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ABSTRACT 

In a previous paper  we reported the successful use 
of graph coloring techniques for doing global register 
allocation in an experimental  P L / I  optimizing compi- 
ler. When the compiler cannot color the register con- 
fliet graph with a number of colors equal to the num- 
ber of available machine registers, it must add code to 
spill and reload registers to and from storage. Previ- 
ously the compiler produced spill code whose quality 
sometimes left much to be desired,  and the ad hoe 
techniques used took considerable amounts of compile 
time. We have now discovered how to extend the 
graph coloring approach so that it naturally solves the 
spilling problem. Spill decisions are now made on the 
basis of the register conflict graph and cost  estimates 
of the value of keeping the result of a computat ion in 
a register rather than in storage. This new approach 
produces bet ter  object  code and takes much less com- 
pile time. 

1. INTRODUCTION.  

This paper is a progress report  on part  of the work 
on an experimental  32-bit  minicomputer that has been 
pursued at the IBM Watson Research Center  for the 
past several years (1). One of the main goals of this 
project  is to attain very high performance by using a 
very simple and regular CPU on a single chip. In the 
current design the CPU contains th i r ty- two 32-bi t  
general-purpose registers. The instruction set consists 
mostly of 3-address register to register operat ions,  
each of which executes in a single machine cycle. 
References to storage are through separate load and 
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store instructions. In order to achieve the high per- 
formance goals of this project,  it is essential to take 
advantag e of the high-speed registers and keep data 
there rather than in storage as much as possible, in 
order to avoid having the very fast CPU waiting for 
the storage subsystem. 

Another  of our principal project  goals is that this 
machine be programmed only in a high-level language, 
which is a P L / I  variant. This version of P L / I  is es- 
sentially a subset of P L / I  which has been chosen be- 
cause programs which remain in the subset are good 
subjects for an optimizing compiler. It was our hope, 
which we believe that we have largely achieved, that 
by systematically utilizing the best  available optimizing 
compiler  technology,  object  code produced by the 
compiler would be competi t ive with hand-coded  as- 
sembly language, and there would no longer be much 
incentive to do programming at the machine language 
level. The simplicity and regularity of the instruction 
set of our experimental  minicomputer not only enables 
its CPU to be simpler, smaller, and faster,  but  it also 
simplifies the design of the compiler for our P L / I  sub- 
set. 

Allen (2) discusses in general terms our approach 
to compiler design, contrasting it with other compiler 
efforts. More specific information on the optimization 
techniques we use is contained in the paper  by Cooke 
and Markstein (3). Our previous paper  on register 
allocation (4) details our approach at that  time. Here 
we shall paint  the picture in broader  brushstrokes,  
emphasizing the improvements which have been made 
since (4). 

2. OVERVIEW OF REGISTER A L L O C A T I O N .  

The register al location phase of the compiler  
stands between the optimization phase and the final 
code assembly and emission phase. When the interme- 
diate or internal language (IL) enters register alloca- 
tion, it is writ ten assuming a hypothetical  target ma- 
chine having an unlimited number  of high-speed 
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general-purpose CPU registers. It is the responsibility 
of the optimization phase to eliminate references to 
storage by keeping data in these registers ,as much as 
possible. It is the responsibility of the register alloca- 
tion phase to map the unlimited number of symbolic 
registers assumed during optimization into the 32 reg- 
isters which are actually present in the CPU. In order 
to do this, it may be necessary to add code to the pro- 
gram to spill computations from registers to storage 
and later reload them. We shall refer to this as spill 
code. 

Register allocation consists of the following main 
parts: usedef chaining plus getting the right number of 
names, building the interference graph, coalescing 
nodes, attempting to find a 32-coloring of the graph, 
and if one cannot be found, modifying the program 
and its graph until a 32-coloring is obtained. We now 
briefly describe each of these steps. 

