
AMD Athlon™ Processor

x86 Code Optimization Guide

Publication No. Revision Date

22007 K February 2002

Trademarks

AMD, the AMD Arrow logo, AMD Athlon, and combinations thereof, 3DNow!, AMD-751, and Super7 are trade-
marks, and AMD-K6 and AMD-K6-2 are registered trademarks of Advanced Micro Devices, Inc.

Microsoft, Windows, and Windows NT are registered trademarks of Microsoft Corporation.

MMX is a trademark and Pentium is a registered trademark of Intel Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of
their respective companies.

© 2001, 2002 Advanced Micro Devices, Inc. All rights reserved.

The contents of this document are provided in connection with Advanced
Micro Devices, Inc. (“AMD”) products. AMD makes no representations or war-
ranties with respect to the accuracy or completeness of the contents of this
publication and reserves the right to make changes to specifications and prod-
uct descriptions at any time without notice. No license, whether express,
implied, arising by estoppel or otherwise, to any intellectual property rights is
granted by this publication. Except as set forth in AMD’s Standard Terms and
Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any
express or implied warranty, relating to its products including, but not limited
to, the implied warranty of merchantability, fitness for a particular purpose,
or infringement of any intellectual property right.

AMD’s products are not designed, intended, authorized or warranted for use
as components in systems intended for surgical implant into the body, or in
other applications intended to support or sustain life, or in any other applica-
tion in which the failure of AMD’s product could create a situation where per-
sonal injury, death, or severe property or environmental damage may occur.
AMD reserves the right to discontinue or make changes to its products at any
time without notice.

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide

Contents

List of Figures .xiii

List of Tables . xv

Revision History . xvii

Chapter 1 Introduction . 1

About This Document . 1

AMD Athlon™ Processor Family. 3

AMD Athlon Processor Microarchitecture Summary 4

Chapter 2 Top Optimizations. 7

Optimization Star . 8

Group I Optimizations—Essential Optimizations 8

Memory-Size and Alignment Issues . 8

Use the 3DNow!™ Prefetching Instructions. 9

Select DirectPath Over VectorPath Instructions. 10

Group II Optimizations—Secondary Optimizations. 10

Load-Execute Instruction Usage . 10

Take Advantage of Write Combining . 12

Optimizing Main Memory Performance for Large Arrays 12

Use 3DNow! Instructions . 13

Recognize 3DNow! Professional Instructions. 14

Avoid Branches Dependent on Random Data 14

Avoid Placing Code and Data in the Same 64-Byte Cache Line. . . . 15
Table of Contents iii

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002

Chapter 3 C Source-Level Optimizations. .17

Ensure Floating-Point Variables and Expressions are of
Type Float . 17

Use 32-Bit Data Types for Integer Code . 17

Consider the Sign of Integer Operands . 18

Use Array-Style Instead of Pointer-Style Code 20

Completely Unroll Small Loops. 22

Avoid Unnecessary Store-to-Load Dependencies 23

Always Match the Size of Stores and Loads . 24

Consider Expression Order in Compound Branch Conditions 27

Switch Statement Usage. 28

Use Prototypes for All Functions . 29

Use Const Type Qualifier . 29

Generic Loop Hoisting . 30

Declare Local Functions as Static . 32

Dynamic Memory Allocation Consideration 33

Introduce Explicit Parallelism into Code . 33

Explicitly Extract Common Subexpressions 35

C Language Structure Component Considerations 36

Sort Local Variables According to Base Type Size 37

Accelerating Floating-Point Divides and Square Roots 38

Fast Floating-Point-to-Integer Conversion . 40

Speeding Up Branches Based on Comparisons Between Floats. . . . 42

Avoid Unnecessary Integer Division. 44

Copy Frequently Dereferenced Pointer Arguments to
Local Variables . 44

Use Block Prefetch Optimizations. 46
iv Table of Contents

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide

Chapter 4 Instruction Decoding Optimizations. 49

Overview . 49

Select DirectPath Over VectorPath Instructions. 50

Load-Execute Instruction Usage . 50

Use Load-Execute Integer Instructions . 50

Use Load-Execute Floating-Point Instructions with Floating-Point
Operands . 51

Avoid Load-Execute Floating-Point Instructions with Integer
Operands . 51

Use Read-Modify-Write Instructions Where Appropriate 52

Align Branch Targets in Program Hot Spots 54

Use 32-Bit LEA Rather than 16-Bit LEA Instruction. 54

Use Short Instruction Encodings. 54

Avoid Partial-Register Reads and Writes. 55

Use LEAVE Instruction for Function Epilogue Code 56

Replace Certain SHLD Instructions with Alternative Code. 57

Use 8-Bit Sign-Extended Immediates . 57

Use 8-Bit Sign-Extended Displacements. 58

Code Padding Using Neutral Code Fillers . 58

Recommendations for AMD-K6® Family and AMD Athlon Processor
Blended Code. 59
Table of Contents v

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002

Chapter 5 Cache and Memory Optimizations . 63

Memory Size and Alignment Issues . 63

Avoid Memory-Size Mismatches . 63

Align Data Where Possible . 65

Optimizing Main Memory Performance for Large Arrays 66

Memory Copy Optimization . 67

Array Addition . 74

Summary . 78

Use the PREFETCH 3DNow!™ Instruction . 79

Determining Prefetch Distance . 83

Take Advantage of Write Combining . 85

Avoid Placing Code and Data in the Same 64-Byte Cache Line. . . . 85

Multiprocessor Considerations . 86

Store-to-Load Forwarding Restrictions. 86

Store-to-Load Forwarding Pitfalls—True Dependencies 87

Summary of Store-to-Load Forwarding Pitfalls to Avoid 90

Stack Alignment Considerations . 90

Align TBYTE Variables on Quadword Aligned Addresses. 91

C Language Structure Component Considerations 91

Sort Variables According to Base Type Size 92
vi Table of Contents

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide

Chapter 6 Branch Optimizations . 93

Avoid Branches Dependent on Random Data 93

AMD Athlon Processor Specific Code. 94

Blended AMD-K6 and AMD Athlon Processor Code 94

Always Pair CALL and RETURN . 96

Recursive Functions . 97

Replace Branches with Computation in 3DNow! Code 98

Muxing Constructs . 98

Sample Code Translated into 3DNow! Code 100

Avoid the Loop Instruction . 104

Avoid Far Control Transfer Instructions . 104

Chapter 7 Scheduling Optimizations .105

Schedule Instructions According to their Latency 105

Unrolling Loops. 106

Complete Loop Unrolling. 106

Partial Loop Unrolling . 106

Use Function Inlining . 109

Overview . 109

Always Inline Functions if Called from One Site 110

Always Inline Functions with Fewer than 25 Machine
Instructions . 110

Avoid Address Generation Interlocks. 110

Use MOVZX and MOVSX . 111

Minimize Pointer Arithmetic in Loops . 112

Push Memory Data Carefully. 114
Table of Contents vii

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002

Chapter 8 Integer Optimizations. 115

Replace Divides with Multiplies . 115

Multiplication by Reciprocal (Division) Utility 116

Unsigned Division by Multiplication of Constant 116

Signed Division by Multiplication of Constant 118

Consider Alternative Code When Multiplying by a Constant 120

Use MMX™ Instructions for Integer-Only Work 123

Repeated String Instruction Usage. 123

Latency of Repeated String Instructions . 123

Guidelines for Repeated String Instructions 124

Use XOR Instruction to Clear Integer Registers 125

Efficient 64-Bit Integer Arithmetic . 125

Efficient Implementation of Population Count Function. 136

Efficient Binary-to-ASCII Decimal Conversion 139

Derivation of Multiplier Used for Integer Division by Constants . 144

Derivation of Algorithm, Multiplier, and Shift Factor for Unsigned
Integer Division. 144

Derivation of Algorithm, Multiplier, and Shift Factor for Signed
Integer Division. 148
viii Table of Contents

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide

Chapter 9 Floating-Point Optimizations . 151

Ensure All FPU Data is Aligned . 151

Use Multiplies Rather than Divides . 151

Use FFREEP Macro to Pop One Register from the FPU Stack . . . 152

Floating-Point Compare Instructions . 153

Use the FXCH Instruction Rather than FST/FLD Pairs 153

Avoid Using Extended-Precision Data . 154

Minimize Floating-Point-to-Integer Conversions 154

Check Argument Range of Trigonometric Instructions Efficiently 157

Take Advantage of the FSINCOS Instruction 159

Chapter 10 3DNow!™ and MMX™ Optimizations . 161

Use 3DNow! Instructions . 161

Use FEMMS Instruction . 162

Use 3DNow! Instructions for Fast Division 162

Optimized 14-Bit Precision Divide . 162

Optimized Full 24-Bit Precision Divide. 163

Pipelined Pair of 24-Bit Precision Divides . 163

Newton-Raphson Reciprocal . 164

Use 3DNow! Instructions for Fast Square Root and Reciprocal Square
Root . 165

Optimized 15-Bit Precision Square Root . 165

Optimized 24-Bit Precision Square Root . 165

Newton-Raphson Reciprocal Square Root . 166

Use MMX PMADDWD Instruction to Perform Two 32-Bit Multiplies in
Parallel . 167

Use PMULHUW to Compute Upper Half of Unsigned Products. . 167

3DNow! and MMX Intra-Operand Swapping 169

Fast Conversion of Signed Words to Floating-Point 170
Table of Contents ix

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002

Width of Memory Access Differs Between PUNPCKL* and
PUNPCKH* . 171

Use MMX PXOR to Negate 3DNow! Data . 172

Use MMX PCMP Instead of 3DNow! PFCMP. 173

Use MMX Instructions for Block Copies and Block Fills 174

Efficient 64-Bit Population Count Using MMX Instructions 184

Use MMX PXOR to Clear All Bits in an MMX Register 185

Use MMX PCMPEQD to Set All Bits in an MMX Register. 186

Use MMX PAND to Find Floating-Point Absolute Value in 3DNow!
Code . 186

Integer Absolute Value Computation Using MMX Instructions . . 186

Optimized Matrix Multiplication. 187

Efficient 3D-Clipping Code Computation Using 3DNow!
Instructions . 190

Efficiently Determining Similarity Between RGBA Pixels 192

Use 3DNow! PAVGUSB for MPEG-2 Motion Compensation 195

Efficient Implementation of floor() Using 3DNow! Instructions . . 197

Stream of Packed Unsigned Bytes . 198

Complex Number Arithmetic. 199

Chapter 11 General x86 Optimization Guidelines .201

Short Forms . 201

Dependencies . 202

Register Operands . 202

Stack Allocation . 202
x Table of Contents

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide

Appendix A AMD Athlon™ Processor Microarchitecture 203

Introduction . 203

AMD Athlon Processor Microarchitecture . 204

Superscalar Processor. 204

Instruction Cache . 205

Predecode . 206

Branch Prediction . 206

Early Decoding . 207

Instruction Control Unit. 208

Data Cache. 208

Integer Scheduler . 209

Integer Execution Unit. 209

Floating-Point Scheduler . 210

Floating-Point Execution Unit. 211

Load-Store Unit (LSU) . 212

L2 Cache. 213

Write Combining . 213

AMD Athlon System Bus . 214

Appendix B Pipeline and Execution Unit Resources Overview 215

Fetch and Decode Pipeline Stages . 215

Integer Pipeline Stages . 218

Floating-Point Pipeline Stages . 220

Execution Unit Resources . 222

Terminology. 222

Integer Pipeline Operations. 223

Floating-Point Pipeline Operations. 224

Load/Store Pipeline Operations . 225

Code Sample Analysis . 226
Table of Contents xi

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002

Appendix C Implementation of Write Combining . 229

Introduction . 229

Write-Combining Definitions and Abbreviations 230

What is Write Combining? . 230

Programming Details . 230

Write-Combining Operations . 231

Sending Write-Buffer Data to the System . 233

Appendix D Performance-Monitoring Counters . 235

Overview . 235

Performance Counter Usage . 236

PerfEvtSel[3:0] MSRs (MSR Addresses C001_0000h–C001_0003h) . .
236

PerfCtr[3:0] MSRs (MSR Addresses C001_0004h–C001_0007h) . . 240

Appendix E Programming the MTRR and PAT. 243

Introduction . 243

Memory Type Range Register (MTRR) Mechanism 243

Page Attribute Table (PAT). 249

Appendix F Instruction Dispatch and Execution Resources/Timing 259

Index . 305
xii Table of Contents

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide

List of Figures

Figure 1. AMD Athlon™ Processor Block Diagram 205

Figure 2. Integer Execution Pipeline . 209

Figure 3. Floating-Point Unit Block Diagram . 211

Figure 4. Load/Store Unit . 212

Figure 5. Fetch/Scan/Align/Decode Pipeline Hardware 216

Figure 6. Fetch/Scan/Align/Decode Pipeline Stages 216

Figure 7. Integer Execution Pipeline . 218

Figure 8. Integer Pipeline Stages . 218

Figure 9. Floating-Point Unit Block Diagram . 220

Figure 10. Floating-Point Pipeline Stages . 220

Figure 11. PerfEvtSel[3:0] Registers . 237

Figure 12. MTRR Mapping of Physical Memory . 245

Figure 13. MTRR Capability Register Format . 246

Figure 14. MTRR Default Type Register Format 247

Figure 15. Page Attribute Table (MSR 277h) . 249

Figure 16. MTRRphysBasen Register Format . 255

Figure 17. MTRRphysMaskn Register Format . 256
List of Figures xiii

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002

xiv List of Figures

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide

List of Tables

Table 1. Latency of Repeated String Instructions 123

Table 2. Integer Pipeline Operation Types. 223

Table 3. Integer Decode Types. 223

Table 4. Floating-Point Pipeline Operation Types 224

Table 5. Floating-Point Decode Types. 224

Table 6. Load/Store Unit Stages . 225

Table 7. Sample 1—Integer Register Operations 227

Table 8. Sample 2—Integer Register and Memory Load Operations . 228

Table 9. Write Combining Completion Events. 232

Table 10. AMD Athlon™ System Bus Command Generation Rules. . . . 233

Table 11. Performance-Monitoring Counters . 238

Table 12. Memory Type Encodings . 246

Table 13. Standard MTRR Types and Properties 248

Table 14. PATi 3-Bit Encodings . 250

Table 15. Effective Memory Type Based on PAT and MTRRs 251

Table 16. Final Output Memory Types . 252

Table 17. MTRR Fixed Range Register Format. 254

Table 18. MTRR-Related Model-Specific Register (MSR) Map. 257

Table 19. Integer Instructions . 261

Table 20. MMX™ Instructions . 287

Table 21. MMX™ Extensions. 291

Table 22. Floating-Point Instructions . 292

Table 23. 3DNow!™ Instructions . 298

Table 24. 3DNow!™ Extensions . 300

Table 25. Instructions Introduced with 3DNow!™ Professional. 301
List of Tables xv

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002

xvi List of Tables

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Revision History

Date Rev Description

Feb.
2002 K

Corrected the code sequences labeled “by 13” and “by 21” in “Consider Alternative Code When Multi-
plying by a Constant” on page 120.

