding 
that is necessary to permit potentially aliased variables to 
be allocated to different registers. The lower half of the 
figure shows the modifications to the memory access unit 
that perform memory forwarding. The upper half of the 
figure presents the modifications to the register select 
logic that perform register forwarding. 
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Effects on Memory Access 
The usual action of the memory control unit is to 

buffer and synchronize accesses between the internal and 
external data, address, and control busses, Variable 
forwarding augments the memory control unit with 
additional hardware designed to monitor each memory 
access and detect occasions where memory forwarding is 
needed. This hardware compares the address being 
requested from memory with the address associated with 
each register through the use of an associative memory, 
This memory is shown in the lower left of Figure 3 and 
contains one entry for each general purpose register. As 
memory accesses occur, the addresses requested are 
applied to this memory. When a hit occurs, the result of 
the memory access in progress is ignored (or the access 
may be aborted) and a signal is sent to the register select 
logic to complete the request with the register causing the 
hit. It is important, both for the simplicity of the 
forwarding mechanism itself and for the simplicity of the 
associative memory design that each unique address 
appears only once in the associative memory, thus 
guaranteeing that only one entry will match per operation. 
This fact eliminates the need for shift registers and added 
logic needed to process multiple hits and permits the hit 
indication signals to be directly used in addressing the 
corresponding register. 

The use of an associative memory to perform the 
parallel comparison of memory addresses with register 
tags permits this operation to complete in less time than 
the general memory subsystem requires to perform the 
actual memory operation requested. This means that if the 
two operations are initiated in parallel, the result of the 
associative memory access will be available in time for 
the memory control unit to substitute a register access 
whenever necessary. Because the comparison occurs in 
parallel with the memory request, the presence of the 
variable forwarding hardware does not increase the 
general memory access time. In fact, when a hit occurs 
and a register access is substituted for a memory access, 
the access time is reduced to a value somewhere between 
the normal memory access time and the register access 
time. When a request for a value from memory is satisfied 
by a forwarded register, a memory operation has been 
initiated that is not necessary for the instruction to 
complete. The results of such requests can be ignored, 
without concern for reversing side effects because all 
accesses to the memory locations in question will be 
forwarded to the appropriate register. Depending on the 
nature of the memory subsystem, it may be beneficial to 
abort memory requests that were initiated, but later found 
to be unnecessary. Figure 4 presents a detailed algorithm 
for the actions performed during a memory read or write 
operation. 

Similar associative memory technology is currently 
used in most virtual memory systems to provide the 
translation of virtual addresses into the physical addresses 
to which they are mapped. The output of translation 
lookaside buffers @LB’s) is usually a set of words 
indicating the physical addresses associated with the 
matching entries. The associative memory used in register 
forwarding can be made less general than those used in 
virtual address translation as it does not need to 
accommodate the possibility of multiple hits, nor does it 
need to return a data value for the entry causing a hit, but 
merely the select signal of the matching entry. The size of 
an associative memory is usually limited by the amount 
of chip real estate available. This limitation should not 
pose a problem as each cell of the required associative 
memory is simpler than the cells used in translation 
lookaside buffers, and because the number of entries in 
the memory is the same as the number of general purpose 
registers, which is usually relatively small. The dedication 
of space to the variable forwarding hardware is justified 
when the improved runtime performance is considered. 
Additionally, recent results [8] have suggested that the 
use of register windowing hardware is unnecessary 
because a suitably designed compiler can achieve equally 
good results. The space formerly allocated to the register 
windowing hardware can be utilized by the register 
forwarding associative memories. 

Memory Access: 
EA := effective address of operand 
initiate memory read&rite request for EA 
r these chedcs are performed in parallel ‘1 
apply EA to register associative memory yielding R 
if R is not null then 

submit a readkrite request for register R 
ignore or abort result of memory access 

else 
wait for memory access to complete 

end MemoryAccess 

Figure 4 
Operation of a Memory Read or Write Operation 

Effects on Register Access 
The usual function of the register select logic is to 

operate as a simple address decoder. Variable forwarding 
augments the register select logic to perform register 
forwarding. This type of forwarding is needed when the 
same memory location has been loaded into several 
different registers (when aliased variables have been 
allocated to different registers). Any access to one of the 
registers associated with a single memory location must 
be forwarded to a single register in order to maintain 
consistency. We refer to the set of registers associated 
with a single memory location as a forwurding group. A 
single register from the forwarding group holds the actual 
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Figure 3 
Register Forwarding Hardware 

value of the variable. This register is referred to as the 
leader. The leader is the only register in the forwarding 
group that has its address field set to trap accesses to the 
memory copy of the variable and hence is the register that 
will be selected by any operation initiated by the memory 
forwarding system. All accesses to other registers in the 
forwarding group are also forwarded to the leader. 

