

3D Printing

Prof. Hank Dietz & Paul Eberhart September 28, 2013

University of Kentucky Electrical & Computer Engineering

How To Make Stuff

- People used to make things by hand...
 but humans make and use tools
 - Most tools are special purpose; they only make a particular type of thing
- Using computer control we can build smart, generic, tools – even tools that can build themselves (RepRap: Replicating Rapid prototyper)

Subtractive Building

"Every block of stone has a statue inside it and it is the task of the sculptor to discover it." — *Michelangelo*

Subtractive 2D

- Cutter: cuts 2D material in any pattern
- Paper/Craft: paper moves in Y, knife in X
- EDM/Laser: X/Y bed, vaporizes material

Subtractive 3D

- CNC: Computer Numerical Control
- Mill/Router: part on X/Y bed, bit on Z axis
- Lathe: spins the part against a cutter

- Subtractive 2D
- A working aperture iris made of card stock
- Design from Thingiverse: Thing 8787

- There are just 6 parts to make & assemble
- Assembly involves folding & tape/glue
- The design is an SVG or PDF file

- Cutting pattern *must be straight lines*...
- Used inkscape to fix & arrange objects, graphtecprint to print

Additive Building

"The whole is greater than the sum of its parts." – *Aristotle*

Additive 3D Building

- Material is deposited, not taken away
- Only works with specific materials
 - powders or paper
 - curable photopolymer liquid resin
 - extrudable materials (mostly plastics)
- No need to get tool around material; can build things with internal structure
- Simpler "clamping" of the part

3D With Lasers

- SLA: Stereolithography of photopolymer
- SLS: Selective Laser Sintering of powder
- SLM: Selective Laser Melting of powder

- Layers of paper: printed with glue & cut
- Layers of powder: printed with glue
- Can also be printed in full color

3D Extrusion (RepRaps)

- FDM: Fused Deposition Modeling
- FFF: Fused Filament Fabrication
- Typically ABS or PLA plastic filament...
 but chocolate, water, etc. can be extruded

Our 3D Printer

- It's a MakerGear M2, cost about \$1700
- We extrude 1.75mm diameter PLA filament to make 0.25mm tall "threads"
- PLA extrudes around 180° 210°C
- No clamping; extrusion bonds to hot bed

Making A Prosthetic Hand

- Additive 3D
- A working prosthetic hand driven by strings
- Famous design from Thingiverse: Thing 92937

- Start with Thing 92937
- It takes about 6 hours to print
- It takes 3-4 hours to assemble 50+ parts

Making The Prosthetic Hand

- Let's not start with Thing 92937 ...
- Redesign from scratch with goals:
 - Faster print time under 1 hour
 - Print assembled no snap together parts
 - Better match scale of actual hand (sized to 18-month-old girl's hand)
 - Minimum cost about \$1 total

How Do We Print Assembled?

- Easy if no moving parts, right?
 - Can't have unsupported spans
 - Can't have angles shallower than 45°
- How do we print an assembled joint?
 Fortunately, I made this hinge:

Making The HingeBox

- Created a hinge library in openscad
- The HingeBox is just a bunch of hinges imposed on two "cubes" plus a latch

Put A UK Logo On It

- Start with UK logo
- Use gimp (an image editor) to simplify it
- Use inkscape to convert it to DXF vectors

Put A UK Logo On It

- Load the 2D DXF into freecad
- Extrude it to make a 3D STL file
- Use openscad to "union" or "difference"

Making The Hinge Box

- An openscad 3D model is a program constructing objects from simple shapes
- Output is an STL model

Making The Hinge Box

Ŧ					Cura	- 13.06.5					- + ×
File Tools Expert Help											
Basic	Advanced	Plugins	Start/End-GCode			44 minutes		HELE .			
Qual	ity					44 minutes 6.27 meter 1 0.90	19 gram	and the second	G		
Layer height (mm)		C	0.25			0.90		3 ALA	Sar		
Shell thickness (mm)) ().5					857	302		1
Enable retraction					665			150	Mark		12
Fill					5007	N. A. A. A.					-C
Bottor	m/Top thickne	ss (mm) 🕻).5			AS -			SHEEP	APR-	63
Fill De	Fill Density (%)		25		ALLER.	1. Star			1	RAN	
Spee	d & Tempe	rature					A AN	EBA.	V9		
Print speed (mm/s)		5	50		CAD C	120	V HUZ	The A	128		
Printin	ng temperatur	e (C))		2	19980	2288	1000		2280	
Bed te	emperature (C))		1888 B.		- ALS	Same.		255	
Supp	Support										
Suppo	ort type	1	None		50	1 A			1A		
Platfo	rm adhesion ty	ype 🔤	None								
Filament											
Diame	eter (mm)	1	1.75			Constant in the				う思想	
Flow (%)		1	100							15	E
								Non.		AIA	
							网络胡根属		-		ee l
							1 64 Mil 100 100		96 AL	100 Key 200	