Removed the outdated references to Appendix G.
Removed the blank pages at the end of Chapter 10, “3DNow!™ and MMX™ Optimizations.”

July
2001

J

Replaced memcpy example for arrays in “AMD Athlon™ Processor-Specific Code” on page 178.
Revised “PerfCtr[3:0] MSRs (MSR Addresses C001_0004h–C001_0007h)” on page 240.
Added Table 25, “Instructions Introduced with 3DNow!™ Professional,” on page 301.
Updated the wording regarding the L2 cache in “L2 Cache” on page 213.
Added block copy/prefetch to “Optimizing Main Memory Performance for Large Arrays” on page 66.
Removed Appendix G.

Sept.
2000 I Corrected Example 1 under “Muxing Constructs” on page 98.

June
2000 H Added Appendix D, “Performance-Monitoring Counters.”

April
2000 G

Added more details to the optimizations in Chapter 2, “Top Optimizations.”
Further clarified the information in “Use Array-Style Instead of Pointer-Style Code” on page 20.

Added the optimization, “Always Match the Size of Stores and Loads” on page 24.
Added the optimization, “Fast Floating-Point-to-Integer Conversion” on page 40.
Added the optimization, “Speeding Up Branches Based on Comparisons Between Floats” on page 42.
Added the optimization, “Use Read-Modify-Write Instructions Where Appropriate” on page 52.

Further clarified the information in “Align Branch Targets in Program Hot Spots” on page 54.

Added the optimization, “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.

Added the optimization, “Use LEAVE Instruction for Function Epilogue Code” on page 56.

Added more examples to “Memory Size and Alignment Issues” on page 63.

Further clarified the information in “Use the PREFETCH 3DNow!™ Instruction” on page 79.

Further clarified the information in “Store-to-Load Forwarding Restrictions” on page 86.

Changed epilogue code in Example 1 of “Stack Alignment Considerations” on page 90.

Added Example 8 to “Avoid Branches Dependent on Random Data” on page 93.

Fixed comments in examples 1 and 2 of “Unsigned Division by Multiplication of Constant” on page 116.

Revised code in “Algorithm: Divisors 1 <= d <231, Odd d” page 116 and “Algorithm: Divisors 2 <= d <231“

on page 118.

Added more examples to “Efficient 64-Bit Integer Arithmetic” on page 125.

Fixed typo in the integer example and added an MMX version in “Efficient Implementation of Popula-
tion Count Function” on page 136.

Added the optimization, “Efficient Binary-to-ASCII Decimal Conversion” on page 139.
Revision History xvii

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
April
2000

G
cont.

Updated the code in “Derivation of Multiplier Used for Integer Division by Constants” on page 144 and
in the AMD Software Development Kit (SDK).

Further clarified the information in “Use FFREEP Macro to Pop One Register from the FPU Stack” on
page 152.

Corrected Example 1 in “Minimize Floating-Point-to-Integer Conversions” on page 154.

Added the optimization, “Use PMULHUW to Compute Upper Half of Unsigned Products” on page 167.

Added “Width of Memory Access Differs Between PUNPCKL* and PUNPCKH*” on page 171.
Rewrote “Use MMX™ Instructions for Block Copies and Block Fills” on page 174.

Added the optimization, “Integer Absolute Value Computation Using MMX™ Instructions” on page 186.

Added the optimization, “Efficient 64-Bit Population Count Using MMX™ Instructions” on page 184.

Added the optimization, “Efficiently Determining Similarity Between RGBA Pixels” on page 192.

Added the optimization, “Efficient Implementation of floor() Using 3DNow!™ Instructions” on page 197.

Corrected the instruction mnemonics for AAM, AAD, BOUND, FDIVP, FMULP, FDUBP, DIV, IDIV, IMUL,
MUL, and TEST in “Instruction Dispatch and Execution Resources/Timing” on page 259 and in “Direct-
Path versus VectorPath Instructions” on page 301.

Nov.
1999 E

Added “About This Document” on page 1.

Further clarified the information in “Consider the Sign of Integer Operands” on page 18.

Added the optimization, “Use Array-Style Instead of Pointer-Style Code” on page 20.

Added the optimization, “Accelerating Floating-Point Divides and Square Roots” on page 38.

Clarified the examples in “Copy Frequently Dereferenced Pointer Arguments to Local Variables” on
page 44.

Further clarified the information in “Select DirectPath Over VectorPath Instructions” on page 50.

Further clarified the information in “Align Branch Targets in Program Hot Spots” on page 54.

Further clarified the use of the REP instruction as filler in “Code Padding Using Neutral Code Fillers” on
page 58.

Further clarified the information in “Use the PREFETCH 3DNow!™ Instruction” on page 79.

Modified examples 1 and 2 of “Unsigned Division by Multiplication of Constant” on page 116.

Added the optimization, “Efficient Implementation of Population Count Function” on page 136.

Further clarified the information in “Use FFREEP Macro to Pop One Register from the FPU Stack” on
page 152.

Further clarified the information in “Minimize Floating-Point-to-Integer Conversions” on page 154.

Date Rev Description
xviii Revision History

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Nov.
1999

E
cont.

Added the optimization, “Check Argument Range of Trigonometric Instructions Efficiently” on page 157.

Added the optimization, “Take Advantage of the FSINCOS Instruction” on page 159.

Further clarified the information in “Use 3DNow!™ Instructions for Fast Division” on page 162.

Further clarified the information in “Use FEMMS Instruction” on page 162.

Further clarified the information in “Use 3DNow!™ Instructions for Fast Square Root and Reciprocal
Square Root” on page 165.

Clarified “3DNow!™ and MMX™ Intra-Operand Swapping” on page 169.

Corrected PCMPGT information in “Use MMX™ PCMP Instead of 3DNow!™ PFCMP” on page 173.

Added the optimization, “Use MMX™ Instructions for Block Copies and Block Fills” on page 174.

Modified the rule for “Use MMX™ PXOR to Clear All Bits in an MMX Register” on page 185.

Oct.
1999

D

Modified the rule in “Use MMX™ PCMPEQD to Set All Bits in an MMX Register” on page 186.

Added the optimization, “Optimized Matrix Multiplication” on page 187.

Added the optimization, “Efficient 3D-Clipping Code Computation Using 3DNow!™ Instructions” on
page 190.

Added the optimization, “Complex Number Arithmetic” on page 199.

Added Appendix E, “Programming the MTRR and PAT.”

Rearranged the appendixes.

Added index.

Date Rev Description
Revision History xix

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
xx Revision History

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
1
Introduction
The AMD Athlon™ processor is the newest microprocessor in
the AMD K86 family of microprocessors. The advances in the
AMD Athlon processor take superscalar operation and out-of-
order execution to a new level. The AMD Athlon processor has
been designed to efficiently execute code written for previous-
generation x86 processors. However, to enable the fastest code
execution with the AMD Athlon processor, programmers should
write software that includes specific code optimization
techniques.

About This Document

This document contains information to assist programmers in
creating optimized code for the AMD Athlon processor. In
addition to compiler and assembler designers, this document
has been targeted to C and assembly-language programmers
writing execution-sensitive code sequences.

This document assumes that the reader possesses in-depth
knowledge of the x86 instruction set, the x86 architecture
(registers and programming modes), and the IBM PC-AT
platform.

This guide has been written specifically for the AMD Athlon
processor, but it includes considerations for previous-
Chapter 1 Introduction 1

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
generation processors and describes how those optimizations
are applicable to the AMD Athlon processor. This guide covers
the following topics:

Section Topic Description

Chapter 1 Introduction
Outlines the material covered in
this document. Summarizes the
AMD Athlon™ microarchitecture.

Chapter 2 Top Optimizations

Provides convenient descriptions
of the most important optimiza-
tions a programmer should take
into consideration.

Chapter 3 C Source-Level Optimizations
Describes optimizations that
C/C++ programmers can imple-
ment.

Chapter 4 Instruction Decoding Optimizations

Describes methods that will make
the most efficient use of the three
sophisticated instruction decod-
ers in the AMD Athlon processor.

Chapter 5 Cache and Memory Optimizations

Describes optimizations that
make efficient use of the large L1
and L2 caches and high-band-
width buses of the AMD Athlon
processor.

Chapter 6 Branch Optimizations
Describes optimizations that
improve branch prediction and
minimize branch penalties.

Chapter 7 Scheduling Optimizations

Describes optimizations that
improve code scheduling for effi-
cient execution resource utiliza-
tion.

Chapter 8 Integer Optimizations

Describes optimizations that
improve integer arithmetic and
make efficient use of the integer
execution units in the
AMD Athlon processor.

Chapter 9 Floating-Point Optimizations

Describes optimizations that
make maximum use of the super-
scalar and pipelined floating-
point unit (FPU) of the
AMD Athlon processor.
2 Introduction Chapter 1

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
AMD Athlon™ Processor Family

The AMD Athlon processor family uses state-of-the-art
decoupled decode/execution design techniques to deliver next-
generat ion performance wi th x86 binary sof tware
compatibility. This next-generation processor family advances
x86 code execution by using flexible instruction predecoding,
wide and balanced decoders, aggressive out-of-order execution,
parallel integer execution pipelines, parallel floating-point
execution pipelines, deep pipelined execution for higher
delivered operating frequency, dedicated cache memory, and a
new high-performance double-rate 64-bit local bus.

As an x86 binary-compatible processor, the AMD Athlon
processor implements the industry-standard x86 instruction set

Chapter 10 3DNow!™ and MMX™ Optimizations
Describes code optimization
guidelines for 3DNow!, MMX, and
Enhanced 3DNow!/MMX.

Chapter 11 General x86 Optimization Guidelines
Lists generic optimization tech-
niques applicable to x86 proces-
sors.

Appendix A
AMD Athlon™ Processor Microarchi-
tecture

Describes in detail the microar-
chitecture of the AMD Athlon
processor.

Appendix B Pipeline and Execution Unit
Resources Overview

Describes in detail the execution
unit and its relation to the instruc-
tion pipeline.

Appendix C Implementation of Write Combining
Describes the algorithm used by
the AMD Athlon processor to
write-combine.

Appendix D Performance-Monitoring Counters
Describes the usage of the perfor-
mance counters available in the
AMD Athlon processor.

Appendix E Programming the MTRR and PAT

Describes the steps needed to
program the Memory Type Range
Registers and the Page Attribute
Table.

Appendix F
Instruction Dispatch and Execution
Resources/Timing

Lists the instruction execution
resource usage and its latency.

Section Topic Description
Chapter 1 Introduction 3

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
by decoding and executing the x86 instructions using a
proprietary microarchitecture. This microarchitecture allows
the delivery of maximum performance when running x86-based
PC software.

AMD Athlon™ Processor Microarchitecture Summary

The AMD Athlon processor brings superscalar performance
and high operating frequencies to computer systems running
industry-standard x86 software. A brief summary of the next-
generation design features implemented in the AMD Athlon
processor is as follows:

■ High-speed double-rate local-bus interface

■ Large, split 128-Kbyte level-one (L1) cache

■ External level-two (L2) cache on Models 1 and 2

■ On-die L2 cache on Models 3, 4, and 6

■ Dedicated level-two (L2) cache

■ Instruction predecode and branch detection during cache-
line fills

■ Decoupled decode/execution core

■ Three-way x86 instruction decoding

■ Dynamic scheduling and speculative execution

■ Three-way integer execution

■ Three-way address generation

■ Three-way floating-point execution

■ 3DNow!™ technology and MMX™ single-instruction multi-
ple-data (SIMD) instruction extensions

■ Super data forwarding

■ Deep out-of-order integer and floating-point execution

■ Register renaming

■ Dynamic branch prediction

The AMD Athlon processor communicates through a next-
generation high-speed local bus that is beyond the current
Socket 7 or Super7™ bus standard. The local bus can transfer
data at twice the rate of the bus operating frequency by using
both the r i s ing and fa l l ing edges of the c lock (see
4 Introduction Chapter 1

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
“AMD Athlon™ System Bus” on page 214 for more
information).

To reduce on-chip cache-miss penalties and to avoid subsequent
data-load or instruction-fetch stalls, the AMD Athlon processor
has a dedicated high-speed L2 cache. The large 128-Kbyte L1
on-chip cache and the L2 cache allow the AMD Athlon
execution core to achieve and sustain maximum performance.

As a decoupled decode/execution processor, the AMD Athlon
processor makes use of a proprietary microarchitecture, which
defines the heart of the AMD Athlon processor. With the
inclusion of all these features, the AMD Athlon processor is
capable of decoding, issuing, executing, and retiring multiple
x86 instructions per cycle, resulting in superior scalable
performance.

The AMD Athlon processor includes both the industry-standard
MMX SIMD integer instructions and the 3DNow! SIMD
floating-point instructions that were first introduced in the
AMD-K6®-2 processor. The design of 3DNow! technology is
based on suggestions from leading graphics vendors and
independent software vendors (ISVs). Using SIMD format, the
AMD Athlon processor can generate up to four 32-bit, single-
precision floating-point results per clock cycle.

The 3DNow! execution units allow for high-performance
floating-point vector operations, which can replace x87
instructions and enhance the performance of 3D graphics and
other floating-point-intensive applications. Because the
3DNow! architecture uses the same registers as the MMX
instructions, switching between MMX and 3DNow! has no
penalty.

The AMD Athlon processor designers took another innovative
step by carefully integrating the traditional x87 floating-point,
MMX, and 3DNow! execution units into one operational engine.
With the introduction of the AMD Athlon processor, the
switching overhead between x87, MMX, and 3DNow!
technology is virtually eliminated. The AMD Athlon processor
combined with 3DNow! technology brings a better multimedia
experience to mainstream PC users while maintaining
backward compatibility with all existing x86 software.
Chapter 1 Introduction 5

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Although the AMD Athlon processor can extract code
parallelism on-the-fly from off-the-shelf, commercially available
x86 software, specific code optimization for the AMD Athlon
processor can result in even higher delivered performance. This
document describes the proprietary microarchitecture in the
AMD Athlon processor and makes recommendations for
optimizing execution of x86 software on the processor.