The knowledge of register forwarding information is 
represented by a tag and three link fields, forward, 
backward, and leader, that are stored with each register. 
Each time a register is selected, its tag field is checked to 
determine whether or not the register is part of a 
forwarding group. If the register is part of a group, but is 
not the leader, the leader link field is used to select the 
leader register of the group. This can result in a one cycle 
extension of the time required to access an operand in a 
register. However, this increased time is due to the need 

to retrieve the correct register and not due to any 
overhead associated with testing an individual register’s 
tag field. Thus, the time required to access a register 
which is not being forwarded is not extended over the 
register access time of a processor without register 
forwarding. The forward and backward link fields are 
used to construct a doubly linked list of the registers in 
the forwarding group. This list is used to find other 
registers in the group in order to update the leader field 
when the current leader is stored and thus removed 
from the group. 

The load instruction must be augmented to 
determine if the address of a variable that is being 
loaded into a register is already associated with another 
register, and when it is, to add the register to the existing 
forwarding group. This is achieved by adding a check of 
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the associative memory to the load operation before 
setting the tag field entry of the target register. Figure 5 
presents a detailed algorithm of the actions performed in 
the register read and write operations. 

RegisterAccess: 
RA := requested register 
Apply RA to register bank 
wait for Result 
if Result.Tag = FORWARDED then 

RA := Result.Leader 
Apply RA to register bank 

signal operation complete 
end RegisterAccess 

Figure 5 
Operation of a Register Read or Write Operation 

Effects on Instructions 
As part of the variable forwarding technique, the 

load and store instructions are augmented to update 
the forwarding information. The augmentation of these 
instructions is such that no auxiliary instructions are 
needed to maintain the register-address mappings. This 
section presents the details of the operation of these 
instructions along with several new instructions designed 
to optimize register management. 

At machine initialization, the associative memory 
entries are all initialized to 0, where it is assumed that no 
valid data object will ever be assigned this address. The 
register tags are all set to EMPTY, indicating that the 
registers are not being forwarded and have not been 
loaded with any values. The register forward, backward, 
and leader link entries may be left uninitialized because 
they arc only accessed after the tag and link fields have 
been modified. Like register contents and TLB’s, register 
forwarding tags and the contents of the variable 
forwarding associative memory must be saved and 
restored at context switches. 

The load instruction is used to move a variable 
from memory into a register. The instruction updates the 
register address tag for the register being loaded and 
creates forwarding groups whenever an attempt is made 
to load a register with the contents of a memory location 
that is already associated with another register. To begin 
association of a register with a variable from memory, but 
giving the variable an initial value instead of retrieving its 
value from memory, a special instruction is provided: 
init. The operands of ini t specify the address of the 
variable, the register, and the initial value to lx loaded 
into the register. Additionally, we provide a move 
instruction that does not perform the usual initialization 
of the register address field. This instruction is useful for 
accessing memory mapped devices without forwarding 
future references to a register, thus losing access to the 

actual device control or status word. Figure 6 presents the 
detailed operation of the load instruction. 

bad Register, Value: 
f set up new tag and address l / 
EA := Effdve Address of Operand. 
f%quest Fetch of memory operand at EA 
P these checks are performed in parallel with the memory request ‘I 
Leader := TLBcheck(EA) 

if Leader o FAIL then 
RegisterAddress := 0 
Fbgister.Backward := Leader 
RegisterLeader := Leader 
Register.Tag := FORWARDED 
if Leader.Tag = LOADED then 

Register.Forward := Register 
Leader.Tag := LEADER 

else 
Register.Fotward := Leadar.Forward 
Leader.Fotward.Dackward := Register 

Leader.Forward := Register 
ignore result of memory read 

else 
Register.Tag := LOADED 
Register.Address := EA 
Register.Fotward := Register 
Register&&ward := Register 
wait for result of memory read 
Register.Value := result 

signal operation complete 

Figure 6 
Operation of the LOAD Instruction 

The store instruction dissociates the mapping of a 
variable and register so that the register may be used for 
other purposes. The instruction removes the register from 
its forwarding group and clears the register’s addressing 
information. If the register was a leader then a new leader 
is selected from the group and the value from the register 
is copied to the new leader. If the register was the only 
register in the group, the value is copied to the associated 
memory location and the group is destroyed. If the value 
in the register is not live, there is no reason to perform the 
save. A special instruction, kill, is provided that clears 
the address information without storing the register 
contents. Figure 7 shows the detailed operation of the 
store instruction. The kill instruction performs the 
same actions with the exception of the memory write 
operation. 

