
Speculative Predication
Across Arbitrary Interprocedural Control Flow

LCPC 1999

Hank Dietz
School of Electrical and Computer Engineering
Purdue University
Depar tment of Electrical Engineering
University of Kentucky

hankd@engr.uky.edu

http://dynamo.ecn.purdue.edu/˜hankd

(765) 494 3357

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



The Current Generation Of Chips

• Superscalar pipelining

• Out-of-order execution

• Lots of circuitry & pow er

• Off-chip interface dominates perfor mance

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



Next-Generation Chips Are Different?

• Static scheduling helps...

• SIMD Within A Register (SWAR)

• Explicit prefetch

• When the compiler schedules...

• Small-scale VLIW

• Explicit speculation with guards

• Multiprocessor chips

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



VLIW’s A Win, But...

• Obviously a win

• Much simpler circuitry
(even meshes well with memory bus)

• Low er pow er

• Compiler technology from the early 1980s
(with slow & steady improvement)

• Only problem is object code compatibility across
generations of implementations with different parallelism

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



Explicit Speculation With Guards

• What is it?

• Speculation: schedule instructions to execute before you
know if they need to execute

• Guards: avoid branches and code motion constraints by
making instruction results conditional

• A major feature of IA64...

• Advantages...

• Efficient, scalable, hardware

• Scheduling can use a larger "window"

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



Basic Compilation For Guards

if (cond) { c = a + b; } else { c = a - b; }

Becomes the branch-free block:

g = (cond);

where (g) c = a + b;

where (!g) c = a - b;

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



Better Compilation For Guards

• What limits speedup?

• Probability speculated instructions are useful drops
exponentially

• Convert only conditional forward jumps

• Common Subexpression Induction (CSI):
Improves probability that speculated instructions are useful

• Meta-State Conversion (MSC):
Convert arbitrar y flow graphs to speculative for m

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



Meta-State Conversion (MSC)

• A state space transfor mation allowing loops (forward and
backward branches), function calls and returns

• In 1993, for MIMD-on-SIMD...

• SIMD meta state is set of MIMD states that could exist
simultaneously

• Preser ves relative timing of MIMD execution

• In 1999, for guarded speculation...

• Speculative meta state is non-speculative core state
plus guarded speculative states

• Preser ves dependence properties

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



Simple Example Code

if (A) {

do { B } while (C);
} else {

do { D } while (E);
}

F

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



Simple Example State Graph

F

DEBC

A

c4 c5

c1c0

c2 c3

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



What About Function Call/Return?

• CALL is really a jump
(stack ops do not change control flow)

• RETURN is really an N-way jump
(jump to after one of the call points)

• Recursion changes nothing!

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



Recursive Function Example

main(...)

{

A
g(...);

B
g(...);

C
}

g(...)

{

D
if (E) {

F
g(...);

G
}

H
return;

}

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



main:

A
goto g;

x:

B
goto g;

y:

C
exit(...);

g:

D
if (E) {

F
goto g;

z:

G
}

H
switch (...) {

Case x: goto x;

case y: goto y;

case z: goto z;

}

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



Recursive Function Example State Graph

A DE

F

G

H

B

C

main(...) g(...)c0

c1

c5 c3

c2

c8
c6 c7

c4

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



Speculative Meta State Conversion

• Similar to NFA-to-DFA or MIMD-to-SIMD conversion

• Algor ithm over view:

• Wor klist of states, begins with start state

• Each state from the wor klist is the non-speculative core
of exactly one meta state

• Use a recursive reaching algorithm to add guarded
speculative states to the core

• Where speculation ends, add an exit arc and add the
target state to the wor klist

• Can mark specific states as non-speculative

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



Proper ties Of The Algorithm

• Each state is a core at most once

• There are at most N meta states for N states!

• By forbidding duplication of states within a meta state,
complexity of a meta state is O(N) or less

• Complexity of the complete algorithm is O(N
2

) or less

• Tunable maxdepth or cost-based cutoff

• Forbidding state replication blocks speculatively executing
loop bodies for multiple iterations, but this can be fixed by
par tial unrolling

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



Simple Example Speculative Meta-State Graph

maxdepth = infinity

BC 2.F

c1.5

DE 3.F

c4 c5

0.2.F 1.DE

F

c0.4

c1.3

A 0.BC

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



Simple Example SIMD Meta-State Graph

A

BC BC,DE DE

DE,FBC,DE,FBC,F

F

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



Recursive Function Example Meta-State Graph

maxdepth = one

A 0.DE

H 6.B 7.C 8.G F 5.DE

DE 2.H 3.F B 1.DE

G 4.HC

c0.3c0.2
c5.3c8.4

c3.5

c4.8

c6.1
c1.2

c1.3

c2.7
c2.8

c4.6

c5.2

c4.7

c2.6

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



Recursive Function Example Meta-State Graph

maxdepth = infinity

A 0.DE

0.2.H 0.2.6.B 0.2.7.C 0.2.8.G

0.3.F

DE

2.H 2.6.B 2.7.C 2.8.G

3.F

c0.3.5
c0.2.8.4

c2.8.4
c6.1.3.5

c6.1.3.2

c8.4

c0.2.6.1

c2.6.1

c3.5

6.B 6.1.DE 6.1.3.F

7.C 8.G

H

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



Coding the Meta State Automaton

• Guard expressions can be optimized
(e.g., by algebraic simplifications)

• Multiway branch encoding

• Hash functions or jump tables

• Guarded loads of jump target address

• Common Subexpression Induction...

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow



Conclusions

• Next-generation processor chips require new compiler
technology; Instructions are just as important as data

• Back-to-basics (e.g., state graph) approaches can be
simple, ver y general, and highly efficient

• This paper gives only the "sanitized" theory...

• Predicated speculative designs, such as IA64, are ver y
complex -- much exper imental work needs to be done to
see how to tune the speculation and coding

Speculative PredicationAcross Arbitrar y Inter procedural Control Flow