The first step in processing the program is to use 
well-known optimizing compiler techniques to do a 
global data-flow analysis. We must know which sym- 
bolic registers are live at each point in the IL program. 
This is done by indicating at the beginning of each 
basic block which computations are live going into it, 
and by marking each operand of each instruction in 
the IL to indicate if it goes dead. 

Next the register interference graph is built. It 
contains one node for each symbolic register in the IL. 
Two nodes are adjacent, that is to say, two symbolic 
registers conflict or interfere, if they are ever live si- 
multaneously, more precisely, if one of them is live at 
a definition point of the other. Thus a 32-coloring of 
the interference graph corresponds to a permissible 
register allocation, and if the chromatic number of the 
graph is greater than 32, spill code is necessary. 

After the interference graph is built, unnecessary 
register copy operations are eliminated by coalescing 
or combining the nodes which are the source and tar- 
gets of copy operations. Of course, this can only be 
done if these nodes do not interfere with each other. 
Once two nodes have been coalesced, they must get 
the same color and be allocated to the same register, 
and the copy operation becomes unnecessary. This 
copy-eliminating optimization is known as subsump- 

tion or variable propagation in the optimizing compiler 
literature. 

Next we use the following seemingly trivial obser- 
vation in order to construct a 32-coloring. Assume we 
wish to find a 32-coloring of a graph G having a node 
N of degree less than 32. Then G is 32-eolorable if 
and only if the reduced graph G'  from which N and all 
its edges have been omitted is 32-colorable. So our 
algorithm reduces the interference graph by throwing 

away all nodes of degree less than 32. This often 
cascades until the entire graph is thrown away, that is, 
until the problem of 32-coloring the original graph is 
reduced to that of 32-coloring the empty graph. 
Nodes are then added back on in the inverse order 
that they were removed, and as each node is restored, 
a color is picked for it. Experiments have shown that 
this algorithm produces excellent results. It is easy to 
see that it can be implemented in such a way that its 
running time is linear in the size of the graph; a full 
NP-complete algorithm for obtaining 32-colorings is of 
course out of the question. Note that the coloring 
algorithm fails only if at some point the reduced graph 
G'  only has nodes of degree 32 or greater. 

What can we do if the algorithm is blocked in this 
way? If the above procedure fails to produce a 32- 
coloring, we must add spill code and modify the inter- 
ference graph until a 32-coloring is obtained. In fact 
this is essentially done by the same algorithm used to 
obtain 32-colorings. It is not far from the truth to say 
that the algorithm for obtaining 32-colorings will ei- 
ther do so or will modify the program and its graph 
until it can. If the algorithm is blocked because all 
nodes are of high degree, it will pick a node to delete 
from the graph in order to unbloek things. Deleting 
this node will hopefully produce a cascade of nodes of 
degree less than 32 and enable the coloring algorithm 
to finish or at least to advance a considerable distance 
towards the empty graph. Deleting the node from the 
graph corresponds to making the decision that the 
computation which it represents will be spilled, that is, 
kept in storage rather than in a register. This means 
that each spill decision implies adding code to the IL 
to store a spilled computation at each of its definition 
points and to reload it at each of its use points. 

3. THE INTERFERENCE GRAPH. 

The register interference graph is a large and mas- 
sive data structure, and it is important to represent it' 
in a manner that uses as little storage as possible con- 
sistent with the ability to process it at high speed. We 
use a dual representation: a bit matrix and adjacency 
vectors. 

The bit matrix for an N-node interference graph 
consists of a symmetric matrix of N bits by N bits. 
The bit at row I and column J is a 1 if and only if 
nodes I and J are adjacent. This bit matrix is excellent 
for random access to the interference graph, but it is 
quite sparse, and it is too time consuming to use it for 
sequential access to the graph. Thus it is supplement- 
ed by keeping for each node in the graph a vector 
giving the set of nodes which are adjacent to it. The 
length of this vector is equal to the degree of the node. 
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The algorithm for building the interference graph 
is therefore a two pass algorithm. In the first pass 
over the IL the bit matrix is used to calculate the de- 
gree of each node. Then the N adjacency vectors are 
storage allocated, and a second pass is made over the 
program IL in order to fill in the adjacency vectors. 
We believe that this two-pass approach is much better 
than the one-pass segmented scheme described in (4); 
non-segmented adjacency vectors can be processed 
more simply and quickly. 

