Compiler Transformations for High-Performance Computing

DAVID F. BACON, SUSAN L. GRAHAM, AND OLIVER J. SHARP

Computer Science Division, Unwversity of California, Berkeley, California 94720

In the last three decades a large number of compiler transformations for optimizing
programs have been implemented. Most optimizations for uniprocessors reduce the
number of instructions executed by the program using transformations based on the
analysis of scalar quantities and data-flow techniques. In contrast, optimizations for
high-performance superscalar, vector, and parallel processors maximize parallelism
and memory locality with transformations that rely on tracking the properties of
arrays using loop dependence analysis.

This survey is a comprehensive overview of the important high-level program
restructuring techniques for imperative languages such as C and Fortran.
Transformations for both sequential and various types of parallel architectures are
covered in depth. We describe the purpose of each transformation, explain how to
determine if it is legal, and give an example of its application.

Programmers wishing to enhance the performance of their code can use this survey
to improve their understanding of the optimizations that compilers can perform, or as
a reference for techniques to be applied manually. Students can obtain an overview of
optimizing compiler technology. Compiler writers can use this survey as a reference for
most of the important optimizations developed to date, and as a bibliographic reference
for the details of each optimization. Readers are expected to be familiar with modern
computer architecture and basic program compilation techniques.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent
Programming; D.3.4 [Programming Languages]|: Processors—compilers;
optimization; 1.2.2 [Artificial Intelligence]: Automatic Programming—program
transformation

General Terms: Languages, Performance

Additional Key Words and Phrases: Compilation, dependence analysis, locality,
multiprocessors, optimization, parallelism, superscalar processors, vectorization

INTRODUCTION
As optimizing compilers become more

Optimizing compilers have become an es-
sential component of modern high-perfor-
mance computer systems. In addition to
translating the input program into ma-
chine language, they analyze it and ap-
ply various transformations to reduce its
running time or its size.

effective, programmers can become less
concerned about the details of the under-
lying machine architecture and can em-
ploy higher-level, more succinct, and
more intuitive programming constructs
and program organizations. Simultane-
ously, hardware designers are able to

This research has been sponsored in part by the Defense Advanced Research Projects Agency (DARPA)
under contract DABT63-92-C-0026, by NSF grant CDA-8722788, and by an IBM Resident Study Program

Fellowship to David Bacon,

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

© ©1994 0360-0300,/94 /1200-0345 $03.50

ACM Computing Surveys, Vol. 26, No. 4, December 1994

346 . David F. Bacon et al.

CONTENTS

INTRODUCTION
1. SOURCE LANGUAGE
2. TRANSFORMATION ISSUES
2.1 Correctness
2.2 Scope
3. TARGET ARCHITECTURES
3.1 Characterizing Performance
32 Model Architectures
4. COMPILER ORGANIZATION
5 DEPENDENCE ANALYSIS
51 Types of Dependences
5 2 Representing Dependences
5.3 Loop Dependence Analysis
5.4 Subscript Analysis
6. TRANSFORMATIONS
6.1 Data-Flow-Based Loop Transformations
6.2 Loop Reordering
6.3 Loop Restructuring
6.4 Loop Replacement Transformations
6.5 Memory Access Transformations
6.6 Partial Evaluation
6.7 Redundancy Elimination
6.8 Procedure Call Transformations
7. TRANSFORMATIONS FOR PARALLEL
MACHINES
7.1 Data Layout
7 2 Exposing Coarse-Grained Parallelism
73 Computation Partitioning
74 Communication Optimization
75 SIMD Transformations
76 VLIW Transformations
8 TRANSFORMATION FRAMEWORKS

8.1 Umfied Transformation

8.2 Searching the Transformation Space
9. COMPILER EVALUATION

9.1 Benchmarks

9.2 Code Characteristics

9.3 Compiler Effectiveness

9.4 Instruction-Level Parallelism
CONCLUSION
APPENDIX: MACHINE MODELS

A.1l Superscalar DLX

A 2 Vector DLX

A 3 Multiprocessors
ACKNOWLEDGMENTS
REFERENCES

employ designs that yield greatly im-
proved performance because they need
only concern themselves with the suit-
ability of the design as a compiler target,
not with its suitability as a direct pro-
grammer interface.

In this survey we describe transforma-
tions that optimize programs written in

ACM Computing Surveys, Vol. 26, No. 4, December 1994

imperative languages such as Fortran
and C for high-performance architec-
tures, including superscalar, vector,
and various classes of multiprocessor
machines.

Most of the transformations we de-
scribe can be applied to any of the Algol-
family languages; many are applicable to
functional, logic, distributed, and object-
oriented languages as well. These other
languages raise additional optimization
issues that space does not permit us
to cover in this survey. The references
include some starting points for investi-
gation of optimizations for LISP and
functional languages [Appel 1992; Clark
and Peyton-Jones 1985; Kranz et al.
1986], object-oriented languages [Cham-
bers and Ungar 1989], and the set-based
language SETL [Freudenberger et al.
1983].

We have also restricted the discussion
to higher-level transformations that re-
quire some program analysis. Thus we
exclude peephole optimizations and most
machine-level optimizations. We use the
term opiimization as shorthand for opti-
mizing transformation.

Finally, because of the richness of the
topic, we have not given a detailed de-
scription of intermediate program repre-
sentations and analysis techniques.

We make use of a number of different
machine models, all based on a hypothet-
ical superscalar processor called S-DLX.
The Appendix details the machine mod-
els, presenting a simplified architecture
and instruction set that we use when we
need to discuss machine code. While all
assembly language examples are com-
mented, the reader will need to refer to
the Appendix to understand some details
of the examples (such as cycle counts).

We assume a basic familiarity with
program compilation issues. Readers un-
familiar with program flow analysis or
other basic compilation techniques may
consult Aho et al. [1986].

1. SOURCE LANGUAGE

All of the high-level examples in this
survey are written in a language similar

to Fortran 90, with minor variations and
extensions; most examples use only fea-
tures found in Fortran 77. We have cho-
sen to use Fortran because it is the de
facto standard of the high-performance
engineering and scientific computing
community. Fortran has also been the
input language for a number of research
projects studying parallelization [Allen et
al. 1988a; Balasundaram et al. 1989;
Polychronopoulos et al. 1989]. It was cho-
sen by these projects not only because of
its ubiquity among the user community,
but also because its lack of pointers and
its static memory model make it more
amenable to analysis. It is not yet clear
what effect the recent introduction of
pointers into Fortran 90 will have on
optimization.

The optimizations we have presented
are not specific to Fortran—in fact, many
commercial compilers use the same in-
termediate language and optimizer for
both C and Fortran. The presence of un-
restricted pointers in C can reduce oppor-
tunities for optimization because it is
impossible to determine which variables
may be referenced by a pointer. The pro-
cess of determining which references may
point to the same storage locations is
called alias analysis [Banning 1979; Choi
et al. 1993; Cooper and Kennedy 1989;
Landi et al. 1993].

The only changes to Fortran in our
examples are that array subscripting is
denoted by square brackets to distin-
guish it from function calls; and we use
do all loops to indicate textually that all
the iterations of a loop may be executed
concurrently. To make the structure of
the computation more explicit, we will
generally express loops as iterations
rather than in Fortran 90 array notation.

We follow the Fortran convention that
arrays are stored contiguously in mem-
ory in column-major form. If the array is
traversed so as to visit consecutive loca-
tions in the linear memory, the first (that
is, leftmost) subscript varies the fastest.
In traversing the two-dimensional array
declared as aln, m], the following array
locations are contiguous: aln — 1, 3],
aln, 3], a[1, 4], al2, 4].

Compiler Transformations . 347

Programmers unfamiliar with Fortran
should also note that all arguments are
passed by reference.

When describing compilation for vector
machines, we sometimes use array nota-
tion when the mapping to hardware reg-
isters is clear. For instance, the loop

doalli=1, 64
alil = alil + ¢
end do all

could be implemented with a scalar-vec-
tor add instruction, assuming a machine
with vector registers of length 64. This
would be written in Fortran 90 array
notation as

a[1:64] = a[1:64] + ¢

or in vector machine assembly language
as

LF F2, c(R30) :load c into register F2
ADDI R8, R30, #a ;load addr. of a into R8
LV Vi, R8 :load vector a[1:64] to

Vi
;add scalar to vector
:store vector in a[1:64]

ADDSV V1, F2, Vi
SV Vi, R8

Array notation will not be used when
loop bounds are unknown, because there
is no longer an obvious correspondence
between the source code and the fixed-
length vector operations that perform the
computation. To use vector operations,
the compiler must perform the transfor-
mation called strip-mining, which is dis-
cussed in Section 6.2.4.

2. TRANSFORMATION ISSUES

For a compiler to apply an optimization
to a program, it must do three things:

(1) Decide upon a part of the program to
optimize and a particular transfor-
mation to apply to it.

(2) Verify that the transformation either
does not change the meaning of the
program or changes it in a restricted
way that is acceptable to the user.

(8) Transform the program.

In this survey we concentrate on the
last step: transformation of the program.

ACM Computing Surveys, Vol. 26, No. 4, December 1994

348 . David F. Bacon et al.
However, in Section 5 we introduce de-
pendence analysis techniques that are
used for deciding upon and verifying
many loop transformations.

Step (1) is the most difficult and poorly
understood; consequently compiler de-
sign is in many ways a black art. Be-
cause analysis is expensive, engineering
issues often constrain the optimization
strategies that the compiler can perform.
Even for relatively straightforward
uniprocessor target architectures, it is
possible for a sequence of optimizations
to slow a program down. For example, an
attempt to reduce the number of instruc-
tions executed may actually degrade per-
formance by making less efficient use of
the cache.

As processor architectures become
more complex, (1) the number of dimen-
sions in which optimization is possible
increases and (2) the decision process is
greatly complicated. Some progress has
been made in systematizing the applica-
tion of certain families of transforma-
tions, as discussed in Section 8. However,
all optimizing compilers embody a set of
heuristic decisions as to the transforma-
tion orderings likely to work best for the
target machine(s).

2.1 Correctness

When a program is transformed by the
compiler, the meaning of the program
should remain unchanged. The easiest
way to achieve this is to require that the
transformed program perform exactly the
same operations as the original, in ex-
actly the order imposed by the semantics
of the language. However, such a strict
interpretation leaves little room for im-
provement. The following is a more
practical definition.

Definition 2.1.1 A transformation is
legal if the original and the transformed
programs produce exactly the same out-
put for all identical executions.

Two executions of a program are iden-
tical executions if they are supplied with
the same input data and if every corre-
sponding pair of nondeterministic opera-

ACM Computing Surveys, Vol. 26, No 4, December 1994

tions in the two executions produces the
same result.

Nondeterminism can be introduced by
language constructs (such as Ada’s se-
lect statement), or by calls to system or
library routines that return information
about the state external to the program
(such as Unix time() or read()).

In some cases it is straightforward to
cause executions to be identical, for in-
stance by entering the same inputs. In
other cases there may be support for de-
terminism in the programming environ-
ment-—for instance, a compilation option
that forces select statements to evaluate
their guards in a deterministic order. As
a last resort, the programmer may have
to replace nondeterministic system calls
temporarily with deterministic opera-
tions in order to compare two versions.

To illustrate many of the common
problems encountered when trying to op-
timize a program and yet maintain cor-
rectness, Figure 1(a) shows a subroutine.
Figure 1(b) is a transformed version of it.
The new version may seem to have the
same semantics as the original, but it
violates Definition 2.1.1 in the following
ways:

e Qverflow. If blk] is a very large num-
ber, and a[1] is negative, then chang-
ing the order of the additions so that
C = blk] + 100000.0 is executed before
the loop body could cause an overflow
to occur in the transformed program
that did not occur in the original. Even
if the original program would have
overflowed, the transformation causes
the exception to happen at a different
point. This situation complicates de-
bugging, since the transformation is
not visible to the programmer. Finally,
if there had been a print statement be-
tween the assignment and use of C,
the transformation would actually
change the output of the program.

e Different results. Even if no overflow
occurs, the values that are left in the
array a may be slightly different be-
cause the order of the additions has
been changed. The reason is that float-

subroutine tricky(a,b,n,m,k)
integer n, m, k
real alm], bim]

do i=1,
a[i] =

end do

return

n
blk] + ali] + 100000.0

(a) original program

subroutine tricky(a,b,n,m,k)
integer n, m, k
real a[m], bfm], C

C = b[k] + 100000.0

doi=mn, 1, -t
afi] = a[i]l + C
end do
return
(b) transformed program
k = mt1
n=20

call tricky(a,b,n,m,k)
(c) possible call to tricky

equivalence (al[1], b[n])

k=n
call tricky(a,b,n,m,k)
(d) possible call to tricky

Figure 1. Incorrect program transformations.

ing-point numbers are approximations
of real numbers, and the order in which
the approximations are applied (round-
ing) can affect the result. However, for
a sequence of commutative and asso-
ciative integer operations, if no order
of evaluation can cause an exception,
then all evaluation orders are equiva-
lent. We call operations that are alge-
braically but not computationally
commutative (or associative) semicom-
mutative (or semiassociative) opera-
tions. These issues do not arise with
Boolean operations, since they do not
cause exceptions or compute approxi-
mate values.

Compiler Transformations . 349

e Memory fault. If K> m but n < 1, the
reference to blk] is illegal. The refer-
ence would not be evaluated in the
original program because the loop body
is never executed, but it would occur in
the call shown in Figure 1(c) to the
transformed code in Figure 1(b).

o Different results. a and b may be com-
pletely or partially aliased to one an-
other, changing the values assigned to
a in the transformed program. Figure
1(d) shows how this might occur: If the
call is to the original subroutine, blk]
is changed when i =1, since k =n and
bln] is aliased to a[1]. In the trans-
formed version, the old value of b[k] is
used for all i, since it is read before the
loop. Even if the reference to blk] were
moved back inside the loop, the trans-
formed version would still give differ-
ent results because the loop traversal
order has been reversed.

As a result of these problems, slightly
different definitions are used in practice.
When bitwise identical results are de-
gired, the following definition is used:

Definition 2.1.2 A transformation is
legal if, for all semantically correct pro-
gram executions, the original and the
transformed programs produce exactly
the same output for identical executions.

Languages typically have many rules
that are stated but not enforced; for in-
stance in Fortran, array subscripts must
remain within the declared bounds, but
this rule is generally not enforced at
compile- or run-time. A program execu-
tion is correct if it does not violate the
rules of the language. Note that correct-
ness is a property of a program execu-
tion, not of the program itself, since the
same program may execute correctly un-
der some inputs and incorrectly under
others.

Fortran solves the problem of parame-
ter aliasing by declaring calls that alias
scalars or parts of arrays illegal, as in
Figure 1(d). In practice, many programs
make use of aliasing anyway. While this
may improve performance, it sometimes
leads to very obscure bugs.

ACM Computing Surveys, Vol. 26, No. 4, December 1994

350 . David F. Bacon et al.

For languages and standards that de-
fine a specific semantics for exceptions,
meeting Definition 2.1.2 tightly con-
strains the permissible transforma-
tions. If the compiler may assume that
exceptions are only generated when the
program is semantically incorrect, a
transformed program can produce differ-
ent results when an exception occurs and
still be legal. When exceptions have a
well-defined semantics, as in the IEEE
floating-point standard [American Na-
tional Standards Institute 1987], many
transformations will not be legal under
this definition.

However, demanding bitwise identical
results may not be necessary. An alterna-
tive correctness criterion is:

Definition 2.1.3 A transformation is
legal if, for all semantically correct ex-
ecutions of the original program, the
original and the transformed programs
perform equivalent operations for identi-
cal executions. All permutations of semi-
commutative operations are considered
equivalent.

Since we cannot predict the degree to
which transformations of semicommuta-
tive operations change the output, we
must use an operational rather than an
observational definition of equivalence.
Generally, in practice, programmers ob-
serve whether the numeric results differ
by more than a certain tolerance, and if
they do, force the compiler to employ
Definition 2.1.2.

2.2 Scope

Optimizations can be applied to a pro-
gram at different levels of granularity.
As the scope of the transformation is en-
larged, the cost of analysis generally in-
creases. Some useful gradations of
complexity are:

e Statement. Arithmetic expressions are
the main source of potential optimiza-
tion within a statement.

e Basic block (straight-line code). This is
the focus of early optimization tech-

ACM Computing Surveys, Vol. 26, No. 4, December 1994

niques. The advantage for analysis is
that there is only one entry point, so
control transfer need not be considered
in tracking the behavior of the code.

e Innermost loop. To target high-perfor-
mance architectures effectively, com-
pilers need to focus on loops. Most of
the transformations discussed in this
survey are based on loop manipulation.
Many of them have been studied or
widely applied only in the context of
the innermost loop.

e Perfect loop nest. A loop nest is a set of
loops one inside the next. The nest is
called a perfect nest if the body of ev-
ery loop other than the innermost con-
sists of only the next loop in the nest.
Because a perfect nest is more easily
summarized and reorganized, several
transformations apply only to perfect
nests.

e General loop nest. Any loop nesting,
perfect or not.

e Procedure. Some optimizations, mem-
ory access transformations in particu-
lar, yield better improvements if they
are applied to an entire procedure at
once. The compiler must be able to
manage the interactions of all the ba-
sic blocks and control transfers within
the procedure. The standard and rather
confusing term for procedure-level op-
timization in the literature is global
optimization.

o Interprocedural. Considering several
procedures together often exposes more
opportunities for optimization; in par-
ticular, procedure call overhead is of-
ten significant, and can sometimes be
reduced or eliminated with inter-
procedural analysis.

We will generally confine our attention
to optimizations beyond the basic block
level.

3. TARGET ARCHITECTURES

In this survey we discuss compilation
techniques for high-performance archi-

tectures, which for our purposes are su-
perscalar, vector, SIMD, shared-memory
multiprocessor, and distributed-memory
multiprocessor machines. These architec-
tures have in common that they all use
parallelism in some form to improve
performance.

The structure of an architecture dic-
tates how the compiler must optimize
along a number of different (and some-
times competing) axes. The compiler must
attempt to:

® maximize use of computational re-
sources (processors, functional units,
vector units),

* minimize the number of operations
performed,

e minimize use of memory bandwidth
(register, cache, network), and

* minimize the size of total memory
required.

While optimization for scalar CPUs has
concentrated on minimizing the dynamic
instruction count (or more precisely, the
number of machine cycles required),
CPU-intensive applications are often at
least as dependent upon the performance
of the memory system as they are on the
performance of the functional units.

In particular, the distance in memory
between consecutively accessed elements
of an array can have a major perfor-
mance impact. This distance is called the
stride. If a loop is accessing every fourth
element of an array, it is a stride-4 loop.
If every element is accessed in order, it is
a stride-1 loop. Stride-1 access is desir-
able because it maximizes memory local-
ity and therefore the efficiency of the
cache, translation lookaside buffer (TLB),
and paging systems; it also eliminates
bank conflicts on vector machines.

Another key to achieving peak perfor-
manece is the paired use of multiply and
add operations in which the result from
the multiplier can be fed into the adder.
For instance, the IBM RS/6000 has a
multiply-add instruction that uses the
multiplier and adder in a pipelined fash-
ion; one multiply-add can be issued each
cycle. The Cray Y-MP C90 does not have
a single instruction; instead the hard-

Compiler Transformations . 351
ware detects that the result of a vector
multiply is used by a vector add, and
uses a strategy called chaining in which
the results from the multiplier’s pipeline
are fed directly into the adder. Other
compound operations are sometimes
implemented as well.

Use of such compound operations may
allow an application to run up to twice as
fast. It is therefore important to organize
the code so as to use multiply-adds wher-
ever possible.

3.1 Characterizing Performance

There are a number of variables that we
have used to help describe the perfor-
mance of the compiled code quantita-
tively:

® S is the hardware speed of a single
processor in operations per second.
Typically, speed is measured either in
millions of instructions per second
(MIPS) or in millions of floating-point
operations per second (megaflops).

¢ P is the number of processors.

e F is the number of operations executed
by a program.

e T is the time in seconds to run a pro-
gram.

o U = F/8T is the utilization of the ma-
chine by a program; a utilization of 1 is
ideal, but real programs typically have
significantly lower utilizations. A su-
perscalar machine can issue several in-
structions per cycle, but if the program
does not contain a mixture of opera-
tions that matches the mixture of func-
tional units, utilization will be lower.
Similarly, a vector machine cannot be
utilized fully unless the sizes of all of
the arrays in the program are an exact
multiple of the vector length.

* } measures reuse of operands that are
stored in memory. It is the ratio of the
number of times the operand is refer-
enced during computation to the num-
ber of times it is loaded into a register.
As the value of @ rises, more reuse is
being achieved, and less memory band-
width is consumed. Values of @ below

ACM Computing Surveys, Vol. 26, No. 4, December 1994

352 . David F. Bacon et al.
1 indicate that redundant loads are
occurring.

e Q. is an analogous quantity that mea-
sures reuse of a cache line in memory.
It is the ratio of the number of words
that are read out of the cache from
that particular line to the number of
times the cache fetches that line from
memory.

3.2 Model Architectures

In the Appendix we present a series of
model architectures that we will use
throughout this survey to demonstrate
the effect of various compiler transforma-
tions. The architectures include a super-
scalar CPU (S-DLX), a vector CPU
(V-DLX), a shared-memory multiproces-
sor (sMX), and a distributed-memory
multiprocessor (dMX). We assume that
the reader is familiar with basic princi-
ples of modern computer architecture, in-
cluding RISC design, pipelining, caching,
and instruction-level parallelism. Our
generic architectures are based on DLX,
an idealized RISC architecture intro-
duced by Hennessey and Patterson
[1990].

4. COMPILER ORGANIZATION

Figure 2 shows the design of a hypotheti-
cal compiler for a superscalar or vector
machine. It includes most of the general-
purpose transformations covered in this
survey. Because compilers for parallel
machines are still a very active area of
research, we have excluded these ma-
chines from the design.

The purpose of this compiler design is
to give the reader (1) an idea of how the
various types of transformations fit to-
gether and (2) some of the ordering is-
sues that arise. This organization is by
no means definitive: different architec-
tures dictate different designs, and opin-
ions differ on how best to order the
transformations.

Optimization takes place in three dis-
tinct phases, corresponding to three dif-
ferent representations of the program:
high-level intermediate language, low-

ACM Computing Surveys, Vol. 26, No 4, December 1994

level intermediate language, and object
code. First, optimizations are applied to a
high-level intermediate language (HIL)
that is semantically very close to the
original source program. Because all the
semantic information of the source pro-
gram is available, higher-level transfor-
mations are easier to apply. For instance,
array references are clearly distinguish-
able, instead of being a sequence of low-
level address calculations.

Next, the program is translated to
low-level intermediate form (LIL), essen-
tially an abstract machine language, and
optimized at the LIL level. Address com-
putations provide a major source of
potential optimization at this level. For
instance, two references to al5,3] and
a[7,3] both require the computation of
the address of column 3 of array a.

Finally, the program is translated to
object code, and machine-specific opti-
mizations are performed. Some optimiza-
tions, like code colocation, rely on profile
information obtained by running the
program. These optimizations are of-
ten implemented as binary-to-binary
translations.

The high-level optimization phase be-
gins by doing all of the large-scale re-
strueturing that will significantly change
the organization of the program. This in-
cludes various procedure-restructuring
optimizations, as well as scalarization,
which converts data-parallel constructs
into loops. Doing this restructuring at
the beginning allows the rest of the com-
piler to work on individual procedures in
relative isolation.

Next, high-level data-flow optimiza-
tions, partial evaluation, and redundancy
elimination are performed. These opti-
mizations simplify the program as much
as possible, and remove extraneous code
that could reduce the effectiveness of
subsequent analysis.

The main focus in compilers for high-
performance architectures is loop opti-
mizations. A sequence of transformations
is performed to convert the loops into a
form that is more amenable to optimiza-
tion: where possible, perfect loop nests
are created; subscript expressions are

Source Program

Character File l

Lexical Anaiysis and Parsing

Parse Tree
High—level Intermediate
Language (HIL)

Procedure Restructuring
Inlining
Cloning
Tail-recursion Elimination

Procedure Call Graph
Procedure Annotations

Scalarization

High-Level Datafiow Optimization

Constant Propagation and Folding
Copy Propagation

Common Subexpression Elimination
Loop-invariant Code Motion

Loop Unswitching

Strength Reduction

Control Flow Graph
Dorunator Tree
Interval Graph

SSA Graph

Partial Evaluation
Algebraic Simplification
Short--circuiting
Non—lot@oStrength Reduction
Format Compilation

Redundancy Elimination
Unreachable Code Elimination
Useless Code Elimination
Dead Variable Elimination

Loop Preparation |

Loop Distribution
Loop Normalization
Loop Peeling
Scalar Expansion

Dependence Vectors r

Loop Preparation il
Forward Substitution
Array Padding
Array Alignment
Idiom and Reduction Recognition
Loop Collapsing

_

Compiler Transformations . 353

(' Perfect Loop Nemw

Induction Varwables

Loop Reordering
Loop Interchange
Loop Skewing
Loop Reversal
Loop Tiling
Loop Coalescing
Strip Mining
Loop Unrolling
Cycle Shrinking

L

Loop Post-Processing

Loop Fusion
Loop Distnbution
Loop Spreading

[Low-level IL Generation J

Low-level Intermediate
Language (LIL)

Low-level Datafiow Optimization
Constant Propagation and Folding
Copy Propagation
Common Subexpression Efimination
Loop-invanant Code Motion
Strength Reduction of Ind.Var. Exprs.
Reassociation
induction Vanable Elimination

Low-level Redundancy Elimination
Dead Code Elimination

Useless Code Elimination
Dead Vanable Elimination

Procedure Call Optimizations

Parameter Promotion
Leaf Optimization
Frame Collapsing

Code Generation

Software Pipelining
Scalar Replacement
Cross~Call Register Allocation

Assembly Language
Micro-optimization

Peephole Optimization
Superoptimization

!

! Assembly l

Object Files {

J l Linking L]

Executable Program

Instruction Cache Optimization
Code Co-location
Displacement Minimization
Cache Conflict Avoidance

Final Optimized Code

Figure 2. Organization of a hypothetical optimizing compiler.

ACM Computing Surveys, Vol. 26, No. 4, December 1994

354 . David F. Bacon et al.
rewritten in terms of the induction vari-
ables; and so on. Then the loop iterations
are reordered to maximize parallelism
and locality. A postprocessing phase or-
ganizes the resulting loops to minimize
loop overhead.

After the loop optimizations, the pro-
gram is converted to low-level intermedi-
ate language (LIL). Many of the data-flow
and redundancy elimination optimiza-
tions that were applied to the HIL are
reapplied to the LIL in order to eliminate
inefficiencies in the component expres-
sions generated from the high-level con-
structs. Additionally, induction variable
optimizations are performed, which are
often important for high performance on
uniprocessor machines. A final LIL opti-
mization pass applies procedure call
optimizations.

Code generation converts LIL into
assembly language. This phase of the
compiler is responsible for instruction
selection, instruction scheduling, and
register allocation. The compiler applies
low-level optimizations during this phase
to improve further the performance of
the code.

Finally, object code is generated by the
assembler, and the object files are linked
into an executable. After profiling, pro-
file-based cache optimizations can be ap-
plied to the executable program itself.

5. DEPENDENCE ANALYSIS

Among the various forms of analysis used
by optimizing compilers, the one we rely
on most heavily in this survey is depen-
dence analysis [Banerjee 1988b; Wolfe
1989b]. This section introduces depen-
dence analysis, its terminology, and the
underlying theory.

A dependence is a relationship be-
tween two computations that places
constraints on their execution order. De-
pendence analysis identifies these con-
straints, which are then used to deter-
mine whether a particular transforma-
tion can be applied without changing the
semantics of the computation.

5.1 Types of Dependences

There are two kinds of dependences: con-
trol dependence and data dependence.

ACM Computing Surveys, Vol. 26, No. 4, December 1994

There is a control dependence between
statement 1 and statement 2, written S,
% 8,, when statement S, determines
whether S, will be executed. For exam-
ple:

1 if (a =23) then
2 b=10
end if

Two statements have a data dependence
if they cannot be executed simultane-
ously due to conflicting uses of the same
variable. There are three types of data
dependences: flow dependence {also
called true dependence), antidependence,
and output dependence. S, has a flow
dependence on S; (denoted by S; — S,)
when S; must be executed first because
it writes a value that is read by S,. For
example:

3 a=cx*10
4 d=2*a+c

Sg has an antidependence on S; (denoted
by S; + Sg) when S, writes a variable
that is read by S;:

5 e=fxd4+g
6 g=2xh

An antidependence does not constrain
execution as tightly as a flow depen-
dence. As before, the code will execute
correctly if Sy is delayed until after S;
completes. An alternative solution is to
use two memory locations g; and g4 to
hold the values read in S; and written in
Sy, respectively. If the write by S, com-
pletes first, the old value will still be
available in g;.

An output dependence holds when both
statements write the same variable:

7 a=bxc
8 a=d+e

We denote this condition by writing S,
<> S;. Again, as with an antidependence,
storage replication can allow the state-
ments to execute concurrently. In this
short example there is no intervening
use of a and no control transfer between
the two assignments, so the computation
in S; is redundant and can actually be
eliminated.

The fourth possible relationship, called
an input dependence, holds when two ac-
cesses to the same memory location are
both reads. Although an input depen-
dence imposes no ordering constraints,
the compiler can make note of it for the
purposes of optimizing data placement
on multiprocessors.

We denote an unspecified type of de-
pendence by S, = S,. Another common
notation for dependences uses S;88, for
S; = 8,, 8568, for S; » Sg, and S,8°S,
for S; = S,.

In the case of data dependences, when
we write X = Y we are being somewhat
imprecise: the individual variable refer-
ences within a statement generate the
dependences, not the statement as a
whole. In the output dependence example
above, b, ¢, d, and e can all be read from
memory in any order, and the results of
bxc and d + e can be executed as soon as
their operands have been read from
memory. S; <> Sg actually means that
the store of the value b*c into a must
precede the store of the value d + e into
a. When there is a potential ambiguity,
we will distinguish between different
variable references within statements.

5.2 Representing Dependences

To capture the dependence information
for a piece of code, the compiler creates a
dependence graph; typically each node in
the graph represents one statement. An
arc between two nodes indicates that
there is a dependence between the com-
putations they represent.

Because it can be cumbersome to ac-
count for both control and data depen-
dence during analysis, sometimes
compilers convert control dependences
into data dependences using a technique
called if-conversion [Allen et al. 1983].
If-conversion introduces additional
boolean variables that encode the condi-
tional predicates; every statement whose
execution depends on the conditional is
then modified to test the boolean vari-
able. In the transformed code, data de-
pendence subsumes control dependence.

Compiler Transformations . 355

doi=2,n

1 ali] = a[il + ¢
2 b[i] = a[i-1] * b[il
end do

Figure 3. Loop-carried dependence.

5.3 Loop Dependence Analysis

So far we have examined dependence in
the context of straight-line code with con-
ditionals—analyzing loops is a more
complicated problem. In straight-line
code, each statement is executed at most
once, so the dependence arcs described so
far capture all the possible dependence
relationships. In loops, each statement
may be executed many times, and for
many transformations it is necessary
to describe dependences that exist be-
tween iterations, called loop-carried
dependences.