The coding techniques for achieving peak performance on the
AMD Athlon processor include, but are not limited to, those for
the AMD-K6®, AMD-K6-2, Pentium®, Pentium Pro, and Pentium
II processors. However, many of these optimizations are not
necessary for the AMD Athlon processor to achieve maximum
performance. Due to the more flexible pipeline control and
aggressive out-of-order execution, the AMD Athlon processor is
not as sensitive to instruction selection and code scheduling.
This flexibility is one of the distinct advantages of the
AMD Athlon processor.

The AMD Athlon processor uses the latest in processor
microarchitecture design techniques to provide the highest x86
performance for today’s computer. In short, the AMD Athlon
processor offers true next-generation performance with x86
binary software compatibility.
6 Introduction Chapter 1

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
2
Top Optimizations
This chapter contains descriptions of the best optimizations for
improving the performance of the AMD Athlon™ processor.
Subsequent chapters contain more detailed descriptions of
these and other optimizations. The optimizations in this chapter
are divided into two groups and listed in order of importance.

Group I—Essential
Optimizations

Group I contains essential optimizations. Users should follow
these critical guidelines closely. The optimizations in Group I
are as follows:

■ Memory Size and Alignment Issues—Avoid memory size
mismatches—Align data where possible

■ Use the PREFETCH 3DNow!™ Instruction
■ Select DirectPath Over VectorPath Instructions

Group II—Secondary
Optimizations

Group II contains secondary optimizat ions that can
significantly improve the performance of the AMD Athlon
processor. The optimizations in Group II are as follows:

■ Load-Execute Instruction Usage—Use Load-Execute
instructions—Avoid load-execute floating-point instruc-
tions with integer operands

■ Take Advantage of Write Combining
■ Optimization of Array Operations With Block Prefetching
■ Use 3DNow! Instructions
■ Recognize 3DNow! Professional Instructions
■ Avoid Branches Dependent on Random Data
■ Avoid Placing Code and Data in the Same 64-Byte Cache

Line
Chapter 2 Top Optimizations 7

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Optimization Star

The top optimizations described in this chapter are flagged
with a star. In addition, the star appears beside the more
detailed descriptions found in subsequent chapters.

Group I Optimizations—Essential Optimizations

Memory-Size and Alignment Issues

Avoid Memory-Size Mismatches

Avoid memory-size mismatches when different instructions
operate on the same data. When an instruction stores and
another instruction reloads the same data, keep their operands
aligned and keep the loads/stores of each operand the same
size. The following code examples result in a store-to-load-
forwarding (STLF) stall:

Example 1 (Avoid):
MOV DWORD PTR [FOO], EAX
MOV DWORD PTR [FOO+4], EDX
FLD QWORD PTR [FOO]

Avoid large-to-small mismatches, as shown in the following
code:

Example 2 (Avoid):
FST QWORD PTR [FOO]
MOV EAX, DWORD PTR [FOO]
MOV EDX, DWORD PTR [FOO+4]

✩TOP

✩TOP
8 Top Optimizations Chapter 2

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Align Data Where Possible

Avoid misaligned data references. All data whose size is a
power of two is considered aligned if it is naturally aligned. For
example:

■ Word accesses are aligned if they access an address divisible
by two.

■ Doubleword accesses are aligned if they access an address
divisible by four.

■ Quadword accesses are aligned if they access an address
divisible by eight.

■ TBYTE accesses are aligned if they access an address divisi-
ble by eight.

A misaligned store or load operation suffers a minimum one-
cycle penalty in the AMD Athlon processor load/store pipeline.
In addition, using misaligned loads and stores increases the
likelihood of encountering a store-to-load forwarding pitfall.
For a more detailed discussion of store-to-load forwarding
issues, see “Store-to-Load Forwarding Restrictions” on page 86.

Use the 3DNow!™ Prefetching Instructions

For code that can take advantage of prefetching, use the
3DNow! PREFETCH and PREFETCHW instructions to increase
the effective bandwidth of the AMD Athlon processor, thereby
significantly improving performance. All the prefetch
instructions are essentially integer instructions and can be used
anywhere, in any type of code (for example, integer, x87,
3DNow!, MMX). Use the following formula to determine
prefetch distance:

Prefetch Distance = 200 × (DS/C)

■ Round up to the nearest cache line.

■ DS is the data stride per loop iteration.

■ C is the number of cycles per loop iteration when hitting in
the L1 cache.

See “Use the PREFETCH 3DNow!™ Instruction” on page 79 for
more details.

✩TOP

✩TOP
Chapter 2 Top Optimizations 9

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Select DirectPath Over VectorPath Instructions

Use DirectPath instructions rather than VectorPath
instructions. DirectPath instructions are optimized for decode
and execute efficiently by minimizing the number of operations
per x86 instruction, which includes ‘register← register op
memory’ as well as ‘register←register op register’ forms of
instructions. Up to three DirectPath instructions can be
decoded per cycle. VectorPath instructions block the decoding
of DirectPath instructions.

The AMD Athlon processor implements the majority of
instructions used by a compiler as DirectPath instructions.
Nevertheless , assembly writers must s t i l l take into
consideration the usage of DirectPath versus VectorPath
instructions.

See Appendix F, “Instruction Dispatch and Execution
Resources/Timing,” for tables of DirectPath and VectorPath
instructions.

Group II Optimizations—Secondary Optimizations

Load-Execute Instruction Usage

Use Load-Execute Instructions

Most load-execute integer instructions are DirectPath
decodable and can be decoded at the rate of three per cycle.
Splitting a load-execute integer instruction into two separate
instructions—a load instruction and a “reg, reg” instruction—
reduces decoding bandwidth and increases register pressure,
which results in lower performance. Use the split-instruction
form to avoid scheduler stalls for longer executing instructions
and to explicitly schedule the load and execute operations.

✩TOP

✩TOP
10 Top Optimizations Chapter 2

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Use Load-Execute Floating-Point Instructions with Floating-Point Operands

When operating on single-precision or double-precision
floating-point data, wherever possible use floating-point load-
execute instructions to increase code density.

Note: This optimization applies only to floating-point
instructions with floating-point operands and not to
integer operands, as described in the next section.

This coding style helps in two ways. First, denser code allows
more work to be held in the instruction cache. Second, the
denser code generates fewer internal MacroOPs, allowing the
FPU scheduler to hold more work, which increases the chances
of extracting parallelism from the code.

Example 1 (Avoid):
FLD QWORD PTR [TEST1]
FLD QWORD PTR [TEST2]
FMUL ST, ST(1)

Example 1 (Preferred):
FLD QWORD PTR [TEST1]
FMUL QWORD PTR [TEST2]

Avoid Load-Execute Floating-Point Instructions with Integer Operands

Do not use load-execute floating-point instructions with integer
operands: FIADD, FISUB, FISUBR, FIMUL, FIDIV, FIDIVR,
FICOM, and FICOMP. Remember that f loating-point
instructions can have integer operands, while integer
instructions cannot have floating-point operands.

Use separate FILD and arithmetic instructions for floating-
point computations involving integer-memory operands. This
optimization has the potential to increase decode bandwidth
and OP density in the FPU scheduler. The floating-point load-
execute instructions with integer operands are VectorPath and
generate two OPs in a cycle, while the discrete equivalent
enables a third DirectPath instruction to be decoded in the
same cycle. In some situations, this optimization can also
reduce execution time if the FILD can be scheduled several
instructions ahead of the arithmetic instruction in order to
cover the FILD latency.

✩TOP

✩TOP
Chapter 2 Top Optimizations 11

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Example 2 (Avoid):
FLD QWORD PTR [foo]
FIMUL DWORD PTR [bar]
FIADD DWORD PTR [baz]

Example 2 (Preferred):
FILD DWORD PTR [bar]
FILD DWORD PTR [baz]
FLD QWORD PTR [foo]
FMULP ST(2), ST
FADDP ST(1),ST

Take Advantage of Write Combining

This guideline applies only to operating-system, device-driver,
and BIOS programmers . In order to improve system
performance, the AMD Athlon processor aggressively combines
multiple memory-write cycles of any data size that address
locations within a 64-byte cache line aligned write buffer.

See Appendix C, “Implementation of Write Combining,” for
more details.

Optimizing Main Memory Performance for Large Arrays

Reading Large Arrays
and Streams

To process a large array (200 Kbytes or more), or other large
sequential data sets that are not already in cache, use block
prefetch to achieve maximum performance. The block prefetch
technique involves processing the data in blocks. The data for
each block is preloaded into the cache by reading just one
address per cache line, causing each cache line to be filled with
the data from main memory.

Filling the cache lines in this manner, with a single read
operation per line, allows the memory system to burst the data
at the highest achievable read bandwidth.

Once the input data is in cache, the processing can then
proceed at the maximum instruction execution rate, because no
memory read accesses will slow down the processor.

✩TOP

✩TOP
12 Top Optimizations Chapter 2

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Writing Large Arrays
to Memory

If data needs to be written back to memory during processing, a
similar technique can be used to accelerate the write phase.
The processing loop writes data to a temporary in-cache buffer,
to avoid memory-access cycles and to allow the processor to
execute at the maximum instruction rate. Once a complete data
block has been processed, the results are copied from the in-
cache buffer to main memory, using a loop that employs the
very fast streaming store instruction, MOVNTQ.

See “Optimizing Main Memory Performance for Large Arrays”
on page 66 for detailed optimization examples, where the
block-prefetch method is used for simply copying memory, and
also for adding two floating-point arrays through the use of the
x87 floating-point unit.

Also see the complete optimized memcpy routine in “Use
MMX™ Instructions for Block Copies and Block Fills” on
page 174. This example employs Block Prefetch for large size
memory blocks.

Use 3DNow!™ Instructions

When single precision is required, perform floating-point
computations using the 3DNow! instructions instead of x87
instructions. The SIMD nature of 3DNow! instructions achieves
twice the number of FLOPs that are achieved through x87
instructions. 3DNow! instructions also provide for a flat register
file instead of the stack-based approach of x87 instructions.

See Table 23 on page 298 for a list of 3DNow! instructions. For
information about instruction usage, see the 3DNow!™
Technology Manual, order no. 21928.

✩TOP

✩TOP
Chapter 2 Top Optimizations 13

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Recognize 3DNow! Professional Instructions

AMD Athlon™ processors that include 3DNow! Professional
instructions indicate the presence of Streaming SIMD
Extensions (SSE) through the standard CPUID feature bit 25.
See Table 25 on page 301 for a list of the additional SSE
instructions introduced with 3DNow! Professional technology.

Where SSE optimizations already exist, or are planned for
future development, feature-detection code using CPUID
should be checked to ensure correct CPU vendor independent
recognition of SSE on AMD processors. For a full description of
CPU feature detection on AMD processors, please refer to the
AMD Processor Recognition Application Note, order no. 20734.

Avoid Branches Dependent on Random Data

Avoid conditional branches depending on random data, as these
are difficult to predict. For example, a piece of code receives a
random stream of characters “A” through “Z” and branches if
the character is before “M” in the collating sequence. Data-
dependent branches acting upon basically random data cause
the branch-prediction logic to mispredict the branch about 50%
of the time.

If possible, design branch-free alternative code sequences,
which result in shorter average execution time. This technique
is especially important if the branch body is small. See “Avoid
Branches Dependent on Random Data” on page 93 for more
details.

✩TOP

✩TOP
14 Top Optimizations Chapter 2

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Avoid Placing Code and Data in the Same 64-Byte Cache Line

Sharing code and data in the same 64-byte cache line may cause
the L1 caches to thrash (unnecessary castout of code/data) in
order to maintain coherency between the separate instruction
and data caches. The AMD Athlon processor has a cache-line
size of 64 bytes, which is twice the size of previous processors.
Avoid placing code and data together within this larger cache
line, especially if the data becomes modified.

For example, consider that a memory indirect JMP instruction
may have the data for the jump table residing in the same
64-byte cache line as the JMP instruction. This mixing of code
and data in the same cache line would result in lower
performance.

Although rare, do not place critical code at the border between
32-byte aligned code segments and a data segments. Code at
the start or end of a data segment should be executed as
seldomly as possible or simply padded with garbage.

In general, avoid the following:

■ Self-modifying code

■ Storing data in code segments

✩TOP
Chapter 2 Top Optimizations 15

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
16 Top Optimizations Chapter 2

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
3
C Source-Level
Optimizations
This chapter details C programming practices for optimizing
code for the AMD Athlon™ processor. Guidelines are listed in
order of importance.

Ensure Floating-Point Variables and Expressions are of
Type Float

For compilers that generate 3DNow!™ instructions, make sure
that all floating-point variables and expressions are of type
float. Pay special attention to floating-point constants. These
require a suffix of “F” or “f” (for example: 3.14f) to be of type
float, otherwise they default to type double. To avoid automatic
promotion of float arguments to double, always use function
prototypes for all functions that accept float arguments.

Use 32-Bit Data Types for Integer Code

Use 32 -bi t data types for integer code. Compi ler
implementations vary, but typically the following data types are
included—int, signed, signed int, unsigned, unsigned int, long,
signed long, long int, signed long int, unsigned long, and unsigned
long int.
Chapter 3 C Source-Level Optimizations 17

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Consider the Sign of Integer Operands

In many cases, the data stored in integer variables determines
whether a signed or an unsigned integer type is appropriate.
For example, to record the weight of a person in pounds, no
negative numbers are required, so an unsigned type is
appropriate. However, recording temperatures in degrees
Celsius may require both positive and negative numbers, so a
signed type is needed.

Where there is a choice of using either a signed or an unsigned
type, take into consideration that certain operations are faster
with unsigned types while others are faster for signed types.