Changes to Code Generation 
The altered semantics of the load and store 

instructions and the presence of the forwarding hardware 
affect the way the code generator should operate, both in 
terms of correct instruction selection and in terms of 
register allocation. 

When generating code for a three address statement 
of the form, Dest := Srcl op Src2, the code 
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generator should always assure that the address associated 
with the register holding the value corresponds to the 
addressof Dest. If DestisthesameasSrclorSrc2, 
the code generator should generate a sequence that begins 
by loading Dest into a register and then performing the 
operation with the register as the result of the operation. If 
Dest is disjoint from Srcl and Src2, then the code 
generator should emit an init of the register with the 
address of Dest and either Srcl or Src2 as the initial 
value followed by the operation with the result in the 
register. 

Store Register: 
case Register.Tag of 

LEADER: 
Newleader := Register.Forward 
NewLeader.Vafue t Register.Value 
NewLeader.Address := Register.Addrass 
if NewLeader.Forward = NL then 

NewLeader.Tag := LOADED 
else 

R := NewLeader.Forward 
while R.Fotward C R do 

R.Leader := NewLeader 
R := R.Forward 

R.Leader := Newleader 
LOADED: 

example program which contains a procedure to buffer a 
list of outputs into several columns, is written in a Pascal- 
like pseudo-code and is presented in Figure 8. The main 
program has three calls to the procedure, each of which 
creates a different abasing circumstance. The fust call 
does not introduce any aliases. The second call introduces 
an alias between the global variable CurrentRow and the 
formal parameter Value. As both of these variables are 
allocated to registers, this call demonstrates the operation 
of register forwarding. The last call introduces an alias 
between an element of the buffer array, Page, and the 
formal parameter PageNum. As only the parameter is 
allocated to a register, this call demonstrates the operation 
of memory forwarding. The pass-by-reference parameter 
PageNum would have likely been coded as a global 
variable in a real program, but is included as a parameter 
to demonstrate the improved code that can be generated 

Procedure MultiColOut ( 
var PageNum:integer; 
var Vafue:integer); 

tegin 
Page[CurrentCol][CurrentRow] := 

Value; 

initiate a wait for completion of transfer 
of RegisterValue to RegisterAddress 

FORWARDED: 
Register.Backward.Forward := Register.Forward 
Register.Forward.Ba&ward := Register&&ward 
if Register.Forwerd = Register then 

if Register.Backwerd.Tag = LEADER then 
Register.Badwvard.Tag := LOADED 

Register.Tag := EMPTY 
Register.Address := 0 
signal operation complete 

CurrentRow := CurrentRow t 1; 
if (CurrentRow > MAXROWS) then 

CurrentRow := 1; 
CurrentCol := CunentCol + 1; 
if (CurrentCot > MAXCCLS ) 

then 

Figure 7 

for accesses through pointers. 
Main Program 
Constants: 

MAXCOLS = 5; 
MAXROWS = 60: 

variables: 
Page:array[l ..MAXCOLS] 
of array [l ..MAXROWS] of 

integer; 
CurrentRow:integer=l ; 
CurrentCollnteger=l; 
PagaNum:integer=l; 
kin&e&; 

Begin 
MultiCotOut (PageNumJ): 
MulfCelOut (PageNum, 

CurrentFtow); 
MulfColOut (Page[lHl], 

PagaNurn); 
End. 

end; 

OutputPage(); 
CurrentCot := 1; 
PageNum := 
PageNum + 1; 

Figure 8 
Operation of the STORE Instruction Example Program Source 

After a value has been computed into a register, the 
result should either be stored to memory, if it is live, or 
killed, if it is no longer needed, before the register is 
used for another computation. 