A simple example of loop-carried de-
pendence is shown in Figure 3. There is
no dependence between S; and S, with-
in any single iteration of the loop, but
there is one between two successive iter-
ations. When i =&, S, reads the value of
alk —1] written by S, in iteration % —1.

To compute dependence information for
loops, the key problem is to understand
the use of arrays; scalar variables are
relatively easy to manage. To track array
behavior, the compiler must analyze the
subscript expressions in each array
reference.

To discover whether there is a depen-
dence in the loop nest, it is sufficient to
determine whether any of the iterations
can write a value that is read or written
by any of the other iterations.

Depending on the language, loop incre-
ments may be arbitrary expressions.
However, the dependence analysis algo-
rithms may require that the loops have
only unit increments. When they do not,
the compiler may be able to normalize
them to fit the requirements of the anal-
ysis, as described in Section 6.3.6. For
the remainder of this section we will as-
sume that all loops are incremented by 1
for each iteration.

ACM Computing Surveys, Vol. 26, No. 4, December 1994

356 . David F. Bacon et al.

do il = 11,u1
do i2 = 12,u2

do 14 = l4,u4

1 a[fl(il, e
2
end do
end do
end do

)‘.d)y-'-
o= algi(dy, ..., 4a),. .

(i yia)] = ..
agm(’.ly"')id)]

Figure 4. General loop nest.

Figure 4 shows a generalized perfect
nest of d loops. The body of the loop nest
reads and writes elements of the m-
dimensional array a. The function f, and
g, map the current values of the loop
iteration variables to integers that index
the ith dimension of a. The generalized
loop can give rise to any type of data
dependence: for instance, two different
iterations may write the same element of
a, creating an output dependence.

An iteration can be uniquely named by
a vector of d elements I = (iy,...,i),
where each index falls within the itera-
tion range of its corresponding loop in
the nesting (that is, 7, <i, <u,). The
outermost loop corresponds to the left-
most index.

We wish to discover what loop-carried
dependences exist between the two refer-
ences to a, and to describe somehow those
dependences that exist. Clearly, a refer-
ence in iteration J can depend only on
another reference in iteration I that was
executed before it, not after it. We for-
malize the notion of “before” with the <
relation:

I<Jiff3p: (G, <j, AVg <p:ii, =j,).
Note that this definition must be ex-
tended slightly when the loop increment
may be negative.

A reference in some iteration J de-
pends on a reference in iteration [if and
only if at least one reference is a write
and

I<J AYp: f,(I) =g, (J).

ACM Computing Surveys, Vol. 26, No. 4, December 1994

In other words, there is a dependence
when the values of the subscripts are the
same in different iterations. If no such I
and J exist, the two references are inde-
pendent across all iterations of the loop.
In the case of an output dependence
caused by the same write in different
iterations, the condition is simply Vp:
£,X1) = f,(J).

For example, suppose that we are at-
tempting to describe the behavior of the
loop in Figure 5(a). Each iteration of the
inner loop writes the element ali, jI. There
is a dependence if any other iteration
reads or writes that same element. In
this case, there are many pairs of itera-
tions that depend on each other. Con-
sider iterations I =(1,3) and J = (2,2).
Iteration I occurs first, and writes the
value a[1, 3]. This value is read in itera-
tion J, so there is a flow dependence
from iteration I to iteration J. Extend-
ing the notation for dependences, we
write I — J.

When X =Y, we define the depen-
dence distance as Y — X = (y, —
Xqs-e-5 ¥g — xg). In Figure 5(a), the de-
pendence distance J — I = (1, — 1). When
all the dependence distances for a spe-
cific pair of references are the same, the
potentially unbounded set of depen-
dences can be represented by the depen-
dence distance. When a dependence dis-
tance is used to describe the dependences
for all iterations, it is called a distance
vector (introduced by Kuck [1978] and
Muraoka [1971]).

A legal distance vector V must be lexi-
cographically positive, meaning that 0 <

doi=2,n
do j =1, n-1
ali,j] = ali,j] + ali-1,j+1]
end do
end do
(@) {(1,-1)}
doi=1,n

do j = 2, n-1
aljl=(aljl + alj~1] + alj+1])/3
end do
end do

(b) {(07 1)»(170)7(17 _1)}

Figure 5. Distance vectors.

V (the first nonzero element of the dis-
tance vector must be positive). A nega-
tive element in the distance vector means
that the dependence in the corresponding
loop is on a higher-numbered iteration. If
the first nonzero element was negative,
this would indicate a dependence on a
future iteration, which is impossible.

The reader should note that distance
vectors describe dependences among iter-
ations, not among array elements. The
operations on array elements create the
dependences, but the distance vectors de-
scribe dependences among iterations. For
instance, the loop nest that updates the
one-dimensional array a in Figure 5(b)
has dependences described by the set of
two-element distance vectors {(0, 1), (1, 0),
1, - D}

In some cases it is not possible to de-
termine the exact dependence distance at
compile-time, or the dependence distance
may vary between iterations; but there is
enough information to partially charac-
terize the dependence. A direction vector
(introduced by Wolfe [1989b]) is com-
monly used to describe such depen-
dences.

For a dependence I = <JJ, we define the
direction vector W = (w,,...,w,) where

< 1fzp<jp
w,={(= 1ifi,=j,
> ifi, >j,.

Compiler Transformations . 357

We will use the general term depen-
dence vector to encompass both distance
and direction vectors. In Figure 5 the
direction vector for loop (a) is (<, >),
and the direction vectors for loop (b) are
{(=, <), (<, =),(<, >) Note that a di-
rection vector entry of < corresponds to
a distance vector entry that is greater
than zero.

The dependence behavior of a loop is
described by the set of dependence vec-
tors for each pair of possibly conflicting
references. These can be summarized into
a single loop direction vector, at the ex-
pense of some loss of information (and
potential for optimization). The depen-
dences of the loop in Figure 5(b) can be
summarized as (<, *). The symbol #
denotes both a < and > direction, and
* denotes <, > and =.

A particular dependence between
statements S; and S, is denoted by writ-

ing the dependence vector above the ar-
(<)
row, for example S; — S,.

Burke and Cytron [1986] present a
framework for dependence analysis that
defines a hierarchy of dependence vec-
tors and allows flow and antidepen-
dences to be treated symmetrically. An
antidependence is simply a flow depen-
dence with an impossible dependence
vector (V < 0).

5.4 Subscript Analysis

In discussing the analysis of loop-carried
dependence, we omitted an important de-
tail: how the compiler decides whether
two array references might refer to the
same element in different iterations. In
examining a loop nest, first the compiler
tries to prove that different iterations are
independent by applying various tests to
the subscript expressions. These tests
rely on the fact that the expressions are
almost always linear. When dependences
are found, the compiler tries to describe
them with a direction or distance vector.
If the subscript expressions are too com-
plex to analyze, the compiler assumes
the statements are fully dependent on
one another such that no change in exe-
cution order is permitted.

ACM Computing Surveys, Vol 26, No 4, December 1994

358 . David F. Bacon et al.

There are a large variety of tests, all of
which can prove independence in some
cases. It is infeasible to solve the problem
directly, even for linear subscript expres-
sions, because finding dependences is
equivalent to the NP-complete problem
of finding integer solutions to systems of
linear Diophantine equations [Banerjee
et al. 1979]. Two general and approxi-
mate tests are the GCD [Towle 1976] and
Banerjee’s inequalities [Banerjee 1988a].

Additionally, there are a large number
of exact tests that exploit some subscript
characteristics to determine whether a
particular type of dependence exists. One
of the less expensive exact tests is the
Single-Index Test [Banerjee 1979; Wolfe
1989b]. The Delta Test [Goff et al. 1991]
is a more general strategy that examines
some combinations of dimensions. Other
tests that are more expensive to evaluate
consider the multiple subscript dimen-
sions simultaneously, such as the A-test
[Li et al. 1990], multidimensional GCD
[Banerjee 1988a], and the power test
[Wolfe and Tseng 1992]. The omega test
[Pugh 1992] uses a linear programming
algorithm to solve the dependence equa-
tions. The SUIF compiler project at Stan-
ford has had success applying a series of
exact tests, starting with the cheaper
ones [Maydan et al. 1991]. They use a
general algorithm (Fourier-Motzkin vari-
able elimination [Dantzig and Eaves
1974]) as a backup.

One advantage of the multiple-dimen-
sion exact tests is their ability to handle
coupled subscript expressions [Goff et al.
1991]. Two expressions are coupled if the
same variable appears in both of them.
Figure 6 shows a loop that has no depen-
dences between iterations. The state-
ment reads the values to the right of the
diagonal and updates the diagonal. A test
that only examines one dimension of the
subscript expressions at a time, however,
will not detect the independence because
there are many pairs of iterations where
the expression i in one is equal to the
expression i+ 1 in the other. The more
general exact tests would discover that
the iterations are independent despite

ACM Computing Surveys, Vol. 26, No. 4, December 1994

doi=1, n-1
ali,i] = ali,i+1]
end do

Figure 6. Coupled subscripts.

the presence of coupled
expressions.

Section 9.2 discusses a number of stud-
ies that examine the subscript ex-
pressions in scientific applications and
evaluate the effectiveness of different
dependence tests.

subscript

6. TRANSFORMATIONS

This section catalogs general-purpose
program transformations; those transfor-
mations that are only applicable on par-
allel machines are discussed in Section 7.
The primary emphasis is on loops, since
that is generally where most of the exe-
cution time is spent. For each transfor-
mation, we provide an example, discuss
the benefits and shortcomings, identify
any variants, and provide citations.

A major goal of optimizing compilers
for high-performance architectures is to
discover and exploit parallelism in loops.
We will indicate when a loop can be exe-
cuted in parallel by using a do all loop
instead of a do loop. The iterations of a
do all loop can be executed in any order,
or all at once.

A standard reference on compilers in
general is the “Red Dragon” book, to
which we refer for some of the most com-
mon examples [Aho et al. 1986]. We draw
also on previous summaries [Allen and
Cocke 1971; Kuck 1977; Padua and Wolfe
1986; Rau and Fisher 1993; Wolfe 1989b].

Because some transformations were al-
ready familiar to programmers who ap-
plied them manually, often we cite only
the work of researchers who have
systematized and automated the imple-
mentation of these transformations. Ad-
ditionally, we omit citations to works that
are restricted to basic blocks when global
optimization techniques exist. Even so,
the origin of some optimizations is murky.
For instance, Ershov’s ALPHA compiler

[Ershov 1966] performed interprocedural
constant propagation, albeit in a limited
form, in 1964!

6.1 Data-Flow-Based Loop Transformations'

A number of classical loop optimizations
are based on data-flow analysis, which
tracks the flow of data through a pro-
gram’s variables [Muchnick and Jones
1981]. These optimizations are summa-

rized by Aho et al. [1986].

6.1.1 Loop-Based Strength Reduction

Reduction in strength replaces an ex-
pression in a loop with one that is equiv-
alent but uses a less expensive operator
[Allen 1969; Allen et al. 1981]. Figure
7(a) shows a loop that contains a multi-
plication. Figure 7(b) is a transformed
version of the loop where the multiplica-
tion has been replaced by an addition.

Table 1 shows how strength reduction
can be applied to a number of operations.
The operation in the first column is as-
sumed to appear within a loop that iter-
ates over i from 1 to n. When the loop is
transformed, the compiler initializes a
temporary variable T with the expression
in the second column. The operation
within the loop is replaced by the expres-
sion in the third column, and the value of
T is updated each iteration with the value
in the fourth.

A variable whose value is derived from
the number of iterations that have been
executed by an enclosing loop is called an
induction variable. The loop control vari-
able of a do statement is the most com-
mon kind of induction variable, but other
variables may also be induction
variables.

The most common use of strength re-
duction, often implemented as a special
case, is strength reduction of induction
variable expressions [Aho et al. 1986;
Allen 1969; Allen et al. 1981; Cocke and
Schwartz 1970].

Strength reduction can be applied to
products involving induction variables by
converting them to references to an
equivalent running sum, as shown in

Compiler Transformations . 359

doi=1,n

ali]l = afi] + c*i
end do

(a) original loop

T=c¢c
doi=1,n

afi] = ali] + T

T=T+c
end deo

(b) after strength reduction

Figure 7. Strength reduction example.

Table 1. Strength Reductions (the variable ¢ is
loop invariant; x may vary between iterations)

[Expression | Initialization | Use | Update |
cxi T=c T T'=T+c¢
¢ T=c¢c T T=Txc
(-1) T=-1 T T=-T
z/c T=1/c zx T

Figure 8(a—c). This special case is most
important on architectures in which inte-
ger multiply operations take more cycles
than integer additions. (Current exam-
ples include the SPARC [Sun Microsys-
tems 1991] and the Alpha [Sites 1992].)
Strength reduction may also make other
optimizations possible, in particular the
elimination of induction variables, as is
shown in the next section.

The term strength reduction is also
applied to operator substitution in a non-
loop context, like replacing x X 2 with
x + x. These optimizations are covered in
Section 6.6.7.

6.1.2 Induction Variable Elimination

Once strength reduction has been per-
formed on induction variable expres-
sions, the compiler can often eliminate
the original variable entirely. The loop
exit test must then be expressed in terms
of one of the strength-reduced induction
variables; the optimization is called lin-
ear function test replacement [Allen 1969;
Aho et al. 1986]. The replacement not
only reduces the number of operations in

ACM Computing Surveys, Vol. 26, No. 4, December 1994

360 . David F. Bacon et al.

do i =1,
alil =

end do

n
alil + ¢

(a) original code

LF F4, c(R30)
LW R8, n(R30) ;load n into RS
LI R9, #1 ;set i (R9) to 1
ADDI Ri2,R30, #a ;Ri12=address(afl1])

;load ¢ into F4

Loop:MULTI R10, R9, #4 ;R10=i*4

ADDI R10,R12,R10 ;R10=address(afi+1])
LF F5, -4(R10) ;load ali] into F5
ADDF F5, F6, F4 ;a[i):=ali]+c

SF -4(R10), Fb5 ;store mnew alil

SLT R11, R9, R8 ;Ri1 = i<n?

ADDI R9, RY, #1 ;i=i+il

BNEZ R11, Loop ;if i<n, goto Loop

(b) initial compiled loop

LF F4, c(R30)
LW R8, n(R30)

;load ¢ into F4
;load n into R8

LI RO, #1 ;56t i (R9) to 1

ADDI R10,R30, #a ;Ri0=address(al[1])
Loop:LF F5, (R10) ;load ali] into F5

ADDF F5, F5, F4 ;alil:=alil+c

SF (R10), F& ;store new a[il

ADDI R9, RS, #1 ;i=i+1

ADDI R10, R10,#4 ;R10=address(ali+i])

SLT R11, R9, R8 ;R11 = i<n?

BREZ R11, Loop ;if i<n, goto Loop
{c) after strength reduction—R10 is a running sum
instead of being recomputed from RS and R12

LF F4, c(R30) ;load c¢ into F4
LW R8, n(R30) ;load n into R8
ADDI Ri0, R30,#a ;R10=address(a[1])
MULTI R8, R8, #4 ;RB8=n*4

ADDI R8, R10, R8 ;R8=address{aln+1])
Loop:LF F6, (R10) ;load ali] into F5
ADDF F5, FB, F& ;al[i]:=a[il+c

SF (R10), F6 ;store new ali]

ADDI R10, R10,#4 ;R10=address(ali+1])
SLT R11, R10,R8 ;Rii= R10<R8?

BNEZ R11, Loop ;if R11, goto Loop

(d) after elimination of induction variable (Rg)

Figure 8. Induction variable optimizations.

ACM Computing Surveys, Vol. 26, No. 4, December 1994

do 1= 1,n
ali] = a[i] + sqrt(x)
end do

{a) original loop

if (n > 0) C = sqrt(x)
do i = 1,n

ali] = a[i] + ¢
end do

(b) after code motion

Figure 9. Loop-invariant code motion.

a loop, but frees the register used by the
induction variable.

Figure 8(d) shows the result of apply-
ing induction variable elimination to the
strength-reduced code from the previous
section.

6.1.3 Loop-Invariant Code Motion

When a computation appears inside a
loop, but its result does not change be-
tween iterations, the compiler can move
that computation outside the loop [Aho et
al. 1986; Cocke and Schwartz 1970].

Code motion can be applied at a high
level to expressions in the source code, or
at a low level to address computations.
The latter is particularly relevant when
indexing multidimensional arrays or
dereferencing pointers, as when the in-
ner loop of a C program contains an ex-
pression like a.b — c.d[i].

Figure 9(a) shows an example in which
an expensive transcendental function call
is moved outside of the inner loop. The
test in the transformed code in Figure
9(b) ensures that if the loop is never
executed, the moved code is not executed
either, lest it raise an exception.

The precomputed value is generally as-
signed to a register. If registers are
scarce, and the expression moved is inex-
pensive to compute, code motion may ac-
tually deoptimize the code, since register
spills will be introduced in the loop.

Although code motion is sometimes re-
ferred to as code hoisting, hoisting is a

do i=2, n
ali] = ali] + ¢
if (x < 7) then
bli] = a[i] * c[i]
else
b(i] = ali~-1] = b[i-1]
end if
end do

{a) original loop

if (n > 1) then
if (x < 7) then

do all i=2, n
alil = a[i] + ¢
bli] = ali] * c[i]
end do all
else
do i=2, n
alil = ali]l + ¢
bli] = afi-1] * b[i-1]
end do
end if
end if

(b) after unswitching

Figure 10. Loop unswitching.

more general term referring to any
transformation that moves a computa-
tion to an earlier point in the program
[Aho et al. 1986). While loop-invariant
code motion is one particularly common
form of hoisting, there are others: an
expression can be evaluated earlier to
reduce register pressure or avoid arith-
metic unit latency, or a load instruction
might be moved upward to reduce the
effect of memory access latency.

6.1.4 Loop Unswitching

Loop unswitching is applied when a loop
contains a conditional with a loop-
invariant test condition. The loop is then
replicated inside each branch of the
conditional, saving the overhead of condi-
tional branching inside the loop, reduc-
ing the code size of the loop body, and
possibly enabling the parallelization of a
branch of the conditional [Allen and
Cocke 1971].

Compiler Transformations . 361

Conditionals that are candidates for
unswitching can be detected during the
analysis for code motion, which identifies
loop-invariant values.

In Figure 10(a) the variable X is loop
invariant, allowing the loop to be
unswitched and the true branch to be
executed in parallel, as shown in Figure
10(b). Note that, as with loop-invariant
code motion, if there is any chance that
the condition evaluation will cause an
exception, it must be guarded by a test
that the loop will be executed.

In a loop nest where the inner loop has
unknown bounds, if code is generated
straightforwardly there will be a test be-
fore the body of the inner loop to deter-
mine whether it should be executed at
all. The test for the inner loop will be
repeated every time the outer loop is exe-
cuted. When the compiler uses an inter-
mediate representation of the program
that exposes the test explicitly, unswitch-
ing can be applied to move the test out-
side of the outer loop. The RS /6000 XL
C/Fortran compiler uses unswitching for
this purpose [O’Brien et al. 1990].

6.2 Loop Reordering

In this section we describe transforma-
tions that change the relative order of
execution of the iterations of a loop nest
or nests. These transformations are pri-
marily used to expose parallelism and
improve memory locality.

Some compilers only apply reordering
transformations to perfect loop nests (see
Section 6.2.7). To increase the opportuni-
ties for optimization, such a compiler can
sometimes apply loop distribution to ex-
tract perfect loop nests from an imperfect
nesting.

The compiler determines whether a
loop can be executed in parallel by exam-
ining the loop-carried dependences. The
obvious case is when all the dependence
distances for the loop are 0 (direction
=), meaning that there are no depen-
dences carried across iterations by the
loop. Figure 11(a) is an example; the dis-
tance vector for the loop is (0, 1), so the
outer loop is parallelizable.

ACM Computing Surveys, Vol. 26, No. 4, December 1994

362 . David F. Bacon et al.

= afi,j-1] + ¢

(a) outer loop is parallelizable.

doi=1,n
doj=1,n
ali,jl = ali-1,j] + afi-1,j+1]
end do
end do

(b) inner loop is parallelizable.

Figure 11.
loops.

Dependence conditions for parallelizing

More generally, the pth loop in a loop
nest is parallelizable if for every distance

vector V = (vy,...,0,,...,0y),

v, =0V 3g <p:v,>0.

In Figure 11(b), the distance vectors
are {(1,0),(1, — 1)}, so the inner loop is
parallelizable. Both references on the
right-hand side of the expression read
elements of a from row i — 1, which was
written during the previous iteration of
the outer loop. Therefore the elements of
row i may be calculated and written in
any order.

6.2.1 Loop Interchange

Loop interchange exchanges the position
of two loops in a perfect loop nest, gener-
ally moving one of the outer loops to the
innermost position [Allen and Kennedy
1984; 1987; Wolfe 1989b]. Interchange is
one of the most powerful transformations
and can improve performance in many
ways.

Loop interchange may be performed to:

¢ enable vectorization by interchanging
an inner, dependent loop with an outer,
independent loop;

* improve vectorization by moving the
independent loop with the largest range
into the innermost position;

¢ improve parallel performance by mov-
ing an independent loop outward in a

ACM Computing Surveys, Vol. 26, No. 4, December 1994

double precision a[*]

do i = 1, 1024*stride, stride
ali] = a[i] + ¢
end do
(a) loop with varying stride
stride | Cache TLB Relative
Misses | Misses | Speed (%)
1 64 2 100
2 128 4 83
4 256 8 63
8 512 16 40
12 768 24 28
16 1024 32 23
64 1024 128 19
256 1024 512 12
512 1024 1024 8

(b) effect of stride

Figure 12. Predicted effect of stride on perfor-
mance of an IBM RS/6000 for the above loop.
Array elements are double precision (8 bytes); miss
rates are per 1024 iterations. Beyond stride 16,
TLB misses dominate [IBM 1992].

loop nest to increase the granularity of
each iteration and reduce the number
of barrier synchronizations;

¢ reduce stride, ideally to stride 1; and

e increase the number of loop-invariant
expressions in the inner loop.

Care must be taken that these benefits
do not cancel each other out. For in-
stance, an interchange that improves
register reuse may change a stride-1 ac-
cess pattern to a stride-n access pattern
with much lower overall performance due
to increased cache misses. Figure 12
demonstrates the dramatic effect of dif-
ferent strides on an IBM RS /6000.

In Figure 13(a), the inner loop accesses
array a with stride n (recall thdt we are
assuming the Fortran conventidn of col-
umn-major storage order). By inter-
changing the loops, we convert the inner
loop to stride-1 access, as shown in
Figure 13(b).

For a large array in which less than
one column fits in the cache, this opti-

doi=1,n
do j =1,n
total(i] = totallil + ali,j]
end do
end do
(a) original loop nest
do j = 1i,n
do i =1i,n
total[i] = total[i] + a[i,j]
end do
end do

(b) interchanged loop nest

Figure 13. Loop interchange.

mization reduces the number of cache
misses on a from n? to n? X elementsize /
linesize, or n?/16 with 4-byte elements
and the 64-byte lines of S-DLX. However,
the original loop allows totallil to be
placed in a register, ehmmatmg the
load/store operations in the inner loop
(see scalar replacement in Section 6.5.4).
So the optimized version increases the
number of load/store operations for total
from 2n to 2n®. If a fits in the cache, the
original loop is better.

On a vector architecture, the trans-
formed loop enables vectorization by
eliminating the dependence on totalli] in
the inner loop.

Interchanging loops is legal when the
altered dependences are legal and when
the loop bounds can be switched. If two
loops p and g in a perfect loop nest of d
loops are interchanged, each dependence
vector V—(vl,...,vp, s UgsevesUg) in
the original loop nest becomes V' =
(vq,... sUgseeesUpyse..,Uy) in the trans-
formed loop nest If V' is lexicograph-
ically positive, then the dependence
relationships of the original loop are sat-
isfied.

A loop nest of just two loops can be
interchanged unless it has a dependence
vector of the form (< , >). Figure 14(a)
shows the loop nest with the dependence
(1, —1), giving rise to the loop-carried
dependences shown in Figure 14(b). The
order in which the iterations are exe-

Compiler Transformations . 363

do i
do j 1,

afi,jl =
end do

end do

=2, n
= n-1
ali-1,j+1]

(a)

2

13//0
//

Figure 14. Original loop (a); original traversal or-
der (b); traversal order after interchange (c).

N
g

4

cuted is shown by the dotted line.
The traversal order after interchange is
shown in Figure 14(c): some iterations
are executed before iterations that they
depend on, so the interchange is illegal.

Switching the loop bounds is straight-
forward when the iteration space is rect-
angular, as in the loop nest in Figure 13.
In this case the bounds of the inner loop
are independent of the indices of the con-
taining loop, and the two can simply be
exchanged. When the iteration space is
not rectangular, computing the bounds is
more complex. Triangular spaces are of-
ten used by programmers, and trape-
zoidal spaces are introduced by loop
skewing (discussed in the next section).
Further techniques are necessary to
manage imperfectly nested loops. Some
of the variations are discussed in detail
by Wolfe [1989b] and Wolf and Lam
[1991].

6.2.2 Loop Skewing

Loop skewing is an enabling transforma-
tion that is primarily useful in combina-
tion with loop interchange [Lamport
1974; Muraoka 1971; Wolfe 1989b].
Skewing was invented to handle wave-
front computations, so called because the
updates to the array propagate like a
wave across the iteration space.

ACM Computing Surveys, Vol. 26, No. 4, December 1994

do 1 =2, n~1
do 3 = 2, m-1
ali,j] = (ala-1,3] + ali,j~11 +
al1+1,3] + ali,j+11)/4
end do
end do

(a) original code’ dependences {(1,0),(0,1)}

J J
5

(b) original space (c) skewed space

do i= 2, n-1
do j = it+2, i+m-1
ali,j-1] = (ali-1,j-2] + ali,j-1~i] +
ali+1,3-1] + alx,j+1~1])/4
end do
end do

(d) skewed code' dependences {(1,1),(0,1)}

do 3 = 4, m+n-2
do i = max(2,j-m+1), min(n-1,3-2)
ali,j-i] = (ali-t,j-1] + alz,j-1-1] +
ali+t,)-i] + ali,j+1-i1)/4
end do
end do

(e) skewed and interchanged code dependences

{(1,0),(1,1)}
Figure 15. Loop skewing.

In Figure 15(a) we show a typical
wavefront computation. Each element is
computed by averaging its four nearest
neighbors. While neither of the loops is
parallelizable in their original form, each
array diagonal (“wavefront”) could be
computed in parallel. The iteration space
and dependences are shown in Figure
15(b), with the dotted lines indicating the
wavefronts.

Skewing is performed by adding the
outer loop index multiplied by a skew
factor, f, to the bounds of the inner itera-
tion variable, and then subtracting the
same quantity from every use of the in-
ner iteration variable inside the loop. Be-
cause it alters the loop bounds but then
alters the uses of the corresponding in-

ACM Computing Surveys, Vol 26, No. 4, December 1994

dex variables to compensate, skewing
does not change the meaning of the pro-
gram and is always legal.

The original loop nest in Figure 15(a)
can be interchanged, but neither loop can
be parallelized, because there is a depen-
dence on both the inner loop (0, 1) and on
the outer loop (1, 0).

The result when f = 1is shown in Fig-
ure 15(c—d). The transformed code is
equivalent to the original, but the effect
on the iteration space is to align the
diagonal wavefronts of the original loop
nest so that for a given value of j, all
iterations in i can be executed in parallel.

To expose this parallelism, the skewed
loop nest must also be interchanged. Af-
ter skew and interchange, the loop nest
has distance vectors {(1,0),(1,1)}). The
first dependence allows the inner loop to
be parallelized because the correspond-
ing dependence distance is 0. The second
dependence allows the inner loop to be
parallelized because it is a dependence
on previous iterations of the outer loop.

Skewing can expose parallelism for a
nest of two loops with a set of distance
vectors {V,} only if

(3‘72 = (011>U12): U,y = oA U, > 0) A
(H‘/J = (UJI’UJZ): Uy >0 A Vg < 0)

When skewing by f, the original distance
vector (v, v,) becomes (vy, fu; + v,). For
any dependence where v, < 0, the goal is
to find f such that fv; + vy, 2> 1. The
correct skew factor f is computed by tak-
ing the maximum of f, =[(1 — v;3)/v,;]
over all the dependences [Kennedy et al.
1993].

Interchanging of skewed loops is com-
plicated by the fact that their bounds
depend on the iteration variables of the
enclosing loops. For two loops with
bounds i; =1, u; and i, = I,, u, where
l, and u, are expressions independent of
i;, the skewed inner loop has bounds i,
=fi, + 15, fi; + u,. After interchange,
the bounds are

do iy = fly + 1y, fu, + u,

dO il = max(ll,[(iZ - uz)/f]);
min(ul,[(iz - lg)/f])

An alternative method for handling
wavefront computations is supernode
partitioning [Irigoin and Triolet 1988].

6.2.3 Loop Reversal

Reversal changes the direction in which
the loop traverses its iteration range
[Wedel 1975]. It is often used in conjunc-
tion with other iteration space reordering
transformations because it changes the
dependence vectors [Wolfe 1989b].

As an optimization in its own right,
reversal can reduce loop overhead by
eliminating the need for a compare in-
struction on architectures without a com-
pound compare-and-branch (such as the
Alpha [Sites 1992]). The loop is reversed
so that the iteration variable runs down
to zero, allowing the loop to end with a
branch-if-not-equal-to-zero instruction
(BNEZ, on S-DLX).

Reversal can also eliminate the need
for temporary arrays in implementing
Fortran 90 array statements (see Section
6.4.3).

If loop p in a nest of d loops is re-

versed, then for each dependence vector
V, the entry v, is negated. The reversal
is legal if each resulting vector V' is
lexicographically positive, that is, when
=0ordg <p:v, >0.
For instance, the inner loop of a loop
nest with direction vectors {(<, =),
(<, >)} can be reversed, because the re-
sulting dependences are all still
lexicographically positive.

Figure 16 shows how reversal can en-
able loop interchange: the original loop
nest (a) has the distance vector (1, —1)
that prevents interchange because the
resulting distance vector (—1,1) is not
lexicographically positive; the reversed
loop nest (b) can legally be interchanged.

Up

6.2.4 Strip Mining

Strip mining is a method of adjusting the
granularity of an operation, especially a
parallelizable operation [Abu-Sufah et al.
1981; Allen 1983; Loveman 19771

An example is shown in Figure 17. The
strip-mined computation is expressed in

Compiler Transformations . 365

doi=1,n

do j 1,
afi,j] =
end do

end do

n
afi-1, j+1] + 1

(a) original loop nest: distance vector (1,~1).
Interchange is not possible.

doi=1,n
doj=m, 1, -1
afi,j] = afi-1, j+1] + 1
end do
end do

(b) inner loop reversed: direction vector (1,1).
Loops may be interchanged.

Figure 16. Loop reversal.

do i=1, n
ali] =

end do

ali] + ¢

(a) original loop

TN = (n/64)*64
do TI=1, TN, 64

al[TI:TI+63] = a[TI:TI+63] + ¢

end do

do i=TN+1, n
ali] = a[i] + ¢

end do

(b) after strip mining

; R9 = address of alTI]

LV Vi, R® ; V1 <= alTI:TI+63]
ADDSV V1, F8, V1 ; V1 <= V1 + ¢ (F8=c)
sV Vi, R9 ; alTI:TI+63] <~ Vi

(c) vector assembly code for the update of
a[TI:TI+63]

Figure 17. Strip mining.

array notation, and is equivalent to a do
all loop. Cleanup code is needed if the
iteration length is not evenly divisible by
the strip length.