Integer-to-floating-point conversion using integers larger than
16 bits is faster with signed types, as the x86 architecture
provides instructions for converting signed integers to floating-
point, but has no instructions for converting unsigned integers.
In a typical case, a 32-bit integer is converted by a compiler to
assembly as follows:

Example 1 (Avoid):
double x; ====> MOV [temp+4], 0
unsigned int i; MOV EAX, i

MOV [temp], EAX
x = i; FILD QWORD PTR [temp]

FSTP QWORD PTR [x]

The previous code is slow not only because of the number of
instructions, but also because a size mismatch prevents store-to-
load forwarding to the FILD instruction. Instead, use the
following code:

Example 1 (Preferred):
double x; ====> FILD DWORD PTR [i]
int i; FSTP QWORD PTR [x]

x = i;
18 C Source-Level Optimizations Chapter 3

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Computing quotients and remainders in integer division by
constants are faster when performed on unsigned types. The
following typical case is the compiler output for a 32-bit integer
divided by four:

Example 2 (Avoid):
int i; ====> MOV EAX, i

CDQ
i = i / 4; AND EDX, 3

ADD EAX, EDX
SAR EAX, 2
MOV i, EAX

Example 2 (Preferred):
unsigned int i; ====> SHR i, 2

i = i / 4;

In summary:

Use unsigned types for:

■ Division and remainders

■ Loop counters

■ Array indexing

Use signed types for:

■ Integer-to-float conversion
Chapter 3 C Source-Level Optimizations 19

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Use Array-Style Instead of Pointer-Style Code
The use of pointers in C makes work difficult for the optimizers
in C compilers. Without detailed and aggressive pointer
analysis, the compiler has to assume that writes through a
pointer can write to any place in memory. This includes storage
allocated to other variables, creating the issue of aliasing, i.e.,
the same block of memory is accessible in more than one way.

To help the C compiler optimizer in its analysis, avoid the use of
pointers where possible. One example where this is trivially
possible is in the access of data organized as arrays. C allows the
use of either the array operator [] or pointers to access the
array. Using array-style code makes the task of the optimizer
easier by reducing possible aliasing.

For example, x[0] and x[2] cannot possibly refer to the same
memory location, while *p and *q could. It is highly
recommended to use the array style, as significant performance
advantages can be achieved with most compilers.

Example 1 (Avoid):

typedef struct {
 float x,y,z,w;
} VERTEX;

typedef struct {
 float m[4][4];
} MATRIX;

void XForm (float *res, const float *v, const float *m, int
numverts) {
 float dp;
 int i;
 const VERTEX* vv = (VERTEX *)v;

 for (i = 0; i < numverts; i++) {
 dp = vv->x * *m++;
 dp += vv->y * *m++;
 dp += vv->z * *m++;
 dp += vv->w * *m++;

 res++ = dp; / write transformed x */

 dp = vv->x * *m++;
 dp += vv->y * *m++;
 dp += vv->z * *m++;
20 C Source-Level Optimizations Chapter 3

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
 dp += vv->w * *m++;

 res++ = dp; / write transformed y */

 dp = vv->x * *m++;
 dp += vv->y * *m++;
 dp += vv->z * *m++;
 dp += vv->w * *m++;

 res++ = dp; / write transformed z */

 dp = vv->x * *m++;
 dp += vv->y * *m++;
 dp += vv->z * *m++;
 dp += vv->w * *m++;

 res++ = dp; / write transformed w */

 ++vv; /* next input vertex */
 m -= 16; /* reset to start of transform matrix */

 }
}

Example 1 (Preferred):

typedef struct {
 float x,y,z,w;
} VERTEX;

typedef struct {
 float m[4][4];
} MATRIX;

void XForm (float *res, const float *v, const float *m, int
numverts) {
 int i;
 const VERTEX* vv = (VERTEX *)v;
 const MATRIX* mm = (MATRIX *)m;
 VERTEX* rr = (VERTEX *)res;

 for (i = 0; i < numverts; i++) {
 rr->x = vv->x*mm->m[0][0] + vv->y*mm->m[0][1] +

vv->z*mm->m[0][2] + vv->w*mm->m[0][3];
 rr->y = vv->x*mm->m[1][0] + vv->y*mm->m[1][1] +

vv->z*mm->m[1][2] + vv->w*mm->m[1][3];
 rr->z = vv->x*mm->m[2][0] + vv->y*mm->m[2][1] +

vv->z*mm->m[2][2] + vv->w*mm->m[2][3];
 rr->w = vv->x*mm->m[3][0] + vv->y*mm->m[3][1] +

vv->z*mm->m[3][2] + vv->w*mm->m[3][3];
 }
}

Chapter 3 C Source-Level Optimizations 21

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Reality Check Note that source code transformations interact with a
compiler’s code generator and that it is difficult to control the
generated machine code from the source level. It is even
possible that source code transformations for improving
performance and compiler optimizations “fight” each other.
Depending on the compiler and the specific source code, it is
therefore possible that pointer style code will be compiled into
machine code that is faster than that generated from equivalent
array style code. It is advisable to check the performance after
any source code transformation to see whether performance
really has improved.

Completely Unroll Small Loops

Take advantage of the large 64-Kbyte instruction cache in the
AMD Athlon processor and completely unroll small loops.
Unrolling loops can be beneficial to performance, especially if
the loop body is small, which makes the loop overhead
significant. Many compilers are not aggressive at unrolling
loops. For loops that have a small fixed loop count and a small
loop body, completely unroll the loops at the source level.

Example 1 (Avoid):
// 3D-transform: multiply vector V by 4x4 transform matrix M
for (i=0; i<4; i++) {
 r[i] = 0;
 for (j=0; j<4; j++) {
 r[i] += M[j][i]*V[j];
 }
}

Example 1 (Preferred):
// 3D-transform: multiply vector V by 4x4 transform matrix M
r[0] = M[0][0]*V[0] + M[1][0]*V[1] + M[2][0]*V[2] +

M[3][0]*V[3];
r[1] = M[0][1]*V[0] + M[1][1]*V[1] + M[2][1]*V[2] +

M[3][1]*V[3];
r[2] = M[0][2]*V[0] + M[1][2]*V[1] + M[2][2]*V[2] +

M[3][2]*V[3];
r[3] = M[0][3]*V[0] + M[1][3]*V[1] + M[2][3]*V[2] +

M[3][3]*v[3];
22 C Source-Level Optimizations Chapter 3

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Avoid Unnecessary Store-to-Load Dependencies

A store-to-load dependency exists when data is stored to
memory, only to be read back shortly thereafter. See “Store-to-
Load Forwarding Restrictions” on page 86 for more details. The
AMD Athlon processor contains hardware to accelerate such
store-to-load dependencies, allowing the load to obtain the
store data before it has been written to memory. However, it is
still faster to avoid such dependencies altogether and keep the
data in an internal register.

Avoiding store-to-load dependencies is especially important if
they are part of a long dependency chains, as may occur in a
recurrence computation. If the dependency occurs while
operating on arrays, many compilers are unable to optimize the
code in a way that avoids the store-to-load dependency. In some
instances the language definition may prohibit the compiler
from using code transformations that would remove the store-
to-load dependency. It is therefore recommended that the
programmer remove the dependency manually, e.g., by
introducing a temporary variable that can be kept in a register.
This can result in a significant performance increase. The
following is an example of this.

Example 1 (Avoid):
double x[VECLEN], y[VECLEN], z[VECLEN];
unsigned int k;

for (k = 1; k < VECLEN; k++) {
 x[k] = x[k-1] + y[k];
}

for (k = 1; k < VECLEN; k++) {
 x[k] = z[k] * (y[k] - x[k-1]);
}

Example 1 (Preferred):
double x[VECLEN], y[VECLEN], z[VECLEN];
unsigned int k;
double t;

t = x[0];
for (k = 1; k < VECLEN; k++) {
 t = t + y[k];
 x[k] = t;
}

Chapter 3 C Source-Level Optimizations 23

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
t = x[0];
for (k = 1; k < VECLEN; k++) {
 t = z[k] * (y[k] - t);
 x[k] = t;
}

Always Match the Size of Stores and Loads
The AMD Athlon processor contains a load/store buffer (LS) to
speed up the forwarding of store data to dependent loads.
However, this store-to-load forwarding (STLF) inside the LS
occurs in general only when the addresses and sizes of the store
and the dependent load match, and when both memory
accesses are aligned (see section “Store-to-Load Forwarding
Restrictions” on page 86 for details).

It is impossible to control load and store activity at the source
level as to avoid all cases that violate restrictions placed on
store-to-load-forwarding. In some instances it is possible to spot
such cases in the source code. Size mismatches can easily occur
when different sized data items are joined in a union. Address
mismatches could be the result of pointer manipulation.

The following examples show a situation involving a union of
differently sized data items. The examples show a user defined
unsigned 16.16 fixed point type, and two operations defined on
this type. Function fixed_add() adds two fixed point numbers,
and function fixed_int() extracts the integer portion of a fixed
point number. Example 1 (Avoid) shows an inappropriate
implementation of fixed_int(), which when used on the result of
fixed_add() causes misalignment, address mismatch, or size
mismatch between memory operands, such that no STLF in LS
takes place. Example 1 (Preferred) shows how to properly
implement fixed_int() in order to allow store-to-load-forwarding
in LS.

Example 1 (Avoid):
typedef union {
 unsigned int whole;
 struct {
 unsigned short frac; /* lower 16 bits are fraction */
 unsigned short intg; /* upper 16 bits are integer */
 } parts;
 } FIXED_U_16_16;
24 C Source-Level Optimizations Chapter 3

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
 __inline FIXED_U_16_16 fixed_add (FIXED_U_16_16 x,
FIXED_U_16_16 y)

 {
 FIXED_U_16_16 z;
 z.whole = x.whole + y.whole;
 return (z);
 }

 __inline unsigned int fixed_int (FIXED_U_16_16 x)
 {
 return ((unsigned int)(x.parts.intg));
 }

 [...]
 FIXED_U_16_16 y, z;
 unsigned int q;
 [...]
 label1:
 y = fixed_add (y, z);
 q = fixed_int (y);
 label2:
 [...]

The object code generated for the source code between $label1
and $label2 typically follows one of these following two
variants:

;variant 1
MOV EDX, DWORD PTR [z]
MOV EAX, DWORD PTR [y] ;-+
ADD EAX, EDX ; |
MOV DWORD PTR [y], EAX ; |
MOV EAX, DWORD PTR [y+2] ;<+ misaligned/address

 ; mismatch, no forwarding in LS
AND EAX, 0FFFFh
MOV DWORD PTR [q], EAX

;variant 2
MOV EDX, DWORD PTR [z]
MOV EAX, DWORD PTR [y] ;-+
ADD EAX, EDX ; |
MOV DWORD PTR [y], EAX ; |
MOVZX EAX, WORD PTR [y+2] ;<+ size and address mismatch,

; no forwarding in LS
MOV DWORD PTR [q], EAX
Chapter 3 C Source-Level Optimizations 25

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Example 1 (Preferred):
typedef union {
 unsigned int whole;
 struct {
 unsigned short frac; /* lower 16 bits are fraction */
 unsigned short intg; /* upper 16 bits are integer */
 } parts;
 } FIXED_U_16_16;

 __inline FIXED_U_16_16 fixed_add (FIXED_U_16_16 x,
FIXED_U_16_16 y)
 {
 FIXED_U_16_16 z;
 z.whole = x.whole + y.whole;
 return (z);
 }

 __inline unsigned int fixed_int (FIXED_U_16_16 x)
 {
 return (x.whole >> 16);
 }

 [...]
 FIXED_U_16_16 y, z;
 unsigned int q;
 [...]
 label1:
 y = fixed_add (y, z);
 q = fixed_int (y);
 label2:
 [...]

The object code generated for the source code between $label1
and $label2 typically looks as follows:

MOV EDX, DWORD PTR [z]
MOV EAX, DWORD PTR [y]
ADD EAX, EDX
MOV DWORD PTR [y], EAX ;-+
MOV EAX, DWORD PTR [y] ;<+ aligned, size/address
match,

; forwarding in LS
SHR EAX, 16
MOV DWORD PTR [q], EAX
26 C Source-Level Optimizations Chapter 3

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Consider Expression Order in Compound Branch
Conditions

Branch conditions in C programs are often compound
conditions consisting of multiple boolean expressions joined by
the boolean operators && and ||. C guarantees a short-circuit
evaluation of these operators. This means that in the case of ||,
the first operand to evaluate to TRUE terminates the
evaluation, i.e., following operands are not evaluated at all.
Similarly for &&, the first operand to evaluate to FALSE
terminates the evaluation. Because of this short-circuit
evaluation, it is not always possible to swap the operands of ||
and &&. This is especially the case when the evaluation of one
of the operands causes a side effect. However, in most cases the
exchange of operands is possible.

When used to control conditional branches, expressions
involving || and && are translated into a series of conditional
branches. The ordering of the conditional branches is a function
of the ordering of the expressions in the compound condition,
and can have a significant impact on performance. It is
impossible to give an easy, closed-form formula on how to order
the conditions. Overall performance is a function of a variety of
the following factors:

■ Probability of a branch mispredict for each of the branches
generated

■ Additional latency incurred due to a branch mispredict

■ Cost of evaluating the conditions controlling each of the
branches generated

■ Amount of parallelism that can be extracted in evaluating
the branch conditions

■ Data stream consumed by an application (mostly due to the
dependence of mispredict probabilities on the nature of the
incoming data in data dependent branches)

It is therefore recommended to experiment with the ordering of
expressions in compound branch conditions in the most active
areas of a program (so called hot spots) where most of the
execution time is spent. Such hot spots can be found through
the use of profiling. Feed a “typical” data stream to the
program while doing the experiments.
Chapter 3 C Source-Level Optimizations 27

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Switch Statement Usage

Optimize Switch Statements

Switch statements are translated using a variety of algorithms.
The most common of these are jump tables and comparison
chains/trees. It is recommended to sort the cases of a switch
statement according to the probability of occurrences, with the
most probable first. This improves performance when the
switch is translated as a comparison chain. It is further
recommended to make the case labels small, contiguous integer
values, as this allows the switch to be translated as a jump table.
Most compilers allow the switch statement to be translated as a
jump table if the case labels are small and contiguous integer
values.

Example 1 (Avoid):
int days_in_month, short_months, normal_months, long_months;

switch (days_in_month) {
 case 28:
 case 29: short_months++; break;
 case 30: normal_months++; break;
 case 31: long_months++; break;
 default: printf ("month has fewer than 28 or more than 31

days\n");
}

Example 1 (Preferred):
int days_in_month, short_months, normal_months, long_months;

switch (days_in_month) {
 case 31: long_months++; break;
 case 30: normal_months++; break;
 case 28:
 case 29: short_months++; break;
 default: printf ("month has fewer than 28 or more than 31

days\n");
}

28 C Source-Level Optimizations Chapter 3

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Use Prototypes for All Functions

In general, use prototypes for all functions. Prototypes can
convey additional information to the compiler that might
enable more aggressive optimizations.

Use Const Type Qualifier

Use the “const” type qualifier as much as possible. This
optimization makes code more robust and may enable higher
performance code to be generated due to the additional
information available to the compiler. For example, the C
standard allows compilers to not allocate storage for objects
that are declared “const” if their address is never taken.
Chapter 3 C Source-Level Optimizations 29

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Generic Loop Hoisting

To improve the performance of inner loops, it is beneficial to
reduce redundant constant calculations (i.e., loop invariant
calculations). However, this idea can be extended to invariant
control structures.