Operations that reference values through pointers or 
addresses can also be compiled to place the values into 
registers. For example, a pass-by-reference parameter can 
be loaded from memory into a register, operated upon, 
and then stored before the procedure exits. Similarly, 
fields of dynamically allocated objects can be loaded 
into registers and operated on, followed by a store 
instruction. 

In the first call, the register configuration during the 
body of the procedure will be: 
r7 m(PageNum) rlo t-3 
ra 11 (Vaklt?) rl 1 CurrentRow 
rs 12 rl2 CurrentCot 

The only memory access that will occur (other than 
loads and stores) will be to an element of the array 
Page, and the pass-by-reference parameter PageNum. As 
these are not aliased to any of the values in the registers, 
there will not be any associative memory hits during the 
execution of the procedure, and thus no forwarding will 
OCCUT. 

Example 
This section presents au example program that 

demonstrates the operation of the variable forwarding 
hardware in a variety of aliasing circumstances. The 
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Main: push 
push 
call 

push 
push 
call 
push 
init 
dec 
init 
mul 
mul 
add 
add 
push 
call 
halt 

MultiColOut: 

XI 
tPageNum 
B,MultiC4lOut 
#CurrentRow 
#PageNum 
B,MultiColOut 
#PageNum 
ro,ti ,I 
ro 
rl ,P,tStride 
ml 
#ElemSize,rO 
fl,m 
#Page,rO 
tl 
B,MultiColOut 
; terminate program 

IO: 
II: 

12: 
13: 

Ll:L2: 

POP r7 
load r7,Vl 

El!! &a 
load rll ,CurrentRow 
init t9,t2,rll 
dec 19 
mul #ElemSize,rS 
lead rl2,CurrentCol 
init rl O,t3,ri 2 
dec rl0 
mul #Stride,rlO 
add r1OJS 
kill rl0 
add #Page,rS 
move a(@) 
kill r8 
kill 19 
inc rll 
cmp rl ,#MAXROWS 
jple Ll 
move #l,lll 
inc r12 
cw rl2,#MAxCOLS 
jple D 
Call #O,OutputPage 
move Wl,r12 
inc r7 
store r7 
store rll 
store r12 
ret 

: ski& parameters 

; first call 
; stack parameters 

: second call 
; stack first parameter 
;tl :=I 
; tl := 11 -1 
; 12 := Stride 
; 12 := 11 ’ 12 
; tl := tl l ElemSize 
;tl :=tl +t2 
; tl := 11 + Addr(Page) 
: stack computed parameter 
; third call 

; retrieve address of PageNum 
; associate with r7, get initial value 
; retrieve address of Value 
; associate with r8, get initial value 
: Put CurrentRow in rl 1 
; set address of 12 for 19, initialize 
; t2 := CurrentPow -1 
; 12 := 12 l ElemSize 
: Put CurrentCol in tl2 
; set address of 13 for rl0, initialize 
; t3 := CurrentCol -1 
;t3:=13’Stride 
;t2:=t2+13 
: 13 no longer needed 
: t2 := 12 + Addr (Page) 
; store tl at address computed in 12 
; Value has no further uses 
; nor does t2 
; CurrentRow := CurrentRow t 1 

; CurrentRow := 1 
; CurrentCol := CurrentCol t 1 

; CurrentCol := 1 
; PageNum := PageNum t 1 
; PageNum is live, store 
; Current&w is live, store 
; CurrentCol is live, store 

Figure 9 
Pseudo-Machine-Code for Example Program 

In the second call, the register configuration during 
the procedure will be the same as during the first call, but 
in this case, the access to Value is also an access to 
CurrentRow. The instruction at label 11 will attempt to 
fetch CurrentRow into rll and set its address field 
accordingly. Because of the alias of CurrentRow and 
Value, the address of CurrentRow is already associated 
with the register holding Value (r8) due to the instruction 
at label IO. Thus this load instruction will create a 

forwarding group with r8 as the leader. Should there he 
an access to the memory location, r8’s tag would cause an 
associative memory hit and redirection would be to r8. 
Should rl 1 be accessed, the forwarding tag would cause a 
redirection to the leader of the group, r8. The instruction 
at label 13 performs a kill on r8. This removes the 
leader of the forwarding group. The ki 11 operation will 
copy the value of r8 into rl 1 and set rl l’s address field to 
canse a trap on the address of CurrentRow. 

In the final case, a similar sequence occurs, however 
the address associated with r8 will be the address of an 
element of the page array. When execution conditions are 
such that the address computation for 
Page[CurrentRow][CurrentCol] yields the same address 
as associated with r8, the move instruction at label 12 will 
be redirected to write to r8. 