One of the most common uses of strip
mining is to choose the number of inde-
pendent computations in the innermost

ACM Computing Surveys, Vol. 26, No. 4, December 1994

366 . David F. Bacon et al.

loop of a nest. On a vector machine, for
example, the serial loop can then be con-
verted into a series of vector operations,
each vector comprising a single “strip”
[Cray Research 1988]). Strip mining is
also used for SIMD compilation [Weiss
1991], for combining send operations in
a loop on distributed-memory multipro-
cessors [Hiranandani et al. 1992], and for
limiting the size of compiler-generated
temporary arrays [Abu-Sufah 1979; Wolfe
1989b].

Strip mining often requires other
transformations to be performed first.
Loop distribution (see Section 6.2.7) can
expose simple loops from within an origi-
nal loop nest that is too complex to strip
mine. Loop interchange can be used to
move a parallelizable loop into the inner-
most position of a loop nest or to maxi-
mize the length of the strip.

The examples given above demonstrate
how strip mining can create a larger unit
of work out of smaller ones. The transfor-
mation can also be used in the reverse
direction, as shown in Section 7.4,

6.2.5 Cycle Shrinking

Cycle shrinking is essentially a special-
ization of strip mining. When a loop has
dependences that prevent it from being
executed in parallel (that is, converted to
a do all), the compiler may still be able
to expose some parallelism if the depen-
dence distance is greater than one. In
this case cycle shrinking will convert a
serial loop into an outer serial loop and
an inner parallel loop [Polychronopoulos
1987al. Cycle shrinking is primarily use-
ful for exposing fine-grained parallelism.
For instance, in Figure 18(a), ali + k] is
written in iteration i and read in itera-
tion i + k; the dependence distance is k.
Consequently the first k iterations can be
performed in parallel provided that none
of the subsequent iterations is allowed to
begin until the first k are complete. The
same is then done for the next k itera-
tions, as shown in Figure 18(b). The iter-
ation space dependences are shown in
Figure 18(c): each group of k iterations is
dependent only on the previous group.

ACM Computing Surveys, Vol 26, No. 4, December 1994

doi=1,n
1 ali+k] = bli]
2 bli+x] = a[i] + c[i]
end do
(a) because of the write to a, SlﬂSg; because

of the write to b, Szﬁ»SI.

do TI = 1, n, k

do all i = TI, TI+k-1
1 ali+k] = b[i]
2 bli+k] = a[i] + c[i]
end do all
end do

(b) k iterations can be performed in parallel
because that is the minimum dependence

distance.
(o) o (o] o] (o] o]
1 2 3 4 5 6

(c) iteration space when n = 6 and k = 2.

Figure 18. Cycle shrinking.

The result is potentially a speedup by
a factor of k, but k is likely to be small
(usually 2 or 3); so this optimization is
normally limited to exposing parallelism
that can be exploited at the instruction
level (for instance by loop unrolling). Note
that k must be constant within the loop
and must at least be known to be positive
at compile time.

6.2.6 Loop Tiling

Tiling is the multidimensional general-
ization of strip mining. Tiling (also called
blocking) is primarily used to improve
cache reuse (€,) by dividing an iteration
space into tiles and transforming the loop
nest to iterate over them [Abu-Sufah et
al. 1981; Gannon et al. 1988; Lam et al.
1991; Wolfe 1989a]. However, it can also
be used to improve processor, register,
TLB, or page locality.

The need for tiling is illustrated by the
loop in Figure 19(a) that assigns a the
transpose of b. With the j loop innermost,
access to b is stride-1, while access to a is

do i=i, n
do j=1, n
ali,jl = vlj,il
end do
end do

(a) original loop

do TI=1, n, 64
do TJ=1, n, 64
do i=TI, min(TI+63, n)
do j=TJ, min(TJ+63, ;)
ali,j] = vlj,i]
end do
end do
end do
end do

(b) tiled loop

Figure 19. Loop tiling.

stride-n. Interchanging does not help,
since it makes access to b stride-n. By
iterating over subrectangles of the itera-
tion space, as shown in Figure 19(b), the
loop uses every cache line fully.

The inner two loops of a matrix multi-
ply have this structure; tiling is critical
for achieving high performance in dense
matrix multiplication.

A pair of adjacent loops can be tiled if
they can legally be interchanged. After
tiling, the outer pair of loops can be in-
terchanged to improve locality across
tiles, and the inner loops can be ex-
changed to exploit inner-loop parallelism
or register locality.

6.2.7 Loop Distribution

Distribution (also called loop fission or
loop splitting) breaks a single loop into
many. Each of the new loops has the
same iteration space as the original, but
contains a subset of the statements of the
original loop [Kuck 1977; Kuck et al.
1981; Muraoka 1971].
Distribution is used to

* create perfect loop nests;

e create subloops with fewer depen-
dences;

Compiler Transformations . 367
do i=1, n
a[i] =
x[i+1]

end do

ali]+c
= x[i1%7 + x[i+1] + alil

(a) original loop

do all i=1, n
ali] = a[i]+c
end do all
do i=1, n
x[i+1] =
end do

x[i1*7 + x[i+1] + a[il

(b) after loop distribution

Figure 20. Loop distribution.

e improve instruction cache and instruc-
tion TLB locality due to shorter loop
bodies;

¢ reduce memory requirements by iterat-
ing over fewer arrays; and

e increase register reuse by decreasing
register pressure.

Figure 20 is an example in which dis-
tribution removes dependences and al-
lows part of a loop to be run in parallel.

Distribution may be applied to any
loop, but all statements belonging to a
dependence cycle (called a #-block [Kuck
1977]) must be placed in the same loop,
and if 8; = S, in the original loop, then
the loop containing S; must precede the
loop that contains S,. If the loop contains
control flow, applying if-conversion (see
Section 5.2) can expose greater opportu-
nities for distribution. An alternative is
to use a control dependence graph
[Kennedy and McKinley 1990].

A specialized version of this transfor-
mation is distribution by name, origi-
nally called horizontal distribution of
name partition [Abu-Sufah et al. 1981].
Rather than performing full dependence
analysis on the loop, the statements are
partitioned into sets that reference mu-
tually exclusive variables. These state-
ments are guaranteed to be independent.

When the arrays in question are large,
distribution by name can increase cache

ACM Computing Surveys, Vol. 26, No. 4, December 1994

368 . David F. Bacon et al.
locality. Note that the above loop cannot
be distributed using fission by name,
since both statements reference a.

6.2.8 Loop Fusion

The inverse transformation of distribu-
tion is fusion (also called jamming)
[Ershov 1966]. It can improve
performance by

* reducing loop overhead;

* increasing instruction parallelism;

e improving register, vector [Wolfe
1989b], data cache, TLB, or page [Abu-
Sufah 19791 locality; and

¢ improving the load balance of parallel
loops.

In Figure 20, distribution enables the
parallelization of part of the loop. How-
ever, fusing the two loops improves regis-
ter and cache locality since ali] need only
he loaded once. Fusion also increases in-
struction parallelism by increasing the
ratio of floating-point operations to inte-
ger operations in the loop and reduces
loop overhead by a factor of two. With
large n, the distributed loop should run
faster on a vector machine while the fused
loop should be better on a superscalar
machine.

For two loops to be fused, they must
have the same loop bounds; when the
bounds are not identical, it is sometimes
possible to make them identical by peel-
ing (described in Section 6.3.5) or by in-
troducing conditional expressions into the
body of the loop. Two loops with the same
bounds may be fused if there do not exist
statements S; in the first loop and S, in
the second such that they have a depen-

dence S, (;)Sl in the fused loop. The rea-
son this would be incorrect is that before
fusing, all instances of S; execute before
any S,. After fusing, corresponding in-
stances are executed together. If any in-
stance of S, has a dependence on (ie.,
must be executed after) any subsequent
instance of S,, the fusion alters execu-
tion order illegally, as shown in Figure
21.

ACM Computing Surveys, Vol 26, No. 4, December 1994

Figure 21.

Two logps containing §; and S, cannot
be fused when S, = S, in the fused loop.

6.3 Loop Restructuring

This section describes loop transforma-
tions that change the structure of the
loop, but leave the computations per-
formed by an iteration of the loop body
and their relative order unchanged.

6.3.1 Loop Unrolling

Unrolling replicates the body of a loop
some number of times called the un-
rolling factor (1) and iterates by step u
instead of step 1. The benefits of un-
rolling have been studied on several dif-
ferent architectures [Dongarra and Hind
1979]; it is a fundamental technique for
generating the long instruction se-
quences required by VLIW machines
[Ellis 1986].

Unrolling can improve the perfor-
mance by

e reducing loop overhead,;
® increasing instruction parallelism; and

¢ improving register, data cache, or TLB
locality.

In Figure 22, we show all three of these
improvements in an example. Loop over-
head is cut in half because two iterations
are performed before the test and branch
at the end of the loop. Instruction paral-
lelism is increased because the second
assignment can be performed while the
results of the first are being stored and
the loop variables are being updated.

If array elements are assigned to regis-
ters (either directly or by using scalar
replacement, as described in Section
6.5.4), register locality will improve be-
cause ali] and ali + 1] are used twice in

do i=2, n-1
ali] = afi) + ali-1] = a[i+1]
end do

(a) original loop

do i=2, n-2, 2

afi] = ali] + ali-1] * a[i+1]
ali+1] = ali+1] + afi] * a[i+2]
end do

if (mod(n-2,2) = 1) then
a[n-1] = a[n-1] + aln-2] * a[n]
end if

{(b) loop unrolled twice

Figure 22. Loop unrolling.

the loop body, reducing the number of
loads per iteration from 3 to 2.

If the target machine has double- or
multiword loads, unrolling often allows
several loads to be combined into one.

The if statement at the end of Figure
22(b) is the loop epilogue that must be
generated when it is not known at com-
pile time whether the number of itera-
tions of the loop will be an exact multiple
of the unrolling factor u. If u > 2, the
loop epilogue is itself a loop.

Unrolling has the advantage that it
can be applied to any loop, and can be
done profitably at both the high and the
low levels. Some compilers also perform
loop rerolling prior to unrolling because
programs often contain loops that were
unrolled by hand for a different target
architecture.

Figure 23(a—c) shows the effects of un-
rolling in more detail. The source code in
Figure 23(a) is translated to the assem-
bly code in Figure 23(b), which takes 6
cycles per result on S-DLX. After un-
roiling 3 times, the code requires 8 cycles
per iteration or 22/3 cycles per result, as
shown in Figure 23(c). The original loop
stalls for one cycle waiting for the load,
and for two cycles waiting for the ADDF
to complete. In the unrolled loop some of
these cycles are filled.

Compiler Transformations . 369
Most compilers for high-performance
machines will unroll at least the inner-
most loop of a nesting. Outer loop un-
rolling is not as universal because it
yields replicated instances of the inner
loops. To avoid the additional control
overhead, the compiler can often fuse the
copies back together, yielding the same
loop structure that appeared in the origi-
nal code. This combination of transfor-
mations is sometimes referred to as
unroll-and-jam [Callahan et al. 1988].
Loop quantization [Nicolau 1988] is
another approach to unrolling that avoids
replicated inner loops. Rather than creat-
ing multiple copies and then subse-
quently eliminating them, quantization
adds additional statements to the inner-
most loop directly. The iteration ranges
are changed, but the structure of the loop
nest remains the same. However, unlike
straightforward unrolling, quantization
changes the order of execution of the loop
and is not always a legal transformation.

6.3.2 Software Pipelining

Another technique to improve instruction
parallelism is software pipelining [Lam
1988]. In hardware pipelining, instruc-
tion execution is broken into stages, such
as Fetch, Execute, and Write-back. The
first instruction is fetched in the first
clock cycle. In the next cycle, the second
instruction is fetched while the first is
executed, and so on. Once the pipeline
has been filled, the machine will com-
plete 1 instruction per cycle.

In software pipelining, the operations
of a single loop iteration are broken into
s stages, and a single iteration performs
stage 1 from iteration i, stage 2 from
iteration i — 1, ete. Startup code must be
generated before the loop to initialize the
pipeline for the first s — 1 iterations, and
cleanup code must be generated after the
loop to drain the pipeline for the last
s — 1 iterations.

Figure 23(d) shows how software
pipelining improves the performance of a
simple loop. The depth of the pipeline is
s = 3. The software pipelined loop pro-
duces one new result every iteration, or 4
cycles per result.

ACM Computing Surveys, Vol. 26, No. 4, December 1994

370 . David F. Bacon et al.

do i=1, n
ali] = ali] + ¢
end do
(a) the initial loop
Cydle
b LW R8, n(R30) ADDI R10, R30,#a ;load n into R8 ;R10=address(al1])
2 LF F4, c(R30) ;load ¢ 1into F¢
3 MULTI R8, R8, #4 s RB=n%4
[ADDI RS, R10, RS ;R8=address(aln+1])
1 L:LF F5, (R10) ADDI R10, R10,#4 ;load ali] into F5 ;R10=address(al1+1])
3 ADDF FS5, F5, F4 SLT R11, R10,R8 ;ali]=alil+c ;R11= R10<R87?
6 SF -4(R10), F5 BNEZ R1i1, L ;store new a[i] ;1f R11, goto L
(b) the compiled loop body for S-DLX. This is the loop from Fig 8(d) after instruction scheduling.
1 L:LF F5, (R10) ;load al1] into F5
2 LF F6, 4(R10) ;load al1+1] into F6
3 LF F7, 8(R10) ADDF F5, FB, F4 ;load ali+2] into F8 ;ali1]=ali]+c
4 ADDI R10,R10,#12 ADDF F6, F6, F4 ;R10=address(ali1+3]) ;ali+i]l=ali+1]+c¢
5 SLT Ri1, R10,R8 ADDF F7, F7, F4 ;R11= R10<R8? ;ali+2]=ali+2]+¢
6 SF ~-12(R10),F5 ;store new ali)
7 SF -8(R10), F6 ;store new ali+1]
8 SF -4(R10), F7 BNEZ Rii, L ;store new ali+2] ;if R11, goto L
(c) after unrolling 3 times and rescheduling (loop prologue and epilogue omitted)

1 LW R8, n(R30) ADDI R10, R30,#a ;load n into RS ;R10=address(al1])
2 LF F4, ¢(R30) SUBI RS, R8, #2 ;load c into F4 ;R8=n-2
3 MULTI R8, R8, #4 ;R8=(n~-2) %4
5 ADDI RS, R10, R8 LF F5, (R10) ;RB=address(aln-11) ;F5=al[1]
7 ADDF F6, F5, F4 LF F5, 4(R10) ;F6=a[1]+c ;Fs=al2]
1 L:SF (r10), F6 ADDI R10, R10,#4 ;store new ali] ;R10=address(ali+1])
2 ADDF Fe6, FG5, F4 SLT Ri1, R10,R8 ;afli+i1]=ali+1]+e ;R11i= R10<R87
3 LF F5, 4(R10) BNEZ R11, L ;load ali+2] into F5 ;if R11, goto L
4 [stall]

(d) after software pipelining and rescheduling, but without unrolling (loop epilogue omitted)
1 L:SF (R10), F6 ADDF F6, F5, F4 ;store new a[i] ;ali+2])=ali+2] +c
2 SF 4(R10), F8 ADDF F8, F7, F4 ;store new al[i+1] ;ali+3]=a[i+3]+c
3 LF F5, 16(R10) ADDI R10, R10,#8 ;load a[i+4] into F5 ;R10=address(af1+2])
4 LF F7, 12(R10) SLT R11, R10,R8 ;load ali+5] into F7 ;Ri1= R10<R8”
5 BNEZ R11, L ;if Ri1, goto L

(e) after unrolling 2 times and then software pipelining (loop prologue and epilogue omitted)

Figure 23. Increasing instruction parallelism in loops.

ACM Computing Surveys. Vol 26, No 4, December 1994

Overlapped

rations

(a) Loop Unrolling

Overlapped
Operations

Figure 24. Loop unrolling vs. software pipelining.

Time
(b) Software Pipelining

Finally, Figure 23(e) shows the result
of combining software pipelining (s = 3)
with unrolling (x = 2). The loop takes 5
cycles per iteration, or 2'/, cycles per
result. Unrolling alone achieves 2°/; cy-
cles per result. If software pipelining is
combined with unrolling by u = 3, the
resulting loop would take 6 cycles per
iteration or two cycles per result, which
is optimal because only one memory op-
eration can be initiated per cycle.

Figure 24 illustrates the difference be-
tween unrolling and software pipelining:
unrolling reduces overhead, while
pipelining reduces the startup cost of
each iteration.

Perfect pipelining combines unrolling
by locp quantization with software
pipelining [Aiken and Nicolau 1988a;
1988b]. A special case of software pipelin-
ing is predictive commoning, which is
applied to memory operations. If an ar-
ray element written in iteration i — 1 is
read in iteration i, then the first element
is loaded outside of the loop, and each
iteration contains one load and one store.
The RS/6000 XL C/Fortran compiler
[O’Brien et al. 1990] performs this
optimization.

If there are no loop-carried depen-
dences, the length of the pipeline is the
length of the dependence chain. If there
are multiple, independent dependence
chains, they can be scheduled together
subject to resource availability, or loop
distribution can be applied to put each
chain into its own loop. The scheduling
constraints in the presence of loop-
carried dependences and conditionals are
more complex; the details are discussed

Compiler Transformations . 371

do all i=1i, n
do all j=1, m
ali,jl = ali,jl + ¢
end do all
end do all
(a) original loop

do all T=1, n*m
i= ((T-1) / m)*m + 1
j = MOD(T-1, m) + 1
ali,j] = ali,jl + ¢
end do all
(b) coalesced loop

real TA[n*m]
equivalence (TA,a)
do all T = 1, n*m
TALT] = TA[T] + ¢
end do all
(¢) collapsed loop

Figure 25. Loop coalescing vs. collapsing.

in Aiken and Nicolau [1988a] and Lam
[1988].

6.3.3 Loop Coalescing

Coalescing combines a loop nest into a
single loop, with the original indices com-
puted from the resulting single induction
variable [Polychronopoulos 1987b; 1988].
Coalescing can improve the scheduling of
the loop on a parallel machine and may
also reduce loop overhead.

In Figure 25(a), for example, if n and m
are slightly larger than the number of
processors P, then neither of the loops
schedules as well as the outer parallel
loop, since executing the last n — P iter-
ations will take the same time as the
first P. Coalescing the two loops ensures
that P iterations can be executed every
time except during the last (nm mod P)
iterations, as shown in Figure 25(b).

Coalescing itself is always legal since it
does not change the iteration order of the
loop. The iterations of the coalesced loop
may be parallelized if all the original
loops were parallelizable. A criterion for

ACM Computing Surveys, Vol. 26, No. 4, December 1994

372 . David F. Bacon et al.

parallelizability in terms of dependence
vectors is discussed in Section 6.2.

The complex subscript calculations
introduced by coalescing can often be
simplified to reduce the overhead of the
coalesced loop [Polychronopoulos 1987b].

6.3.4 Loop Collapsing

Collapsing is a simpler, more efficient,
but less general version of coalescing in
which the number of dimensions of the
array is actually reduced. Collapsing
eliminates the overhead of multiple
nested loops and multidimensional array
indexing.

Collapsing is used not only to increase
the number of parallelizable loop itera-
tions, but also to increase vector lengths
and to eliminate the overhead of a nested
loop (also called the Carry optimization
[Allen and Cocke 1971; IBM 1991)).

The collapsed version of the loop dis-
cussed in the previous section is shown
in Figure 25(c).

Collapsing is best suited to loop nests
that iterate over memory with a constant
stride. When more complex indexing is
involved, coalescing may be a better
approach.

6.3.5 Loop Peeling

When a loop is peeled, a small number of
iterations are removed from the begin-
ning or end of the loop and executed
separately. If only one iteration is peeled,
a common case, the code for that itera-
tion can be enclosed within a conditional.
For a larger number of iterations, a sepa-
rate loop can be introduced. Peeling has
two uses: for removing dependences cre-
ated by the first or last few loop itera-
tions, thereby enabling parallelization;
and for matching the iteration control of
adjacent loops to enable fusion.

The loop in Figure 26(a) is not paral-
lelizable because of a flow dependence
between iteration i = 2 and iterations i =
3:--n. Peeling off the first iteration al-
lows the rest of the loop to be parallelized
and fused with the following loop, as
shown in Figure 26(b).

ACM Computing Surveys, Vol. 26, No 4, December 1994

do i =
bli]
end do
do all i =3, n
ali]l = a[i] + ¢
end do all

2, n

(a) original loops

if (2 <= n) then
b{2] = bl2] + bl[2]
end if
do all i=3, n
b1l = b[i] + b[2]
alil = a[il + ¢
end do all
(b) after peeling one iteration from first loop
and fusing the resulting loops

Figure 26. Loop peeling.

Since peeling simply breaks a loop into
sections without changing the iteration
order, it can be applied to any loop.

6.3.6 Loop Normalization

Normalization converts all loops so that
the induction variable is initially 1 (or 0)
and is incremented by 1 on each iteration
[Allen and Kennedy 1987]. This transfor-
mation can expose opportunities for fu-
sion and simplify inter-loop dependence
analysis, as shown in Figure 27. It can
also help to reveal which loops are candi-
dates for peeling followed by fusion.

The most important use of normaliza-
tion is to permit the compiler to apply
subscript analysis tests, many of which
require normalized iteration ranges.

6.3.7 Loop Spreading

Spreading takes two serial loops and
moves some of the computation from the
second to the first so that the bodies of
both loops can be executed in parallel
[Girkar and Polychronopoulos 1988].

An example is shown in Figure 28: the
two loops in the original program (a) can-
not be fused because they have different

doi=1,n
afi] = alil + ¢
end do

do i = 2, n+l
bli] = ali-1] * b[i]
end do
(a) original loops

doi=1,n
ali] afi]l + ¢
end do

doi=1,n
bli+1] =
end do
(b) after normalization, the two loops can be
fused

ali] * b[i+1]

Figure 27. Loop normalization.

bounds, and there would be a depen-

dence S, 2 S; in the fused loop due to
the write to a in S; and the read of a in
S,. By executing the statement S, three
iterations later within the new loop, it is
possible to execute the two statements in
parallel, which we have indicated textu-
ally with the COBEGIN/COEND com-
pound statement in Figure 28(b).

The number of iterations by which the
body of the second loop must be delayed
is the maximum dependence distance be-
tween any statement in the second loop
and any statement in the first loop, plus
1. Adding one ensures that there are no
dependences within an iteration. For this
reason, there must not be any scalar de-
pendences between the two loop bodies.

Unless the loop bodies are large,
spreading is primarily beneficial for ex-
posing instruction-level parallelism. De-
pending on the amount of instruction
parallelism achieved, the introduction of
a conditional may negate the gain due to
spreading. The conditional can be re-
moved by peeling the first few (in this
case 3) iterations from the first loop, at
the cost of additional loop overhead.

Compiler Transformations . 373

do i=1, n/2
1 ali+1] = a[i+1] + a[i]
end do
doi =1, n-3
2 b[i+1] = b[i+1] + b[i] + a[i+3]
end do
(a) original loops

do i =1, n/2
COBEGIN
ali+1] = a[i+1] + ali]
if (i > 3) then
bfi-2] = b[i-2]1+b[i-3]+a[i]
end if
COEND
end do
do i = n/2-3,n-3
b[i+1] = bl[i+1] + b[i] + a[i+3]
end do
(b) after spreading

Figure 28. Loop spreading.

6.4 Loop Replacement Transformations

This section describes loop transforma-
tions that operate on whole loops and
completely alter their structure.

6.4.1 Reduction Recognition

A reduction is an operation that com-
putes a scalar value from an array. Com-
mon reductions include computing either
the sum or the maximum value of the
elements in an array. In Figure 29(a), the
sum of the elements of a are accumulated
in the scalar s. The dependence vector for
the loop is (1), or (<). While a loop with
direction vector (<) must normally be
executed serially, reductions can be par-
allelized if the operation performed is
associative. Commutativity provides ad-
ditional opportunities for reordering.

In Figure 29(b), the reduction has been
vectorized by using vector adds (the in-
ner do all loop) to compute TS; the final
result is computed from TS using a scalar
loop. For semicommutative and semias-
sociative operators like floating-point
multiplication, the validity of the trans-
formation depends on the language se-

ACM Computing Surveys, Vol. 26, No. 4, December 1994

374 o David F. Bacon et al.
doi= 1, n
s =g + al[i]
end do

(a) a sum reduction Joop

real TS[64]
TS{1:64] = 0.0

do TI = 1, n, 64
TS[1:64] = TS[1:64] + a[TI:TI+63]

end do
do TI = 1, 64

s = s + TS[TI]
end do

(b) loop transformed for vectorization

Figure 28. Reduction recognition.

mantics and the programmer’s intent, as
described in Section 2.1. Provided that
bitwise identical results are not required,
the partial sums can be computed in
parallel.

Maximum parallelism is achieved by
computing the reduction with a tree:
pairs of elements are summed, then pairs
of these results are summed, and so on.
The number of serial steps is reduced
from O(n) to O(logn).

Operations such as and, or, min, and
max are truly associative, and their re-
duction can be parallelized under all
circumstances.

6.4.2 Loop Idiom Recognition

Parallel architectures often provide spe-
cialized hardware that the compiler can
take advantage of. Frequently, for exam-
ple, SIMD machines support reduction
directly in the processor interconnection
network. Some parallel machines, such
as the Connection Machine CM-2 [Think-
ing Machines 1989], include hardware
not only for reduction but for parallel
prefix operations, allowing a loop with a
body of the form alil = ali — 1] + ali] to
be parallelized. The parallelization of a
more general class of linear recurrences

ACM Computing Surveys, Vol. 26, No. 4, December 1994

is described by Chen and Kuck [1975], by
Kuck [1977; 1978], and Wolfe [1989b].
Blelloch [1989] describes compilation
strategies for recognizing and exploiting
parallel prefix operations.

The compiler can recognize and con-
vert other idioms that are specially
supported by hardware or software. For
instance, the CMAX Fortran preproces-
sor converts loops implementing vector
and matrix operations into calls to as-
sembly-coded BLAS (Basic Linear Alge-
bra Subroutines) [Sabot and Wholey
1993]. The VAX Fortran compiler con-
verts string copy loops into block transfer
instructions [Harris and Hobbs 1994].

6.4.3 Array Statement Scalarization

When a loop is expressed in array nota-
tion, the compiler can either convert it
into vector operations or scalarize it into
one or more serial loops [Wolfe 1989b].
However, the conversion is not com-
pletely straightforward because array
notation requires that the operation be
performed as if every value on the right-
hand side and every subexpression on
the left-hand side were computed before
any assignments are performed.

The example in Figure 30 shows a
computation in array notation (a), its
“obvious” (but incorrect) conversion to se-
rial form (b), and a correct conversion {c).
The reason that Figure 30(b) is not cor-
rect is that in the original code, every
element of a is to be incremented by the
value of the previous element. The incre-
ments are to happen as if they were all
performed simultaneously; in the incor-
rect version, each element is incremented
by the updated value of the previous ele-
ment.

The general solution is to introduce a
temporary array T and to have a sepa-
rate loop that writes the values back into
a, as shown in Figure 30(c). The tempo-
rary array can then be eliminated if the
two loops can be legally fused, namely,

when there is no dependence S, (=<>)Sl in
the fused loop, where S; is the assign-
ment to the temporary, and S, is the
assignment to the original array.

al2:n-1] = af2:n-1] + al[1:n-2]
(a) initial array language expression

do i =2, n-1
alil = a[il + ali-1]
end do
(b) incorrect scalarization

doi=2,

1 T{i] =
end do
do i =2, n-1

2 afi] = T[i]
end do

n-1
afi] + a[i-1]

(c) correct scalarization

do i = n~1, 2, -1
ali] = ali] + a[i-1]
end do
(d) reversing both loops allows fusion and
eliminates need for temporary array T

al[2:n-1] = a[2:n~1] + al1:n-2] + a[3:n]

(e) array expression requiring a temporary

Figure 30. Array statement scalarization.

In this case there is an antidepen-
dence, but it can be removed by reversing
the loops, enabling fusion, and eliminat-
ing the temporary, as shown in Figure
30(d). However, the array language
statement in Figure 30(e) requires a tem-
porary since an antidependence exists re-
gardless of the direction of the loop.

6.5 Memory Access Transformations

High-performance applications are as
frequently memory limited as they are
compute limited. In fact, for the last fif-
teen years CPU speeds have doubled ev-
ery three to five years, while DRAM
speeds have doubled about once every
decade (DRAMs, or dynamic random ac-
cess memory chips, are the low-cost,
low-power memory chips used for main
memory in most computers).

Compiler Transformations . 375

As a result, optimization of the use of
the memory system has become steadily
more important. Factors affecting mem-
ory performance include:

* Reuse, denoted by @ and @, the ratio
of uses of an item to the number of
times it is loaded (described in Section
3);

o Parallelism. Vector machines often
divide memory into banks, allowing
vector registers to be loaded in a paral-
lel or pipelined fashion. Superscalar
machines often support double- or
quadword load and store instructions;

o Working Set Size. If all the memory
elements accessed inside of a loop do
not fit in the data cache, then items
that will be accessed in later iterations
may be flushed, decreasing Q.. If more
variables are simultaneously live than
there are available registers (that is,
the register pressure is high), then
loads and stores will have to spill val-
ues into memory, decreasing @. If more
pages are accessed in a loop than there
are entries in the TLB, then the TLB
may thrash.

Since the registers are the top of the
memory hierarchy, efficient register us-
age is absolutely crucial to high perfor-
mance. Until the late seventies, register
allocation was considered the single most
important problem in compiler optimiza-
tion for which there was no adequate
solution. The introduction of techniques
based on graph coloring [Chaitin 1982;
Chaitin et al. 1981; Chow and Hennessy
1990] yielded very efficient global (within
a procedure) register allocation. Most
compilers now make use of some variant
of graph coloring in their register
allocator.

In general, memory optimizations are
inhibited by low-level coding that relies
on particular storage layouts. Fortran
EQUIVALENCE statements are the most
obvious example. C and Fortran 77 both
specify the storage layout for each type of
declaration. Programmers relying on a
particular storage layout may defeat a
wide range of important optimizations.

ACM Computing Surveys, Vol. 26, No. 4, December 1994

376 . David F. Bacon et al.

Optimizations covered in other sec-
tions that also can improve memory sys-
tem performance are loop interchange
(6.2.1), loop tiling (6.2.6), loop unrolling
(6.3.1), loop fusion (6.2.8), and various
optimizations that eliminate register
saves at procedure calls (6.8).

6.5.1 Array Padding

Padding is a transformation whereby un-
used data locations are inserted between
the columns of an array or between ar-
rays. Padding is used to ameliorate a
number of memory system conflicts, in
particular:

¢ bank conflicts on vector machines with
banked memory [Burnett and Coffman,
Jr. 1970];

¢ cache set or TLB set conflicts;

¢ cache miss jamming [Bacon et al. 1994];
and

¢ false sharing of cache lines on shared-
memory multiprocessors.