4. SUBSUMPTION. 

Our approach to coalescing nodes of the graph in 
order to eliminate unnecessary register copy operations 
is also different from that in (4). As we coalesce 
nodes, we keep the bit matrix current, and chain to- 
gether the interference vectors of nodes which have~ 
been coalesced. We do not attempt to eliminate en- 
tries in the adjacency vectors which have become du- 
plicates due to node coalesces. The resulting interfer- 
ence graph is therefore not suitable for use by the 
coloring algorithm, which deduces the degree of a 
node from the length of its adjacency vector and is 
disturbed by duplicate entries. 

In order to obtain a new interference graph re- 
flecting the coalesces, the program IL is rewritten in 
terms of coalesced symbolic registers, and the two- 
pass interference graph building algorithm is re-run on 
the new and somewhat shorter IL. It may then be 
possible to eliminate register copy operations that 
could not previously be eliminated by performing fur- 
ther node coalesces (see (4)). So we continue build- 
ing the graph and coalescing, until no more desirable 
coalesces are found to be possible and the graph is left 
unspoilt by coalescing. In practice two or three itera- 
tions will do. 

5. SPILLING. 

In the overview we briefly described how spill 
decisions are made from the interference graph. That 
description omitted two very important points: which 
node is chosen to spill when the coloring algorithm is 
blocked, and the fact that the interference graph must 
be rebuilt after spill code is inserted. Let us deal with 
the second point first. 

In order to make spill decisions from the graph, it 
is important to keep the graph and program in step as 
spill decisions are made. However this can only be 
done in an approximate manner. Spilling a computa- 
tion is not the same as eliminating its node from the 
graph, for it is still necessary to reload it at each use 
and to store it away at each definition point. So that 

what actually usually ought to happen is that one node 

corresponding to a globally live computation would 
have to be replaced by several new nodes correspond- 
ing to computations which are only live momentarily. 
However it is too expensive to proceed in this more 
exact manner. 

Thus after all spill decisions are made, it is neces- 
sary to insert spill code in the program IL, rebuild the 
interference graph, and then reattempt to obtain a 
32-coloring. This will usually succeed, but it is some- 
times necessary to loop through this process yet again, 
adding a little more spill code, until a 32-coloring is 
finally obtained. In practice we have not found the 
fact that the process of inserting spill code and re- 
building the interference graph must be iterated until a 
coloring is obtained to be a problem. Convergence is 
usually quite rapid, and the compile time is dominated 
by that required to build the graph the first time - all 
successive graphs are substantially smaller. 

The other point we must address is how to choose 
a node to spill when the coloring algorithm is blocked. 
Obviously one wishes to insert as little spill code as 
possible. More precisely, we attempt to increase the 
execution time of the object program as little as possi- 
ble. In order to estimate execution times, we assume 
that all instructions execute in one machine cycle and 
that each instruction in a loop is executed ten more 
times than it would be if it were outside the loop. 

While making spill decisions, we supplement the 
interference graph with a table which gives for each 
node in the graph an estimate of what it would cost to 
spill it. Then when the coloring algorithm is blocked, 
it decides to spill that node, among those remaining, 
for which the cost of spilling it divided by its current 
degree is as small as possible. 

These cost estimates are made as follows. The 
cost of spilling a node is defined to be the increase in 
execution time if it is spilled, which is approximately 
equal to the number of definition points plus the num- 
ber of uses of that computation, where each definition 
and use is weighted by its estimated execution fre- 
quency. The cost estimates also take into account the 
fact that some computations can be redone instead of 
spilling and reloading them, and that if the source or 
target of a register copy operation is spilled then the 
copy operation is no longer necessary. In fact spilling 
a computation that can be recomputed and which is 
used as the source of a register copy operation can 
have negative cost! 

