
Using the PBP library
The PBP library is written as highly portable, self-
contained, C++ code. All that is needed to use it is
inclusion of the header file with REWAYS set to the
desired maximum entanglement (default 10).

#include “pbp.h”

Sample pint Layer Algorithms
It is easy to compute the square root of an 8-bit
number by exhaustive search. For example,
sqrt(169) will find 13.

void pintsqrt(int val){
 pint a(val); // 8-bit number
 pint b = H(4); // all possible roots
 pint c = (b * b); // square them
 pint d = (c == a); // select answer
 int pos = d.First();
 printf("Square root of %d is %d\n",
 val, pos);
}

A less obvious algorithm factors an 8-bit number.
Here, possible 4-bit factors are assigned different
entanglement channel sets so the multiply produces
an 8-way entangled answer rather than 4-way. For
example, factor(143) will find 11 and 13.

#include “pbp.h”

void pintfactor(int val) {
 pint a(val); // 8-bit number
 pint b = H(4,0x0f); // 4-bit
 pint c = H(4,0xf0); // 4-bit
 pint d = b * c; // multiply 'em
 pint e = (d == a); // which were val?
 pint f = e * b; // zero non-answers
 int spot = f.First(); // factors
 int one = c.Meas(spot);
 int two = b.Meas(spot);
 printf("%d, %d are factors of %d\n",
 one, two, val);
}

As above, algorithms written for PBP tend to use
abilities that quantum computers do not have, most
notably entanglement channel-based operations and
the fact that measurement is not destructive. PBP
also can be used for traditional SIMD computation.

Sample pbit Layer Algorithm
There is little point in directly using the pbit layer for
PBP programs. However, quantum computer
algorithms at the Qubit level can be programmed
using the pbit layer. The following is a 4-bit ripple
carry adder, adding 1 to all 4-bit values, as per
Cuccaro et al, arXiv:quant-ph/0410184v1

void pbitripple() {
 pbit a0(0), a1(0), a2(0), a3(0);
 pbit b0(1), b1(0), b2(0), b3(0);
 pbit z(0), x(0);
 H(a0, 0); // unlike Qubits,
 H(a1, 1); // must specify groups of
 H(a2, 2); // entanglement channels
 H(a3, 3); // for Hadamard gates
 CNOT(a1,b1); CNOT(a2,b2);
 CNOT(a3,b3); CNOT(a1,x);
 CCNOT(a0,b0,x); CNOT(a2,a1);
 CCNOT(x,b1,a1); CNOT(a3,a2);
 CCNOT(a1,b2,a2); CNOT(a3,z);
 CCNOT(a2,b3,z); NOT(b1);
 NOT(b2); CNOT(x,b1);
 CNOT(a1,b2); CNOT(a2,b3);
 CCNOT(a1,b2,a2);
 CCNOT(x,b1,a1);
 CNOT(a3,a2); NOT(b2);
 CCNOT(a0,b0,x); CNOT(a2,a1);
 NOT(b1); CNOT(a1,x);
 CNOT(a0,b0); CNOT(a1,b1);
 CNOT(a2,b2); CNOT(a3,b3);
 SETMEAS(); // pick random channel
 printf("a=%d b=%d\n",
 MEAS(a0)+(MEAS(a1)<<1) +
 (MEAS(a2)<<2)+(MEAS(a3)<<3),
 MEAS(b0)+(MEAS(b1)<<1)+
 (MEAS(b2)<<2)+(MEAS(b3)<<3));
}

PBP References (oldest & FPGA)

H. Dietz, “How Low Can You Go?,” In: Rauchwerger, L. (eds)
Languages and Compilers for Parallel Computing. LCPC 2017.
Lecture Notes in Computer Science(), vol 11403. Springer.
10.1007/978-3-030-35225-7_8

H. Dietz, P. Eberhart and A. Rule, “Basic Operations And
Structure Of An FPGA Accelerator For Parallel Bit Pattern
Computation,” 2021 International Conference on Rebooting
Computing (ICRC), 2021, pp. 129-133.
10.1109/ICRC53822.2021.00029

Parallel Bit Pattern Computing

C++ Library version 251114

http://aggregate.org/PBP

Professor Henry (Hank) Dietz
Electrical and Computer Engineering Department
University of Kentucky
Lexington, KY 40506-0046
hankd@engr.uky.edu

Parallel bit pattern computing is a quantum-inspired
model of computation. Superposition and n-way
entanglement are modeled by each pbit (pattern
bit) having an ordered set of 2n single-bit values.
Each position in the ordered set is an entanglement
channel. E.g., the 2-way entangled pbit values
{0,1,1,1} and {0,1,0,1} could represent {0,3,2,3}, with
probabilities of 25% 0, 25% 1, and 50% 3. These
ordered bit sets are not directly stored, but encode as
compressed patterns, with duplicate sub-patterns
factored. Applicative caching avoids recomputation
of sub-pattern operations. Overall, PBP can
exponentially reduce both memory footprint and total
number of gate-level operations.