Bank conflicts on vector machines like
the Cray and our hypothetical V-DLX
can be caused when the program indexes
through an array dimension that is not
laid out contiguously in memory, leading
to a nonunit stride whose value we will
define to be s. If s is an exact multiple of
the number of banks (B), the bandwidth
of the memory system will be reduced by
a factor of B (8, on V-DLX) because all
memory accesses are to the same bank.
The number of memory banks is usually
a power of two.

In general, if an array will be accessed
with stride s, the array should be padded
by the smallest p such that ged(s +
p, B) = 1. This will ensure that B suc-
cessive accesses with stride s + p will all
address different banks. An example is
shown in Figure 31(a): the loop accesses
memory with stride 8, so all memory ref-
erences will be to the first bank. After
padding, successive iterations access
memory with stride 9, so they go to suc-
cessive banks, as shown in Figure 31(b).

Cached memory systems, especially
those that are set-associative, are less

ACM Computing Surveys, Vol. 26, No 4, December 1994

real a[8,512]

do i =1, 512
al1,i] = a[1,i] + ¢
end do

(a) original code

real a[9,512]

do i =1, 512
al1,i] = af1,i] + ¢
end do

(b) padding a eliminates memory bank
conflicts on V-DLX

Figure 31. Array padding.

sensitive to low power-of-two strides.
However, large power-of-two strides will
cause extremely poor performance due to
cache set and TLB set conflicts. The
problem is that addresses are mapped to
sets simply by using a range of bits from
the middle of the address. For instance,
on S-DLX, the low 6 bits of an address
are the byte offset within the line, and
the next 8 bits are the cache set. Figure
12 shows the effect of stride on the per-
formance of a cache-based superscalar
machine.

A number of researchers have noted
that other strides yield reduced cache
performance. Bailey [1992] has quanti-
fied this by noting that because many
words fit into a cache line, if the number
of sets times the number of words per set
is almost exactly divisible by the stride
(say by n + €), then for a limited number
of references r, every nth memory refer-
ence will map to the same set, If |r/n] is
greater than the associativity of the
cache, then the later references will evict
the lines loaded by the earlier references,
precluding reuse.

Set and bank conflicts can be caused
by a bad stride over a single array, or by
a loop that accesses multiple arrays that
all align to the same set or bank. Thus
padding can be inserted between columns
of an array (intraarray padding), or be-
tween arrays (interarray padding).

A further performance artifact, called
cache miss jamming, can occur on ma-
chines that allow processing to continue
during a cache miss: if cache misses are
spread nonuniformly across the loop iter-
ations, the asynchrony of the processor
will not be exploited, and performance
will be reduced. Jamming typically oc-
curs when several arrays are accessed
with the same stride and when all have
the same alignment relative to cache line
boundaries (that is, the same low ad-
dress bits). Bacon et al. [1994] describe
cache miss jamming in detail and pre-
sent a unified framework for inter- and
intraarray padding to handle set con-
flicts and jamming.

The disadvantages of padding are that
it increases memory consumption and
makes the subscript calculations for
operations over the whole array more
complex, since the array has “holes.” In
particular, padding reduces the benefits
of loop collapsing (see Section 6.3.4).

6.5.2 Scalar Expansion

Loops often contain variables that are
used as temporaries within the loop body.
Such variables will create an antidepen-

dence S, (;)Sl from one iteration to the
next, and will have no other loop-carried
dependences. Allocating one temporary
for each iteration removes the depen-
dence and makes the loop a candidate for
parallelization [Padua et al. 1980; Wolfe
1989b], as shown in Figure 32. If the
final value of ¢ is used after the loop, ¢
must be assigned the value of T[n].

Scalar expansion is a fundamental
technique for vectorizing compilers, and
was performed by the Burroughs Scien-
tific Processor [Kuck and Stokes 1982]
and Cray-1 [Russell 1978] compilers. An
alternative for parallel machines is to
use private variables, where each proces-
sor has its own instance of the variable;
these may be introduced by the compiler
(see Section 7.1.3) or, if the language sup-
ports private variables, by the
programmer.

If the compiler vectorizes or paral-
lelizes a loop, scalar expansion must be

Compiler Transformations . 377

doi=1,n

¢ = b[i]
ali] = ali] + ¢
end do

(a) original loop

real T[n]

do all
T[i]
ali]

end do

i=1i,n
bli]
ali] + T[i]
all
(b) after scalar expansion

Figure 32. Scalar expansion.

performed for any compiler-generated
temporaries in a loop. To avoid creating
unnecessarily large temporary arrays, a
vectorizing compiler can perform scalar
expansion after strip mining, expanding
the temporary to the size of the vector
strip.

Scalar expansion can also increase in-
struction-level parallelism by removing
dependences.

6.5.3 Array Contraction

After transformation of a loop nest, it
may be possible to contract scalars or
arrays that have previously been ex-
panded. It may also be possible to con-
tract other arrays due to interchange or
the use of redundant storage allocation
by the programmer [Wolfe 1989b].

If the iteration variable of the pth loop
in a loop nest is being used to index the
kth dimension of an array x, then di-
mension 2 may be removed from x if (1)
loop p is not parallel, (2) all distance
vectors V involving x have v, = 0, and
(8) x is not used subsequently (that is, x
is dead after the loop). The latter two
conditions are true for compiler-
expanded variables unless the loop struc-
ture of the program was changed after
expansion. In particular, loop distribu-
tion can inhibit array contraction by
causing the second condition to be
violated.

ACM Computing Surveys, Vol. 26, No. 4, December 1994

378 e David F. Bacon et al.

real T[n,n]

doi=1,n

do all j =1, n
T{i,j1 = ali,jl1#3
bli,j] = T[i,3] + v[i,31/TLi,3]
end do all
end do
(a) original code
real T[n]
doi=1,n
doall j=1,n
T(j] = afi,j1*3
bli,jl = T[] + bli,j]1/T(;]
end do all
end do

(b) after array contraction

Figure 33. Array contraction.

Contraction reduces the amount of
storage consumed by compiler-generated
temporaries, as well as reducing the
number of cache lines referenced. Other
methods for reducing storage consump-
tion by temporaries are strip mining (see
Section 6.2.4) and dynamic allocation of
temporaries, either from the heap or from
a static block of memory reserved for
temporaries.

6.5.4 Scalar Replacement

Even when it is not possible to contract
an array into a scalar, a similar opti-
mization can be performed when a fre-
quently referenced array element is
invariant within the innermost loop or
loops. In this case, the array element can
be loaded into a scalar (and presumably
therefore a register) before the inner loop
and, if it is modified, stored after the
inner loop [Callahan et al. 1990].
Replacement multiplies @ for the ar-
ray element by the number of iterations
in the inner loop(s). It can also eliminate
unnecessary subscript calculations, al-
though that optimization is often done by
loop-invariant code motion (see Section

ACM Computing Surveys, Vol. 26, No. 4, December 1994

doi=1,n
do j = 1,n
totall[i] =
end do
end do

total[i] + ali,j]

(a) original loop nest

doi=1,n
T = totall[i]
do j =1,n
T=7T+ ali,j]
end do
totalli] = T
end do

(b) after scalar replacement

Figure 34. Scalar replacement.

6.1.3). Loop interchange can be used to
enable or improve scalar replacement;
Carr [1993] examines the combination of
scalar replacement, interchange, and un-
roll-and-jam in the context of cache
optimization.

An example of scalar replacement is
shown in Figure 34; for a discussion of
the interaction between replacement and
loop interchange, see Section 6.2.1.

6.5.5 Code Colocation

Code colocation improves memory access
behavior by placing related code in close
proximity. The earliest work rearranged
code (often at the granularity of a proce-
dure) to improve paging behavior [Ferrari
1976; Hatfield and Gerald 1971].

More recent strategies focus on im-
proving cache behavior by placing the
most frequent successor to a basic block
{or the most frequent callee of a proce-
dure) immediately adjacent to it in in-
struction memory [Hwu and Chang 1989;
Pettis and Hansen 1990].

An estimate is made of the frequency
with which each arc in the control flow
graph will be traversed during program
execution (using either profiling informa-
tion or static estimates). Procedures are
grouped together using a greedy algo-
rithm that always takes the pair of pro-

cedures (or procedure groups) with the
largest number of calls between them.

Within a procedure, basic blocks can be
grouped in the same way (although the
direction of the control flow must be
taken into account), or a top-down algo-
rithm can be used that starts from the
procedure entry node. Basic blocks with a
frequency estimate of zero can be moved
to a separate page to increase locality
further. However, accessing that page
may require long displacement jumps to
be introduced (see the next subsection),
creating the potential for performance
loss if the basic blocks in question are
actually executed.

Procedure inlining (see Section 6.8.5)
can also affect code locality, and has been
studied both in conjunction with [Hwu
and Chang 1989] and independent of
[McFarling 1991] code positioning. Inlin-
ing improves performance often by reduc-
ing overhead and increasing locality, but
if a procedure is called more than once in
a loop, inlining will often increase the
number of cache misses because the pro-
cedure body will be loaded more than
once.

6.5.6 Displacement Minimization

The target of a branch or a jump is usu-
ally specified relative to the current value
of the program counter (PC). The largest
offset that can be specified varies among
architectures; it can be as few as 4 bits. If
control is transferred to a location
outside of the range of the offset, a multi-
instruction sequence or long-format in-
struction is required to perform the jump.
For instance, the S-DLX instruction
BEQZ R4, error is only legal if error is
within 2% bytes. Otherwise, the instruc-
tion must be replaced with:

BNEZ R4, cont ;reversed test
LI R8, error ;get low bits
LUl R8, error > 16 ;get high bits
JR R8 ;jump to target

cont;

This sequence requires three extra in-
structions. Given the cost of long dis-

Compiler Transformations . 379
placement jumps, the code should be
organized to keep related sections close
together in memory, in particular those
sections executed most frequently
[Szymanski 1978].

Displacement minimization can also be
applied to data. For instance, a base reg-
ister may be allocated for a Fortran com-
mon block or group of blocks:

common /big/ g, r, x[20000], y, z

If the array x contains word-sized ele-
ments, the common block is larger than
the amount of memory indexable by the
offset field in the load instruction (26
bytes on S-DLX). To address y and z,
multiple-instruction sequences must be
used in a manner analogous to the long-
jump sequences above. The problem is
avoided if the layout of big is:

common /big/ q, 1, v, z, x[20000]

6.6 Partial Evaluation

Partial evaluation refers to the general
technique of performing part of a compu-
tation at compile time. Most of the classi-
cal optimizations based on data-flow
analysis are either a form of partial eval-
uation or of redundancy elimination
(described in Section 6.7). Loop-based
data-flow optimizations are described in
Section 6.1.

6.6.1 Constant Propagation

Constant propagation [Callahan et al.
1986; Kildall 1973; Wegman and Zadeck
1991] is one of the most important opti-
mizations that a compiler can perform,
and a good optimizing compiler will ap-
ply it aggressively. Typically programs
contain many constants; by propagating
them through the program, the compiler
can do a significant amount of precompu-
tation. More important, the propagation
reveals many opportunities for other op-
timizations. In addition to obvious possi-
bilities such as dead-code elimination,
loop optimizations are affected because
constants often appear in their induction
ranges. Knowing the range of the loop,
the compiler can be much more accurate

ACM Computing Surveys, Vol. 26, No. 4, December 1994

380 . David F. Bacon et al.
n = 64
c =3

doi=1,n
alil = afi] + ¢

end do
(a) original code
do i =1, 64
ali] = afi] + 3
end do

(b) after constant propagation

Figure 35. Constant propagation.

in applying the loop optimizations that,
more than anything else, determine per-
formance on high-speed machines.

Figure 35 shows a simple example of
constant propagation. On V-DLX, the re-
sulting loop can be converted into a sin-
gle vector operation because the loop is
the same length as the hardware vector
registers. The original loop would have to
be strip mined before vectorization (see
Section 6.2.4), increasing the overhead of
the loop.

6.6.2 Constant Folding

Constant folding is a companion to con-
stant propagation: when an expression
contains an operation with constant val-
ues as operands, the compiler can replace
the expression with the result. For exam-
ple, x=3* *2 becomes X =9, Typically
constants are propagated and folded si-
multaneously [Aho et al. 1986].

Note that constant folding may not be
legal (under Definition 2.1.2 in Section
2.1) if the operations performed at com-
pile time are not identical to those that
would have been performed at run time;
a common source of such problems is the
rounding of fleating-point numbers dur-
ing input or output between phases of
the compilation process [Clinger 1990;
Steele and White 1990].

6.6.3 Copy Propagation

Optimizations such as induction variable
elimination (6.1.2) and common-subex-

ACM Computing Surveys, Vol. 26, No. 4, December 1994

t = ix4
s =t
print *, a[s]
r=t
alr] = afr] + ¢
(a) original code
t = ix4
print *, aft]
alt] = aft] + ¢

(b) after copy propagation

Figure 36. Copy propagation.

pression elimination (6.7.4) may cause the
same value to be copied several times.
The compiler can propagate the original
name of the value and eliminate redun-
dant copies [Aho et al. 1986].

Copy propagation reduces register
pressure and eliminates redundant regis-
ter-to-register move instructions. An ex-
ample is shown in Figure 36.

6.6.4 Forward Substitution

Forward substitution is a generalization
of copy propagation. The use of a variable
is replaced by its defining expression,
which must be live at that point. Substi-
tution can change the dependence rela-
tion between variables [Wolfe 1989b] or
improve the analysis of subscript expres-
sions in Joops [Allen and Kennedy 1987;
Kuck et al. 1981].

For instance, in Figure 37(a) the loop
cannot be parallelized because an un-
known element of a is being written. Af-
ter forward substitution. as shown in
Figure 37(b), the subscript expression is
in terms of the loop-bound variable, and
it is straightforward to determine that
the loop can be implemented as a paral-
lel reduction (described in Section 6.4.1).

The use of variables like np1 is a com-
mon Fortran idiom that was developed
when compilers did not perform aggres-
sive optimization. The idiom is recom-
mended as “good programming style” in
a number of Fortran programming texts!

npl = n+l1
doi=1,n

alnp1] = alnp1] + a[i]
end do

(a) original code

do all i =1, n

a[n+1] = a[n+1] + a[il
end do all

(b) after forward substitution

Figure 37. Forward substitution.

Forward substitution is generally per-
formed on array subscript expressions at
the same time as loop normalization
(Section 6.3.6). For efficient subscript
analysis techniques to work, the array
subscripts must be linear functions of the
induction variables.

6.6.5 Reassociation

Reassociation is a technique for increas-
ing the number of common subexpres-
sions in a program [Cocke and Markstein
1980; Markstein et al. 1994]. It is gener-
ally applied to address calculations
within loops when performing strength
reduction on induction variable expres-
sions (see Section 6.1.1). Address calcula-
tions generated by array references
consist of several multiplications and ad-
ditions. Reassociation applies the asso-
ciative, commutative, and distributive
laws to rewrite these expressions in a
canonical sum-of-products form.

Forward substitution is usually per-
formed where possible in the address
calculations to increase the number of
potential common subexpressions.

6.6.6 Algebraic Simplification

The compiler can simplify arithmetic ex-
pressions by applying algebraic rules to
them. A particularly useful example is
the set of algebraic identities. For in-
stance, the statement x=(y=1+0)/1
can be transformed into x =y if x and y
are integers. Figure 38 illustrates some
of the commonly applied rules.

Compiler Transformations . 381

X0 =
0/z =
zxX1 =
z+0 =
z/1 =

8 8 8 © ©

Figure 38. Algebraic identities used in expression
simplification.

Table 2. identities Used in Strength Reduction
(& 1s the string concatenation operator)

I Expression ! Reduced Expr. I Datatypes l
z X2 T+ integer, real
z? TXz integer, real
z¢3 2 X /T real
i x2° 1L ¢ integer
(a,0)+ (5,0) | (a +b,0) complex
len(s; & s3) | len(s;)+len(sy) | string

Floating-point arithmetic can be prob-
lematic to simplify; for example, if x is an
TEEE floating-point number with value
Nan (not a number), then x X 0 = x, in-
stead of 0.

6.6.7 Strength Reduction

The identities in Table 2 are called
strength reductions because they replace
an expensive operator with an equivalent
less expensive operator. Section 6.1.1 dis-
cusses the application of strength reduc-
tion to operations that appear inside a
loop.

The two entries in the table that refer
to multiplication, x X 2 =x + « and i X
2°¢ = j < ¢, can be generalized. Multipli-
cation by any integer constant can be
performed using only shift and add in-
structions [Bernstein 1986]. Other trans-
formations are conditional on the values
of the affected variables; for example,
1/2° =i > ¢ if and only if 7 1s non-
negative [Steele 1977].

It is also possible to convert exponenti-
ation to multiplication in the evaluation

ACM Computing Surveys, Vol. 26, No. 4, December 1994

382 . David F. Bacon et al.
write(6,100) c[i]
read(7,100) (d(j), j =1, 100)
100 format(41l)

(a) original code

call putchar(c[i], 6)
call fgets(d, 100, 7)

(b) after format compilation

Figure 39. Format compilation.

of polynomials, using the identity

n n—1
a,x" +a, x + Fa;x + a,

=(a,x" t+a, x"" %+ +ay)
x+a,.

6.6.8 1/ O Format Compilation

Most languages provide fairly elaborate
facilities for formatting input and output.
The formatting specifications are in ef-
fect a formatting sublanguage that is
generally “interpreted” at run time, with
a correspondingly high cost for character
input and output.

Formatted writes can be converted al-
most directly into calls to the run-time
routines that implement the various for-
mat styles. These calls are then likely
candidates for inline substitution. Figure
39 shows two I/0 statements and their
compiled equivalents. Idiom recognition
has been performed to convert the im-
plied do loop into an aggregate
operation.

Note that in Fortran, a format state-
ment is analogous to a procedure defini-
tion, which may be invoked by any
number of read or write statements. The
same trade-off as with procedure inlining
applies: the formatted 1/0 can be ex-
panded inline for higher efficiency, or
encapsulated as a procedure for code
compactness (inlining is described in Sec-
tion 6.8.5).

Format compilation is done by the VAX
Fortran compiler [Harris and Hobbs
1994] and by the Gnu C compiler [Free
Software Foundation 1992].

ACM Computing Surveys. Vol. 26. No. 4, December 1994

Format compilation is further compli-
cated in C by the fact that printf and
scanf are library functions and may be
redefined by the programmer.

6.6.9 Superoptimizing

A superoptimizer [Massalin 1987] repre-
sents the extreme of optimization, seek-
ing to replace a sequence of instructions
with the optimal alternative. It does an
exhaustive search, beginning with a sin-
gle instruction. If all single instruction
sequences fail, two-instruction sequences
are searched, and so on.

A randomly generated instruction se-
quence is checked by executing it with a
small number of test inputs that were
run through the original sequence. If it
passes these tests, a thorough verifica-
tion procedure is applied.

Superoptimization at compile time is
practical only for short sequences (on the
order of a dozen instructions). It can also
be used by the compiler designer to find
optimal sequences for commonly occur-
ring idioms. It is particularly useful for
eliminating conditional branches in short
instruction sequences, where the pipeline
stall penalty may be larger than the cost
of executing the operations themselves
[Granlund and Kenner 1992].

6.7 Redundancy Elimination

There are many optimizations that im-
prove performance by identifying redun-
dant computations and removing them
[Morel and Renvoise 1979]. We have al-
ready covered one such transformation,
loop-invariant code motion, in Section
6.1.3. There a computation was being
performed repeatedly when it could be
done once.

Redundancy-eliminating transforma-
tions remove two other kinds of computa-
tions: those that are unreachable and
those that are useless. A computation is
unreachable if it is never executed; re-
moving it from the program will have no
semantic effect on the instructions exe-
cuted. Unreachable code is created by
programmers (most frequently with con-
ditional debugging code), or by transfor-

mations that have left “orphan” code
behind.

A computation is useless if none of the
outputs of the program are dependent on
it.

6.7.1. Unreachable-Code Elimination

Most compilers perform unreachable-code
elimination [Allen and Cocke 1971; Aho
et al. 1986]. In structured programs, there
are two primary ways for code to become
unreachable. If a conditional predicate is
known to be true or false, one branch of
the conditional is never taken, and its
code can be eliminated. The other com-
mon source of unreachable code is a loop
that does not perform any iterations.

In an unstructured program that relies
on goto statements to transfer control,
unreachable code is not obvious from the
program structure but can be found by
traversing the control flow graph of the
program.

Both unreachable and useless code are
often created by constant propagation,
described in Section 6.6.1. In Figure 40(a),
the variable debug is a constant. When
its value is propagated, the conditional
expression becomes if (0 > 1). This ex-
pression is always false, so the body of
the conditional is never executed and can
be eliminated, as shown in Figure 40(b).
Similarly, the body of the do loop is never
executed and is therefore removed.

Unreachable-code elimination can in
turn allow another iteration of constant
propagation to discover more constants;
for this reason some compilers perform
constant propagation more than once.

Unreachable code is also known as
dead code, but that name is also applied
to useless code, so we have chosen to use
the more specific term.

Sometimes considered as a separate
step, redundant-control elimination re-
moves control constructs such as loops
and conditionals when they become re-
dundant (usually as a result of constant
propagation). In Figure 40(b), the loop
and conditional control expressions are
not used, and we can remove them from
the program, as shown in (c).

Compiler Transformations . 383

integer ¢, n, debug

debug = 0
n=20
a = b+7

if (debug > 1) then

c=a+b+d

print *, ’Warning -- total is ’, ¢
end if
call foo(a)
doi=1,n

ali]l = ali] + ¢
end do

(a) original code

integer c, n, debug

debug = 0

n=0

a = b+7

if (0 > 1) then

end if

call foo(a)

doi=1,0

end do

(b) after constant propagation and unreachable
code elimination

integer ¢, n, debug

debug = 0
n=20
a = b+7

call foo(a)
(c) after redundant control elimination

integer c, n, debug
a = b+7
call foo(a)
(d) after useless code elimination

a = b+7
call foo(a)
(e) after dead variable elimination

Figure 40. Redundancy elimination.

6.7.2 Useless-Code Elimination

Useless code is often created by other
optimizations, like wunreachable-code
elimination. When the compiler discovers
that the value being computed by a state-

ACM Computing Surveys, Vol. 26, No. 4, December 1994

384 . David F. Bacon et al.

ment is not necessary, it can remove the
code. This can be done for any nonglobal
variable that is not live immediately af-
ter the defining statement. Live-variable
analysis is a well-known data-flow prob-
lem [Aho et al. 1986]. In Figure 40(c), the
values computed by the assignment
statements are no longer used; they have
been eliminated in (d).

6.7.3 Dead-Variable Elimination

After a series of transformations, partic-
ularly loop optimizations, there are often
variables whose value is never used. The
unnecessary variables are called dead
variables; eliminating them is a common
optimization [Aho et al. 1986].

In Figure 40(d), the variables ¢, n, and
debug are no longer used and can be
removed; (e) shows the code after the
variables are pruned.

6.7.4 Common-Subexpression Elimination

In many cases, a set of computations will
contain identical subexpressions. The re-
dundancy can arise in both user code and
in address computations generated by the
compiler. The compiler can compute the
value of the subexpression once, store it,
and reuse the stored result [Aho et al.
1977; 1986; Cocke 1970]. Common-subex-
pression elimination is an important
transformation and is almost universally
performed. While it is generally a good
idea to perform common-subexpression
elimination wherever possible, the com-
piler must consider the current register
pressure and the cost of recomputing. If
storing the temporary value(s) forces ad-
ditional spills to memory, the transfor-
mation can actually deoptimize the
program.

6.7.5 Short Circuiting

Short circuiting is an optimization that
can be performed on boolean expressions.
It is based on the observation that the
value of many binary boolean operations
can be determined from the value of the

ACM Computing Surveys, Vol. 26, No. 4, December 1994

first operand [Arden et al. 1962]. For
example, the control expression in
if ((@=1) and (b = 2)) then
c=5
end if

is known to be false if a does not equal 1,
regardless of the value of b. Short circuit-
ing would convert this expression to:

if (not (a == 1)) goto 10

if {not (b = 2)) goto 10

c=5

10 continue
Note that if any of the operands in the

boolean expression have side-effects,
short circuiting can change the results of
the evaluation. The alteration may or
may not be legal, depending on the lan-
guage semantics. Some language defini-
tions, including C and many dialects of
Lisp, address this problem by requiring
short circuiting of boolean expressions.

6.8 Procedure Call Transformations

The optimizations described in the next

several sections attempt to reduce the

overhead of procedure calls in one of four

ways:

* eliminating the call entirely;

* eliminating execution of the called pro-
cedure’s body;

¢ eliminating some of the entry/exit
overhead; and

e avoiding some steps in making a proce-
dure call when the behavior of the
called procedure is known or can be
altered.

6.8.1 A Calling Convention for S-DLX

To demonstrate the procedure call opti-
mizations, we first define a calling con-
vention for S-DLX. Table 3 shows how
the registers are used.

In general, each called procedure is
responsible for ensuring that the values
in registers R16 -~ R25 are preserved
across the call. The stack begins at the
top of memory and grows downward.
There is no explicit frame pointer; in-
stead, the stack pointer is decremented
by the size s of the procedure’s frame at
entry and left unchanged during the call.

385

Compiler Transformations .

Table 3. S-DLX Registers and Their Usage

| Number] Usage]
RO Always zero; writes are ignored
R1 Return value when returning from a procedure call
R2..R7 The first six words of the arguments to the procedure call
R8..R15 | 8 caller save registers, used as temporary registers by callee
R16..R25 | 10 callee save registers. These registers must be preserved across a call.
R26..R29 | Reserved for use by the operating system
R30 Stack pointer
R31 Return address during a procedure call
FO..F3 The first four floating point arguments to the procedure call
F4..F17 | 14 caller save floating point registers
F18..F31 | 14 callee save floating point registers

The value R30 + s serves as a virtual
frame pointer that points to the base of
the stack frame, avoiding the use of a
second dedicated register. For languages
that cannot predict the amount of stack
space used during execution of a proce-
dure, an additional general-purpose reg-
ister can be used as a frame pointer, or
the size of the frame can be stored at the
top of the stack (R30 + 0).

On entering a procedure, the return
address is in R31. The first six words of
the procedure arguments appear in reg-
isters R2-R7, and the rest of the argu-
ment data is on the stack. Figure 41
shows the layout of the stack frame for a
procedure invocation.

A similar convention is followed for
floating-point registers, except that only
four are reserved for arguments.

Execution of a procedure consists of six
steps:

(1) Space is allocated on the stack for the
procedure invocation.

(2) The values of registers that will be
modified during procedure execution
(and that must be preserved across
the call) are saved on the stack. If the
procedure makes any procedure calls
itself, the saved registers should in-
clude the return address, R31.

(3) The procedure body is executed.

(4) The return value (if any) is stored in
R1, and the registers that were saved
in step 2 are restored.

(5) The frame is removed from the stack.

(6) Control is transferred to the return
address.

Calling a procedure is a four-step pro-
cess:

(1) The values of any of the registers
R1—-R15 that contain live values are
saved. If the values of any global
variables that might be used by the
callee are in a register and have been
modified, the copy of those variables
in memory is updated.

(2) The arguments are stored in the des-
ignated registers and, if necessary,
on the stack.

(3) A linked jump is made to the target
procedure; the CPU leaves the ad-
dress of the next instruction in R31.

(4) Upon return, the saved registers are
restored, and the registers holding
global variables are reloaded.

To demonstrate the structure of a pro-
cedure and the calling convention, Figure
42 shows a simple function and its com-
piled code. The function (foo) and the
function that it calls (max) each take two
integer arguments, so they do not need to
pass arguments on the stack. The stack
frame for foo is three words, which are
used to save the return address (R31)
and register R16 during the call to max,
and to hold the local variable d. R31

ACM Computing Surveys, Vol. 26, No. 4, December 1994

386 . David F. Bacon et al.

high addresses

caller’s stack frame

arg n

arél

locals and temporaries

saved registers

frame size

sp —»

arguments for called
procedures

low addresses

stack grows down

Figure 41.

must be preserved because it is overwrit-
ten by the jump-and-link (JAL) instruc-
tion; R16 must be preserved because it is
used to hold ¢ across the call.

The procedure first allocates the 12
bytes for the stack frame and saves R31
and R16; then the parameters are loaded
into registers. The value of d is calcu-
lated in the temporary register R9. Then
the addresses of the arguments are stored
in the argument registers, and a jump to
max is made. On return from max, the
return value has been computed into the
return value register (R1). After remov-
ing the stack frame and restoring the
saved registers, the procedure jumps back
to its caller through R31.

6.8.2 Leaf Procedure Optimization

A leaf procedure is one that does not call
any other procedures; the name comes
from the fact that these procedures are
leaves in the static call graph. The sim-
plest optimization for leaf procedures is
that they do not need to save and restore

ACM Computing Surveys, Vol. 26, No. 4, December 1994

Stack frame layout.

the return address (R31). Additionally, if
the procedure does not have any local
variables allocated to memory, the com-
piler does not need to create a stack
frame.

Figure 43(a) shows the function max
(called by the previous example function
foo), its original compiled code (b), and
the code after leaf procedure optimiza-
tion (c). After eliminating the save/re-
store of R31, there is no need to allocate
a stack frame. Eliminating the code that
deallocates the frame also allows the
function to return directly if x < y.

6.8.3 Cross-Call Register Allocation

Separate compilation reduces the amount
of information available to the compiler
about called procedures. However, when
both callee and caller are available, the
compiler can take advantage of the regis-
ter usage of the callee to optimize the
call.

If the callee does not need (or can be
restricted not to use) all the temporary

integer function foo(c, b)
integer ¢, b
integer d, e

Compiler Transformations . 387

integer function max(x, y)
integer x, y

if (x > y) then
max = X

else
max =y

end if

return

end

(a) source code for function max

d = c+b
e = max(b, 4)
foo = e+c
return
end
(a) source code for function foo
foo: SUBI R30, #12 ;adjust SP
SW 8(R30), R31 ;save retaddr
SW 4(R30), R16 ;save R16
LW R16, (R2) ;Ri6=c
LW R8, (R3) ;R8=b
ADD R9, Ri6, R8 ;R9=d=c+b
SW (R30), R9 ;save d
MOV R2, R3 ;argl=addr(b)
ADDI R3, R30, #0 ;arg2=addr(d)
JAL max ;call max; Ri=e
ADD R1, R1i, R16 ;Ri=etc
LW R16, 4(R30) ;restore R16
LW R31, 8(R30) ;restore retaddr
ADDI R30, #12 ;restore SP
JR R31 ;return

(b) compiled code for foo

Figure 42. Function foo and its compiled code.

registers (R8 —R15), the caller can leave
values in the unused registers through-
out execution of the callee. Additionally,
move instructions for parameters can be
eliminated.

To perform this optimization on a pro-
cedure f, registers must first have been
allocated for each of the procedures that f
calls. This can be done by performing
register allocation on procedures ordered
by a depth-first postorder traversal of the
call graph [Chow 1988].