Finally a somewhat subtle point must be men- 
tioned, which gives some local intelligence to our glob- 
al algorithm. Suppose that there are several uses of a 
spilled computation within a single basic block. Pro- 
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ceeding naively as outlined above, one would reload it 
at each use. However  if no computat ions go dead 
between the first use and the last use, then one might 
as well only insert a load before the first use, and keep 
the computat ion in that register until the last use. 
Similarly, if a computation is local to a basic block, 
and if nothing goes dead between its definition and its 
last use, then spilling the computation cannot help to 
make the program colorable.  We therefore set the 
cost of spilling this node to infinity. This also keeps 
our algorithm from spilling computat ions that have 
already been spilled. 

6. CONCLUSIONS.  

By now thousands of programs have been run 
through the compiler, and it is regularly boots t rapped 
through itself. Based on this experience with it we can 
conclude that these register allocation techniques seem 
to take better  advantage of the speed potential  of us- 
ing registers in preference to storage than previous 
approaches (see (3)). The cost in terms of compile 
time also seems reasonable:  register allocation includ- 
ing spilling now takes an amount of compile time com- 
parable with the more tradit ional optimization algor- 
ithms described in (3). However it must be admitted 
that a fair amount of virtual storage is needed to hold 
the program IL and interference graph in core during 
register allocation. 
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APPENDIX 

The following program written in SETL (see (6)) 
outlines in executable form the main ideas and algor- 
ithms presented in this paper. 

program register allocation; 

var il; $ il is an ordered' sequence of instructions 

$ Each instruction is a triple (opcode,def,use),  
$ where opcode is a character string, 
$ & ' bb  w, 'copy% 'spill  t, and ' r e load '  
$ have special meanings. 
$ Def is a tuple of outputs, each a pair (reg,dead),  where 
$ reg is a symbolic register and dead is a t rue / fa lse  value 
$ indicating whether or not reg goes dead. 
$ Use is a tuple of inputs, each a pair (reg,dead),  where 
$ reg is a symbolic register and dead is a t rue / fa lse  value 
$ indicating whether or not reg goes dead. 

$ Basic block header pseudo-ops:  
$ 'bb' has def for each symbolic register live at entry to the basic block. 
$ ' b b  t has as use the est imated execution frequency of the basic block 
$ (floating point number).  
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var graph;  

var  colors;  
var  cost;  
var spil led; 

$ regis ter  in ter ference  graph = set of edges,  
$ each edge being specif ied by  the set  of its endpoin t s  

$ set of avai lable  colors  (machine  regis ters)  
$ gives es t imated  cost  of spill ing each symbol ic  regis ter  
$ set  of spi l led symbol ic  registers  

read(  il ); 
read(  colors  ); 
if co lo r_ i lO  = f~ then 

e s t ima te_  spill _ costs;  
dec ide_sp i l l s ;  
i n se r t_ sp i l l _code ;  
co lor_ i l ;  

end if; 
pr in t (  il ); 

proc co lor_ i l ;  $ bui ld graph,  coalesce,  & color  
bu i ld_g raph ;  
coa le sce_  nodes;  
color ing :=  c o l o r _ g r a p h (  graph,  regis ters  in i l O  ) ; 
if color ing = f~ then  re turn  ~ ; end if; 
r ewr i t e_ i l (  color ing ); 
re turn(  color ing ); 

end proc  co lor_ i l ;  

p roc  bu i ld_g raph ;  $ bui ld the regis ter  in te r fe rence  graph 
g r a p h : =  { ] ; 
( for  [ opeode ,  def,  use ] ~ il) 

if opcode  = tbb t  then  
l iveness :=  { ] ; 
( f o r [ r e g ,  d e a d ]  e def  I not  dead)  