The first case is that of a constant if() statement in a for() loop.

Example 1:
for(i ...) {

if(CONSTANT0) {
DoWork0(i); // does not affect CONSTANT0

} else {
DoWork1(i); // does not affect CONSTANT0

}
}

Transform the above loop into:

if(CONSTANT0) {
for(i ...) {

DoWork0(i);
}

} else {
for(i ...) {

DoWork1(i);
}

}

This makes the inner loops tighter by avoiding repetitious
evaluation of a known if() control structure. Although the
branch would be easily predicted, the extra instructions and
decode limitations imposed by branching are saved, which are
usually well worth it.

Generalization for Multiple Constant Control Code

To generalize this further for multiple constant control code,
some more work may have to be done to create the proper outer
loop. Enumeration of the constant cases reduces this to a simple
switch statement.
30 C Source-Level Optimizations Chapter 3

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Example 2:
for(i ...) {

if(CONSTANT0) {
DoWork0(i); //does not affect CONSTANT0

// or CONSTANT1
} else {

DoWork1(i); //does not affect CONSTANT0
// or CONSTANT1

}
if(CONSTANT1) {

DoWork2(i); //does not affect CONSTANT0
// or CONSTANT1

} else {
DoWork3(i); //does not affect CONSTANT0

// or CONSTANT1
}

}

Transform the above loop by using the switch statement into:

#define combine(c1, c2) (((c1) << 1) + (c2))
switch(combine(CONSTANT0!=0, CONSTANT1!=0)) {

case combine(0, 0):
for(i ...) {

DoWork0(i);
DoWork2(i);

}
break;

case combine(1, 0):
for(i ...) {

DoWork1(i);
DoWork2(i);

}
break;

case combine(0, 1):
for(i ...) {

DoWork0(i);
DoWork3(i);

}
break;

case combine(1, 1):
for(i ...) {

DoWork1(i);
DoWork3(i);

}
break;

default:
break;

}

Chapter 3 C Source-Level Optimizations 31

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
The trick here is that there is some up-front work involved in
generating all the combinations for the switch constant and the
total amount of code has doubled. However, it is also clear that
the inner loops are “if()-free”. In ideal cases where the
“DoWork*()” functions are inlined, the successive functions
will have greater overlap leading to greater parallelism than
would be possible in the presence of intervening if()
statements.

The same idea can be applied to constant switch() statements,
or combinations of switch() statements and if() statements
inside of for() loops. The method for combining the input
constants gets more complicated but are worth it for the
performance benefit.

However, the number of inner loops can also substantially
increase. If the number of inner loops is prohibitively high, then
only the most common cases need to be dealt with directly, and
the remaining cases can fall back to the old code in a “default:”
clause for the switch() statement.

This typically comes up when the programmer is considering
runtime generated code. While runtime generated code can
lead to similar levels of performance improvement, it is much
harder to maintain, and the developer must do their own
optimizations for their code generation without the help of an
available compiler.

Declare Local Functions as Static

Functions that are not used outside the file where they are
defined should always be declared static, which forces internal
linkage. Otherwise, such functions default to external linkage,
which might inhibit certain optimizations with some
compilers—for example, aggressive inlining.
32 C Source-Level Optimizations Chapter 3

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Dynamic Memory Allocation Consideration

Dynamic memory allocation (‘malloc’ in C language) should
always return a pointer that is suitably aligned for the largest
base type (quadword alignment). Where this aligned pointer
cannot be guaranteed, use the technique shown in the following
code to make the pointer quadword aligned, if needed. This
code assumes the pointer can be cast to a long.

Example 1:
double* p;
double* np;

p = (double *)malloc(sizeof(double)*number_of_doubles+7L);
np = (double *)((((long)(p))+7L) & (–8L));

Then use ‘np’ instead of ‘p’ to access the data. ‘p’ is still needed
in order to deallocate the storage.

Introduce Explicit Parallelism into Code
Where possible, break long dependency chains into several
independent dependency chains that can then be executed in
parallel, exploiting the pipeline execution units. This is
especially important for floating-point code, whether it is
mapped to x87 or 3DNow! instructions because of the longer
latency of floating-point operations. Since most languages,
including ANSI C, guarantee that floating-point expressions are
not reordered, compilers cannot usually perform such
optimizations unless they offer a switch to allow ANSI non-
compliant reordering of floating-point expressions according to
algebraic rules.

Note that reordered code that is algebraically identical to the
original code does not necessari ly del iver identical
computational results due to the lack of associativity of floating
point operat ions . There are wel l -known numerical
considerations in applying these optimizations (consult a book
on numerical analysis). In some cases, these optimizations may
lead to unexpected results. Fortunately, in the vast majority of
cases, the final result differs only in the least significant bits.
Chapter 3 C Source-Level Optimizations 33

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Example 1 (Avoid):
double a[100],sum;
int i;

sum = 0.0f;
for (i=0; i<100; i++) {

sum += a[i];
}

Example 1 (Preferred):
double a[100],sum1,sum2,sum3,sum4,sum;
int i;

sum1 = 0.0;
sum2 = 0.0;
sum3 = 0.0;
sum4 = 0.0;
for (i=0; i<100; i+4) {

sum1 += a[i];
sum2 += a[i+1];
sum3 += a[i+2];
sum4 += a[i+3];
}

sum = (sum4+sum3)+(sum1+sum2);

Notice that the four-way unrolling was chosen to exploit the
four-stage fully pipelined floating-point adder. Each stage of
the floating-point adder is occupied on every clock cycle,
ensuring maximal sustained utilization.
34 C Source-Level Optimizations Chapter 3

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Explicitly Extract Common Subexpressions

In certain situations, C compilers are unable to extract common
subexpressions from floating-point expressions due to the
guarantee against reordering of such expressions in the ANSI
standard. Specifically, the compiler cannot rearrange the
computation according to algebraic equivalencies before
extracting common subexpressions. In such cases, the
programmer should manual ly extract the common
subexpression. Note that rearranging the expression may result
in different computational results due to the lack of
associativity of floating-point operations, but the results usually
differ in only the least significant bits.

Example 1 (Avoid):
double a,b,c,d,e,f;

e = b*c/d;
f = b/d*a;

Example 1 (Preferred):
double a,b,c,d,e,f,t;

t = b/d;
e = c*t;
f = a*t;

Example 2 (Avoid):
double a,b,c,e,f;

e = a/c;
f = b/c;

Example 2 (Preferred):
double a,b,c,e,f,t;

t = 1/c;
e = a*t
f = b*t;
Chapter 3 C Source-Level Optimizations 35

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
C Language Structure Component Considerations

Many compilers have options that allow padding of structures
to make their size multiples of words, doublewords, or
quadwords, in order to achieve better alignment for structures.
In addition, to improve the alignment of structure members,
some compilers might allocate structure elements in an order
that differs from the order in which they are declared. However,
some compilers might not offer any of these features, or their
implementation might not work properly in all situations.
Therefore, to achieve the best alignment of structures and
structure members while minimizing the amount of padding
regardless of compiler optimizations, the following methods are
suggested.

Sort by Base Type
Size

Sort structure members according to their base type size,
declaring members with a larger base type size ahead of
members with a smaller base type size.

Pad by Multiple of
Largest Base Type
Size

Pad the structure to a multiple of the largest base type size of
any member. In this fashion, if the first member of a structure is
naturally aligned, all other members are naturally aligned as
well. The padding of the structure to a multiple of the largest
based type size allows, for example, arrays of structures to be
perfectly aligned.

The following example demonstrates the reordering of
structure member declarations:

Example 1, Original ordering (Avoid):
struct {
 char a[5];
 long k;
 double x;
} baz;

Example 1, New ordering with padding (Preferred):
struct {
 double x;
 long k;
 char a[5];
 char pad[7];
} baz;

See “C Language Structure Component Considerations” on
page 91 for a different perspective.
36 C Source-Level Optimizations Chapter 3

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Sort Local Variables According to Base Type Size

When a compiler allocates local variables in the same order in
which they are declared in the source code, it can be helpful to
declare local variables in such a manner that variables with a
larger base type size are declared ahead of the variables with
smaller base type size. Then, if the first variable is allocated for
natural alignment, al l other variables are allocated
contiguously in the order they are declared and are naturally
aligned without any padding.

Some compilers do not allocate variables in the order they are
declared. In these cases, the compiler should automatically
allocate variables in such a manner as to make them naturally
aligned with the minimum amount of padding. In addition,
some compilers do not guarantee that the stack is aligned
suitably for the largest base type (that is, they do not guarantee
quadword alignment), so that quadword operands might be
misaligned, even if this technique is used and the compiler does
allocate variables in the order they are declared.

The following example demonstrates the reordering of local
variable declarations:

Example 1, Original ordering (Avoid):
short ga, gu, gi;
long foo, bar;
double x, y, z[3];
char a, b;
float baz;

Example 1, Improved ordering (Preferred):
double z[3];
double x, y;
long foo, bar;
float baz;
short ga, gu, gi;

See “Sort Variables According to Base Type Size” on page 92
for more information from a different perspective.
Chapter 3 C Source-Level Optimizations 37

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Accelerating Floating-Point Divides and Square Roots

Divides and square roots have a much longer latency than other
floating-point operations, even though the AMD Athlon
processor provides significant acceleration of these two
operations. In some codes, these operations occur so often as to
ser ious ly impact performance. In these cases , i t i s
recommended to port the code to 3DNow! inline assembly or to
use a compiler that can generate 3DNow! code. If code has hot
spots that use single-precision arithmetic only (i.e., all
computation involves data of type float) and for some reason
cannot be ported to 3DNow! code, the following technique may
be used to improve performance.

The x87 FPU has a precision-control field as part of the FPU
control word. The precision-control setting determines what
precision results get rounded to. It affects the basic arithmetic
operations, including divides and square roots. AMD Athlon
and AMD-K6® family processors implement divide and square
root in such fashion as to only compute the number of bits
necessary for the currently selected precision. This means that
setting precision control to single precision (versus Win32
default of double precision) lowers the latency of those
operations.

The Microsoft® Visual C environment provides functions to
manipulate the FPU control word and thus the precision
control. Note that these functions are not very fast, so insert
changes of precision control where it creates little overhead,
such as outside a computation-intensive loop. Otherwise the
overhead created by the function calls outweighs the benefit
from reducing the latencies of divide and square root
operations.

The following example shows how to set the precision control to
single precision and later restore the original settings in the
Microsoft Visual C environment.
38 C Source-Level Optimizations Chapter 3

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Example 1:
/* prototype for _controlfp() function */
#include <float.h>
unsigned int orig_cw;

/* Get current FPU control word and save it */

orig_cw = _controlfp (0,0);

/* Set precision control in FPU control word to single
precision. This reduces the latency of divide and square
root operations.
*/

_controlfp (_PC_24, MCW_PC);

/* restore original FPU control word */

_controlfp (orig_cw, 0xfffff);
Chapter 3 C Source-Level Optimizations 39

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Fast Floating-Point-to-Integer Conversion

Floating-point-to-integer conversion in C programs is typically a
very slow operation. The semantics of C and C++ demand that
the conversion use truncation. If the floating-point operand is of
type float, and the compiler supports 3DNow! code generation,
the 3DNow! PF2ID instruction, which performs truncating
conversion, can be utilized by the compiler to accomplish rapid
floating-point to integer conversion.

For double-precision operands, the usual way to accomplish
truncating conversion involves the following algorithm:

1. Save the current x87 rounding mode (this is usually
round to nearest or even).

2. Set the x87 rounding mode to truncation.

3. Load floating-point source operand and store out integer
result.

4. Restore original x87 rounding mode.

This algorithm is typically implemented through a C runtime
library function called ftol(). While the AMD Athlon processor
has special hardware optimizations to speed up the changing of
x87 rounding modes and therefore ftol(), calls to ftol() may still
tend to be slow.
40 C Source-Level Optimizations Chapter 3

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
For situations where very fast floating-point-to-integer
conversion is required, the conversion code in the “Fast”
example below may be helpful. Note that this code uses the
current rounding mode instead of truncation when performing
the conversion. Therefore the result may differ by one from the
ftol() result. The replacement code adds the “magic number”
252+251 to the source operand, then stores the double precision
result to memory and retrieves the lower doubleword of the
stored result. Adding the magic number shifts the original
argument to the right inside the double precision mantissa,
placing the binary point of the sum immediately to the right of
the least significant mantissa bit. Extracting the lower
doubleword of the sum then delivers the integral portion of the
original argument.

Note: This conversion code causes a 64-bit store to feed into a
32-bit load. The load is from the lower 32 bits of the 64-bit
store, the one case of size mismatch between a store and a
depending load specifically supported by the store-to-load-
forwarding hardware of the AMD Athlon processor.

Example 1 (Slow):
double x;
int i;

i = x;

Example 1 (Fast):
#define DOUBLE2INT(i,d) \
 {double t = ((d)+6755399441055744.0); i=*((int *)(&t));}

double x;
int i;

DOUBLE2INT(i,x);
Chapter 3 C Source-Level Optimizations 41

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Speeding Up Branches Based on Comparisons Between
Floats

Branches based on floating-point comparisons are often slow.
The AMD Athlon processor supports the FCOMI, FUCOMI,
FCOMIP, and FUCOMIP instruct ions that a l low
implementation of fast branches based on comparisons
between operands of type double or type float. However, many
compilers do not support generating these instructions.
Likewise, floating-point comparisons between operands of type
float can be accomplished quickly by using the 3DNow! PFCMP
instruction if the compiler supports 3DNow! code generation.

With many compilers, the only way they implement branches
based on floating-point comparisons is to use the FCOM or
FCOMP instructions to compare the floating-point operands,
followed by “FSTSW AX” in order to transfer the x87 condition
code flags into EAX. This allows a branch based on the contents
of that register. Although the AMD Athlon processor has
acceleration hardware to speed up the FSTSW instruction, this
process is still fairly slow.

Branches Dependent
on Integer
Comparisions are
Fast

One alternative for branches based on comparisons between
operands of type float is to store the operand(s) into a memory
location and then perform an integer comparison with that
memory location. Branches dependent on integer comparisons
are very fast. It should be noted that the replacement code uses
a load dependent on an immediately prior store. If the store is
not doubleword aligned, no store-to-load-forwarding takes place
and the branch is still slow. Also, if there is a lot of activity in
the load-store queue forwarding of the store data may be
somewhat delayed, thus negating some of the advantages of
using the replacement code. It is recommended to experiment
with the replacement code to test whether it actually provides a
performance increase in the code at hand.