Multiprocessor Architectures 
While the discussion to this point has centered on a 

uniprocessor architecture, the variable forwarding 
technique is a useful addition to other processor 
configurations as well. Variable forwarding can be 
directly applied in any message passing processor 
architecture where individual processors cannot directly 
access the local memories of other processors. 

A shared memory multiprocessor using variable 
forwarding exhibits a phenomenon similar to the cache 
coherency problem and may be managed with similar 
techniques. When a memory reference occurs that is not 
forwarded by the local hardware, the forwarding 
associative memory of all other processing units must be 
checked to assure that the value is not loaded into a 
register in another unit. This is similar to the situation that 
arises when a block has been loaded into one processing 
unit’s cache and another processing unit generates a 
request for the same block. 

One possible approach to avoiding inconsistencies 
among processors is to build an associative memory that 
contains the addresses loaded into all of the registers in 
the multiprocessor. Register tags must also be extended to 
permit forwarding chains to cross processing units. This 
memory could then be updated and consulted by each 
processing unit for each memory reference as in the 
uniprocessor case, but with hits resulting in either a local 
access or a request for access to a register in another 
processing unit. The associative memory could also be 
replicated in each processing unit, with each unit 
monitoring the memory requests of all processing units in 
order to update its local view of the multiprocessor’s 
complete register set. While replication eliminates 
contention for a single associative memory, it quickly 
becomes impractical as the number of processing units 
increases because each unit must have an associative 
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memory large enough to represent all registers in the 
complete multiprocessor. 

An alternative organization that uses the same basic 
approach but does not enlarge the individual processing 
unit’s associative memories can be used instead. Each 
processing unit has an associative memory reflecting the 
contents of its own register set. Each unit must monitor 
@l memory accesses by all units, checking each against 
its own associative memory. Updates to the local 
associative memory are triggered only by local load and 
store instructions. When a hit occurs on an address 
generated by another processor, an interrnpt is sent to that 
processor, signaling that the value must be fetched from 
the register copy held by the interrupting processor. As in 
the other approaches, register tag fields must contain a 
field to permit forwarding chains to cross processing units 
and a communication protocol for accesses to other 
processing units’ registers. 

Further techniques for applying variable forwarding 
to a shared memory multiprocessing environment may be 
patterned after existing cache coherency strategies. 

Instruction scheduling must take into account the 
possibility that access to a potentially aliased variable 
(subscripted variables, pointers, reference parameters) 
that is loaded into a register may require an added register 
cycle time to complete. This added time must be 
scheduled but may not be needed if the execution of the 
program is such that the variable does not actually have 
an alias. 

Conclusions 
The use of register forwarding hardware can 

substantially improve the quality of code that can be 
generated for a program containing abasing. This 
approach obviates the need for abasing analysis when 
performing register allocation. This technique cannot 
eliminate the need for abasing analysis for application of 
optimizations. 

Code generated for use with this hardware is 
substantially improved over code that must accommodate 
aliases directly. Global register allocation is more 
effective because loads and stores can be moved to 
the extremes of spans without concern for register- 
memory consistency. The static and dynamic numbers of 
loads and stores are reduced. The access time for 
variables which are held in registers, but which are 
referenced by their corresponding memory address is 
shorter than the normal memory cycle, thus improving 
execution speed over code for variables with known 
aliases. The normal register access time is not extended, 
but register forwarding may extend register access time 
for aliased variables. The number of instructions that can 
be eliminated through removal of guard code far 

outweighs this negative effect. The classes of values that 
can be allocated to registers are expanded to include 
elements of arrays, objects referenced through pointers, 
and pass-by-reference parameters. 

The hardware required to implement register 
forwarding is based on known technology and can bc 
incorporated into a processor without extending its cycle 
time. The nature of the variable forwarding problem 
allows the use of a simplified associative memory due to 
the information needed when a matching entry is found 
and due to the guarantee of only single matching entries. 
The chip real estate needed for this hardware can be 
recovered from the area often used by register window 
hardware. 

Further analysis of the effectiveness of this 
technique is being carried out through implementation of 
a simulator for a RISC processor equipped with variable 
forwarding hardware and a compiler designed to perform 
interprocedural register allocation and to produce code 
that takes advantage of this hardware. 
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