l iveness( reg)  :=  l iveness( reg)  ? 0 + 1 ; 
end for;  

else 
(for  [ reg, dead  ] E use I dead)  

l i v e n e s s ( r e g ) - : =  1 ; 
if l iveness( reg)  = 0 then  l iveness( reg)  :=  fl ; end if; 

end  for;  
( for  [ reg, dead  ] E def)  

graph + : =  { { reg, x ] 
: x E domain  l iveness I x # reg ] ; 

if not  dead  then  
l iveness( reg)  :=  l iveness( reg)  ? 0 + 1 ; 

end  if; 
end for;  

end if; 
end for;  

end proc  bu i ld_graph ;  
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proc  c o a l e s c e n o d e s ;  $ coalesce  away  copy  opera t ions  
(while 3 [ opcode ,  def,  use ] E il 
I opeode  = 1copy1 

and ( source :=  u s e ( I ) ( 1 )  ) ¢ ( ta rge t  :--  d e f ( 1 ) ( 1 )  ) 
and { source,  ta rge t  } I/ graph)  

f :=  { [ source,  target  ] } ; 
g raph :=  { { f(x)  ? x : x ~ edge } : edge c graph } ; 
r ewr i t e_ i l (  f ); 

end while; 
end proc  c o a l e s c e n o d e s ;  

proc  c o l o r _ g r a p h ( g , n ) ;  $ color  the graph with edges  g & nodes  n 
if n = { } then re turn  { }; end if; 
if not  3 node  E n ] # ne ighbors (node ,g )  < # colors  

then re turn  fl ; end  if; 
color ing :=  c o l o r _ g r a p h (  { edge E g I node  ~ edge }, 

n - [ n o d e } ) ;  
if color ing = f / t h e n  re turn  f~ ; end if; 
co lo r ing(node)  :=  
a rb(  colors  - { co lor ing(x)  : x E ne ighbors (node ,g )  ] ); 
re turn  color ing ; 

end proc  co lo r_ g rap h ;  

proc  e s t ima te_sp i l l _cos t s ;  $ es t imate  cost  of spill ing each  regis ter  
cost  :=  { ] ; 
( for  [ opcode ,  def,  use ] E il) 

if opcode  = Wbbt then 
f requency  :=  u s e ( I ) ( 1 )  ; 

else 
( for  [ reg, - ] E def + use) 

cos t ( reg)  :=  cos t ( reg)  .'? 0 + f requency  ; 
end for;  

end if; 
end  for;  

end proc  e s t ima te_sp i l l _cos t s ;  

proc  d e c i d e s p i l l s ;  $ make  spill decis ions  
g :=  graph;  
n :=  r eg i s t e r s_ in _ i l ( ) ;  
spi l led :=  { }; 
(while n ~ { ])  

if not  ~! node  E n I # ne ighbors (node ,g )  < # colors  then  
node  : = 
arb { x ~ n I cos t (x)  = m i n /  { cos t (y ) :  y ~ n } } ; 
spi l led + : =  { node  } ; 

end if; 
g : =  { e d g e  e g I node  I/ edge ] ; 
n - : =  [ n o d e }  ; 

end while; 
end proc  d e c i d e s p i l l s ;  
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proc  i n se r t_ sp i l l _code ;  $ inser t  spill & re load  ins t ruc t ions  in il 
n e w i l : =  [ ] ;  
( for  [ opcode ,  def ,  use ] E il) 

if opcode  = ' b b '  then  
newil  + : =  [ [ t b b ' ,  
[ [ reg,dead]  E def I reg I/ spi l led],use]];  

else 
before  :=  af ter  :=  newdef  : -  newuse :=  [ ] ; 
( for  [ reg, dead  ] E use) 

if reg E spi l led then  
newuse  + : =  [[ ( n e w r e g : = n e w a t ) ,  t rue ]] ; 
before  +:  = [[ ' r e load ' , [ [newreg , fa l se ] ] , [ ] ] ]  ; 