G1	X90.062	Y143.899	E2.97592
G1	X89.502	Y143.229	E3.05532
G1	X88.872	Y142.279	E3.15897
G1	X88.262	Y141.249	E3.26782
G1	X87.812	Y140.339	E3.36013
G1	X82.282	Y126.599	E4.70690
G1	X81.972	Y125.579	E4.80383
G1	X81.432	Y123.169	E5.02841
G1	X81.332	Y122.429	E5.09631
G1	X81.242	Y119.949	E5.32196
G1	X81.252	Y119.199	E5.39016

- The STL model is triangles on surfaces
- Slice the solid model using cura
- Output is gcode lines in X,Y,Z,E

Making The Hinge Box

- Print gcode using pronterface
- Wait for it...
- Finished part comes off the cooled bed

Making The Prosthetic Hand

- Did not get it right on the first try...
- Isn't that what rapid prototyping is all about?

How Does It Work?

- Each finger has 3 joints (hinges) that can bend up to 90° to grasp things
- The thumb also has 3 joints, but one is angled to bring the thumb into opposition
- A rubber band on the back of each finger resets to relaxed non-grasping position
- Fishing line through the fingers and palm is the muscle that pulls the hand closed

UAK UNIVERSITY OF KENTUCKY

OpenSCAD - hand20130925.scad module fingtip(wide=10, long=11, thick=6) { // make a finger segment assign(inset=1) // inset of top of finger assign(bandwide=6+2*tol) // width of rubber band difference() { hull() { // bottom of segment translate([0, long/4, 0]) cube([wide, long/2, thick/2], center=true); translate([0, (long-wide)+wide/2, 0]) cylinder(r=wide/2, h=thick/2, center=true); // top of segment translate([0, wide/2, thick/2]) cvlinder(r1=wide/2, r2=wide/2 inset, h=thick/2, center=true); translate([0, (long-wide)+wide/2, thick/2]) cylinder(r1=wide/2, r2=wide/2-inset, h=thick/2, center=true); // hole for muscle wire translate([0, long, thick/4+sqrt(2)]) rotate([90, 0, 0]) cylinder(r=1, h=long*2, center=true, \$fn=4); // spot to tuck end of muscle wire translate([0, long, thick/4+sqrt(2)]) rotate([90, 0, 0]) sphere(r=2, \$fn=4); // loop for rubber band translate([0, long-thick/2-(bandwide/2*sqrt(2))/2, -thick/4]) difference() { rotate([0, 90, 0]) sphere(r=bandwide/2*sqrt(2), \$fn=4); translate([0, 0, -sqrt(2)*bandstrap]) rotate([0, 90, 0]) sphere(r=bandwide/2*sqrt(2)+0.001, \$fn=4); module finger(wide=10, long=11, thick=6, nofing=0) { assign(firstlong=1*long) assign(twolong=1.25*long) assign(tiplong=1.25*long) union() { if (nofing == 0) translate([0, wide+thick/4+tol, 0]) union() { translate([0, firstlong+thick/2+2*tol, 0]) union() { translate([0, twolong+thick/2+2*tol, 0]) union() { hingelen (wide, thick/2); translate([0, thick/4+tol, 0]) fingtip(wide, tiplong, thick); hingelen(wide, thick/2); translate([0, thick/4+tol, 0]) fingseg(wide, twolong, thick); hingelen(wide, thick/2); translate([0, thick/4+tol, 0]) fingseg(wide, firstlong, thick); difference() { // hand base fingseg(wide, wide, thick); translate([0, -wide, 0]) Valid: yes Vertices: 30104 cube([2*wide, 2*wide, 2*thick], center=true); Halfedges: 99064 Edges: 49532 Halffacets: 39020 Facets: 19510 Volumes: 39 module thumb(wide=10, long=11, thick=6) { Total rendering time: 0 hours, 20 minutes, 0 seconds Viewport: translate = [-19.59 -5.07 7.81], rotate = [60.60 0.00 39.00], distance = 762.08

Making The Prosthetic Hand

- Check all hinges are free to move
- Insert rubber bands on backs of fingers: Cut band, knot one end & trim the other, work through slots & tighten, knot & trim
- Route fishing line through fingers:
 Push line through palm & finger, knot end at finger tip, trim after about two hand lengths

Questions?

Aggregate.Org UNBRIDLED COMPUTING University of Kentucky Electrical & Computer Engineering