For example, in Figure 43(c) max uses
only R8-R10. Figure 44 shows foo after
cross-call register allocation. R31 is saved
in R11 instead of on the stack, and the
return is a jump to the saved addresses
in R11. Additionally, R12 is used instead
of R16, allowing the save and restore of
R16 to be eliminated. Only d remains in
the stack frame.

max: SUBI R30, #4
SW (R30), R31
LW R8, (R2)
LW R9, (R3)
SGT R10, R8, R9
BEQZ R10, Else
MOV Ri, RS
J Ret
Else:MOV Ri, R9
Ret: LW R31, (R30)
ADDI R30, #4
JR R31

;adjust SP
;save retaddr
sR8=x

;R9=y

;R10=(x > y)
ix <=y
;max=x

;max=y
;restore R31
;restore SP
;return

(b) original compiled code of max

LW
LW
SGT
BEQZ
MOV
JR
Else:MOV
JR

R8, (R2)
R9, (R3)
R10, R8, R9
R10, Else
R1, R8

R31

Ri, R9

R31

max:

sR8=x

iR9=y
;R10=(x > y)
X <=y
;max=x
;return
;max=y
sreturn

(¢) max after leaf optimization

Figure 43. Leaf procedure optimization.

foo: SUBI
MOV
LW
LW
ADD
SW
MOV
ADDI
JAL
ADD
ADDI
JR

R30, #4
R11, R31
R12, (R2)
Rr8, (R3)
R9, R12, R8
(R30), R9
R2, R3

R3, R30, #0
max

R1, Ri,
R30, #4
R11

R12

;adjust SP
;save retaddr
;R12=¢

;R8=b

;R9=d

;save d
;argl=addr(b)
;arg2=addr(d)
;call max
;Rl=e+cC
;restore SP
;return

Figure 44. Cross-call register allocation for foo.

ACM Computing Surveys, Vol. 26, No. 4, December 1994

388 . David F. Bacon et al.

6.8.4 Parameter Promotion

When a parameter is passed by refer-
ence, the address calculation is done by
the caller, but the load of the parameter
value is done by the callee. This wastes
an instruction, since most address calcu-
lations can be handled with the offset(Rn)
format of load instructions.

More importantly, if the operand is al-
ready in a register in the caller, it must
be spilled to memory and reloaded by the
callee. If the callee modifies the value, it
must then be stored. Upon return to the
caller, if the compiler cannot prove that
the callee did not modify the operand, it
must be loaded again. Thus, as many as
two unnecessary loads and two unneces-
sary stores can be introduced.

An unmodified reference parameter
can be passed by value, and a modified
reference parameter can be passed by
value-result. Figure 45(a) shows max af-
ter this transformation has been applied.
Figure 45(b) shows the corresponding
modified form of foo.

Since d can now be held in a register,
there is no longer a need for a stack
frame, so frame collapsing can be ap-
plied, and the stack frame is eliminated.
In general, when the compiler can stati-
cally identify all the callers of a leaf pro-
cedure, it can expand their stack frames
to include enough space for both proce-
dures. The leaf procedure simply uses
the caller’s stack frame without doing
any new allocation of its own.

Parameter promotion is particularly
important for languages such as Fortran,
in which all argument passing is by ref-
erence. However, the argument-passing
semantics of value-result are not the
same ag for arguments passed by refer-
ence, in particular in the event of alias-
ing. Interprocedural analysis may be
necessary to determine the legality of the
transformation.

6.8.5 Procedure Inlining

Procedure inlining (also known as proce-
dure integration) replaces a procedure
call with a copy of the body of the called
procedure [Allen and Cocke 1971; Ball

ACM Computing Surveys, Vol. 26, No. 4, December 1994

max: SGT R10, R2, R3 ;R10=(x > y)
BEQZ R10, Else X <=y
MOV R1, R2 ;max=x
JR R31 ;return
Else:MOV R1, R3 ;Max=y
JR R31 ;return

(a) max after parameter promotion: x and y are
passed by value in R2 and R3.

foo: MOV R11, R31 ;save retaddr
Lw R12, (R2) ;Ri2=¢
LW R2, (R3) ;R2=Db
ADD R3, R12, R2 ;R3=d
JAL max ;call max
ADD R1, R1, Ri2 ;Ri=e+c
JR R11 sreturn

(b) foo after parameter promotion on max

Figure 45. Parameter promotion.

1979; Scheifler 1977]. Each occurrence of
a formal parameter is replaced with a
version of the corresponding actual pa-
rameter, modified to reflect the calling
convention of the language. Renaming
may also be required for the local vari-
ables of the inlined procedure if they con-
flict with the calling procedure’s variable
names or if the procedure is inlined more
than once in the same caller.

Inlining can almost always be per-
formed, except when the procedure in
question is recursive. Even recursive rou-
tines may benefit from a finite number of
inlining steps, particularly when a con-
stant argument allows the compiler to
determine the number of recursive calls
that will be performed. For Fortran pro-
grams, incompatible common-block us-
ages between caller and callee can make
inlining more complex and in practice
often prevent it.

When a call is inlined, all the overhead
for the invocation is eliminated. The stack
frames for the caller and callee are allo-
cated together, and the transfer of con-
trol is eliminated. This is particularly
important for the return (J R31), since
a jump through a register may incur a
higher pipeline penalty than a jump to a
fixed address.

do i=1, n
call f(a, i)
end do

subroutine f(x, j)
dimension x[*]
x[31 = x[3] + ¢
return
(a) original code

do all i=1, n
a[il = afi]l + ¢
end do all
(b) after inlining

Figure 46. Procedure inlining.

Another reason for inlining is to
improve compiler analysis and opti-
mization. In many compilers, a loop
containing a procedure call cannot be
parallelized because its read-write be-
havior is unknown. After the call is in-
lined, the compiler may be able to prove
loop independence, thereby allowing vec-
torization or parallelization. Addition-
ally, register usage may be improved,
constants propagated more accurately,
and more redundant operations elimi-
nated.

An alternative to inlining is to perform
interprocedural analysis. The advantage
of interprocedural analysis is that it can
be applied uniformly, since it does not
cause code expansion the way inlining
does. However, interprocedural analysis
can be costly and increases the
complexity of the compiler.

Inlining also affects the instruction
cache behavior of the program
[McFarling 1991]. The change can be fa-
vorable, because locality is improved by
eliminating the transfer of control. On
the other hand, if a loop body is made
much larger, it may no longer fit in the
cache and therefore cause additional
memory accesses. Furthermore, if the
loop contains multiple calls to the same
procedure, multiple copies of the proce-
dure will be loaded into the cache.

The primary disadvantage of inlining
is that it increases code size, in the worst

Compiler Transformations . 389
foo: LW Ri2, (R2) ;Ri2=c
LW R2, (R3) ;R2=b
ADD R3, R12, R2 ;R3=d
max: SGT R10, R2, R3 ;R10=(x > y)
BEQZ R10, Else ;X <=y
MOV R1, R2 ;max=x
J Ret ;Yreturn” to f
Else:MOV R1, R3 ;max=y
Ret: ADD R1, R1i, R12 ;Ri=e+c
JR R31 ;return

Figure 47. max inlined into foo.

case exponentially. However, in practice
it is simple to control the size increase by
selective application of inlining (for ex-
ample, to small leaf procedures, or to
procedures that are only called from a
few places). The result can be a dramatic
improvement in execution speed. Figure
46 shows a source-level example of inlin-
ing; Figure 47 shows the assembler out-
put after the procedure max is inlined
into foo.

Ignoring cache effects, assume the fol-
lowing: if ¢, is the time to execute the
entire procedure and ¢, is the time to
execute just the body of the procedure, n
is the number of times it is called, and T'
is the total execution time of the pro-
gram, then

t, =nlt, —t,)

is the time saved by inlining, and

is the fraction of the total run time saved
by inlining.

Some recent studies [Cooper et al. 1991;
1992] have demonstrated that realizing
the theoretical benefits of inlining may
require some modification of the com-
piler, because inlined code has different
characteristics than human-written code.

Peculiarities of a language or a com-
piler may reduce the effectiveness of in-
lining or produce unexpected results.
Cooper et al. examined several commer-

ACM Computing Surveys, Vol. 26, No. 4, December 1994

390 . David F. Bacon et al.

cial Fortran compilers and uncovered the
following potential problems: (1) in-
creased demand for registers; (2) larger
numbers of local variables, sometimes
exceeding a compiler’s limit for the num-
ber of analyzable variables; (3) loss of
information due to the Fortran conven-
tion that procedure parameters may be
assumed to be unaliased.

6.8.6 Procedure Cloning

Procedure cloning [Cooper et al. 1993] is
a technique for improving optimization
across procedure call boundaries. The call
sites of the procedure being cloned are
divided into groups, and a specialized
version of the procedure is created for
each group. The specialization often pro-
vides opportunities for better optimiza-
tion, particularly due to improved
constant propagation.

In Figure 48, cloning procedure f with
p replaced by the constant 2 allows re-
duction in strength. The real-valued
exponentiation is replaced by a multipli-
cation, which is usually at least 10 times
faster.

6.8.7 Loop Pushing

Loop pushing (also called loop embed-
ding [Hall et al. 1991]) moves a loop nest
from the caller to a cloned version of the
called procedure. If a compiler does not
perform vectorization or parallelization
across procedure calls directly, pushing
is a less general way of achieving a
similar effect.

For example, pushing is done by the
CMAX Fortran preprocessor for the
Thinking Machines CM-5. CMAX con-
verts Fortran 77 programs to Fortran 90,
attempting to discover data-parallel op-
erations in the process [Sabot and
Wholey 1993].

Pushing not only allows the paral-
lelization of the loop in Figure 49, it also
eliminates the overhead of all but one of
the procedure calls.

If there are other statements in the
loop, distribution is a prerequisite to
pushing. In this case, however, the de-

ACM Computing Surveys, Vol. 26, No. 4, December 1994

call f(a, n, 2)

subroutine f£(x, n, p)
real x[*]
integer n, p
doi=1,n
x[i] = x[iJ*¥p
end do
(a) original code

call F_2(a, n)

subroutine F_2(x, n)
real x[*]
integer n
doi=1,n
x[i] = x[i]*x[i]
end do
{b) after cloning

Figure 48. Procedure cloning.

do i=1, n
call £(x,n)
end do

subroutine f(a, j)
real a[*]
aljl = af3j] + ¢
return
(a) original loop and procedure

call F_2(x)

subroutine F_2(a)
real a[*]
do all i=1, n
alil 2 ali] + ¢
end do all
return
(b) after loop pushing

Figure 49. Loop pushing.

pendence analysis for distribution must
be interprocedural. If there are no other
statements in the loop, the transforma-
tion is always legal.

Procedure inlining (see Section 6.8.5)
is a different way of achieving a very

similar effect, and does not require inter-
procedural analysis.

6.8.8 Tail Recursion Elimination

Tail recursion is a particularly common
form of recursion. A function is recursive
if it invokes itself, directly or indirectly.
It is tail recursive if its last act is to call
itself and return the value of the recur-
give call without performing any further
processing.

When a function is tail recursive, it is
unnecessary to invoke a separate in-
stance with its own stack frame. The
recursion can be eliminated; the current
invocation will not be using its frame any
longer, so the call can be replaced by a
jump to the top of the procedure. Figure
50 shows an example of a tail-recursive
function (a) and the result after the re-
cursion is eliminated (b). A function that
is not tail recursive is shown in Figure
50(c): it uses the result of the recursive
call as an operand to the addition, so
there is computation that must be per-
formed after the recursive call returns.

Recursive programs can be trans-
formed automatically into tail-recursive
versions that can be executed iteratively
[Burstall and Darlington 1977], but this
is not commonly performed by existing
compilers for imperative languages. Some
languages prevent tail recursion elimina-
tion by requiring clean-up code to be exe-
cuted after a procedure is finished. The
semantics of C + +, for example, de-
mand that before a procedure returns it
must call a deconstructor on each stack-
allocated local object variable.

Other languages, like Scheme [Rees et
al. 1986], require that all tail-recursive
procedures be identified and that they be
executed without consuming stack space
proportional to the recursion depth.

6.8.9 Function Memoization

Memoization is an optimization that is
applied to side-effect free procedures
(that is, procedures that do not change
the state of the program, also called ref-
erentially transparent). In such cases it is

Compiler Transformations . 391

recursive logical function inarray(a,x,i,n)
real x, aln]
integer i, n

if (i > n) then
inarray = .FALSE.
else if (afil = x) then
inarray = .TRUE.
else
inarray = inarray(a, x, 1+i, n)
end if
return

(a) A tail-recursive procedure

logical function inarray(a, x, i, n)
real x, a[n]
integer i, n

1 if (i > n) then
inarray = .FALSE.
else if (a[i] = x) then
inarray = .TRUE.
else
i=1i+1
goto 1
end if
return

(b) After tail recursion elimination

recursive integer function sumarray(a,x,i,n)
real x, a[n]
integer i, n

if (i = n) then
sumarray = a[i]
else
sumarray = alil+sumarray(a, x, i+1, n)
end if
return

(¢) A procedure that is not tail-recursive

Figure 50. Tail recursion elimination.

possible to cache the results of recent
invocations. When the procedure is called
again with the same arguments, the
cached result is used instead of recom-
puting it [Abelson and Sussman 1985;
Michie 1968].

Figure 51 shows a simple example of
memoization. If f is often called with the
same arguments and f also takes a non-
trivial amount of time to run, then mem-
oization will substantially increase

ACM Computing Surveys, Vol. 26, No. 4, December 1994

392 . David F. Bacon et al.

y = £(1)
(a) original function call

logical f_UNCACHED[n]
real f_CACHE[n]
doi=1,n

f_UNCACHED[i] = .true.
end do

if (f_UNCACHED[i]) then
f_CACHE[1] = £(i)
f_UNCACHED[i] = .false.
end if
y = £_CACHE[i]
(b) code augmented for memoization .

Figure 51. Function memoization

performance. If not, it will degrade per-
formance and consume memory.

This example assumes that f's parame-
ter is confined to the range 1:--n, and
that n is not extremely large. A more
sophisticated memoization scheme would
hash the arguments and use a cache size
that makes a sensible trade-off between
reuse and memory consumption. For
functions that return dynamically allo-
cated objects, storage management must
be considered as well.

For ¢ calls and a hit rate of r, the time
to execute the c calls is

T =c(rt, + (1 —r)¢,)

where ¢, is the time to retrieve the mem-
oized result from the cache (a hit), and
t,, is the time to call f plus the overhead
of discovering that it is not in the cache
(a miss). With a high hit rate and a large
difference between ¢, and ¢,,, memoiza-
tion can significantly improve perfor-
mance.

7. TRANSFORMATIONS FOR PARALLEL
MACHINES

All the transformations discussed so far
are applicable to a wide variety of com-
puter organizations. In this section we

ACM Computing Surveys, Vol. 26, No. 4, December 1994

describe transformations that are spe-
cific to parallel architectures.

Highly efficient parallel applications
have been developed by manually apply-
ing the transformations discussed here to
sequential code. Duplicating these suc-
cesses by automatically transforming the
code within a compiler is an active area
of research. While a great deal of work
has been done, automatic parallelization
of full-scale applications with existing
compilers does not consistently yield sig-
nificant speedups. Experiments that
measure the effectiveness of parallelizing
compilers are presented in Section 9.3.

Because the parallelization of se-
quential code is proving to be difficult,
languages like HPF Fortran [High Per-
formance Fortran Forum 1998] provide
constructs that allow the programmer to
declare data decomposition strategies and
to expose parallelism. The compiler is
then responsible for generating commu-
nication and synchronization code, using
various optimizations (discussed below)
to reduce the resulting overhead. As of
vet, however, there are few real applica-
tions that have been written in these
languages, and there is little experimen-
tal data.

In this section we make extensive use
of our model shared-memory and dis-
tributed-memory multiprocessors sMX
and dMX, which are described fully in
the Appendix. Both machines are con-
structed using S-DLX processors. The
programming environment initializes the
global variable Pnum to be the number of
processors in the machine and Pid to be
the number of the local processor
(starting with 0).

7.1 Data Layout

One of the key decisions that a compiler
must make in targeting a multiprocessor
is the decomposition of data across the
processors. The need to distribute data
and manage it is obvious in a dis-
tributed-memory programming model,
where communication is explicit. The
performance of code under a shared-
memory model is also dependent on

avoiding unnecessary communication:
the fact that communication is performed
implicitly does not eliminate its cost.

7.1.1 Regular Array Decomposition

The most common strategy for decompos-
ing an array on a parallel machine is to
map each dimension to a set of proces-
sors in a regular pattern. The four com-
monly used patterns are discussed in the
following sections.

Serial Decomposition

Serial decomposition is the degenerate
case, where an entire dimension is allo-
cated to a single processor. Figure 52(a)
shows a simple loop nest that adds c to
each element of a two-dimensional array,
the decomposition of the array onto pro-
cessors (b), and the loop transformed into
code for sMX (c). Each column is mapped
serially, meaning that all the data in
that column will be placed on a single
processor. As a result, the loop that iter-
ates over the columns (the inner loop) is
unchanged.

Block Decomposition

A block decomposition divides the ele-
ments into one group of adjacent ele-
ments per processor. Using the previous
example, the rows of array a are divided
between the four processors, as shown in
Figure 52(b). Because the rows have been
divided across the processors, the outer
loop in Figure 52(c) has been modified so
that each processor iterates only over the
local portion of each row.

Figure 52(d) shows the decomposition
if block scheduling is applied across both
the horizontal and vertical dimensions.

A major difference between compila-
tion for shared- and distributed-memory
machines is that shared-memory ma-
chines provide a global name space, so
that any particular array element can be
named by any processor using the same
subscripts as in the sequential code. On
the other hand, on a distributed-memory
machine, arrays must usually be divided

Compiler Transformations . 393

doall j =1, n

doalli=1,n
afi,jl} = ali,j] + ¢
end do all
end do all

(a) original loop

i

1.2 3 45 6 7 8

®m N e B e e N oa

(b) (block,serial) decomposition of a on four
processors

call FORK(Pnum)
do j = (n/Pnum)*Pid+1, min((n/Pnum)*(Pid+1), n)

doi=1,n

afi,jl = ali,jl + ¢

end do
end do
call JOINQ)
(c) corresponding (block, serial) scheduling of

the loop, using block size n/Pnum

i

t 2 8 4 5 6 7 8

® N e e A e N o

(d) (block,block) decomposition of a on four
processors

Figure 52. Serial and block decompositions of an
array on the shared-memory multiprocessor sMX.

across the processors, each of which has
its own private address space.

As a result, naming a nonlocal array
element requires a mapping function
from the original, global name space to a
processor number and local array indices
within that processor. The examples
shown here are all for shared memory,
and therefore sidestep these complexi-
ties, which are discussed in Section 7.3.
However, the same decomposition princi-
ples are used for distributed memory.

ACM Computing Surveys, Vol 26, No. 4, December 1994

394 ° David F. Bacon et al.

1 2 3 4 5 6 7 8

@ N N B W N =

(a) (cyclic,serial) decomposition of a on four
Processors

call FORK(Pnum)
do j = Pid+1, n, Pnum

doi=1,n
ali,jl = ali,jl + ¢
end do
end do

call JOINQ)
(b) corresponding (cyche, serial) scheduling of
loop

Figure 53. Cyclic decomposition on sMX.

The advantage of block decomposition
is that adjacent elements are usually on
the same processor. Because a loop that
computes a value for a given element
often uses the values of neighboring ele-
ments, the blocks have good locality and
reduce the amount of communication.

Cyclic Decomposition

A c¢yclic decomposition assigns succes-
sive elements to successive processors. A
cyclic allocation of columns to processors
for the sequential code in Figure 52(a) is
shown in Figure 53(a). Figure 53(b) shows
the transformed code for sMX.

Cyclic decomposition has the opposite
effect of blocking: it has poor locality
for neighbor-based communication, but
spreads load more evenly. Cyclic decom-
position works well for loops like the one
in Figure 54, as long as the array is large
enough so that each processor handles
many columns. A common algorithm that
results in this type of load balance is LU
factorization of matrices. A block decom-
position would work poorly because the
iterations most costly to execute would

ACM Computing Surveys, Vol. 26, No. 4, December 1994

doj=1,n
doi=1, j
total = total + ali,j]
end do
end do
(a) loop
a i

(b) elements of a read by the loop

Figure 54. Triangular iteration space.

be clustered together and computed by a
single processor. With a cyclic decomposi-
tion, the expensive iterations are spread
across the processors.

Block-Cyclic Decomposition

A block-cyclic decomposition combines
the two strategies; the elements are di-
vided into many adjacent groups, usually
an integer multiple of the number of pro-
cegsors available. Each group of elements
is assigned to a processor cyclically. Fig-
ure 55(a) shows an array whose columns
have been allocated to two processors in
a block-cyclic fashion, and Figure 55(b)
gives the code to implement the mapping
on sMX. Bloek-cyclic is a compromise be-
tween the locality of block decomposition
and the load balancing of eyclic
decomposition.

irregular Computations

Some loops, like the one shown in Figure
56, have highly irregular execution be-
havior, When the variance of execution
times is high, none of the static regular
decomposition strategies may be suf-
ficient to yield good performance. A
variety of dynamic algorithms make

i

1.2 3 4 5 6 7 38

@ NP U AW N -
o
Py
[=~]
[y

(a) (block-cyclic,serial) decomposition of a on
two processors

call FORK(Pnum)
do k = 1, n, 2+Pnum
do j = k + 2%xPid, k + 24Pid + 1
doi=1,n
ali,jl = ali,j] + ¢
end do
end do
end do
call JOIN()
(b) corresponding (block-cyclic, serial)
scheduling of loop, using block size 2

Figure 55. Block-cyclic decomposition on sMX.

doi=1,n
if (mask[i] = 1) then
a[i]l = expensive_function()
endif
end do

(a) example loop

g

(b) iteration versus cost for the above loop

Figure 56. Irregular execution behavior.

scheduling decisions at run time based
on the historical behavior of the compu-
tation [Lucco 1992; Polychronopoulos and
Kuck 1987; Tang and Yew 19901.

7.1.2 Automatic Decomposition and Alignment

The decomposition of an array deter-
mines how the elements are distributed

Compiler Transformations . 395
across a set of processors; in a block de-
composition, for example, the array might
be divided into contiguous 10 X 10 sub-
arrays. The alignment of the array es-
tablishes the specific elements that are
in each of those subarrays.

Languages like HPF Fortran rely on
the programmer to declare how arrays
are to be aligned and what style of de-
composition to use; the language includes
annotations like BLOCK and CYCLIC.
A variety of research projects have in-
vestigated whether the strategy can be
determined automatically without pro-
grammer assistance. Programmers can
find it difficult to choose a good set of
declarations, particularly since the opti-
mal decomposition can change during the
course of program execution.

The general strategy for automating
decomposition and alignment is to ex-
press the behavior of the program in a
representation that either captures com-
munication explicitly or allows it to be
computed. The compiler applies opera-
tions that reflect different decomposition
and alignment choices; the goal is fo
maximize parallelism and minimize
communication. The approaches include
the Alignment-Distribution Graph
[Chatterjee et al. 1993a; 1993b], the
Component Affinity Graph [Li and Chen
1990; 1991], constraints [Gupta 1992],
and affine transformations [Anderson
and Lam 1993].

In addition to presenting an algorithm
to find the optimal mapping of arrays to
processors for one- and two-dimensional
arrays, Mace [1985; 1987] shows that
finding optimal decompositions is an
NP-complete problem.

7.1.3 Scalar Privatization

The goal behind privatization is to in-
crease the amount of parallelism and to
avoid unnecessary communication. When
a scalar is used within a loop solely as a
scratch variable, each processor can be
given a private copy so the use of the
scalar need not involve any communica-
tion. The transformation is safe if there
are no loop-carried dependences involv-

ACM Computing Surveys, Vol. 26, No. 4, December 1994

396 . David F. Bacon et al.

doi=1,n

¢ = bfi]

ali] = afi] + ¢
end do

Figure 57. Scalar value suitable for privatization.

ing the scalar; before the scalar is used
in the loop body, its value is always up-
dated within the same iteration.

Figure 57 shows a loop that could ben-
efit from privatization. The scalar value ¢
is simply a scratch value; if it is priva-
tized, the loop is revealed to have inde-
pendent iterations. If the arrays are
allocated to separate processors before
the loop is executed, no further commu-
nication is necessary. In this very simple
example the variable could also have been
eliminated entirely, but in more complex
loops temporary variables are repeatedly
updated and referenced.

Scalar privatization is analogous to
scalar expansion (see Section 6.5.2); in
both cases, spurious dependences are
eliminated by replicating the variable.
The transformation is widely incorpo-
rated into parallel compilers [Allen et al.
1988b; Cytron and Ferrante 1987].

7.1.4 Array Privatization

Array privatization is similar to scalar
privatization; each processor is given its
own copy of the entire array. The effect of
privatizing an array is to reduce commu-
nication requirements and to expose
additional parallelisma by removing un-
necessary dependences caused by storage
reuse.

Parallelization studies of real applica-
tion programs have found that privatiza-
tion is necessary for high performance
[Eigenmann et al. 1991; Singh and
Hennessy 1991]. Despite its importance,
verifying that privatization of an array is
legal is much more difficult than the
equivalent test on a scalar value.

Traditionally, data-flow analysis
[Muchnick and Jones 1981] treats an en-
tire array as a single value. This lack of
precision prevents most loop optimiza-

ACM Computing Surveys, Vol. 26, No. 4, December 1994

tions discussed in this survey and led to
the development of dependence analysis.
Feautrier [1988; 1991] extends depen-
dence analysis to support array expan-
sion, essentially the same optimization
as privatization. The analysis is expen-
sive because it requires the use of para-
metric integer programming. Other
privatization research has extended
data-flow analysis to consider the behav-
ior of individual array elements [Li 1992;
Maydan et al. 1993; Tu and Padua 1993].

In addition to determining whether
privatization is legal, the compiler must
also check whether the values that are
left in an array are used by subsequent
computations. If so, after the array is
privatized the compiler must add code to
preserve those final values by performing
a copy-out operation from the private
copies to a global array.

7.1.5 Cache Alignment

On shared-memory processors like sMX,
when one processor modifies storage, the
cache line in which it resides is flushed
by any other processors holding a copy.
The flush is necessary to ensure proper
synchronization when multiple proces-
sors are updating a single shared vari-
able. If several processors are continually
updating different variables or array ele-
ments that reside in the same cache line,
however, the constant flushing of cache
lines may severely degrade performance.
This problem is called false sharing.

When false sharing occurs between
parallel loop iterations accessing differ-
ent columns of an array or different
structures, false sharing can be ad-
dressed by aligning each of the columns
or structures to a cache line boundary.
False sharing of scalars can be addressed
by inserting padding between them so
that each shared scalar resides in its own
cache line (padding is discussed in Sec-
tion 6.5.1). A further optimization is to
place shared variables and their corre-
sponding lock variables in the same cache
line, which will cause the lock acquisition
to act as a prefetch of the data [Torrellas
et al. 1994].

7.2 Exposing Coarse-Grained Parallelism

Transferring data can be an expensive
operation on a machine with asyn-
chronously executing processors. One way
to avoid the inefficiency of frequent com-
munication is to divide the program into
subcomputations that will execute for an
extended period of time without generat-
ing message traffic. The following opti-
mizations are designed to identify such
computations or to help the compiler
create them.

7.2.1 Procedure Call Parallelization

One potential source of coarse-grained
parallelism in imperative languages is
the procedure call. In order to determine
whether a call can be performed as an
independent task, the compiler must use
interprocedural analysis to examine its
behavior.

Because of its importance to all forms
of optimization, interprocedural analysis
has received a great deal of attention
from compiler researchers. One approach
is to propagate data-flow and dependence
information through call sites [Banning
1979; Burke and Cytron 1986; Callahan
et al. 1986; Myers 1981]. Another is to
summarize the array access behavior of a
procedure and use that summary to eval-
uate whether a call to it can be executed
in parallel [Balasundaram 1990; Calla-
han and Kennedy 1988a; Li and Yew
1988; Triolet et al. 1986].

7.2.2 Split

A more comprehensive approach to pro-
gram decomposition summarizes the data
usage behavior of an arbitrary block of
code in a symbolic descriptor [Graham et
al. 1993]. As in the previous section, the
summary identifies independence be-
tween computations—between procedure
calls or between different loop nests. Ad-
ditionally, the descriptor is used in ap-
plying the split transformation.

Split is unusual in that it is not ap-
plied in isolation to a computation like a
loop nest. Instead, split considers the re-
lationship of pairs of computations. Two
loop nests, for example, may have depen-

Compiler Transformations . 397
dences between them that prevent the
compiler from executing both simultane-
ously on different processors. However, it
is often the case that only some of the
iterations conflict. Split uses memory
summarization to identify the iterations
in one loop nest that are independent of
the other one, placing those iterations in
a separate loop. Applying split to an ap-
plication exposes additional sources of
concurrency and pipelining.

7.2.3 Graph Partitioning

Data-flow languages [Ackerman 1982;
McGraw 1985; Nikhil 1988] expose paral-
lelism explicitly. The program is con-
verted into a graph that represents basic
computations as nodes and the move-
ment of data as arcs between nodes.
Data-flow graphs can also be used as an
internal representation to express the
parallel structure of programs written in
imperative languages.

One of the major difficulties with
data-flow languages is that they expose
parallelism at the level of individual
arithmetic operations. As it is impracti-
cal to use software to schedule such a
small amount of work, early projects fo-
cused on developing architectures that
embed data-flow execution policies into
hardware [Arvind and Culler 1986;
Arvind et al. 1980; Dennis 1980]. Such
machines have not proven to be success-
ful commercially, so researchers began to
develop techniques for compiling data-
flow languages on conventional architec-
tures. The most common approach is to
interpret the data-flow graph dynami-
cally, executing a node representing a
computation when all of its operands are
available. To reduce scheduling over-
head, the data-flow graph is generally
transformed by gathering many simple
computations into larger blocks that are
executed atomically [Anderson and
Hudak 1990; Hudak and Goldberg 1985;
Mirchandaney et al. 1988; Sarkar 1989].

7.3 Computation Partitioning

In addition to decomposing data as dis-
cussed in Section 7.1, parallel compilers

ACM Computing Surveys, Vol. 26, No. 4, December 1994

398 . David F. Bacon et al.

must allocate the computations of a pro-
gram to different processors. Each pro-
cessor will generally execute a restricted
set of iterations from a particular loop.
The transformations in this section seek
to enforce correct execution of the pro-
gram without introducing unnecessary
overhead.

7.3.1 Guard Introduction

After a loop is parallelized, not all the
processors will compute the same itera-
tions or send the same slices of data. The
compiler can ensure that the correct com-
putations are performed by introduc-
ing conditional statements (known as
guards) into the program [Callahan and
Kennedy 1988b].

Figure 58(a) shows an example of a
sequential loop that we will transform
for parallel execution. Figure 58(b) shows
the parallel version of the loop. The code
computes upper and lower bounds that
the guards use to prevent computation
on array elements that are not stored
locally within the processor. The bounds
depend on the size of the array, the num-
ber of processors, and the Pid of the
processor.