Unlike quantum systems, users are encouraged to
program parallel bit pattern computations at a
relatively high level. This CC BY 4.0 C++ library
provides automatically-managed pattern bits (pbit)
and variable-precision integer (pint) layers.
Compiler optimizations are applied dynamically at
runtime to further simplify the bit-level operations.

mailto:hankd@engr.uky.edu

pint Layer
A pattern integer, or pint, is an array of 1-32 pbit
treated as a signed/unsigned integer. The precision
and signedness of pint are variable at runtime, so
that the minimum possible number of bits are active.

The usual C/C++ operators work as expected on
pint values. Simple assignments between int and
pint convert; other conversions must be explicit.

∘ pint(), pint(v), pint(v,p)
Create a pint initialized to an integer value:
NaN, the int value v, or v with precision p

∘ H(w), H(w,m)
Create a pint Hadamard pattern w ways
entangled using entanglement channels specified
by mask m

∘ p.Valid()
True iff pint p has a valid value (is not NaN)

∘ p.Minimize()
Create value of p with fewest pbit possible

∘ p.Extend(b)
Create value of p with b pbit precision

∘ p.Promote(q)
Create value of p with minimum pbit precision
that covers both p and q values and signedness

∘ p.Logic()
Create pint with single pbit logic value of p

∘ p.Rot(e)
Create value of p rotated by e entanglement
channels (a simple phase shift)

∘ p.Reset(e), p.Set(e)
Create value of p with entanglement channel e
reset or set

∘ p.Dom(e)
Create value of p with bits dominoed (inverted)
from entanglement channel e downward

∘ p.Meas(e), p.Meas(), i=p
Create int value of p from entanglement
channel e or a random sample

∘ p.First()
Create int value of first entanglement channel in
p that holds a 1; returns 2ways if none

∘ p.Ones()
Create int value number of entanglement
channels in p that holds a 1

∘ p.Min(q), p.Max(q)
Create pint with minimum/maximum value from
p or q for each entanglement channel

∘ p.Abs()
Create pint with absolute value of p

∘ p.Signed(), p.UnSigned()
Create pint forcing signed/unsigned
interpretation of the pbits in p

∘ p.Mul(q), p.Mul(q,b)
Create pint product of p and q, but limit
result precision to b pbits to save effort

∘ p.Any(), p.All()
Create int value that is 1 iff any/all
entanglement channels in p are non-zero

∘ p.Summary(), p.Show()
Print debugging info for pint p value: either
pbit summary or complete bit patterns

pbit Layer
A pattern bit, or pbit, is logically a vector of 2ways

bits, but is generally stored and operated upon in a
heavily compressed form – a 32-way entangled
pbit can take as little as 16 bits of storage space. A
pbit is similar to a Qubit in a quantum computer,
but pbit values are automatically allocated,
maintain their value forever, and allow arbitrary fan-
out; thus, they are not restricted to reversible gate
operations. The basic operations include:

∘ pbit(), pbit(v)
Create a pbit initialized to NaN or pbit
register v: 0 is 0, 1 is 1, 2 is H0, 3 is H1, etc.

∘ p.Valid()
True iff pbit p has a valid value (is not NaN)

∘ p.And(q), p.Or(q), p.Xor(q), p.Not()
Bitwise AND, OR, XOR, and NOT

∘ p.Rot(e), p.Flip(a)
Phase operators; p rotated by e entanglement
channels or dimensionally flipped on a

∘ p.Reset(e), p.Set(e), p.Tog(e)
Create value of p with entanglement channel e
reset, set, or toggled

∘ p.Dom(e)
Create value of p with bits dominoed (inverted)
from entanglement channel e downward

∘ p.Meas(e), p.Meas()
Create int 0/1 value of p from entanglement
channel e or a random sample

∘ p.First()
Create int value of first entanglement channel in
p that holds a 1; returns 2ways if none

∘ p.Ones()
Create int value number of entanglement
channels in p that holds a 1

∘ p.Any(), p.All()
Create pbit value that is 1 iff any/all
entanglement channels in p are non-zero

∘ p.Show()
Print debugging info for pbit p value: complete
bit patterns

The following pbit operations are provided solely for
porting Qubit-level quantum algorithms:

∘ NOT(q)
Pauli X gate; replaces q with ~q

∘ CNOT(c,t)
Controlled not gate; where c, replaces t with ~t

∘ CCNOT(a,b,c)
Toffoli gate; where a and b, replaces c with ~c

∘ SWAP(i0,i1)
Swap values of i0 and i1

∘ CSWAP(c,i0,i1)
Fredkin gate; where c, swap i0 and i1

∘ H(q,c)
Hadamard gate; replaces q with q ^ Hadamard
entanglement pattern c

∘ SETMEAS() and SETMEAS(m)
Set measurement of rand() channel or m

∘ MEAS(q)
Measure and collapse state of q, returns 0/1

RE, AC, and AoB Layers
The Regular Expression, Applicative Caching, and
Array-of-Bits layers are not described here; they are
considered internal, and my be changed without
notice. Although the pint and pbit layers
dramatically reduce gate-level operations per
computation, these lower layers provide up to
exponential reduction in both gate operations and in
storage requirements. Performance of these layers
can be summarized by calling re.Stats().