The replacement code works well for comparisons against zero,
including correct behavior when encountering a negative zero
as allowed by IEEE-754. It also works well for comparing to
positive constants. In that case the user must first determine
the integer representation of that floating-point constant. This
can be accomplished with the following C code snippet:
42 C Source-Level Optimizations Chapter 3

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
float x;
scanf ("%g", &x);
printf ("%08X\n", (*((int *)(&x))));

The replacement code is IEEE-754 compliant for all classes of
floating-point operands except NaNs. However, NaNs do not
occur in properly working software.

Examples:
#define FLOAT2INTCAST(f) (*((int *)(&f)))
#define FLOAT2UINTCAST(f) (*((unsigned int *)(&f)))

// comparisons against zero
if (f < 0.0f) ==> if (FLOAT2UINTCAST(f) > 0x80000000U)
if (f <= 0.0f) ==> if (FLOAT2INCAST(f) <= 0)
if (f > 0.0f) ==> if (FLOAT2INTCAST(f) > 0)
if (f >= 0.0f) ==> if (FLOAT2UINTCAST(f) <= 0x80000000U)

// comparisons against positive constant
if (f < 3.0f) ==> if (FLOAT2INTCAST(f) < 0x40400000)
if (f <= 3.0f) ==> if (FLOAT2INTCAST(f) <= 0x40400000)
if (f > 3.0f) ==> if (FLOAT2INTCAST(f) > 0x40400000)
if (f >= 3.0f) ==> if (FLOAT2INTCAST(f) >= 0x40400000)

// comparisons among two floats
if (f1 < f2) ==> float t = f1 - f2;

if (FLOAT2UINTCAST(t) > 0x80000000U)
if (f1 <= f2) ==> float t = f1 - f2;

if (FLOAT2INTCAST(t) <= 0)
if (f1 > f2) ==> float t = f1 - f2;

if (FLOAT2INTCAST(t) > 0)
if (f1 >= f2) ==> float t = f1 - f2;

if (FLOAT2UINTCAST(f) <= 0x80000000U)
Chapter 3 C Source-Level Optimizations 43

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Avoid Unnecessary Integer Division

Integer division is the slowest of all integer arithmetic
operations and should be avoided wherever possible. One
possibility for reducing the number of integer divisions is
multiple divisions, in which division can be replaced with
multiplication as shown in the following examples. This
replacement is possible only if no overflow occurs during the
computation of the product. This can be determined by
considering the possible ranges of the divisors.

Example 1 (Avoid):
int i,j,k,m;

m = i / j / k;

Example 1 (Preferred):
int i,j,k,l;

m = i / (j * k);

Copy Frequently Dereferenced Pointer Arguments to Local
Variables

Avoid frequently dereferencing pointer arguments inside a
function. Since the compiler has no knowledge of whether
aliasing exists between the pointers, such dereferencing cannot
be optimized away by the compiler. This prevents data from
being kept in registers and significantly increases memory
traffic.

Note that many compilers have an “assume no aliasing”
optimization switch. This allows the compiler to assume that
two different pointers always have disjoint contents and does
not require copying of pointer arguments to local variables.

Otherwise, copy the data pointed to by the pointer arguments
to local variables at the start of the function and if necessary
copy them back at the end of the function.
44 C Source-Level Optimizations Chapter 3

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Example 1 (Avoid):
//assumes pointers are different and q!=r
void isqrt (unsigned long a,

unsigned long *q,
unsigned long *r)

{
*q = a;

if (a > 0)
{
while (*q > (*r = a / *q))

{
*q = (*q + *r) >> 1;
}

}
*r = a - *q * *q;
}

Example 1 (Preferred):
//assumes pointers are different and q!=r
void isqrt (unsigned long a,

unsigned long *q,
unsigned long *r)

{
unsigned long qq, rr;
qq = a;
if (a > 0)

{
while (qq > (rr = a / qq))

{
qq = (qq + rr) >> 1;
}

}
rr = a - qq * qq;
*q = qq;
*r = rr;
}

Chapter 3 C Source-Level Optimizations 45

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Use Block Prefetch Optimizations

Block prefetching can be applied to C code without using any
assembly level instructions.

This example adds all the values in two arrays of double
precision floating point values, to produce a single double
precision floating point total. The optimization technique can
be applied to any code that processes large arrays from system
memory.

This is an ordinary C++ loop that does the job. Bandwidth is
approximated for code execution on an AMD Athlon™ 4 DDR:

Example: Standard C code
(bandwidth: ~750 MB/sec)

for (int i = 0; i < MEM_SIZE; i += 8) { // 8 bytes per double
double summo += *a_ptr++ + *b_ptr++; // reads from

 // memory
}

Using a block prefetch can significantly improve memory read
bandwidth. The same function optimized using block prefetch
to read the arrays into cache at maximum bandwidth follows.
The block prefetch is implemented in C++ source code, as
procedure BLOCK_PREFETCH_4K. It reads 4 Kbytes of data
per block. This version gets about 1125 Mbytes/sec on
AMD Athlon™ 4 processor DDR, a 50% performance gain over
the Standard C Code Example.
46 C Source-Level Optimizations Chapter 3

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Example: C code Using Block Prefetching

(bandwidth: ~1125 Mbytes/sec)

static const int CACHEBLOCK = 0x1000; // prefetch chunk size (4K bytes)
int p_fetch; // this "anchor" variable helps us

 // fool the C optimizer

static const void inline BLOCK_PREFETCH_4K (void* addr) {
int* a = (int*) addr; // cast as INT pointer for speed

p_fetch += a[0] + a[16] + a[32] + a[48] // Grab every
 + a[64] + a[80] + a[96] + a[112] // 64th address,

+ a[128] + a[144] + a[160] + a[176] // to hit each
+ a[192] + a[208] + a[224] + a[240]; // cache line once.

a += 256; // point to second 1K stretch of addresses

p_fetch += a[0] + a[16] + a[32] + a[48]
 + a[64] + a[80] + a[96] + a[112]

+ a[128] + a[144] + a[160] + a[176]
+ a[192] + a[208] + a[224] + a[240];

a += 256; // point to third 1K stretch of addresses

p_fetch += a[0] + a[16] + a[32] + a[48]
+ a[64] + a[80] + a[96] + a[112]
+ a[128] + a[144] + a[160] + a[176]
+ a[192] + a[208] + a[224] + a[240];

a += 256; // point to fourth 1K stretch of addresses

p_fetch += a[0] + a[16] + a[32] + a[48]
 + a[64] + a[80] + a[96] + a[112]

+ a[128] + a[144] + a[160] + a[176]
+ a[192] + a[208] + a[224] + a[240];

}

for (int m = 0; m < MEM_SIZE; m += CACHEBLOCK) { // process in blocks

BLOCK_PREFETCH_4K(a_ptr); // get next 4K bytes of "a" into cache
BLOCK_PREFETCH_4K(b_ptr); // get next 4K bytes of "b" into cache

for (int i = 0; i < CACHEBLOCK; i += 8) {
double summo += *a_ptr++ + *b_ptr++; // reads from cache!

}
}

Chapter 3 C Source-Level Optimizations 47

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Caution: Since the prefetch code does not really do anything,
from the compiler point of view, there is a danger that it might
be optimized out from the code that is generated. So the block
prefetch function BLOCK_PREFETCH_4K uses a trick to
prevent that from happening. The memory values are read as
INTs, added together (which is very fast for INTs), and then
assigned to the global variable p_fetch. This assignment should
“fool” the optimizer into leaving the prefetch code intact.
However, be aware that in general, the compiler might remove
block prefetch code.

For a more thorough discussion of block prefetch, see
“Optimizing Main Memory Performance for Large Arrays” on
page 66, and the optimized memory-copy code in the section
“Use MMX™ Instructions for Block Copies and Block Fills” on
page 174.
48 C Source-Level Optimizations Chapter 3

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
4
Instruction Decoding
Optimizations
This chapter describes ways to maximize the number of
instructions decoded by the instruction decoders in the
AMD Athlon™ processor. Guidelines are listed in order of
importance.

Overview

The AMD Athlon processor instruction fetcher reads 16-byte
aligned code windows from the instruction cache. The
instruction bytes are then merged into a 24-byte instruction
queue. On each cycle, the in-order front-end engine selects for
decode up to three x86 instructions from the instruction-byte
queue.

All instructions (x86, x87, 3DNow!™, and MMX™ instructions)
are classified into two types of decodes—DirectPath and
VectorPath (see “DirectPath Decoder” and “VectorPath
Decoder” under “Early Decoding” on page 207 for more
information). DirectPath instructions are common instructions
that are decoded directly in hardware. VectorPath instructions
are more complex instructions that require the use of a
sequence of multiple operations issued from an on-chip ROM.

Up to three DirectPath instructions can be selected for decode
per cycle. Only one VectorPath instruction can be selected for
Chapter 4 Instruction Decoding Optimizations 49

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
decode per cycle. DirectPath instructions and VectorPath
instructions cannot be simultaneously decoded.

Select DirectPath Over VectorPath Instructions

Use DirectPath instructions rather than VectorPath
instructions. DirectPath instructions are optimized for decode
and execute efficiently by minimizing the number of operations
per x86 instruction, which includes ‘register← register op
memory’ as well as ‘register←register op register’ forms of
instructions. Up to three DirectPath instructions can be
decoded per cycle. VectorPath instructions block the decoding
of DirectPath instructions.

The AMD Athlon processor implements the majority of
instructions used by a compiler as DirectPath instructions.
However, assembly writers must still take into consideration the
usage of DirectPath versus VectorPath instructions.

See Appendix F, “Instruction Dispatch and Execution
Resources/Timing,” for tables of DirectPath and VectorPath
instructions.

Load-Execute Instruction Usage

Use Load-Execute Integer Instructions

Most load-execute integer instructions are DirectPath
decodable and can be decoded at the rate of three per cycle.

Splitting a load-execute integer instruction into two separate
instructions—a load instruction and a “reg, reg” instruction—
reduces decoding bandwidth and increases register pressure,
which results in lower performance. Use the split-instruction
form to avoid scheduler stalls for longer executing instructions
and to explicitly schedule the load and execute operations.

✩TOP

✩TOP
50 Instruction Decoding Optimizations Chapter 4

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Use Load-Execute Floating-Point Instructions with Floating-Point
Operands

When operating on single-precision or double-precision
floating-point data, use floating-point load-execute instructions
wherever possible to increase code density.

Note: This optimization applies only to floating-point
instructions with floating-point operands and not to
integer operands, as described in the next section.

This coding style helps in two ways. First, denser code allows
more work to be held in the instruction cache. Second, the
denser code generates fewer internal MacroOPs and, therefore,
the FPU scheduler holds more work increasing the chances of
extracting parallelism from the code.

Example 1 (Avoid):
FLD QWORD PTR [TEST1]
FLD QWORD PTR [TEST2]
FMUL ST, ST(1)

Example 1 (Preferred):
FLD QWORD PTR [TEST1]
FMUL QWORD PTR [TEST2]

Avoid Load-Execute Floating-Point Instructions with Integer Operands

Do not use load-execute floating-point instructions with integer
operands: FIADD, FISUB, FISUBR, FIMUL, FIDIV, FIDIVR,
FICOM, and FICOMP. Remember that f loating-point
instructions can have integer operands while integer
instructions cannot have floating-point operands.

Floating-point computations involving integer-memory
operands should use separate FILD and arithmetic instructions.
This optimization has the potential to increase decode
bandwidth and OP density in the FPU scheduler. The floating-
point load-execute instructions with integer operands are
VectorPath and generate two OPs in a cycle, while the discrete
equivalent enables a third DirectPath instruction to be decoded
in the same cycle. In some situations this optimizations can also
reduce execution time if the FILD can be scheduled several

✩TOP

✩TOP
Chapter 4 Instruction Decoding Optimizations 51

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
instructions ahead of the arithmetic instruction in order to
cover the FILD latency.

Example 2 (Avoid):
FLD QWORD PTR [foo]
FIMUL DWORD PTR [bar]
FIADD DWORD PTR [baz]

Example 2 (Preferred):
FILD DWORD PTR [bar]
FILD DWORD PTR [baz]
FLD QWORD PTR [foo]
FMULP ST(2), ST
FADDP ST(1),ST

Use Read-Modify-Write Instructions Where Appropriate

The AMD Athlon processor handles read-modify-write (RMW)
instructions such as “ADD [mem], reg32” very efficiently. The
vast majority of RMW instructions are DirectPath instructions.
Use of RMW instructions can provide a performance benefit
over the use of an equivalent combination of load, load-execute
and store instructions. In comparison to the load/load-
execute/store combination, the equivalent RMW instruction
promotes code density (better I-cache utilization), preserves
decode bandwidth, and saves execution resources as it occupies
only one reservation station and requires only one address
computation. It may also reduce register pressure, as
demonstrated in Example 2 on page 53.

Use of RMW instructions is indicated if an operation is
performed on data that is in memory, and the result of that
operation is not reused soon. Due to the limited number of
integer registers in an x86 processor, it is often the case that
data needs to be kept in memory instead of in registers.
Additionally, it can be the case that the data, once operated
upon, is not reused soon. An example would be an accumulator
inside a loop of unknown trip count, where the accumulator
result is not reused inside the loop. Note that for loops with a
known trip count, the accumulator manipulation can frequently
be hoisted out of the loop.
52 Instruction Decoding Optimizations Chapter 4

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Example 1 (C code):
/* C code */

int accu, increment;

while (condition) {
 ...
 /* accu is not read and increment is not written here */
 ...
 accu += increment;
}

Example 1 (Avoid):
MOV EAX, [increment]
ADD EAX, [accu]
MOV [accu], EAX

Example 1 (Preferred):
MOV EAX, [increment]
ADD [accu], EAX

Example 2 (C code):
/* C code */

int iterationcount;

iteration_count = 0;
while (condition) {
 ...
 /* iteration count is not read here */
 ...
 iteration_count++;
}

Example 2 (Avoid):
MOV EAX, [iteration_count]
INC EAX
MOV [iteration_count], EAX

Example 2 (Preferred):
INC [iteration_count]
Chapter 4 Instruction Decoding Optimizations 53

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Align Branch Targets in Program Hot Spots

In program hot spots (as determined by either profiling or loop
nesting analysis), place branch targets at or near the beginning
of 16-byte aligned code windows. This guideline improves
performance inside hotspots by maximizing the number of
instruction fills into the instruction-byte queue and preserves I-
cache space in branch-intensive code outside such hotspots.