We have made a number of simplifying
assumptions: the value of n is an even
multiple of Pnum, and the arrays are
already distributed across the processors
with a block decomposition. We have also
chosen an example that does not require
interprocessor communication. To paral-
lelize the loops encountered in practice,
compilers must introduce communica-
tion statements and much more complex
guard and induction variable expres-
sions.

dMX does not have a global name-
space, so each processor’s instance of an
array is separate. In Figure 58(b), the
compiler could take advantage of the iso-
lation of each processor to remap the
array elements. Instead of the original
array of size n, each processor could de-
clare a smaller array of n/Pnum ele-
ments and modify the loop to iterate from
1 to n/Pnum. Although the remapping
would simplify the loop bounds, we pre-

ACM Computing Surveys, Vol. 26, No. 4, December 1994

doi=1,n
ali] = ali] + ¢
b[i] = b[i] + ¢
end do

(a) original loop

LBA = (n/Pnum)#*Pid + 1
UBA = (n/Pnum)*(Pid + 1)
LBB = (n/Pnum)#*Pid + 1
UBB = (n/Pnum)*(Pid + 1)
doi=1i, n
if (LBA <= i .and. i <= UBA)

ali] = afi] + ¢
if (LBB <= i .and. i <= UBB)
bl[i]l = b[i] + ¢
end do
(b) parallelized loop with guards introduced

LB (n/Pnum)*Pid + 1
(n/Pnum)*(Pid + 1)
=1, n
(LB <= i

alil

b[i]

end if
end do

&

do i

e
H

.and. i <= UB) then
afil + ¢
b{i] + ¢

ion

(c) after guard combination

LB (n/Pnum)*Pid + 1
UB = (n/Pnum)*(Pid + 1)
do i = LB, UB

ali] = a[i] + ¢

b[i] = b[i] + ¢
end do

(d) after bounds reduction

Figure 58. Computation partitioning.

serve the original element indices to
maintain a closer relationship between
the sequential code and its transformed
version.

7.3.2 Redundant Guard Elimination

In the same way that the compiler can
use code hoisting to optimize computa-
tion, it can reduce the number of guards

by hoisting them to the earliest point
where they can be correctly computed.
Hoisting often reveals that identical
guards have been introduced and that all
but one can be removed. In Figure 58(b),
the two guard expressions are identical
because the arrays have the same decom-
position. When the guards are hoisted to
the beginning of the loop, the compiler
can eliminate the redundant guard. The
second pair of bound computations be-
comes useless and is also removed. The
final result is shown in Figure 58(c).

7.3.3 Bounds Reduction

In Figure 58(c), the guards control which
iterations of the loop perform computa-
tion. Since the desired set of iterations is
a contiguous range, the compiler can
achieve the same effect by changing the
induction expressions to reduce the loop
bounds [Koelbel 1990]. Figure 58(d)
shows the result of the transformation.

7.4 Communication Optimization

An important part of compilation for dis-
tributed-memory machines is the analy-
sis of an application’s communication
needs and introduction of explicit mes-
sage-passing operations into it. Before a
statement is executed on a given proces-
sor, any data it relies on that is not
available locally must be sent. A simple-
minded approach is to generate a
message for each nonlocal data item
referenced by the statement, but the
resulting overhead will usually be un-
acceptably high. Compiler designers have
developed a set of optimizations that re-
duce the time required for communica-
tion.

The same fundamental issues arise in
communication optimization as in opti-
mizations for memory access (described
in Section 6.5): maximizing reuse, mini-
mizing the working set, and making use
of available paralleliem in the communi-
cation system. However, the problems are
magnified because while the ratio of one
memory access to one computation on
S-DLX is 16:1, the ratio of the number

Compiler Transformations . 399
of cycles required to send one word to the
number of cycles required for a single
operation on dMX is about 500: 1.

Like vectors on vector processors, com-
munication operations on a distributed-
memory machine are characterized by a
startup time, t,, and a per-element cost,
t,, the time required to send one byte
once the message has been initiated. On
dMX, ¢, = 10us and ¢, = 100ns, so
sending one 10-byte message costs 11us
while sending two 5-byte messages costs
21us. To avoid paying the startup cost
unnecessarily, the optimizations in this
section combine data from multiple mes-
sages and send them in a single
operation.

7.4.1 Message Vectorization

Analysis can often determine the set of
data items transferred in a loop. Rather
than sending each element of an array in
an individual message, the compiler can
group many of them together and send
them in a single block transfer. Because
this is analogous to the way a vector
processor interacts with memory, the op-
timization is called message vectoriza-
tion [Balasundaram et al. 1990; Gerndt
1990; Zima et al. 1988].

Figure 59(a) shows a sample loop that
multiplies each element of array a by the
mirror element of array b. Figure 59(b) is
an inefficient parallel version for proces-
sors 0 and 1 on dMX. To simplify the
code, we assume that the arrays have
already been allocated to the processors
using a block decomposition: the lower
half of each array is on processor 0 and
the upper half on processor 1.

Each processor begins by computing
the lower and upper bounds of the range
that it is responsible for. During each
iteration, it sends the element of b that
the other processor will need and waits
to receive the corresponding message.
Note that Fortran’s call-by-reference
gemantics convert the array reference
implicitly into the address of the corre-
sponding element, which is then used by
the low-level communication routine to
extract the bytes to be sent or received.

ACM Computing Surveys, Vol. 26, No. 4, December 1994

400 . David F. Bacon et al.
doi=1,n
afi]l = afi) + bln+1-1i]
end do

(a) original loop

LB = Pid * (n/2) + 1

UB = LB + (n/2)

otherPid = 1 - Pid

do i = LB, UB
call SEND(b[i], 4, otherPid)
call RECEIVE(b[n+1-i], 4)
ali] = af[il + bln+1-i]

end do

(b) parallel loop

LB = Pid * (n/2) + 1
UB = LB + (n/2)
otherPid = 1 - Pid
otherLB = otherPid * (n/2) + 1
otherUB = otherLB + (n/2)
call SEND(b[{LB], (n/2)*4, otherPid)
call RECEIVE(b[otherLB], (n/2)*4, otherPid)
do i = LB, UB
ali] = a[i] + b[n+1-i]
end do

(c) parallel loop with vectorized messages

do j = LB, UB, 256
call SEND(b[j], 256*4, otherPid)
call RECEIVE(b[otherLB+(j-LB)],
256%4, otherPid)
do i = j, j+255
ali] = afi] + b[n+1-i]
end do
end do
(d) after strip mining messages (assuming
array size is a multiple of 256)

Figure 59. Message vectorization.

When the message arrives, the iteration
proceeds.

Figure 59(c) is a much more efficient
version that handles all communication
in a single message before the loop be-
gins executing. Each processor computes
the upper and lower bound for both itgelf
and for the other processor so as to place
the incoming elements of b properly.

Message-passing libraries and network
hardware often perform poorly when

ACM Computing Surveys, Vol. 26, No. 4, December 1994

their internal buffer sizes are exceeded.
The compiler may be able to perform
additional communication optimization
by using strip mining to reduce the mes-
sage length as shown in Figure 59(d).

7.4.2 Message Coalescing

Once message vectorization has been
performed, the compiler can further re-
duce the frequency of communication by
grouping messages together that send
overlapping or adjacent data. The For-
tran D compiler [Tseng 1993] uses Regu-
lar Sections [Callahan and XKennedy
1988a], an array summarization strat-
egy, to describe the array slice in each
message. When two slices being sent to
the same processor overlap or cover con-
tiguous ranges of the array, the associ-
ated messages are combined.

7.4.3 Message Aggregation

Sending a message is generally much
more expensive than performing a block
copy loecally on a processor. Therefore it
is worthwhile to aggregate messages be-
ing sent to the same processor even if the
data they contain is unrelated [Tseng
1993]. A simple aggregation strategy is
to identify all the messages directed at
the same target processor and copy the
various strips of data into a single buffer.
The target processor performs the
reverse operation.

7.4.4 Collective Communication

Many parallel architectures and mes-
sage-passing libraries offer gpecial-pur-
pose communication primitives such as
broadcast, hardware reduction, and scat-
ter-gather. Compilers can improve per-
formance by recognizing opportunities to
exploit these operations, which are often
highly efficient. The idea is analogous to
idiom and reduction recognition on se-
quential machines. Li and Chen [1991]
present compiler techniques that rely on
pattern matching to identify opportuni-
ties for using collective communication.

7.4.5 Message Pipelining

Another important optimization is to
pipeline parallel computations by over-
lapping communication and computation.
Studies have demonstrated that many
applications perform very poorly with-
out pipelining [Rogers 1991]. Many mes-
sage-passing systems allow the processor
to continue executing instructions while
a message is being sent. Some support
fully nonblocking send and receive opera-
tions. In either case, the compiler has the
opportunity to arrange for useful compu-
tation to be performed while the network
is delivering messages.

A variety of algorithms have been de-
veloped to discover opportunities for
pipelining and to move message transfer
operations so as to maximize the amount
of resulting overlap [Rogers 1991;
Koelbel and Mehrotra 1991; Tseng 1993].

7.4.6 Redundant Communication Elimination

To avoid sending messages wherever
possible, the compiler can perform a vari-
ety of transformations to eliminate re-
dundant communication. Many of the
optimizations covered earlier can also be
used on messages. If a message is sent
within the body of a loop but the data
does not change from one iteration to
the next, the SEND can be hoisted out of
the loop. When two messages contain the
same data, only one need be sent.
Messages offer further opportunities
for optimization. If the contents of a mes-
sage are subsumed by a previous commu-
nication, the message need not be sent;
this situation is often created when
SENDs are hoisted in order to maximize
pipelining opportunities. If a message
contains data, some of which has already
been sent, the overlap can be removed to
reduce the amount of data transferred.
Another possibility is that a message is
being sent to a collection of processors,
some of which previously received the
data. The list of recipients can be pruned,
reducing the amount of communication
traffic. These optimizations are used by
the PTRAN II compiler [Gupta et al.
1993] to reduce overall message traffic.

Compiler Transformations . 401

7.5 SIMD Transformations

SIMD architectures exhibit much more
regular behavior than MIMD machines,
eliminating many problematic synchro-
nization issues. In addition to the align-
ment and decomposition strategies for
distributed-memory systems (see Section
7.1.2), the regularity of SIMD intercon-
nection networks offers additional oppor-
tunities for optimization. The compiler
can use very accurate cost models to esti-
mate the performance of a particular
layout.

Early SIMD compilation work targeted
IVTRAN [Millstein and Muntz 1975], a
Fortran dialect for the Illiac IV that pro-
vided layout and alignment declarations.
The compiler provided a parallelizing
module called the Paralyzer [Presberg
and Johnson 1975] that used an early
form of dependence analysis to identify
independent loops and applied linear
transformations to optimize communica-
tion.

The Connection Machine Convolution
Compiler [Bromley et al. 1991] targets
the topology of the SIMD architecture
explicitly with a pattern-matching strat-
egy. The compiler focuses on computa-
tions that update array elements based
on their neighbors. It finds the pattern of
neighbors that are needed to compute a
given element, called the stencil. The
cross, a common stencil, represents a
computation that updates each array ele-
ment using the value of its neighbors to
the north, east, west, and south. Stencils
are aggregated into larger patterns,
or multistencils, using optimizations
analogous to loop unrolling and strip
mining. The multistencils are mapped
to the hardware so as to minimize
communication.

SIMD compilers developed at Compass
[Knobe and Natarajan 1993; Knobe et al.
1988; 1990] construct a preference graph
based on the computations being per-
formed. The graph represents alignment
requests that would yield the least com-
munication overhead. The compiler satis-
fies every request when possible, using a
greedy algorithm to find a solution when
preferences are in conflict.

ACM Computing Surveys, Vol. 26, No. 4, December 1994

402 . David F. Bacon et al.

Wholey [1992] begins by computing a
detailed cost function for the computa-
tion. The function is the input to a hill-
climbing algorithm that searches the
space of possible allocations of data to
processors. It begins with two processors,
then four, and so forth; each time the
number of processors is doubled, the al-
gorithm uses the most efficient allocation
from the previous stage as a starting
point.

In addition to general-purpose map-
ping algorithms, the compiler can use
specific transformations like loop flatten-
ing [von Hanxleden and Kennedy 1992]
to avoid idle time due to nonuniform
computations.

7.6 VLIW Transformations

The Very Long Instruction Word (VLIW)
architecture is another strategy for exe-
cuting instructions in parallel. A VLIW
processor [Colwell et al. 1988; Fisher et
al. 1984; Floating Point Systems 1979;
Rau et al. 1989] exposes its multiple
functional units explicitly; each machine
instruction is very large (on the order of
512 bits) and controls many independent
functional units. Typically the instruc-
tion is divided into 32-bit pieces, each of
which is routed to one of the functional
units.

With traditional processors, there is
a clear distinction between low-level
scheduling done via instruction selection
and high-level scheduling between pro-
cessors. This distinction is blurred in
VLIW architectures. They rely on the
compiler to expose the parallel opera-
tions explicitly and schedule them at
compile time. Thus the task of generat-
ing object code incorporates high-level
resource allocation and scheduling deci-
sions that occur only between processors
on a more conventional parallel
architecture.

Trace scheduling [Ellis 1986; Fisher
1981; Fisher et al. 1984] is an analysis
strategy that was developed for VLIW
architectures. Because VLIW machines
require more parallelism than is typi-
cally available within a basic block, com-

ACM Computing Surveys, Vol 26, No. 4, December 1994

pilers for these machines must look
through branches to find additional in-
structions to execute. The multiple paths
of control require the introduction of
speculative execution—computing some
results that may turn out to be unused
(ideally at no additional cost, by func-
tional units that would otherwise have
gone unused).

The speculation can be handled dy-
namically by the hardware [Sohi and
Vajapayem 1990], but that complicates
the design significantly. The trace-sched-
uling alternative is to have the compiler
do it by identifying paths {(or ¢races)
through the control-flow graph that
might be taken. The compiler guesses
which way the branches are likely to go
and hoists code above them accordingly.
Superblock scheduling [Hwu et al. 1993]
is an extension of trace scheduling that
relies on program profile information to
choose the traces.

8. TRANSFORMATION FRAMEWORKS

Given the many transformations that
compiler writers have available, they face
a daunting task in determining which
ones to apply and in what order. There is
no single best order of application; one
transformation can permit or prevent a
second from being applied, or it can
change the effectiveness of subsequent
changes. Current compilers generally
use a combination of heuristics and a
partially fixed order of applying
transformations.

There are two basic approaches to this
problem: unifying the transformations in
a single mechanism, and applying search
techniques to the transformation space.
In fact there is often a degree of overlap
between these two approaches.

8.1 Unified Transformation

A promising strategy is to encode both
the characteristics of the code being
transformed and the effect of each trans-
formation; then the compiler can quickly
search the space of possible sets of trans-
formations to find an efficient solution.

One framework that is being actively
investigated is based on unimodular ma-
trix theory [Banerjee 1991; Wolf and Lam
1991]. It is applicable to any loop nest
whose dependences can be described with
a distance vector; a subset of the loops
that require a direction vector can also
be handled. The transformations that a
unimodular matrix can describe are in-
terchange, reversal, and skew.

The basic principle is to encode each
transformation of the loop in a matrix
and apply it to the dependence vectors of
the loop. The effect on the dependence
pattern of applying the transformation
can be determined by multiplying the
matrix and the vector. The form of the
product vector reveals whether the trans-
formation is valid. To model the effect of
applying a sequence of transformations,
the corresponding matrices are simply
multiplied.

Figure 60 shows a loop nest that can
be transformed with unimodular matri-
ces. The distance vector that describes
the loop is D = (1,0), representing the
dependence of iteration i on i — 1 in the
outer loop.

Because of the dependence, it is not
legal to reverse the outer loop of the nest.
The reversal transformation is

_|-1 0
R-|73 2|
The product is
-1
RD=P1=[0].

This demonstrates that the transforma-
tion is not legal, because P; is not lexico-
graphically positive.

We can also test whether the two loops
can be interchanged; the interchange

transformation is I = [O 1]. Applying

1o
that to D yields P, = |{|. In this case,

the resulting vector is lexicographically
positive showing that the transformation
is legal.

Compiler Transformations . 403
do i=2, 10
doj =1, 10
ali,j] = ali-1,j] + ali,j]
end do
end do

Figure 60. Unimodular transformation example.

Any loop nest whose dependences are
all representable by a distance vector can
be transformed via skewing into a canon-
ical form called a fully permutable loop
nest. In this form, any two loops in the
nest can be interchanged without chang-
ing the loop semantics. Once in this
canonical form, the compiler can decom-
pose the loop into the granularity that
matches the target architecture [Wolf and
Lam 1991].

Sarkar and Thekkath [1992] describe a
framework for transforming perfect loop
nests that includes unimodular transfor-
mations, tiling, coalescing, and parallel
loop execution. The transformations are
encoded in an ordered sequence. Rules
are provided for mapping the dependence
vectors and loop bounds, and the trans-
formation to the loop body is described by
a template.

Pugh [1991] describes a more ambi-
tious (and time-consuming) technique
that can transform imperfectly nested
loops and can do most of the transforma-
tions possible through a combination of
statement reordering, interchange, fu-
sion, skewing, reversal, distribution, and
parallelization. It views the transforma-
tion problem as that of finding the best
schedule for a set of operations in a loop
nest. A method is given for generating
and testing candidate schedules.

8.2 Searching the Transformation Space

Wang [1991] and Wang and Gannon
[1989] describe a parallelization system
that uses heuristic search techniques
from artificial intelligence to find a pro-
gram transformation sequence. The tar-
get machine is represented by a set of
features that describe the type, size, and
speed of the processors, memory, and in-

ACM Computing Surveys, Vol. 26, No 4, December 1994

404 . David F. Bacon et al.
terconnect. The heuristics are organized
hierarchically. The main functions are:
description of parallelism in the program
and in the machine; matching of program
parallelism to machine parallelism; and
control of restructuring.

9. COMPILER EVALUATION

Researchers are still trying to find a good
way to evaluate the effectiveness of com-
pilers. There is no generally agreed upon
way to determine the best possible per-
formance of a particular program on a
particular machine, so it is difficult to
determine how well a compiler is doing.
Since some applications are better struc-
tured than others for a given architec-
ture or a given compiler, measurements
for a particular application or group of
applications will not necessarily predict
how well another application will fare.
Nevertheless, a wide variety of mea-
surement studies do exist that seek to
evaluate how applications behave, how
well they are being compiled, and how
well they could be compiled. We have
divided these studies into several groups.

9.1 Benchmarks

Benchmarks have received by far the
most attention since they measure deliv-
ered performance, yielding results that
are used to market machines. They were
originally developed to measure machine
speed, not compiler effectiveness. The
Livermore Loops [McMahon 1986] is one
of the early benchmark suites; it sought
to compare the performance of supercom-
puters. The suite consists of a set of small
loops based on the most time-consuming
inner loops of scientific codes.

The SPEC benchmark suite [Dixit
1992] includes both scientific and gen-
eral-purpose applications intended to be
representative of an engineering/scien-
tific workload. The SPEC benchmarks are
widely used as indicators of machine per-
formance, but are essentially uniproces-
sor benchmarks.

As architectures have become more
complex, it has become obvious that the

ACM Computing Surveys, Vol 26, No. 4, December 1994

benchmarks measure the combined effec-
tiveness of the compiler and the target
machine. Thus two compilers that target
the same machine can be compared by
using the SPEC ratings of the generated
code.

For parallel machines, the contribution
of the compiler is even more important,
since the difference between naive and
optimized code can be many orders of
magnitude. Parallel benchmarks include
SPLASH (Stanford Parallel Applications
for Shared Memory) [Singh et al. 1992]
and the NASA Numerical Aerodynamic
Simulation (NAS) benchmarks [Bailey
et al. 1991].

The Perfect Club [Berry et al. 1989] is
a benchmark suite of computationally in-
tensive programs that ig intended to help
evaluate serial and parallel machines.

9.2 Code Characteristics

A number of studies have focused on the
applications themselves, examining their
source code for programmer idioms or
profiling the behavior of the compiled
executable.

Knuth [1971] carried out an early and
influential study of Fortran programs. He
studied 440 programs comprising 250,000
lines (punched cards). The most impor-
tant effect of this study was to dramatize
the fact that the majority of the execu-
tion time of a program is usually spent in
a very small proportion of the code. Other
interesting statistics are that 95% of all
the do loops incremented their index
variable by 1, and 40% of all do loops
contained only one statement.

Shen et al. [1990] examined the sub-
script expressions that appeared in a set
of Fortran mathematical libraries and
scientific applications. They applied vari-
ous dependence tests to these expres-
sions. The results demonstrate how the
tests compare to one another, showing
that one of the biggest problems was un-
known variables. These variables were
caused by procedure calls and by the use
of an array element as an index value
into another array. Coupled subscripts
also caused problems for tests that exam-

ine a single array dimension at a time
(coupled subscripts are discussed in
Section 5.4).

A study by Petersen and Padua [1993]
evaluates approximate dependence tests
against the omega test [Pugh 1992], find-
ing that the latter does not expose sub-
stantially more parallelism in the Perfect
Club benchmarks.

9.3 Compiler Effectiveness

As we mentioned above, researchers find
it difficult to evaluate how well a com-
piler is doing. They have come up with
four approaches to the problem:

e examine the compiler output by hand
to evaluate its ability to transform code;

e measure performance of one compiler
against another;

e compare the performance of executa-
bles compiled with full optimization
against little or no optimization; and

e compare an application compiled for
parallel execution against the sequen-
tial version running on one processor.

Nobayashi and Eoyang [1989] compare
the performance of supercomputer com-
pilers from Cray, Fujitsu, Alliant,
Ardent, and NEC. The compilers were
applied to various loops from the Liver-
more and Argonne test suites that re-
quired restructuring before they could be
computed with vector operations.

Carr [1993] applies a set of loop trans-
formations (unroll-and-jam, leop inter-
change, tiling, and scalar replacement) to
various scientific applications to find a
strategy that optimizes cache utilization.

Wolf [1992] uses inner loops from the
Perfect Club and from one of the SPEC
benchmarks to compare the performance
of hand-optimized to compiler-optimized
code. The focus is on improving locality
to reduce traffic between memory and
the cache.

Relatively few studies have been per-
formed to test the effectiveness of real
compilers in parallelizing real programs.
However, the results of those that have
are not encouraging.

Compiler Transformations . 405

One study of four Perfect benchmark
programs compiled on the Alliant FX /8
produced speedups between 0.9 (that is,
a slowdown) and 2.36 out of a potential
32; when the applications were tuned by
hand, the speedups ranged from 5.1 to
13.2 [Eigenmann et al. 1991]. In another
study of 12 Perfect benchmarks compiled
with the KAP compiler for a simulated
machine with unlimited parallelism, 7
applications had speedups of 1.4 or less;
two applications had speedups of 2-4;
and the rest were sped up 10.3, 66, and
77. All but three of these applications
could have been sped up by a factor of 10
or more [Padua and Petersen 1992].

Lee et al. [1985] study the ability of the
Parafrase compiler to parallelize a mix-
ture of small programs written in For-
tran. Before compilation, while loops
were converted to do loops, and code for
handling error conditions was removed.
With 32 processors available, 4 out of 15
applications achieved 30% efficiency, and
2 achieved 10% efficiency; the other
9 out of 15 achieved less than 10%
efficiency. Out of 89 loops, 59 were
parallelized, most of them loops that
initialized array data structures. Some
coding idioms that are amenable to im-
proved analysis were identified.

Some preliminary results have also
been reported for the Fortran D compiler
[Hiranandani et al. 1993] on the Intel
iPSC /860 and Thinking Machines CM-5
architectures.

9.4 Instruction-Level Parallelism

In order to evaluate the potential gain
from instruction-level parallelism, re-
searchers have engaged in a number of
studies to measure an upper bound on
how much parallelism is available when
an unlimited number of functional units
is assumed. Some of these studies are
discussed and evaluated in detail by Rau
and Fisher [1993].

Early studies [Tjaden and Flynn 1970]
were pessimistic in their findings, mea-
suring a maximum level of parallelism
on the order of two or three—a result
that was called the Flynn bottleneck. The

ACM Computing Surveys, Vol. 26, No 4, December 1994

406 . David F. Bacon et al.

main reason for the low numbers was
that these studies did not look beyond
basic blocks.

Parallelism can be exploited across
basic block boundaries, however, on ma-
chines that use speculative execution. In-
stead of waiting until the outcome of a
conditional branch is known, these archi-
tectures begin executing the instructions
at either or both potential branch tar-
gets; when the conditional is evaluated,
any computations that are rendered in-
valid or useless must be discarded.

When the basic block restriction is re-
laxed, there is much more parallelism
available. Riseman and Foster [1972] as-
sumed replicated hardware to support
speculative execution. They found that
there was significant additional paral-
lelism available, but that exploiting it
would require a great deal of hardware.
For the programs studied, on the order of
26 arithmetic units would be necessary
to expose 10-way parallelism.

A subsequent study by Nicolau and
Fisher [1984] sought to measure the par-
allelism that could be exploited by a
VLIW architecture using aggressive com-
piler analysis. The strategy was to com-
pile a set of scientific programs into an
intermediate form, simulate execution,
and apply a scheduling algorithm
retroactively that used branch and ad-
dress information revealed by the simu-
lation. The study revealed significant
amounts of parallelism—a factor of tens
or hundreds.

Wall [1991] took trace data from a
number of applications and measured the
amount of parallelism under a variety of
models. His study considered the effect of
architectural features such as varying
numbers of registers, branch prediction,
and jump prediction. It also considered
the effects of alias analysis in the com-
piler. The results varied widely, yielding
as much as 60-way parallelism under the
most optimistic assumptions. The aver-
age parallelism on an ambitious combi-
nation of architecture and compiler
support was 7.

Butler et al. [1991] used an optimizing
compiler on a group of programs from the

ACM Computing Surveys, Vol. 26, No. 4, December 1994

SPEC89 suite. The resulting code was
executed on a variety of simulated
machines. The range includes unrealisti-
cally omniscient architectures that com-
bine data-flow strategies for scheduling
with perfect branch prediciton. They also
restricted models with limited hardware.
Under the most optimistic assumptions,
they were able to execute 17 instructions
per cycle; more practical models yielded
between 2.0 and 5.8 instructions per cy-
cle. Without looking past branches, few
applications could execute more than 2
instructions per cycle.

Lam and Wilson [1992] argue that one
major reason why studies of instruction-
level parallelism differ markedly in their
results is branch prediction. The studies
that perform speculative execution based
on prediction yield much less parallelism
than the ones that have an oracle with
perfect knowledge about branches.
The authors speculate that executing
branches locally will not yield large de-
grees of parallelism; they conduct experi-
ments on a number of applications and
find similar results to other studies (be-
tween 4.2 and 9.2). They argue that com-
piler optimizations that consider the
global flow of control are essential.

Finally, Larus [1993] takes a different
approach than the others, focusing
strictly on the parallelism available in
loops. He examines six codes (three inte-
ger programs from SPEC89 and three
scientific applications), collects a trace
annotated with semantic information,
and runs it through a simulator that as-
sumes a uniform shared-memory archi-
tecture with infinite processors. Two of
the scientific codes, the ones that were
primarily array manipulators, showed a
potential speedup in the range of 65-250.
The potential speedup of the other codes
was 1.7-83, suggesting that the tech-
niques developed for parallelizing sci-
entific codes will not work well in
parallelizing other types of programs.

CONCLUSION

We have described a large number of
transformations that can be used to im-

prove program performance on sequen-
tial and parallel machines. Numerous
studies have demonstrated that these
transformations, when properly applied,
are sufficient to yield high performance.

However, current optimizing compilers
lack an organizing principle that allows
them to choose how and when the trans-
formations should be applied. Finding a
framework that unifies many transfor-
mations is an active area of research.
Such a framework could simplify the
problem of searching the space of possi-
ble transformations, making it easier and
therefore cheaper to build high-quality
optimizing compilers. A key part of this
problem is the development of a cost
function that allows the compiler to eval-
uate the effectiveness of a particular set
of transformations.

Despite the absence of a strategy for
unifying transformations, compilers have
proven to be quite successful in targeting
sequential and superscalar architectures.
On parallel architectures, however, most
high-performance applications currently
rely on the programmer rather than the
compiler to manage parallelism. Com-
pilers face a large space of possible
transformations to apply, and parallel
machines exact a very high cost of fail-
ure when optimization algorithms do not
discover a good reorganization strategy
for the application.

Because efforts to parallelize tradi-
tional languages automatically have met
with little success, the focus of research
has shifted to compiling languages in
which the programmer shares the re-
sponsibility for exposing parallelism and
choosing a data layout.

Another developing area is the opti-
mization of nonscientific applications.
Like most researchers working on high-
performance architectures, compiler
writers have focused on code that relies
on loop-based manipulation of arrays.
Other kinds of programs, particularly
those written in an object-oriented pro-
gramming style, rely heavily on pointers.
Optimization of pointer manipulation and
of object-oriented languages is emerging
as another focus of compiler research.

Compiler Transformations . 407

APPENDIX: MACHINE MODELS
A.1 Superscalar DLX

A superscalar processor has multiple
functional units and can issue more than
one instruction per clock cycle. Current
examples of superscalar machines are the
DEC Alpha [Sites 1992], HP PA-RISC
[Hewlett-Packard 1992], IBM RS/6000
[Oehler and Blasgen 1991], and Intel
Pentium [Alpert and Avnon 1993].

S-DLX is a simplified superscalar RISC
architecture. It has four independent
functional units for integer, load/store,
branch, and floating-point operations. In
every cycle, the next two instructions are
considered for execution. If they are for
different functional units, and there
are no dependences between the instruc-
tions, they are both initiated. Otherwise,
the second instruction is deferred until
the next cycle. S-DLX does not reorder
the instructions.

Most operations complete in a single
cycle. When an operation takes more than
one cycle, subsequent instructions that
use results from multicycle instructions
are stalled until the result is available.
Because there is no instruction reorder-
ing, when an instruction is stalled no
instructions are issued to any of the
functional units.

S-DLX has a 32-bit word, 32 general-
purpose registers (GPRs, denoted by Rn),
and 32 floating-point registers (FPRs, de-
noted by Fn). The value of RO is always 0.
The FPRs can be used as double-preci-
sion (64-bit) register pairs. For the
sake of simplicity we have not included
the double-precision floating-point
instructions.

Memory is byte addressable with a
32-bit virtual address. All memory refer-
ences are made by load and store instruc-
tions between memory and the registers.
Data is cached in a 64-kilobyte 4-way
set-associative write-back cache com-
posed of 1024 64-byte cache lines. Figure
61 is a block diagram of the architecture
and its primary datapaths.

Table A.1 describes the instruction set.
All instructions are 32 bits and must be
word-aligned. The immediate operand

ACM Computing Surveys, Vol. 26, No. 4, December 1994

408 .