else 
newuse + : =  [[ reg,  dead  ]] ; 

end if; 
end  for;  
( for  [ reg, dead  ] E def)  

if reg E spil led then  
newdef  + : =  [[ ( n e w r e g : = n e w a t ) ,  false ]] ; 
a f ter  + :=  [ [ ' sp i l l ' , [ ] , [ [newreg , t rue ] ] ] ]  ; 

else 
newdef  + : =  [[ reg, dead  ]] ; 

end if; 
end for;  
newil  + : =  be fore  + [ [opcode ,newdef ,  newuse]]  + af te r  ; 

end  if; 
end for;  
il : =  newil  ; 

end  proc  i n s e r t _ s p i l l _ c o d e ;  

p roc  r ewr i t e_ i l ( f ) ;  $ app ly  func t ion  f to each  regis ter  in il 
iI :=  [[ opcode ,  

[[ f ( reg)  ? reg,  dead  ] : [ reg, dead  ] E def  ], 
[[ f ( reg)  ? reg, dead  ] : [ reg, dead  ] E use ] 

] 
: [ opcode ,  def,  use ] E il ] ; 

end proc  rewr i t e_ i l ;  

p roc  r e g i s t e r s : i n _ i l ;  $ re turns  set  of symbol ic  regis ters  in il 
re turn  
{ reg : [ reg , - ]  E [] + / [  d e f + u s e  : [ - ,de f ,use ]  E il ] 

I ( type  reg) # ' R E A L '  } ; 
end  proc  r eg i s t e r s_ in_ i l ;  

p roc  ne ighbors (x ,g) ;  $ x is node,  g is set  of edges  
r e t u r n { y  E { } + / g  I {x,y} E g }  ; 

end proc  neighbors ;  

end  p rogram reg i s t e r_a l loca t ion ;  
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APPENDIX. The IL. 

The following PL/I  program illustrates the IL used during register allocation. Its chief 
advantage is that it allows algorithms to quickly loop through all the registers in an 
instruction, and that it can be quickly rewritten to reflect register renamings. Also note 
that multiple results are permitted, as well as an unlimited number of input operands. 

register rename: proc(eq); 

dcl 

eq(*) 
X 

i 
il 
proc begin 

fixed bin, /* map from old to new register names */ 
offset(il), /* x points to current instruction */ 
fixed bin, /* i points to current operand */ 
area(*) ctl ext , /*  intermediate language for proe */ 

offset(il) ext, /* offset in il of beginning of proc */ 

1 instruction based(x), 
2 next instruction offset(il), 
2 last instruction offset(il), 
2 source statement fixed bin, 
2 opcode fixed bin, 
2 defs fixed bin, 
2 uses fixed bin, 

/* current instruction in il for proc */ 
/* forward chain */ 

/* backward chain */ 
/* for listings & tracebaeks */ 

/* & pseudo-ops like label definition */ 
/* index of last output operand */ 
/* index of last input operand */ 

2 kills fixed bin, /* index of last operand destroyed */ 
2 operand(i refer(kills)), /* def's, then use's, then kill's */ 

3 register fixed bin(31), /* or integer value or dictionary ref */ 
3 operand type fixed bin, /* see list of types below */ 
3 dead bit, /* operand's value is no longer alive */ 

/* operand types:*/ 
o null fixed bin ext, 
o symreg fixed bin ext, 
o dictref fixed bin ext, 
ohinteger  fixed bin ext; 

/* no operand in this position */ 
/* symbolic register (computation) */ 

/* dictionary reference (storage) */ 
/* immediate value (displacement ete) */ 

do x = proc begin repeat next instruction /* look at each instruction */ 
until( nextminstruction = procmbegin ); 
do i = 1 to kills; /* look at each operand */ 

if operandmtype(i) = o symreg then /* if it is a register, */ 
register(i) = eq(register(i)); /* then rename it */ 

end; 
end; 

end register rename; 
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