Use 32-Bit LEA Rather than 16-Bit LEA Instruction

The 32-bit Load Effective Address (LEA) instruction is
implemented as a DirectPath operation with an execute latency
of only two cycles. The 16-bit LEA instruction, however, is a
VectorPath instruction, which lowers the decode bandwidth
and has a longer execution latency.

Use Short Instruction Encodings

Assemblers and compilers should generate the shortest
instruction encodings possible to optimize use of the I-cache
and increase average decode rate. Wherever possible, use
instructions with shorter lengths. Using shorter instructions
increases the number of instructions that can fit into the
instruction-byte queue. For example, use 8-bit displacements as
opposed to 32-bit displacements. In addition, use the single-
byte format of simple integer instructions whenever possible,
as opposed to the 2-byte opcode ModR/M format.

Example 1 (Avoid):
81 C0 78 56 34 12 ADD EAX, 12345678h ;uses 2-byte opcode

; form (with ModR/M)
81 C3 FB FF FF FF ADD EBX, -5 ;uses 32-bit

; immediate
0F 84 05 00 00 00 JZ $label1 ;uses 2-byte opcode,

; 32-bit immediate
54 Instruction Decoding Optimizations Chapter 4

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Example 1 (Preferred):
05 78 56 34 12 ADD EAX, 12345678h ;uses single byte

; opcode form
83 C3 FB ADD EBX, -5 ;uses 8-bit sign

; extended immediate
74 05 JZ $label1 ;uses 1-byte opcode,

; 8-bit immediate

Avoid Partial-Register Reads and Writes

In order to handle partial-register writes, the AMD Athlon
processor execution core implements a data-merging scheme.

In the execution unit, an instruction writing a partial register
merges the modified portion with the current state of the
remainder of the register. Therefore, the dependency hardware
can potentially force a false dependency on the most recent
instruction that writes to any part of the register.

Example 1 (Avoid):
MOV AL, 10 ;inst 1
MOV AH, 12 ;inst 2 has a false dependency on

; inst 1
;inst 2 merges new AH with current
; EAX register value forwarded
; by inst 1

In addition, an instruction that has a read dependency on any
part of a given architectural register has a read dependency on
the most recent instruction that modifies any part of the same
architectural register.

Example 2 (Avoid):
MOV BX, 12h ;inst 1
MOV BL, DL ;inst 2, false dependency on

; completion of inst 1
MOV BH, CL ;inst 3, false dependency on

; completion of inst 2
MOV AL, BL ;inst 4, depends on completion of

; inst 2
Chapter 4 Instruction Decoding Optimizations 55

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Use LEAVE Instruction for Function Epilogue Code

A classical approach for referencing function arguments and
local variables inside a function is the use of a so-called frame
pointer. In x86 code, the EBP register is customarily used as a
frame pointer. In function prologue code, the frame pointer is
set up as follows:

PUSH EBP ;save old frame pointer
MOV EBP, ESP ;new frame pointer
SUB ESP, nnnnnnnn ;allocate local variables

Function arguments on the stack can now be accessed at
positive offsets relative to EBP, and local variables are
accessible at negative offsets relative to EBP. In the function
epilogue code, the following work is performed:

MOV ESP, EBP ;deallocate local variables
POP EBP ;restore old frame pointer

The functionality of these two instructions is identical to that of
the LEAVE instruction. The LEAVE instruction is a single-byte
instruction and thus saves two bytes of code space over the
MOV/POP epilogue sequence. Replacing the MOV/POP
sequence with LEAVE also preserves decode bandwidth.

Therefore, use the LEAVE instruction in function epilogue code
for both specific AMD Athlon processor optimized and blended
code (code that performs well on both AMD-K6® and
AMD Athlon processors).

For functions that do not allocate local variables, the prologue
and epilogue code can be simplified to the following:

PUSH EBP ;save old frame pointer
MOV EBP, ESP ;new frame pointer

[...]

POP EBP ;restore old frame pointer

This is optimal in cases where the use of a frame pointer is
desired. For highest performance code, do not use a frame
pointer at all. Function arguments and local variables should be
accessed directly through ESP, thus freeing up EBP for use as a
general purpose register and reducing register pressure.
56 Instruction Decoding Optimizations Chapter 4

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Replace Certain SHLD Instructions with Alternative Code

Certain instances of the SHLD instruction can be replaced by
alternative code sequences using ADD and ADC or SHR and
LEA. The alternative code has lower latency and requires less
execution resources. ADD, ADC, SHR and LEA (32-bit version)
are DirectPath instructions, while SHLD is a VectorPath
instruction. Use of the replacement code optimizes decode
bandwidth as it potentially enables the decoding of a third
DirectPath instruction. The replacement code may increase
register pressure since it destroys the contents of REG2,
whereas REG2 is preserved by SHLD. In situations where
register pressure is high, use of the replacement sequences may
therefore not be indicated.

Example 1 (Avoid):
SHLD REG1, REG2, 1

Example 1 (Preferred):
ADD REG2, REG2
ADC REG1, REG1

Example 2 (Avoid):
SHLD REG1, REG2, 2

Example 2 (Preferred):
SHR REG2, 30
LEA REG1, [REG1*4 + REG2]

Example 3 (Avoid):
SHLD REG1, REG2, 3

Example 3 (Preferred):
SHR REG2, 29
LEA REG1, [REG1*8 + REG2]

Use 8-Bit Sign-Extended Immediates
Using 8-bit sign-extended immediates improves code density
with no negative effects on the AMD Athlon processor. For
example, encode ADD BX, –5 as “83 C3 FB” and not as “81 C3
FF FB”.
Chapter 4 Instruction Decoding Optimizations 57

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Use 8-Bit Sign-Extended Displacements

Use 8-bit sign-extended displacements for conditional
branches. Using short, 8-bit sign-extended displacements for
conditional branches improves code density with no negative
effects on the AMD Athlon processor.

Code Padding Using Neutral Code Fillers
Occasionally a need arises to insert neutral code fillers into the
code stream, e.g., for code alignment purposes or to space out
branches. Since this filler code can be executed, it should take
up as few execution resources as possible, not diminish decode
density, and not modify any processor state other than
advancing EIP. A one byte padding can easily be achieved using
the NOP instructions (XCHG EAX, EAX; opcode 0x90). In the
x86 architecture, there are several multi-byte NOP instructions
available that do not change processor state other than EIP:

■ MOV REG, REG

■ XCHG REG, REG

■ CMOVcc REG, REG

■ SHR REG, 0

■ SAR REG, 0

■ SHL REG, 0

■ SHRD REG, REG, 0

■ SHLD REG, REG, 0

■ LEA REG, [REG]

■ LEA REG, [REG+00]

■ LEA REG, [REG*1+00]

■ LEA REG, [REG+00000000]

■ LEA REG, [REG*1+00000000]

Not all of these instructions are equally suitable for purposes of
code padding. For example, SHLD/SHRD are microcoded,
which reduces decode bandwidth and takes up execution
resources.
58 Instruction Decoding Optimizations Chapter 4

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Recommendations for AMD-K6® Family and AMD Athlon™ Processor
Blended Code

The instructions and instructions sequences presented below
are recommended for code padding on both AMD-K6 family
processors and the AMD Athlon processor.

Each of the instructions and instruction sequences below
utilizes an x86 register. To avoid performance degradation,
select a register used in the padding that does not lengthen
existing dependency chains, i.e., select a register that is not
used by instructions in the vicinity of the neutral code filler.
Certain instructions use registers implicitly. For example,
PUSH, POP, CALL, and RET all make implicit use of the ESP
register. The 5-byte filler sequence below consists of two
instructions. If flag changes across the code padding are
acceptable, the following instructions may be used as single-
instruction 5-byte code fillers:

■ TEST EAX, 0FFFF0000h

■ CMP EAX, 0FFFF0000h

The fo l lowing assembly language macros show the
recommended neutral code fillers for code optimized for the
AMD Athlon processor that also have to run well on other x86
processors. Note for some padding lengths, versions using ESP
or EBP are missing due to the lack of fully generalized
addressing modes.

NOP2_EAX TEXTEQU <DB 08Bh,0C0h> ;MOV EAX, EAX
NOP2_EBX TEXTEQU <DB 08Bh,0DBh> ;MOV EBX, EBX
NOP2_ECX TEXTEQU <DB 08Bh,0C9h> ;MOV ECX, ECX
NOP2_EDX TEXTEQU <DB 08Bh,0D2h> ;MOV EDX, EDX
NOP2_ESI TEXTEQU <DB 08Bh,0F6h> ;MOV ESI, ESI
NOP2_EDI TEXTEQU <DB 08Bh,0FFh> ;MOV EDI, EDI
NOP2_ESP TEXTEQU <DB 08Bh,0E4h> ;MOV ESP, ESP
NOP2_EBP TEXTEQU <DB 08Bh,0EDh> ;MOV EBP, EBP

NOP3_EAX TEXTEQU <DB 08Dh,004h,020h> ;LEA EAX, [EAX]
NOP3_EBX TEXTEQU <DB 08Dh,01Ch,023h> ;LEA EBX, [EBX]
NOP3_ECX TEXTEQU <DB 08Dh,00Ch,021h> ;LEA ECX, [ECX]
NOP3_EDX TEXTEQU <DB 08Dh,014h,022h> ;LEA EDX, [EDX]
NOP3_ESI TEXTEQU <DB 08Dh,024h,024h> ;LEA ESI, [ESI]
NOP3_EDI TEXTEQU <DB 08Dh,034h,026h> ;LEA EDI, [EDI]
NOP3_ESP TEXTEQU <DB 08Dh,03Ch,027h> ;LEA ESP, [ESP]
NOP3_EBP TEXTEQU <DB 08Dh,06Dh,000h> ;LEA EBP, [EBP]

NOP4_EAX TEXTEQU <DB 08Dh,044h,020h,000h> ;LEA EAX, [EAX+00]
Chapter 4 Instruction Decoding Optimizations 59

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
NOP4_EBX TEXTEQU <DB 08Dh,05Ch,023h,000h> ;LEA EBX, [EBX+00]
NOP4_ECX TEXTEQU <DB 08Dh,04Ch,021h,000h> ;LEA ECX, [ECX+00]
NOP4_EDX TEXTEQU <DB 08Dh,054h,022h,000h> ;LEA EDX, [EDX+00]
NOP4_ESI TEXTEQU <DB 08Dh,064h,024h,000h> ;LEA ESI, [ESI+00]
NOP4_EDI TEXTEQU <DB 08Dh,074h,026h,000h> ;LEA EDI, [EDI+00]
NOP4_ESP TEXTEQU <DB 08Dh,07Ch,027h,000h> ;LEA ESP, [ESP+00]

;LEA EAX, [EAX+00];NOP
NOP5_EAX TEXTEQU <DB 08Dh,044h,020h,000h,090h>

;LEA EBX, [EBX+00];NOP
NOP5_EBX TEXTEQU <DB 08Dh,05Ch,023h,000h,090h>

;LEA ECX, [ECX+00];NOP
NOP5_ECX TEXTEQU <DB 08Dh,04Ch,021h,000h,090h>

;LEA EDX, [EDX+00];NOP
NOP5_EDX TEXTEQU <DB 08Dh,054h,022h,000h,090h>

;LEA ESI, [ESI+00];NOP
NOP5_ESI TEXTEQU <DB 08Dh,064h,024h,000h,090h>

;LEA EDI, [EDI+00];NOP
NOP5_EDI TEXTEQU <DB 08Dh,074h,026h,000h,090h>

;LEA ESP, [ESP+00];NOP
NOP5_ESP TEXTEQU <DB 08Dh,07Ch,027h,000h,090h>

;LEA EAX, [EAX+00000000]
NOP6_EAX TEXTEQU <DB 08Dh,080h,0,0,0,0>

;LEA EBX, [EBX+00000000]
NOP6_EBX TEXTEQU <DB 08Dh,09Bh,0,0,0,0>

;LEA ECX, [ECX+00000000]
NOP6_ECX TEXTEQU <DB 08Dh,089h,0,0,0,0>

;LEA EDX, [EDX+00000000]
NOP6_EDX TEXTEQU <DB 08Dh,092h,0,0,0,0>

;LEA ESI, [ESI+00000000]
NOP6_ESI TEXTEQU <DB 08Dh,0B6h,0,0,0,0>

;LEA EDI, [EDI+00000000]
NOP6_EDI TEXTEQU <DB 08Dh,0BFh,0,0,0,0>

;LEA EBP, [EBP+00000000]
NOP6_EBP TEXTEQU <DB 08Dh,0ADh,0,0,0,0>

;LEA EAX, [EAX*1+00000000]
NOP7_EAX TEXTEQU <DB 08Dh,004h,005h,0,0,0,0>
60 Instruction Decoding Optimizations Chapter 4

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
;LEA EBX, [EBX*1+00000000]
NOP7_EBX TEXTEQU <DB 08Dh,01Ch,01Dh,0,0,0,0>

;LEA ECX, [ECX*1+00000000]
NOP7_ECX TEXTEQU <DB 08Dh,00Ch,00Dh,0,0,0,0>

;LEA EDX, [EDX*1+00000000]
NOP7_EDX TEXTEQU <DB 08Dh,014h,015h,0,0,0,0>

;LEA ESI, [ESI*1+00000000]
NOP7_ESI TEXTEQU <DB 08Dh,034h,035h,0,0,0,0>

;LEA EDI, [EDI*1+00000000]
NOP7_EDI TEXTEQU <DB 08Dh,03Ch,03Dh,0,0,0,0>

;LEA EBP, [EBP*1+00000000]
NOP7_EBP TEXTEQU <DB 08Dh,02Ch,02Dh,0,0,0,0>

;LEA EAX, [EAX*1+00000000] ;NOP
NOP8_EAX TEXTEQU <DB 08Dh,004h,005h,0,0,0,0,90h>

;LEA EBX, [EBX*1+00000000] ;NOP
NOP8_EBX TEXTEQU <DB 08Dh,01Ch,01Dh,0,0,0,0,90h>

;LEA ECX, [ECX*1+00000000] ;NOP
NOP8_ECX TEXTEQU <DB 08Dh,00Ch,00Dh,0,0,0,0,90h>

;LEA EDX, [EDX*1+00000000] ;NOP
NOP8_EDX TEXTEQU <DB 08Dh,014h,015h,0,0,0,0,90h>

;LEA ESI, [ESI*1+00000000] ;NOP
NOP8_ESI TEXTEQU <DB 08Dh,034h,035h,0,0,0,0,90h>

;LEA EDI, [EDI*1+00000000] ;NOP
NOP8_EDI TEXTEQU <DB 08Dh,03Ch,03Dh,0,0,0,0,90h>

;LEA EBP, [EBP*1+00000000] ;NOP
NOP8_EBP TEXTEQU <DB 08Dh,02Ch,02Dh,0,0,0,0,90h>

;JMP
NOP9 TEXTEQU <DB 0EBh,007h,90h,90h,90h,90h,90h,90h,90h>
Chapter 4 Instruction Decoding Optimizations 61

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
62 Instruction Decoding Optimizations Chapter 4

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
5
Cache and Memory
Optimizations
This chapter describes code optimization techniques that take
advantage of the large L1 caches and high-bandwidth buses of
the AMD Athlon™ processor. Guidelines are listed in order of
importance.