Dauvid F. Bacon et al.

d 64
32 Branch 64 from RAM
Integer ' 64 KB Cache | 'foatmemny
Unit Unit 32 entry
. TLB
2 32 64 bytes/line
1024 lines
. 32 32
l 32 Int Registers |'_’ Load/Store 4-way set- 2 _| Addr [
64 Unit 64 associative Xlation [Phys
I 32 FP Registers I ' ddr
64
Floating
Point Unit
Figure 61. S-DLX functional diagram.
Table A.1. The S-DLX Instruction Set
[Example Instr. | Name [Meaning | Similar instructions]
LW R1, 30(R2) Load word R1«Memory[30+R2] Load float (LF)
SW 500(R4), R3 | Store word Memory[600+R4] —R3 | Store float (SF)
LI R1, #666 Load immediate R1—666
LUI R1, #666 Load upper immediate | Rijs 31 «—666
MOV R1, R2 Move register Ri—R2
ADD R1, R2, R3 | Add R1—R2+R3 Subtract (SUB)
MULT R1, R2, R3 | Multiply R1—R2xR3 Divide (DIV)
ADDI Ri, R2, #3 | Add immediate R1+—R2+3 SUBI, MULTI, DIVI
SLL R1, R2, R3 | Shaft left logical RI—R2<R3 Shift right logical (SRL)
SLLI Ri, R2, #3 | Shft left immediate R1—R2K 3 SRLI
SLT R1, R2, R3 Set less than if (R2<R3) R1—1 SEQ, SKE, SLE, SGE, SGT and
else R1—0 immediate forms
J label Jump PC—label
JR R3 Jump register PC—R3
JAL label Jump and link R31—PC+4; PC—label
JALR R2 Jump and link register | R31+PC+4, PC—R2
BEQZ R4, label | Branch if equal zero if (R4=0) PC+1label Branch if not equal zero (BNEZ)
BFPT label Branch if floating if (FPCR) PC—1label Branch if floating point false
point true (BFPF)
ADDF F1, F2, F3 | Add float F1—F2+F3 Subtract float (SUBF)
MULTF F1,F2, F3 | Multiply float F1—F2xF3 Divide float (DIVF)
MAF F1,F2, F3 Multiply-Add float F14—F1+(F2XF3)
EQF F1, F2 Test equal float if (F1=F2) FPCR «1 LTF, GTF, LEF, GEF, NEF
else FPCR —0

field is 16 bits. The address for load and
store instructions is computed by adding
the 16-bit immediate operand to the reg-
ister. To create a full 32-bit constant, the
low 16 bits must first be set with a load
immediate (LI) instruction that clears the

ACM Computing Surveys, Vol 26, No 4, December 1994

high 16 bits; then the high 16 bits must
be set with a load upper immediate (LUI)
instruction.

The program counter is the special reg-
ister PC. Jumps and branches are rela-
tive to PC + 4; jumps have a 26-bit signed

Compiler Transformations . 409
Table A.2. V-DLX Vector Instructions

[Example Instr. | Name | Meaning [Similar |
LV Vi, R1 Load vector register V1i«VLR words at M[R1]
LVWS Vi, (R1,R2) | Load vector with stride V1—every R2"* word for VLR words at M[R1]
SV Vi, R1 Store vector register M[R1]—VLR words from V1
SVWS V1, (R1,R2) | Store vector with stride M[R1] VLR words from Vi with stride R2
ADDV V1,V2,V3 Vector-vector addition Vi[1..VLR}«V2[1..VLR]+V3[1..VLR] MULTV
ADDSV Vi,Fi,V2 Vector-scalar addition Vi[1..VLR]«F1+V2{1..VLR] MULTSV
SUBV Vi,V2,V3 Vector-vector subtraction | Vi[1..VLR}«~V2[1..VLR]-V3[1..VLR] DIVV
SUBVS V1,V2,F1 Vector-scalar subtraction | V1[1..VLR]~V2{[1..VLR]-F1 DIVVS
SUBSV Vi,F1,V2 Scalar-vector subtraction | Vi[1..VLR]—~F1-V2[1..VLR] DIVSV

[SVLR R1 [Set vector length register | VLR—R1 T 1

offset, and branches have a 16-bit signed
offset. Integer branches test the GPRs for
zero; floating-point branches test a spe-
cial floating-point condition register
(FPCR).

There is no branch delay slot. Because
the number of instructions executed per
cycle varies on a superscalar machine, it
does not make sense to have a fixed num-
ber of delay slots. The number of delay
slots is also heavily dependent on the
pipeline depth, which may vary from one
chip generation to the next.

Instead, static branch prediction is
used: forward branches are always pre-
dicted as not taken, and backward
branches are predicted as taken. If the
prediction is wrong, there is a one-cycle
delay.

Floating-point divides take 14 cycles
and all other floating-point operations
take four cycles, except when the result
is used by a store operation, in which
case they take three cycles. A load that
hits in the cache takes two cycles; if it
misses in the cache it takes 16 cycles.
Integer multiplication takes two cycles.
All other instructions take one cycle.

When a load or store is followed by an
integer instruction that modifies the ad-
dress register, the instructions may be
issued in the same cycle. If a floating-
point store is followed by an operation
that modifies the register being stored,
the instructions may also be issued in
the same cycle.

A.2 Vector DLX

For vectorizing transformations, we will
use a version of DLX extended to include

vector support. This new architecture,
V-DLX, has eight vector registers, each
of which holds a vector consisting of up
to 64 floating-point numbers. The vector
functional units perform all their opera-
tions on data in the vector and scalar
registers.

We discuss only the functional units
that perform floating-point addition,
multiplication, and division, though vec-
tor machines typically have units to per-
form integer and logical operations as
well. V-DLX issues only one scalar or one
vector instruction per cycle, but noncon-
flicting scalar and vector instructions can
overlap each other.

A special register, the wvector length
register (VLR), controls the number of
quantities that are loaded, operated upon,
or stored in any vector instruction. By
software convention, the VLR is normally
set to 64, except when handling the last
few iterations of a loop.

The vector operations are described in
Table A.2. They include arithmetic opera-
tions on vector registers and load/store
operations between vector registers and
memory. Vector operations take place ei-
ther between two vector registers or
between a vector register and a scalar
register. In the latter case, the scalar
value is extended across the entire vec-
tor. All vector computations have a vec-
tor register as the destination.

The speed of a vector operation de-
pends on the depth of the pipeline in its
implementation. The first result appears
after some number of cycles (called the
startup time). After the pipeline is full,
one result is computed per clock cycle. In

ACM Computing Surveys, Vol. 26, No. 4, December 1994

410 . David F. Bacon et al.

Table A.3. Startup Times in Cycles on V-DLX

[Operation] Start-Up Time |
Vector Add 6
Vector Multiply 7
Vector Divide 20
Vector Load 12

the meantime, the processor can con-
tinue to execute other instructions. Table
A.3 gives the startup times for the vector
operations in V-DLX. These times should
not be compared directly to the cycle
times for operations on S-DLX because
vector machines typically have higher
clock speeds than microprocessors, al-
though this gap is closing.

A large factor in the speed of vector
architectures is their memory system. V-
DLX has eight memory banks. After the
load latency, data is supplied at the rate
of one word per clock cycle, provided that
the stride with which the data is ac-
cessed does not cause bank conflicts (see
Section 6.5.1).

Current examples of vector machines
are the Cray C-90 [Oed 1992] and IBM
ES 9000 Model 900 VF [Gibson and Rao
1992].

A.3 Multiprocessors

When multiple processors are employed
to execute a program, many additional
issues arise. The most obvious issue is
how much of the underlying machine ar-
chitecture to expose to the programmer.
At one extreme, the programmer can
make explicit use of hardware-supported
operations by programming with locks,
fork /join primitives, barrier synchro-
nizations, and message send and receive.
These operations are typically provided
as system calls or library routines. Sys-
tem call semantics are usually not de-
fined by the language, making it difficult
for the compiler to optimize them
automatically.

High-level languages for large-scale
parallel processing provide primitives for
expressing parallelism in one of two ways:
control parallel or data parallel. Fortran

ACM Computing Surveys, Vol. 26, No. 4, December 1994

90 array section expressions are exam-
ples of explicitly data parallel operations.
APL [Iverson 1962] also contains a wide
variety of data-parallel array operators.
Examples of control-parallel operations
are cobegin / coend blocks and
doacross loops [Cytron 1986].

For both shared- and distributed-mem-
ory multiprocessors, we assume that the
programming environment initializes the
variables Pnum to be the total number of
processors and Pid to be the number of
the local processor. Processors are num-
bered starting with 0.

A.3.1 Shared-Memory DLX Multiprocessor

sMX is our prototypical shared-memory
parallel architecture. It consists of 16 S-
DLX processors and 512MB of shared
main memory. The processors and mem-
ory system are connected together by a
bus. Each processor has an intelligent
cache controller that monitors the bus (a
snoopy cache). The caches are the same
as on S-DLX, except that they contain
256KB of data. The bandwidth of the bus
is 128 megabytes /second.

The processors share the memory
units; a program running on a processor
can access any memory element, and the
system ensures that the values are main-
tained consistently across the machine.
Without caching, consistency is easy to
maintain; every memory reference is
handled by the main memory controller.
However, performance would be very poor
because memory latencies are already too
high on sequential machines to run well
without a cache; having many processors
share a common bus would make the
problem much worse by increasing mem-
ory access latency and introducing band-
width restrictions. The solution is to give
each processor a cache that is smart
enough to resolve reference conflicts.

A snoopy cache implements a sharing
protocol that maintains consistency while
still minimizing bus traffic. A processor
that modifies a cache line invalidates all
other copies and is said to own that cache
line. There are a variety of cache co-
herency protocols [Stenstrém 1990;

Table A.4. Memory reference latency in sMX

[Type of Memory Reference [Cycles |
Read value available in local cache 2
Read value owned by other processor 16
Read value nobody owns 20
Write value owned locally 1
Write value owned by other processor 18
Write value nobody owns 22

Eggers and Katz 1989], but the details
are not relevant to this survey. From the
compiler writer’s perspective, the key is-
sue is the time it takes to make a mem-
ory reference. Table A.4 summarizes the
latency of each kind of memory reference
in sMX,

Typically, shared-memory multiproces-
sors implement a number of synchroniza-
tion operations. FORK(n) starts identical
copies of the current program running on
n processors; because it must copy the
stack of the forking processor to a private
memory for each of the n — 1 other pro-
cessors, it 1s a very expensive operation.
JOIN() resynchronizes with the previous
FORK, and makes the processor available
for other FORK operations (except for the
original forking processor, which
proceeds serially).

BARRIER() performs a barrier synchro-
nization, which is a synchronization point
in the program where each processor
waits until all processors have arrived at
that point.

A.3.2 Distributed-Memory DLX Multiprocessor

dMX is our hypothetical distributed-
memory multiprocessor. The machine
consists of 64 S-DLX processors (num-
bered 0 through 63) connectedin an 8 X 8
mesh. The network bandwidth of each
link in the mesh is 10 MB per second.
Each processor has an associated net-
work processor that manages communi-
cation; the network processor has its own
pool of memory and can communicate
without involving the CPU. Having a
separate processor manage the network
allows applications to send a message
asynchronously and continue executing
while the message is sent. Messages that

Compiler Transformations . 411
pass through a processor en route to some
other destination in the mesh are han-
dled by the network processor without
interrupting the CPU.

The latency of a message transfer is
ten microseconds plus 1 microsecond per
10 bytes of message (we have simplified
the machine by declaring that all remote
processors have the same latency). Com-
munication is supported by a message
library that provides the following calls:

« SEND(buffer,nbytes,target)

Send nbytes from buffer to the proces-
sor target. If the message fits in the
network processor’s memory, the
call returns after the copy (1 microsec-
ond /10 bytes). If not, the call blocks
until the message is sent. Note that
this raises the potential for deadlock,
but we will not concern ourselves with
that in this simplified model.

« BROADCAST(buffer,nbytes)
Send the message to every other pro-
cessor in the machine. The communica-
tion library uses a fast broadcasting
algorithm, so the maximum latency is
roughly twice that of sending a mes-
sage to the furthest edge of the mesh.

* RECEIVE (buffer,nbytes)
Wait for a message to arrive; when it
does, up to nbytes of it will be put in
the buffer. The call returns the total
number of bytes in the incoming mes-
sage; if that value is greater than
nbytes, RECEIVE guarantees that sub-
sequent calls will return the rest of
that message first.

ACKNOWLEDGMENTS

We thank Michael Burke, Manish Gupta, Monica
Lam, and Vivek Sarkar for their assistance with
various parts of this survey. We thank dJohn
Boyland, James Demmel, Alex Dupuy, John Hauser,
James Larus, Dick Muntz, Ken Stanley, the mem-
bers of the IBM Advanced Development Technology
Institute, and the anonymous referees for their
valuable cornments on earlier drafts.

REFERENCES

ABELSON, H. anxD SussMaNn, G. J. 1985. Structure
and Interpretation of Computer Programs. MIT
Press, Cambridge, Mass.

ACM Computing Surveys, Vol. 26, No. 4, December 1994

412 . David F. Bacon et al.

ABU-SuFaH, W 1979. Improving the performance of
virtual memory computers. Ph D, thesis, Tech.
Rep. 78-945, Univ. of Illinois at Urbana-
Champaign.

Apu-Surar, W, Kuck, D. J., anp Lawrie, D. 1981
On the performance enhancement of paging
systems through program analysis and trans-
formations IEEE Trans. Comput. C-30, 5
(May), 341-356.

ACKERMAN, W B. 1982. Data flow languages. Com-
puter 15, 2 (Feb.), 15-25.

AHO, A. V., JOHNSON, S C.. aND ULLMAN, J. D 1977.
Code generation for expressions with common
subexpressions. . ACM 24, 1 (Jan.), 146-160.

Ano. A. V., SerH1, R., aND UrLLman, J. D. 1986.
Compulers. Principles, Techniques, and Tools.
Addison-Wesley, Reading, Mass.

AIKEN, A. AND NICOLAU, A. 1988a Optimal loop
parallehzation. In Proceedings of the SIGPLAN
Conference on Programming Language Design
and Implementation (Atlanta, Ga., June). SIG-
PLAN Not. 23, 7 (July), 308-317.

AIKEN, A, AND NICOLAU. A. 1988b. Perfect pipelin-
ng: A new loop parallelization technique. In
Proceedings of the 2nd European Symposium
on Programming Lecture Notes in Computer
Science, vol. 300. Springer-Verlag, Berlin,
221-235.

ALLEN, J. R. 1983. Dependence analysis for sub-
scripted varables and 1ts application to pro-
gram transformations. Ph.D. thesis, Computer
Science Dept., Rice University, Houston, Tex

ALLEN, F. E, 1969. Program optimization. In An-
nual Review in Automatic Programmuing 5. In-
ternational Tracts in Computer Science and
Technology and their Application, vol. 13. Perg-
amon Press, Oxford. England, 239-307.

ALLEN, F. E. AND COCKE, J. 1971. A catalogue of
optimizing transformations. In Design and Op-
timization of Compilers, R Rustin, Ed. Pren-
tice-Hall, Englewood Cliffs, N.J., 1-30.

ALLEN, J. R. AND KENNEDY., K. 1987. Automatic
translation of Fortran programs to vector form.
ACM Trans. Program Lang. Syst. 9, 4 (Oct.),
491-542,

ALLEN, J. R. AND KENNEDY, K. 1984, Automatic loop
interchange. In Proceedings of the SIGPLAN
Symposium on Compiler Construction
(Montreal, Quebec, June). SIGPLAN Not. 19,
6, 233-246.

AvLLeN, F. E., BURkE, M., CHARLES, P., CYTRON, R.,
AND FERRANTE, J. 1988a. An overview of the
PTRAN analysis system for multiprocessing. J.
Parall. Distrib. Comput. 5, 5 (Oct.), 617-640.

ALLEN, F. E., BURKE, M., CYTRON, R., FERRANTE, J.,
HsieH, W., AND SARRAR, V. 1988b. A framework
for determining useful parallelism. In Proceed-
ings of the ACM International Conference on
Supercomputing (St. Malo, France, July). ACM
Press, New York, 207-215.

AiLeN, F. E., Cocke, J., aND KenNEDY, K. 1981,

ACM Computing Surveys, Vol. 26, No 4, December 1994

Reduction of operator strength. In Program
Flow Analysis: Theory and Applications, S. S.
Muchnik and N. D. Jones, Eds., Prentice-Hall,
Englewood Cliffs, N.J., 79-101.,

AireN, J R., Kennepy, K., PORTERFIELD, C., AND
WAaRgEN, J. 1983. Conversion of control depen-
dence to data dependence In Conference Record
of the 10th ACM Symposium on Principles of
Programming Languages (Austin, Tex., Jan.).
ACM Press, New York, 177-189.

ALPERT, D). anD Avion, D. 1993 Architecture of the
Pentium microprocessor IEEE Micro 13, 3
(June), 11-21

AMERICAN NATIONAL STANDARDS INSTITUTE. 1987. An
American National standard, IEEE standard
for binary floating-point arithmetic SIGPLAN
Not. 22, 2 (Feb.), 9-25.

ANDERSON, J. M. aND LamM, M. 8. 1993 Global opti-
mizations for parallelism and locality on scal-
able parallel machines. In Proceedings of
the SIGPLAN Conference on Programming
Language Design and Implementation (Al-
buguerque, New Mexico, June). SIGPLAN Not.
28, 6, 112-125.

ANDERSON, S. AND Hupag, P 1990 Compilation of
Haskell array comprehensions for scientific
computing. In Proceedings of the SIGPLAN
Conference on Programming Language Design
and Implementation (White Plains, N.Y., June).
SIGPLAN Not. 25, 6, 137-149.

APPEL, A. W. 1992. Compiling with Continuations.
Cambridge University Press, Cambridge, Eng-
land.

ARDEN, B. W., GALLER, B. A., AND GRAHAM, R. M.
1962. An algorithm for translating Boolean ex-
pressions. J. ACM 9, 2 (Apr.), 222-239.

ArvIND anD CULLER, D. E. 1986. Dataflow architec-
tures. In Annual Review of Computer Science.
Vol. 1. J. F. Traub, B. J. Grosz, B. W. Lampson,
and N. J. Nilsson, Eds. Annual Reviews. Palo
Alto, Calif | 225-253.

ArvIND, KatHam, V., anD Pingars, K. 1980. A
dataflow architecture with tagged tokens. Tech.
Rep TM-174, Laboratory for Computer Sci-
ence, Massachusetts Institute of Technology,
Cambridge, Mass.

Bacon. D. F., Cuow, J.-H., Ju, D. R, MUTHUKUMAR,
K, AND SARKAR, V. 1994. A compiler framework
for restructuring data declarations to enhance
cache and TLB effectiveness. In Proceedings of
CASCON 94 (Toronto, Ontario, Oct.).

BaiLey, D. H. 1992. On the behavior of cache memo-
ries with strided data access. Tech. Rep. RNR-
92-015, NASA Ames Research Center, Moffett
Field, Calif., (May).

Baey, D. H., Barszcz, E., Barrton, J. T,
BROWNING, D. 8., CArRTER, R. L., Dagum, L.,
Faroon, R. A., FREDERICKSON, P. O., LASINSKI,
T. A, ScHREIBER, R. S., Smon, H. D,
VENKATAKRISHNAN, V., AND WEERATUNGa, S. K.
1991. The NAS parallel benchmarks. Int. J.
Supercomput. Appl. 5, 3 (Fall), 63-73.

BALASUNDARAM, V. 1990. A mechanism for keeping
useful internal information in parallel pro-
gramming tools: The Data Access Descriptor.
J. Parall. Distrib. Comput. 9, 2 (June),
154-170.

Bavasunparam, V., Fox, G., Kenneny, K., anp
KreEMER, U. 1990. An interactive environment
for data partitioning and distribution. In Pro-
ceedings of the 5th Distributed Memory Com-
puter Conference (Charleston, South Carolina,
Apr.). IEEE Computer Society Press, Los
Alamitos, Calif.

BALASUNDARAM, V., KenneDy, K., Kremer, U.,
McKINLEY, K., AND SUBHLOK, dJ. 1989. The
ParaScope editor: An interactive parallel pro-
gramming tool. In Proceedings of Supercom-
puting 89 (Reno, Nev., Nov.). ACM Press, New
York, 540-550.

BaLL, J. E. 1979. Predicting the effects of optimiza-
tion on a procedure body. In Proceedings of the
SIGPLAN Symposium on Compiler Construc-
tion (Denver, Color., Aug.). SIGPLAN Not. 14,
8, 214-220.

BaneErJEE, U. 1991. Unimodular transformations of
double loops. In Advances in Languages and
Compilers for Parallel Processing, A. Nicolau,
Ed. Research Monographs in Parallel and Dis-
tributed Computing, MIT Press, Cambridge,
Mass., Chap. 10.

BanerJeg, U. 1988a. Dependence Analysis for Su-
percomputing. Kluwer Academic Publishers,
Boston, Mass.

BanerJEE, U. 1988b. An introduction to a formal
theory of dependence analysis. J. Supercom-
put. 2, 2 (Oct.), 133-149.

BanerJEE, U. 1979. Speedup of ordinary programs,
Ph.D. thesis, Tech. Rep. 79-989, Computer Sci-
ence Dept.,, Univ. of Illinois at Urbana-
Champaign.

BanerJgg, U, CHEN, S. C., Kuck, D. J., anp TOwLE,
R. A. 1979. Time and parallel processor bounds
for Fortran-like loops. IEEE Trans. Comput.
C-28, 9 (Sept.), 660-670.

BanNING, J. P. 1979. An efficient way to find the
side-effects of procedure calls and the aliases of
variables. In Conference Record of the 6th ACM
Symposium on Principles of Programming Lan-
guages (San Antonio, Tex., Jan.). ACM Press,
29-41.

BernsTEIN, R. 1986. Multiplication by integer con-
stants. Softw. Pract. Exper. 16, T (July),
641-652.

Berry, M., CuEN, D., Koss, P, Kuck, D., Lo, S,
Pang, Y., PoINTER, L., RoLOFF, R., SAMEH, A.,
CrLeEMENTI, E_, CHIN. 8., ScuNEIDER, D., Fox, G.,
MEssiNg, P., WALRER, D., Hsmwng, C,,
SCHWARZMEIER, J., LUE, K., ORSzZAG, S., SEIDL,
F., JouNsoN, O., GOODRUM, R., AND MARTIN, J.
1989. The Perfect Club benchmarks: Effective
performance evaluation of supercomputers. Int.
J. Supercomput. Appl. 3, 3 (Fall), 5-40.

Compiler Transformations . 413

BLELLOCH, G. 1989. Scans as primitive parallel op-
erations. IEEE Trans. Comput. C-38, 11 (Nov.),
1526-1538.

BromiLey, M., HELLER, S., MCNEERNEY, T., AND
STEELE, G. L., JR. 1991. Fortran at ten gi-
gaflops: The Connection Machine convolution
compiler. In Proceedings of the SIGPLAN Con-
ference on Programmung Language Design and
Implementation (Toronto, Ontario, June). SIG-
PLAN Not. 26, 6, 145-156.

Burke, M. aNp CYTRON, R. 1986. Interprocedural
dependence analysis and parallelization. In
Proceedings of the SIGPLAN Symposium on
Compiler Construction (Palo Alto, Calif., June).
SIGPLAN Not. 21,7 (July), 162-175. Extended
version available as IBM Thomas J. Watson
Research Center Tech. Rep. RC 11794.

BurneTT, G. J. AND CorFMaN, E. G, Jr. 1970. A
study of interleaved memory systems. In Pro-
ceedings of the Spring Joint AFIPS Computer
Conference. vol. 36. AFIPS, Montvale, N.J.,,
467-474.

BursTaLL, R. M. AND DARLINGTON, dJ. 1977. A trans-
formation system for developing recursive pro-
grams. J. ACM 24, 1 (Jan.), 44-67.

BUTLER, M., YEH, T., ParT, Y., ALSUuP, M., SCALES,
H., aND SHEBANOW, M. 1991. Single instruction
stream parallelism is greater than two. In Pro-
ceedings of the 18th Annual International Sym-
posium on Computer Architecture (Toronto,
Ontario, May). SIGARCH Comput. Arch. News
19, 3, 276-286.

Carpnanan, D. anp Kennepy, K. 1988a. Analysis of
interprocedural side-effects in a parallel pro-
gramming environment. J. Parall. Distrib.
Comput. 5, 5 (Oct.), 517-550.

CALLAHAN, D. aAND KENNEDY, K. 1988b. Compiling
programs for distributed-memory multiproces-
sors. . Supercomput. 2, 2 (Oct.), 151-169.

CALLAHAN, D., CARR, S., AND KENNEDY, K. 1990.
Improving register allocation for subscripted
variables. In Proceedings of the SIGPLAN Con-
ference on Programming Longuage Design and
Implementation (White Plains, N.Y., June).
SIGPLAN Not. 25, 6, 53-65.

CarranaN, D., Cockr, J., anD KennEDy, K. 1988.
Estimating interlock and improving balance for
pipelined architectures. oJ. Parall. Distrib.
Comput. 5, 4 (Aug.), 334-358.

CALLAHAN, D., CooPER, K., KENNEDY, K., AND
TorczoN, L. 1986. Interprocedural constant
propagation. In Proceedings of the SIGPLAN
Symposium on Compiler Construction (Palo
Alto, Calif., June). SIGPLAN Not. 21, 7 (July),
152-161.

Cargr, S. 1993. Memory-hierarchy management.
Ph.D. thesis, Rice University, Houston, Tex.
CHAITIN, G. J. 1982. Register allocation and spilling
via graph coloring. In Proceedings of the SIG-
PLAN Symposium on Compiler Construction
(Boston, Mass., June). SIGPLAN Not 17, 6,

98-105.

ACM Computing Surveys, Vol. 26, No. 4, December 1994

414 . David F. Bacon et al.

CHAITIN, G. J., AUSLANDER, M. A., CHANDR4, A. K,
Cockg, J., Hopkins, M. E., AND MARKSTEIN,
P. W. 1981. Register allocation via coloring.
Comput. Lang. 6, 1 (Jan.), 47-57.

CHamBERS, C. AND Ungar, D. 1989. Customization:
Optimizing compiler technology for SELF, a
dynamically-typed object-oriented program-
ming language. In Proceedings of the SIG-
PLAN Conference on Programming Language
Design and Implementation (Portland, Ore.,
June). SIGPLAN Not. 24, 7 (July), 146-160.

CHATTERJEE, S., GILBERT, J. R., AND SCHREIBER, R.
1993a. The alignment-distribution graph. In
Proceedings of the 6th International Workshop
on Languages and Compilers for Parallel Com-
puting. Lecture Notes in Computer Science,
vol. 768. 234-252.

CHATTERJEE, S., GILBERT, J. R., SCHREIBER, R., AND
TENG, S.-H. 1993b. Automatic array alignment
in data-parallel programs. In Conference Record
of the 20th ACM Symposium on Principles of
Programming Languages (Charleston, S. Car-
olina, Jan.). ACM Press, New York, 16-28.

Cuen, S. C. anp Kuck, D. J. 1975. Time and paral-
lel processor bounds for linear recurrence sys-
tems. IEEE Trans. Comput. C-24 7 (July),
701-717.

Cuoi, J.-D., Burkg, M., anp Carini, P. 1993. Effi-
cient flow-sensitive interprocedural computa-
tion of pointer-induced aliases and side effects.
In Conference Record of the 20th ACM Sympo-
sium on Principles of Programming Languages
(Charleston, S. Carolina, Jan.). ACM Press,
New York, 232-245.

Cuow, F. C. 1988. Minimizing register usage
penalty at procedure calls. In Proceedings of
the SIGPLAN Conference on Programming
Language Design and Implementation (Atlanta,
Ga., June). SIGPLAN Not. 23, 7 (July), 85-94.

Cuow, F. C. anDp HENNESSEY, J. L. 1990. The prior-
ity-based coloring approach to register alloca-
tion. ACM Trans. Program. Lang. Syst. 12, 4
(Oct.), 501-536.

CLARKE, C. D. AND PEYTON-JONES, S. L. 1985. Strict-
ness analysis—a practical approach. In Func-
tional Programming Languages and Computer
Architecture. Lecture Notes in Computer Sci-
ence, vol. 201. Springer-Verlag, Berlin, 35-49.

CrLinGgeRr, W. D. 1990. How to read floating point
numbers accurately. In Proceedings of the SIG-
PLAN Conference on Programming Language
Desiogn and Implementation (White Plains,
N.Y., June). SIGPLAN Not. 25, 6, 92-101.

COCKE, J. 1970. Global common subexpression elim-
ination. In Proceedings of the ACM Symposium
on Compiler Optimization (July). SIGPLAN
Not. 5, T, 20~24.

COCKE, J. AND MARKSTEIN, P. 1980. Measurement of
program improvement algorithms. In Proceed-
ings of the IFIP Congress (Tokyo, Japan, Oct.).
North-Holland, Amsterdam, Netherlands,

ACM Computing Surveys, Vol. 26, No. 4, December 1994

221-228. Also available as IBM Tech. Rep. RC
8111, Feb. 1980.

CockE, J. AND ScHWARTZ, J. T. 1970. Programming
languages and their compilers (preliminary
notes). 2nd ed. Courant Inst. of Mathematical
Sciences, New York University, New York.

COLWELL, R. P., N, R. P., O'DoNNEL, J. J.,
PapwoRTH, D. B., AND RoDMAN, P. K. 1988, A
VLIW architecture for a trace scheduling com-
piler. IEEE Trans. Comput. C-37, 8 (Aug.),
967-979.

CoOPER, K. D. AND KENNEDY, K. 1989. Fast inter-
procedural alias analysis. In Conference Record
of the 16th ACM Symposium on Principles of
Programmung Languages (Austin, Tex., Jan.).
ACM Press, New York, 49-59.

CoOPER. K. D., HALL, M. W., AND KENNEDY, K. 1993.
A methodology for procedure cloning. Comput.
Lang. 19, 2 (Apr.), 105-117.

Coopegr, K. D., HaLL, M. W., anD Torczon, L. 1992.
Unexpected side effects of inline substitution:
A case study. ACM Lett. Program. Lang. Syst
1, 1 (Mar.), 22-32.

CoorEr, K. D., Harr, M. W., anD Torczon, L. 1991.
An experiment with inline substitution. Softw.
Pract. Exper. 21, 6 (June), 581-601

Cray RESEARCH 1988 CFT77 Reference Manual.
Publication SR-0018-C. Cray Research, Inc.,
Eagan, Minn.

CyTrON, R. 1986. Doacross: Beyond vectorization
for multiprocessors. In Proceedings of the Inter-
national Conference on Parallel Processing (St.
Charles, Ill., Aug.). IEEE Computer Society,
Washington, D.C., 836-844.

CYTRON, R. AND FERRANTE, J. 1987. What’s in a
name? -or- the value of renaming for paral-
lelism detection and storage allocation. Pro-
ceedings of the International Conference on
Parallel Processing (University Park, Penn.,,
Aug.). Pennsylvania State University Press,
University Park. Pa., 19-27.

Dantzig, G. B. anD Eaves, B. C. 1974. Fourier-
Motzkin elimination and sits dual with applica-
tion to integer programming. In Combinatorial
Programming: Methods and Applications
(Versailles, France, Sept.). B. D. Roy, Ed. D.
Reidel, Boston, Mass., 93-102.

Dennig, J. B. 1980 Data flow supercomputers.
Computer 13, 11 (Nov.), 48-56.

Dmxar, K. M. 1992. New CPU benchmarks from
SPEC. In Digest of Papers, Spring COMPCON
1992, 37th IEEE Computer Society Interna-
tional Conference (San Francisco, Calif,, Feb.).
IEEE Computer Society Press, Los Alamitos,
Calif., 305-310.

DONGARRA, J. AND HIND, A. R. 1979. Unrolling loops
in Fortran. Softw. Pract. Exper. 9, 3 (Mar.),
219-226.

EGGERS, S. J. aND KaTz, R. H. 1989 Evaluating the
performance of four snooping cache coherency
protocols. In Proceedings of the 16th Annual

International Symposium on Computer Archi-
tecture (Jerusalem, Israel, May). SIGARCH
Comput. Arch. News 17, 3 (June), 2-15.

EIGENMANN, R., HOEFLINGER, J., LI, Z., AND PADUA,
D. A. 1991. Experience in the automatic paral-
lelization of four Perfect-benchmark programs.
In Proceedings of the 4th International Work-
shop on Languages and Compilers for Parallel
Computing. Lecture Notes in Computer Sci-
ence, vol. 589. Springer-Verlag, Berlin, 65—83.
Also available as Tech. Rep. 1193, Center for
Supercomputing Research and Development.

ELuis, J. R. 1986. Bulldog: A Compiler for VLIW
Architectures, ACM Doctoral Dissertation
Award. MIT Press, Cambridge, Mass.

ErsHov, A. P. 1966. ALPHA—an automatic pro-
gramming system of high efficiency. J. ACM
13, 1 (Jan.), 17-24.

FEAUTRIER, P. 1991. Dataflow analysis of array and

scalar references. In¢. J. Parall. Program. 20,
1 (Feb.), 23-52.

Frautrier, P. 1988. Array expansion. In Proceed-
ings of the ACM International Conference on
Supercomputing (St. Malo, France, July). ACM
Press, New York, 429-441.

FeRRrARl, D. 1976. The improvement of program
behavior. Computer 9, 11 (Nov.), 39-47.

FisuEr, J.A. 1981. Trace scheduling: A technique
for global microcode compaction. IEEE Trans.
Comput. C-30, T (July), 478-490.

FisHER, J. A, ELLis, J. R., RUTTENBERG, J. C., AND
Nicorau, A. 1984. Parallel processing: A smart
compiler and a dumb machine. In Proceedings
of the SIGPLAN Symposium on Compiler Con-
struction (Montreal, Quebec, June). SIGPLAN
Not. 19, 6, 37-417.

FLOATING POINT SysSTEMS. 1979. FPS AP-120B Pro-
cessor Handbook. Floating Point Systems, Inc.,
Beaverton, Ore.

FREE SOFTWARE FOUNDATION. 1992. gce 2.x Refer-
ence Manual. Free Software Foundation, Cam-
bridge, Mass.

FREUDENBERGER, S. M., SCHWARTZ, J. T., AND SHARIR,
M. 1983. Experience with the SETL optimizer.
ACM Trans. Program. Lang. Syst. 5, 1 (Jan.),
26-45.

GannoN, D., Jausy, W., AND GALLIVAN, K. 1988.
Strategies for cache and local memory manage-
ment by global program transformation. oJ.
Parall. Distrib. Comput. 5, 5 (Oct.), 587-616.

GERNDT, M. 1990. Updating distributed variables in
local computations. Concurrency Pract. Exper.
2, 3 (Sept.), 171-193.

Gisson, D. H. anD Rao, G. 8. 1992. Design of the
IBM System /390 computer family for numeri-
cally intensive applications: An overview for
engineers and scientists. IBM J. Res. Dev. 36,
4 (July), 695-711.

GIRKAR, M. AND POLYCHRONOPOULOS, C. D. 1988.
Compiling issues for supercomputers. In Pro-
ceedings of Supercomputing ’88 (Orlando, Fla.,

Compiler Transformations . 415

Nov). IEEE Computer Society, Washington,
D.C, 164-173.

GoOFF, G., KENNEDY, K., AND TSENG, C.-W. 1991,
Practical dependence testing. In Proceedings of
the SIGPLAN Conference on Programming
Language Design and Implementation (Toronto,
Ontario, June). SIGPLAN Not. 26, 6, 15-29.

GraHAM, S. L., Lucco, S., AND SHARP, O. J. 1993.
Orchestrating interactions among parallel com-
putations. In Proceedings of the SIGPLAN
Conference on Programming Language Design
and Implementation (Albuquerque, New Mex-
ico, June). SIGPLAN Not, 28, 6, 100-111.

GRANLUND, T. AND KENNER, R. 1992. Eliminating
branches using a superoptimizer and the GNU
compiler. In Proceedings of the SIGPLAN Con-
ference on Programming Language Design and
Implementation (San Francisco, Calif,, June).
SIGPLAN Not. 27, 7 (July), 341-352.

Guprs, M. 1992. Automatic data partitioning on
distributed memory multicomputers. Ph.D. the-
sis, Tech. Rep. UILU-ENG-92-2237, Univ. of
Ilinois at Urbana-Champaign.

GupTA, M., MIDKIFF, S., SCHONBERG, E., SWEENEY,
P., Wang, K. Y., anp Burkg, M. 1993. PTRAN
II: A compiler for High Performance Fortran.
In Proceedings of the 4th International Work-
shop on Compilers for Parallel Computers
(Delft, Netherlands, Dec.). 479-493.

Hair, M. W., Kennepy, K., aNnp McKINLEY, K. S.
1991. Interprocedural transformations for par-
allel code generation. In Proceedings of Super-
computing ’91 (Albuquerque, New Mexico,
Nov.). IEEE Computer Society Press, os Alami-
tos, Calif., 424-434.

Harris, K. anD Hosps, S. 1994, VAX Fortran. In
Optimization in Compilers, F. E. Allen, R.
Cytron, B. K. Rosen, and K. Zadeck, Eds. ACM
Press, New York, chap. 16. To be published.

HATFIELD, D. J. AND GERALD, J. 1971, Program re-
structuring for virtual memory. IBM Syst. J.
10, 3, 168-192.

HENNESSY, J. L. AND PATTERSON, D. A. 1990. Com-
puter Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, San Mateo,
Calif,

HEWLETT-PACKARD. 1992. PA-RISC 1.1 Architecture
and Instruction Manual. 2nd ed. Part Number
09740-90039. Hewlett-Packard, Palo Alto, Calif.

HicH PeErrorMANCE ForTrRAN ForuM. 1993. High
Performance Fortran language specification,
version 1.0. Tech. Rep. CRPC-TR92225, Rice
University, Houston, Tex.

HIRANANDANI, S., KENNEDY, K., AND TSENG, C.-W.
1993. Preliminary experiences with the
Fortran D compiler. In Proceedings of Super-
computing 93 (Portland, Ore., Nov.). IEEE
Computer Society Press, Los Alamitos, Calif,,
338-350.

HIRANANDANI, S., KENNEDY, K., AND TSENG, C.-W.
1992. Compiling Fortran D for MIMD dis-

ACM Computing Surveys, Vol. 26, No. 4, December 1994

416 . Dauvid F. Bacon et al.

tributed-memory machines. Commun. ACM 35,
8 (Aug.), 66-80.

Hupaxk, P. aND GOLDBERG, B. 1985. Distributed exe-
cution of functional programs using serial com-
binators IEEE Trans. Comput. C-34, 10 (Oct),
881-890.

Hwu, W. W. anD CHANG, P. P. 1989. Achieving high
instruction cache performance with an optimiz-
ing compiler. In Proceedings of the 16th An-
nual International Symposium on Computer
Architecture (Jerusalem, Israel, May).
SIGARCH Comput. Arch. News 17, 3 (June),
242-251.

Hwu, W. W., MauLke, S. A, CHEN, W. Y., CHANG,
P. P, Warter, N. J., BringManN, R. A,
OurLLETTE, R. G., Hang, R. E., Kivorara, T.,
Haag, G. E., Horym, J. G., anD Lavery, D M
1993. The superblock: An effective technique
for VLIW and superscalar compilation. /. Su-
percomput. 7, 1/2 (May), 229~248.

IBM. 1992. Optimization and Tuning Guide for the
XL Fortran and XL C Compilers. 1st ed. Publi-
cation SC09-1545-00, IBM, Armonk, N.Y.

IBM. 1991. IBM RISC System /6000 NIC Tuning
Guide for Fortran and C Publication GG24-
3611-01, IBM, Armonk, N.Y.

IricoiN, F. anD TrioLET, R. 1988. Supernode parti-
tioning. In Conference Record of the 15th ACM
Symposium on Principles of Programming Lan-
guages (San Diego, Calif., Jan.). ACM Press,
New York, 319-329.

Iverson, K. E. 1962. A Programming Language.
John Wiley and Sons, New York.

Kennepy, K. anp McKincey, K. S. 1990. Loop dis-
tribution with arbitrary control flow. In Pro-
ceedings of Supercomputing '90 (New York,
N.Y., Nov.). IEEE Computer Society Press, Los
Alamitos, Calif., 407-416.

KenneDy, K., McKinLey, K. S., anD Tseng, C.-W.
1993. Analysis and transformation in an inter-
active parallel programming tool. Concurrency
Pract. Exper 5,7 (Oct.), 575-602.

Kiparr, G. 1973. A unified approach to global pro-
gram optimization In Conference Record of the
ACM Symposium on Principles of Program-
ming Languages (Boston, Mass, Oct.). ACM
Press, New York, 194-206.

KNOBE, K. AND NATARAJAN, V., 1993. Automatic data
allocation to minimize communication on SIMD
machines. J. Supercomput. 7, 4 (Dec.), 387-415.

KnoBe, K., Lukas, J, D., AND STEELE, G. L., JR.
1990. Data optimization: Allocation of arrays to
reduce communication on SIMD machines. /.
Parall Distrib. Comput. 8, 2 (Feb.), 102-118.

Kvnose, K., Lukas, J D., anD STEeLE, G. L., Jr
1988. Massively parallel data optimization. In
The 2nd. Symposium on the Frontiers of Mas-
sively Parallel Computation (Fairfax, Va., Oct.).
IEEE, Piscataway, N.J., 551-558.

Kwnurh, D. E. 1971. An empirical study of Fortran

ACM Computing Surveys, Vol 26, No. 4, December 1994

programs. Softw. Pract. Exper. 1,2 (Apr.-June),
105-133.

KoeLBeL, C. 1990. Compiling programs for non-
shared memory machines. Ph.D. thesis, Purdue
University, West Lafayette, Ind.

KorLBEL, C AND MEHROTRA, P. 1991. Compiling
global name-space parallel loops for distributed
execution. IEEE Trans. Parall. Distrib. Syst.
2, 4 (Oct.), 440-451.

Kranz, D., KeLsEY, R., REES, J., HUDAK, P., PHILBIN,
dJ., aND Apams, N. 1986. ORBIT: An optimizing
compiler for Scheme. In Proceedings of the
SIGPLAN Sympostum on Compiler Construc-
tion (Palo Alto, Calif., June). SIGPLAN Not.
21, 7 (July), 219-233.

Kuckg, D. J. 1978. The Structure of Computers and
Computations Vol. 1. John Wiley and Sons,
New York.

Kuck, D. J. 1977. A survey of parallel machine
organization and programming. ACM Comput.
Surv. 9, 1 (Mar.), 29-59.

Kuck, D. J. aND STokES, R. 1982, The Burroughs
Scientific Processor (BSP), IEEE Trans. Com-
put, C-31, 5 (May), 363-376.

Kuck, D. J., KunN, R. H., Pabua, D., LEASURE, B.,
AND WOLFE, M. 1981, Dependence graphs and
compiler optimizations. In Conference Record of
the 8th ACM Symposium on Principles of Pro-
gramming Languages (Williamsburg, Va., Jan.).
ACM Press, New York, 207-218.

Lam, M. S. 1988. Software pipelining: An effective
scheduling technique for VLIW machines In
Proceedings of the SIGPLAN Conference on
Programming Language Design and Implemen-
tation (Atlanta, Ga., June). SIGPLAN Not. 23,
7 (July), 318-328.

Lam, M. S. anp WiLson, R. P. 1992. Limits of con-
trol flow on parallelism. In Proceedings of the
19th Annual International Symposium on
Computer Architecture (Gold Coast, Australia,
May). SIGARCH Comput. Arch. News 20, 2,
46-57

LaMm, M. S., ROTHBERG, E. E., AND WoLF, M. E. 1991.
The cache performance and optimization of
blocked algorithms. In Proceedings of the 4th
International Conference on Architectural
Support for Programming Languages and Op-
erating Systems (Santa Clara, Calif., Apr.).
SIGPLAN Not. 26, 4, 63-174.

Lamport, L. 1974. The parallel execution of DO
loops. Commun. ACM 17, 2 (Feb.), 83-93.

Lanpi, W., RYDER, B. G., AND ZHANG, S. 1993. Inter-
procedural modification side effect analysis
with pointer ahasing. In Proceedings of the
SIGPLAN Conference on Programming Lan-
guage Design and Implementation (Al-
buquerque, New Mexico, June). SIGPLAN Not.
28, 6, 56-67.

Larus, J. R. 1993 Loop-level parallelism in nu-
meric and symbolic programs. IEEE Trans.
Parall. Distrib. Syst 4, 7 (July), 812—-826.

LeE, G., Kruskar, C. P.; anD Kuck, D. J. 1985. An
empirical study of automatic restructuring of
nonnumerical programs for parallel processors.
IEEE Trans. Comput. C-34, 10 (Oct.), 927-933.

L1, Z. 1992. Array privatization for parallel execu-
tion of loops. In Proceedings of the ACM Inter-
national Conference on Supercomputing
(Washington, D.C., July). ACM Press, New
York, 313-322.

Li, J. AND CHEN, M. 1991. Compiling communica-
tion-efficient programs for massively parallel
machines. IEEE Trans. Parall. Distrib. Syst.
2, 3 (July), 361-376.

L1, J. anp CHEN, M. 1990. Index domain alignment:
Minimizing cost of cross-referencing between
distributed arrays. In The 3rd Symposium on
the Frontiers of Massively Parallel Computa-
tion, J. Jaja, Ed. IEEE Computer Society Press,
Los Alamitos, Calif., 424-433.

Li, Z. anp Yew, P. 1988. Interprocedural analysis
for parallel computing. In Proceedings of the
International Conference on Parallel Process-
ing. F. A. Briggs, Ed. Vol. 2. Pennsylvania State
University Press, University Park, Pa.,
221-228.

L1, Z., YEW, P., AND ZHU, C. 1990. Data dependence
analysis on multi-dimensional array refer-
ences. IEEE Trans. Parall. Distrib. Syst. 1, 1
(Jan.), 26-34.

Loveman, D. B. 1977. Program improvement by
source-to-source transformation. J. ACM 1, 24
(Jan.), 121-145,

Lucco, 8. 1992. A dynamic scheduling method for
irregular paralle]l programs. In Proceedings of
the SIGPLAN Conference on Programming
Language Design and Implementation (San
Francisco, Calif., June). SIGPLAN Not. 27, 7
(July), 200-211.

MACE, M. E. 1987. Memory Storage Patterns in
Parallel Processing. Kluwer Academic Publish-
ers, Norwell, Mass.

Mace, M. E. aAND WAGNER, R. A. 1985. Globally
optimum selection of memory storage patterns.
In Proceedings of the International Conference
on Parallel Processing, D. DeGrott, Ed. IEEE
Computer Society, Washington, D.C., 264-271.

MARKSTEIN, P., MARKSTEIN, V., AND ZADECK, K. 1994.
Strength reduction. In Optimization in Compil-
ers. ACM Press, New York, Chap. 9. To be
published.

MassALIN, H. 1987. Superoptimizer: A look at the
smallest program. In Proceedings of the 2nd
International Conference on Architectural Sup-
port for Programming Languages and Operat-
ing Systems (Palo Alto, Calif., Oct.). SIGPLAN
Not. 22, 10, 122-126.

MavDaN, D. E., AMARASINGHE, S. P., AND LaMm, M. S.
1993. Array data flow analysis and its use in
array privatization. In Conference Record of the
20th ACM Symposium on Principles of Pro-
gramming Languages (Charleston, S. Carolina,
Jan.). ACM Press, New York, 1-15.

Compiler Transformations . 417

Maypan, D. E., HeEnNnEssEY, J. L., anp Lam, M. S.
1991. Efficient and exact data dependence
analysis. In Proceedings of the SIGPLAN Con-
ference on Programming Language Design and
Implementation (Toronto, Ontario, June). SIG-
PLAN Not. 26, 6, 1-14.

MCcFARLING, S. 1991. Procedure merging with in-
struction caches. In Proceedings of the SIG-
PLAN Conference on Programming Language
Design and Implementation (Toronto, Ontario,
June). SIGPLAN Not. 26, 6, 71-79.

McGraw, J. R. 1985, SISAL: Streams and iteration
in a single assignment language. Tech. Rep.
M-146, Lawrence Livermore National Labora-
tory, Livermore, Calif.

McManon, F. M. 1986. The Livermore Fortran ker-
nels: A computer test of numerical performance
range. Tech. Rep. UCRL-55745, Lawrence Liv-
ermore National Laboratory, Livermore, Calif.

Micuie, D. 1968. “Memo” functions and machine
learning. Nature 218, 19-22.

MimLstEIN, R. E. AND Muntz, C. A. 1975, The IL-
LIAC-IV Fortran compiler. In Programming
Languages and Compilers for Parallel and Vec-
tor Machines (New York, N.Y., Mar). SIG-
PLAN Not. 10, 3, 1-8.

MIRCHANDANEY, R., Savtz, J. H., Smite, R. M., Nicor,
D. M., axnp Crowrey, K. 1988. Principles of
runtime support for parallel processors. In Pro-
ceedings of the ACM International Conference
on Supercomputing (St. Malo, France, July).
ACM Press, New York, 140-152.

MogzL, E. anp Renvoisg, C. 1979. Global optimiza-
tion by suppression of partial redundancies.
Commun. ACM 22, 2 (Feb.), 96-103.

MucHnick, S. 8. anp Jongs, N., (Eps.) 1981. Pro-
gram Flow Analysis. Prentice-Hall, Englewood
Cliffs, N.J.

Muraoka, Y. 1971. Parallelism exposure and ex-
ploitation in programs. Ph.D. thesis, Tech. Rep.
71-424, Univ. of lllinois at Urbana-Champaign.

Myzrs, E. W. 1981. A precise interprocedural data
flow algorithm. In Conference Record of the 8th
ACM Symposium on Principles of Program-
ming Languages (Williamsburg, Va., Jan.).
ACM Press, New York, 219-230.

Nicorau, A. 1988. Loop quantization: A generalized
loop unwinding technique. J. Parall. Distrib.
Comput. 5, 5 (Oct.), 568-586.

NicoLaU, A. AND FISHER, J. A. 1984. Measuring the
parallelism available for very long instruction
word architectures. IEEE Trans. Comput. C-33,
11 (Nov.), 968-976.

NiguiL, R. S. 1988. ID reference manual, version
88.0. Tech. Rep. 284, Laboratory for Computer
Science, Massachusetts Institute of Technol-
ogy, Cambridge, Mass.

NoBavasHI, H. AND EOYANG, C. 1989. A comparison
study of automatically vectorizing Fortran
compilers. In Proceedings of Supercomputing

ACM Computing Surveys, Vol. 26, No. 4, December 1994

418 . David F. Bacon et al.

’89 (Reno, Nev., Nov.). ACM Press, New York,
820-825.

O’BrIEN, K., Hay, B., MivisH, J., ScHaFFER, H.,
ScHLOSS, B., SHEPHERD, A., AND ZALESKI, M.
1990. Advanced compiler technology for the
RISC System /6000 architecture. In IBM RISC
System /6000 Technology. Publication SA23-
2619. IBM Corporation, Mechanicsburg, Penn

OED, W. 1992. Cray Y-MP C90: System features
and early benchmark results. Parall. Comput.
18, 8 (Aug.), 947-954.

OEHLER, R. R. AND Brascen, M. W. 1991. IBM RISC
System /6000: Architecture and performance.
IEEE Micro 11, 3 (June), 14-24.

Papua, D. A. AND PETERSEN, P. M. 1992. Evaluation
of parallelizing compilers. Parallel Computing
and Transputer Applications, (Barcelona,
Spain. Sept.). CIMNE, 1505-1514. Also avail-
able as Center for Supercomputing Research
and Development Tech Rep. 1173.

Papua, D. A, AND WOLFE, M. J. 1986. Advanced
compiler optimizations for supercomputers.
Commun. ACM 29, 12 (Dec.), 1184-1201.

Pabua, D. A, Kuck, D. J. anp Lawrig, D. 1980.
High-speed multiprocessors and compilation
techniques. IEEE Trans. Comput. C-29, 9
(Sept.), 763-778.

PETERSEN, P. M. anD Pabua, D. A. 1993. Static and
dynamic evaluation of data dependence analy-
sis. In Proceedings of the ACM International
Conference on Supercomputing (Tokyo, Japan,
July). ACM Press, New York, 107-116.

PeTTIS, K. AND HANSEN, R. C. 1990. Profile guided
code positioning. In Proceedings of the SIG-
PLAN Conference on Programming Language
Design and Implementation (White Plains,
N.Y., June). SIGPLAN Not. 25, 6, 16-217.

PoLvcHrOoNOPOULOS, C. D. 1988. Parallel Program-
ming and Compilers. Kluwer Academic Pub-
lishers, Boston, Mass.

PoLycHrONOPOULOS, C. D. 1987a Advanced loop
optimizations for parallel computers. In Pro-
ceedings of the Ist International Conference on
Supercomputing. Lecture Notes in Computer
Science, vol 297. Springer-Verlag, Berlin,
255-271.

PoLycuroNOPOULOS, C. D. 1987b. Loop coalescing:
A compiler transformation for parallel ma-

chines. In Proceedings of the International
Conference on Parallel Processing (University

Park, Penn., Aug.). Pennsylvania State Univer-
sity Press, University Park, Pa., 235-242.
PorycHroNOPOULOS, C. D. anD Kuck, D. J. 1987.

Guided self-scheduling: A practical scheduling
scheme for parallel supercomputers. IEEE
Trans. Comput. C-36, 12 (Dec.), 1425-1439.
PorycHroNOPOULOS, C. D., GIRKAR, M., HAGHIGHAT,
M. R,, LEg, C. L., LEUNG, B., AND SCHOUTEN, D.
1989. Parafrase-2: An environment for paral-
lelizing, partitioning, synchronizing, and
scheduling programs on multiprocessors. In

ACM Computing Surveys, Vol. 26, No. 4, December 1994

Proceedings of the International Conference on
Parallel Processing. Volume 2. Pennsylvania
State University Press, University Park, Pa.,
39-48.

PRESBERG, D. L. AND JounsoN, N. W. 1975 The
Paralyzer: IVTRAN's parallelism analyzer and
synthesizer. In Programming Languages and
Compuilers for Parallel and Vector Machines
(New York, N.Y., Mar.). SIGPLAN Not. 10, 3,
9-16.

PucH, W. 1992, A practical algorithm for exact
array dependence analysis Commun. ACM 35,
8 (Aug.), 102-115.

PugH, W. 1991, Unmiform techniques for loop opti-
mization. In Proceedings of the ACM Interna-
tional Conference on Supercomputing (Cologne,
Germany, June). ACM Press, New York.

RaU. B. AND FISHER. J. A. 1993. Instruction-level
parallel processing: History, overview, and per-
spective. J. Supercomput. 7, 1/2 (May), 9-50.

Ravu, B., YEN, D. W. L., YEN, W., AND TowLE, R. A.
1989. The Cydra 5 departmental supercom-
puter: Design philosophies, decisions, and
trade-offs. Computer 22, 1 (Jan.), 12-34.

REES, J., CLINGER, W., ET AL. 1986 Revised® report
on the algorithmic language Scheme. SIG-
PLAN Not 21, 12 (Dec.), 37-79.

RisemaN, E. M. aND FOSTER, C. C. 1972. The inhibi-
tion of potential parallelism by conditional
jumps. IEEE Trans. Comput, C-21, 12 (Dec.).
1405~1411.

RoOGERS. A. M. 1991. Compiling for locality of refer-
ence. Ph.D. thesis, Tech. Rep. TR 91-1195, Dept.
of Computer Science, Cornell University.

RusseLL, R. M. 1978. The CRAY-1 computer sys-
tem. Commun. ACM 21, 1 (Jan.), 63-72.

SABOT, G. AND WHOLEY, S. 1993 CMAX: A Fortran
translator for the Connection Machine system.
In Proceedings of the ACM International Con-
ference on Supercomputing (Tokyo, Japan,
July). ACM Press, New York.

SARKAR, V. 1989. Partitioning and Scheduling Par-
allel Programs for Multiprocessors. Research
Monographs in Parallel and Distributed Com-
puting. MIT Press, Cambridge, Mass.

SARKAR, V. AND THEKKATH, R. 1992. A general
framework for 1teration-reordering transforma-
tions. In Proceedings of the SIGPLAN Confer-
ence on Programming Language Design and
Implementation (San Francisco, Calif,, June).
SIGPLAN Not. 27, 7 (July), 175-187.

SCHEIFLER, R. W. 1977. An analysis of inline substi-
tution for a structured programming language.
Commun. ACM 20, 9 (Sept.). 647-654.

SHEN, Z., L1, Z., aND YEW, P -C. 1990. An empirical
study of Fortran programs for parallelizing
compilers. IEEE Trans. Parall. Distrib. Syst.
1, 3 (July), 356-364.

SinGH, J. P. anp HENNESSY, J. L. 1991. An empirical
investigation of the effectiveness and limita-
tions of automatic parallelization. In Proceed-
ings of the International Symposium on Shared
Memory Multiprocessing, (Apr.). 213-240.

SiNgH, J. P., WeEBer, W.-D., AND GUPTA, A. 1992.
SPLASH: Stanford parallel applications for
shared memory. SIGARCH Comput. Arch.
News 20, 1 (Mar.), 5-44. Also available as
Stanford Univ. Tech. Rep. CSL-TR-92-526.

Sires, R. L., (Ep.) 1992. Alpha Architecture Refer-
ence Manual. Digital Press, Bedford, Mass.

SoH1, G. S. AND VajapavyeM, S. 1990. Instruction
issue logic for high-performance, interruptable,

multiple functional unit, pipelined computers.
IEEE Trans. Comput. C-39, 3 (Mar.), 349-359.

STEELE, G. L., Jr. 1977, Arithmetic shifting consid-
ered harmful. SIGPLAN Not. 12, 11 (Nov.),
61-69.

STEELE, G. L., JR. AND WHITE, J. L. 1990, How to
print floating-point numbers accurately. In
Proceedings of the SIGPLAN Conference on
Programming Language Design and Implemen-
tation (White Plains, N.Y., June). SIGPLAN
Not. 25, 6, 112-126.

STENSTROM, P. 1990. A survey of cache coherence
schemes for multiprocessors. Computer 23, 6
(June), 12-24.

Sun Microsystems. 1991. SPARC Architecture
Manual, Version 8. Part No. 800-1399-08. Sun
Microsystems, Mountain View, Calif.

SzyMaNskI, T. G. 1978. Assembling code for ma-
chines with span-dependent instructions. Com-

mum. ACM 21, 4 (Apr.), 300-308.

TaNG, P. AND YEW, P. 1990. Dynamic processor
self-scheduling for general parallel nested
loops. IEEE Trans. Comput. C-39, 7 (July),
919-929.

THINKING MACHINES. 1989. Connection Machine,
Model CM-2 Technical Summary. Thinking
Machines Corp., Cambridge, Mass.

TiaDEN, G. 8. aND FLynNN, M. J. 1970. Detection and

parallel execution of parallel instructions.
IEEE Trans. Comput. C-19, 10 (Oct.), 889-895.

ToRRELLAS, J., Lam, H. S, aND HennEssy, J. L.
1994. False sharing and spatial locality in mul-
tiprocessor caches. IEEE Trans. Comput. 43, 6
(June), 651-663.

TowLE, R. A. 1976. Control and data dependence
for program transformations. Ph.D. thesis,
Tech. Rep. 76-788, Computer Science Dept.,
Univ. of Illinois at Urbana-Champaign.

TRIOLET, R., IRIGOIN, F., AND FEAUTRIER, P. 1986.
Direct parallelization of call statements. In
Proceedings of the SIGPLAN Symposium on
Compiler Construction (Palo Alto, Calif., June).
SIGPLAN Not. 21, 7 (July), 176-185.

TSENG, C.-W. 1993. An optimizing Fortran D com-
piler for MIMD distributed-memory machines.
Ph.D. thesis, Tech. Rep. Rice COMP TR93-199,

Compiler Transformations . 419

Computer Science Dept.,,
Houston, Tex.

Tu, P. aND Papua, D. A. 1993. Automatic array
privatization. In Proceedings of the 6th Inter-
national Workshop on Languages and Compil-
ers for Parallel Computing. Lecture Notes in
Computer Science, vol. 768. Springer-Verlag,
Berlin, 500-521.

vON HANXLEDEN, R. AND KENNEDY, K. 1992. Relax-
ing SIMD control flow constraints using loop
transformations. In Proceedings of the SIG-
PLAN Conference on Programming Language
Design and Implementation (San Francisco,
Calif., June). SIGPLAN Not. 27, T (July),
188-199.

WALL, D. W, 1991. Limits of instruction-level paral-
lelism. In Proceedings of the 4th International
Conference on Architectural Support for Pro-
gramming Languages and Operating Systems
(Santa Clara, Calif.,, Apr.). SIGPLAN Not. 26,
4, 176-188.

WaNG, K, 1991. Intelligent program optimization
and parallelization for parallel computers.
Ph.D. thesis, Tech. Rep. CSD-TR-91-030, Pur-
due University, West Lafayette, Ind.

WANG, K. AND GANNON, D. 1989. Applying Al tech-
niques to program optimization for parallel
computers. In Parallel Processing for Super-
computers and Artificial Intelligence, K. Hwang
and D. Degroot, Eds. McGraw Hill, New York,
Chap. 12.

WEDEL, D. 1975. Fortran for the Texas Instruments
ASC system. In Programming Languages and
Compilers for Parallel and Vector Machines
(New York, N.Y., Mar.). SIGPLAN Not. 10, 3,
119-132.

WEGMAN, M. N. AND ZADECK, F. K. 1991. Constant
propagation with conditional branches. ACM
Trans. Program. Lang. Syst. 13, 2 (Apr),
181-210.

WEIss, M. 1991. Strip mining on SIMD architec-
tures. In Proceedings of the ACM International
Conference on Supercomputing (Cologne, Ger-
many, June). ACM Press, New York, 234-243,

WHOLEY, S. 1992. Automatic data mapping for dis-
tributed-memory parallel computers. In Pro-
ceedings of the ACM International Conference
on Supercomputing (Washington, D.C., July).
ACM Press, New York, 25-34.

Worr, M. E. 1992. Improving locality and paral-
lelism in nested loops. Ph.D. thesis, Computer
Science Dept., Stanford University, Stanford,
Calif.

WoLrg, M. J. 1989a. More iteration space tiling. In
Proceedings of Supercomputing 89 (Reno, Nev.,
Nov.). ACM Press, New York, 655-664.

WOLFE, M. J. 1989b. Optimizing Supercompilers for
Supercomputers. Research Monographs in Par-
allel and Distributed Computing. MIT Press,
Cambridge, Mass.

Rice University,

ACM Computing Surveys, Vol 26, No. 4, December 1994

420 e David F. Bacon et al.

WoLr, M. E. aND LaM, M. S. 1991, A loop transfor- Zmva, H. P, Bast, H. J, axp GErNDT, M. 1988.

mation theory and an algorithm to maximize SUPERB. A tool for semi-automatic
parallelism. IEEE Trans. Parall. Distrib. Syst. SIMD /MIMD parallelization Parall. Comput
2, 4 (Oct.), 452-471. 6, 1 (Jan.), 1-18.

WoLrg, M J anp Tseng, C. 1992. The Power Test
for data dependence. IEEE Trans. Parall. Dis-
trib. Syst. 3, 5 (Sept), 591-601

Received November 1993, final revision accepted October 1994.

ACM Computing Surveys, Vol 26, No. 4, December 1994