Memory Size and Alignment Issues

Avoid Memory-Size Mismatches

Avoid memory-size mismatches when different instructions
operate on the same data. When an instruction stores and
another instruction reloads the same data, keep their operands
aligned and keep the loads/stores of each operand the same size.
The following code examples result in a store-to-load-
forwarding (STLF) stall:

Example (avoid):
MOV DWORD PTR [FOO], EAX
MOV DWORD PTR [FOO+4], EDX
FLD QWORD PTR [FOO]

✩TOP
Chapter 5 Cache and Memory Optimizations 63

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Example (avoid):
MOV [FOO], EAX
MOV [FOO+4], EDX
...
MOVQ MM0, [FOO]

Example (preferred):
MOV [FOO], EAX
MOV [FOO+4], EDX
...
MOVD MM0, [FOO]
PUNPCKLDQ MM0, [FOO+4]

Example (preferred if stores are close to the load):
MOVD MM0, EAX
MOV [FOO+4], EDX
PUNPCKLDQ MM0, [FOO+4]

Avoid large-to-small mismatches, as shown in the following code
examples:

Example (avoid):
FST QWORD PTR [FOO]
MOV EAX, DWORD PTR [FOO]
MOV EDX, DWORD PTR [FOO+4]

Example (avoid):
MOVQ [foo], MM0
...
MOV EAX, [foo]
MOV EDX, [foo+4]

Example (preferred):
MOVD [foo], MM0
PSWAPD MM0, MM0
MOVD [foo+4], MM0
PSWAPD MM0, MM0
...
MOV EAX, [foo]
MOV EDX, [foo+4]
64 Cache and Memory Optimizations Chapter 5

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Example (preferred if the contents of MM0 are no longer needed):
MOVD [foo], MM0
PUNPCKHDQ MM0, MM0
MOVD [foo+4], MM0
...
MOV EAX, [foo]
MOV EDX, [foo+4]

Example (preferred if the stores and loads are close together, option 1):
MOVD EAX, MM0
PSWAPD MM0, MM0
MOVD EDX, MM0
PSWAPD MM0, MM0

Example (preferred if the stores and loads are close together, option 2):
MOVD EAX, MM0
PUNPCKHDQ MM0, MM0
MOVD EDX, MM0

Align Data Where Possible

In general, avoid misaligned data references. All data whose size
is a power of two is considered aligned if it is naturally aligned.
For example:

■ Word accesses are aligned if they access an address divisible
by two.

■ Doubleword accesses are aligned if they access an address
divisible by four.

■ Quadword accesses are aligned if they access an address
divisible by eight.

■ TBYTE accesses are aligned if they access an address divisi-
ble by eight.

A misaligned store or load operation suffers a minimum one-
cycle penalty in the AMD Athlon processor load/store pipeline.
In addition, using misaligned loads and stores increases the
likelihood of encountering a store-to-load forwarding pitfall.
For a more detailed discussion of store-to-load forwarding
issues, see “Store-to-Load Forwarding Restrictions” on page 86.

✩TOP
Chapter 5 Cache and Memory Optimizations 65

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Optimizing Main Memory Performance for Large Arrays

This section outlines a process for taking advantage of main
memory bandwidth by using block prefetch and three-phase
processing.

Block prefetch is a technique for reading blocks of data from
main memory at very high data rates. Three-phase processing is
a programming style that divides data into blocks, which are
processed in sequence. Specifically, three-phase processing
employs block prefetch to read the input data for each block,
operates on each block entirely within the cache, and writes the
results to memory with high efficiency.

The prefetch techniques are applicable to applications that
access large, localized data objects in system memory, in a
sequential or near-sequential manner. The best advantage is
realized with data transfers of more than 64 Kbytes. The basis
of the techniques is to take best advantage of the processor's
cache memory.

The code examples in this section explore the most basic and
useful memory function: copying data from one area of memory
to another. This foundation is used to explore the main
optimization ideas, then these ideas are applied to optimizing a
bandwidth-limited function that uses the FPU to process linear
data arrays.

The performance metrics were measured for code samples
running on a 1.0 GHz AMD Athlon™ 4 processor with DDR2100
memory. The data sizes are chosen to be several megabytes, i.e.
much larger than the cache. Exact performance numbers are
different on other platforms, but the basic techniques are
widely applicable.

✩TOP
66 Cache and Memory Optimizations Chapter 5

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Memory Copy Optimization

Memory Copy: Step 1 The simplest way to copy memory is to use the REP MOVSB
instruction as used in the Baseline example.

Example Code: Baseline

(bandwidth: ~570 Mbytes/sec)

mov esi, [src] // source array
mov edi, [dst] // destination array
mov ecx, [len] // number of QWORDS (8 bytes)
shl ecx, 3 // convert to byte count
rep movsb

Memory Copy: Step 2 Starting from this baseline, several optimizations can be
implemented to improve performance. The next example
increases data size from a byte copy to a doubleword copy using
REP MOVSD instruction.

Example Code: Doubleword Copy

(bandwidth: ~700 Mbytes/sec improvement: 23%)

mov esi, [src] // source array
mov edi, [dst] // destination array
mov ecx, [len] // number of QWORDS (8 bytes)
shl ecx, 1 // convert to DWORD count

rep movsd
Chapter 5 Cache and Memory Optimizations 67

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Memory Copy: Step 3 The bandwidth was significantly improved using the
doubleword copy. The REP MOVS instructions are often not as
efficient as an explicit loop which uses simple "RISC"
instructions. The simple explicit instructions can be executed
in parallel and sometimes even out-of-order, within the CPU.
The explicit loop example uses a loop to perform the copy by
using MOV instructions.

Example Code: Explicit Loop

(bandwidth: ~720 Mbytes/sec improvement: 3%)

mov esi, [src] // source array
mov edi, [dst] // destination array
mov ecx, [len] // number of QWORDS (8 bytes)
shl ecx, 1 // convert to DWORD count

copyloop:
 mov eax, dword ptr [esi]
 mov dword ptr [edi], eax
 add esi, 4
 add edi, 4
 dec ecx
 jnz copyloop

Memory Copy: Step 4 The explicit loop is a bit faster than REP MOVSD. And now that
we have an explicit loop, further optimization can be
implemented by unrolling the loop. This reduces the overhead
of incrementing the pointers and counter, and reduces
branching. The unrolled loop example uses the [Register +
Offset] form of addressing, which runs just as fast as the simple
[Register] address, and uses an unroll factor of four.

Example Code: Unrolled Loop - Unroll Factor Four

(bandwidth: ~700 Mbytes/sec improvement: −3%)

mov esi, [src] // source array
mov edi, [dst] // destination array
mov ecx, [len] // number of QWORDS (8 bytes)
shr ecx, 1 // convert to 16-byte size count
 // (assumes len / 16 is an integer)
copyloop:
 mov eax, dword ptr [esi]
 mov dword ptr [edi], eax
 mov ebx, dword ptr [esi+4]
 mov dword ptr [edi+4], ebx
 mov eax, dword ptr [esi+8]
68 Cache and Memory Optimizations Chapter 5

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
 mov dword ptr [edi+8], eax
 mov ebx, dword ptr [esi+12]
 mov dword ptr [edi+12], ebx
 add esi, 16
 add edi, 16
 dec ecx
 jnz copyloop

Memory Copy: Step 5 The performance drops when the loop is unrolled, but a new
optimization can now be implemented : grouping read
operations together and write operations together. In general, it
is a good idea to read data in blocks, and write in blocks, rather
than alternating frequently.

Example Code: Read and Write Grouping

(bandwidth: ~750 Mbytes/sec improvement: 7%)

 mov esi, [src] // source array
 mov edi, [dst] // destination array

 mov ecx, [len] // number of QWORDS (8 bytes)
 shr ecx, 1 // convert to 16-byte size count

copyloop:
 mov eax, dword ptr [esi]
 mov ebx, dword ptr [esi+4]
 mov dword ptr [edi], eax
 mov dword ptr [edi+4], ebx
 mov eax, dword ptr [esi+8]
 mov ebx, dword ptr [esi+12]
 mov dword ptr [edi+8], eax
 mov dword ptr [edi+12], ebx
 add esi, 16
 add edi, 16
 dec ecx
 jnz copyloop
Chapter 5 Cache and Memory Optimizations 69

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Memory Copy: Step 6 The next opimization uses MMXTM extensions, available on all
modern x86 processors. The MMX registers permit 64 bytes of
sequential reading, followed by 64 bytes of sequential writing.
The MMX register example loop also introduces an
optimization on the loop counter, which starts negative and
counts up to zero. This allows the counter to serve double duty
as a pointer, and eliminates the need for a CMP instruction.

Example Code: Grouping Using MMX Registers

(bandwidth: ~800 Mbytes/sec improvement: 7%)

 mov esi, [src] // source array
 mov edi, [dst] // destination array

 mov ecx, [len] // number of QWORDS (8 bytes)

 lea esi, [esi+ecx*8] // end of source
 lea edi, [edi+ecx*8] // end of destination

 neg ecx // use a negative offset
 emms

copyloop:
 movq mm0, qword ptr [esi+ecx*8]
 movq mm1, qword ptr [esi+ecx*8+8]
 movq mm2, qword ptr [esi+ecx*8+16]
 movq mm3, qword ptr [esi+ecx*8+24]
 movq mm4, qword ptr [esi+ecx*8+32]
 movq mm5, qword ptr [esi+ecx*8+40]
 movq mm6, qword ptr [esi+ecx*8+48]
 movq mm7, qword ptr [esi+ecx*8+56]

 movq qword ptr [edi+ecx*8], mm0
 movq qword ptr [edi+ecx*8+8], mm1
 movq qword ptr [edi+ecx*8+16], mm2
 movq qword ptr [edi+ecx*8+24], mm3
 movq qword ptr [edi+ecx*8+32], mm4
 movq qword ptr [edi+ecx*8+40], mm5
 movq qword ptr [edi+ecx*8+48], mm6
 movq qword ptr [edi+ecx*8+56], mm7

 add ecx, 8
 jnz copyloop

 emms
70 Cache and Memory Optimizations Chapter 5

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Memory Copy: Step 7 MOVNTQ can be used now that MMXTM registers are being
used. This is a streaming store instruction, for writing data to
memory. This instruction bypasses the on-chip cache, and goes
directly into a write combining buffer, effectively increasing
the total write bandwidth. The MOVNTQ instruction executes
much faster than an ordinary MOV to memory. An SFENCE is
required to flush the write buffer.

Example Code: MOVNTQ and SFENCE Instructions

(bandwidth: ~1120 Mbytes/sec improvement: 32%)

 mov esi, [src] // source array
 mov edi, [dst] // destination array

 mov ecx, [len] // number of QWORDS (8 bytes)

 lea esi, [esi+ecx*8]
 lea edi, [edi+ecx*8]

 neg ecx
 emms

copyloop:
 movq mm0, qword ptr [esi+ecx*8]
 movq mm1, qword ptr [esi+ecx*8+8]
 movq mm2, qword ptr [esi+ecx*8+16]
 movq mm3, qword ptr [esi+ecx*8+24]
 movq mm4, qword ptr [esi+ecx*8+32]
 movq mm5, qword ptr [esi+ecx*8+40]
 movq mm6, qword ptr [esi+ecx*8+48]
 movq mm7, qword ptr [esi+ecx*8+56]

 movntq qword ptr [edi+ecx*8], mm0
 movntq qword ptr [edi+ecx*8+8], mm1
 movntq qword ptr [edi+ecx*8+16], mm2
 movntq qword ptr [edi+ecx*8+24], mm3
 movntq qword ptr [edi+ecx*8+32], mm4
 movntq qword ptr [edi+ecx*8+40], mm5
 movntq qword ptr [edi+ecx*8+48], mm6
 movntq qword ptr [edi+ecx*8+56], mm7

 add ecx, 8
 jnz copyloop

 sfence
 emms
Chapter 5 Cache and Memory Optimizations 71

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Memory Copy: Step 8 The MOVNTQ instruction in the previous example improves the
speed of writing the data. The Prefetch Instruction example
uses a prefetch instruction to improve the performance on
reading the data. Prefetching cannot increase the total read
bandwidth, but it can get the processor started on loading the
data to the cache before the data is needed.

Example Code: Prefetch Instruction (prefetchnta)

(bandwidth: ~1250 Mbytes/sec improvement: 12%)

 mov esi, [src] // source array
 mov edi, [dst] // destination array

 mov ecx, [len] // number of QWORDS (8 bytes)

 lea esi, [esi+ecx*8]
 lea edi, [edi+ecx*8]

 neg ecx
 emms

copyloop:

 prefetchnta [esi+ecx*8 + 512]

 movq mm0, qword ptr [esi+ecx*8]
 movq mm1, qword ptr [esi+ecx*8+8]
 movq mm2, qword ptr [esi+ecx*8+16]
 movq mm3, qword ptr [esi+ecx*8+24]
 movq mm4, qword ptr [esi+ecx*8+32]
 movq mm5, qword ptr [esi+ecx*8+40]
 movq mm6, qword ptr [esi+ecx*8+48]
 movq mm7, qword ptr [esi+ecx*8+56]

 movntq qword ptr [edi+ecx*8], mm0
 movntq qword ptr [edi+ecx*8+8], mm1
 movntq qword ptr [edi+ecx*8+16], mm2
 movntq qword ptr [edi+ecx*8+24], mm3
 movntq qword ptr [edi+ecx*8+32], mm4
 movntq qword ptr [edi+ecx*8+40], mm5
 movntq qword ptr [edi+ecx*8+48], mm6
 movntq qword ptr [edi+ecx*8+56], mm7

 add ecx, 8
 jnz copyloop

 sfence
 emms
72 Cache and Memory Optimizations Chapter 5

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Memory Copy: Step 9
(final)

In the final optimization to the memory copy code, the
technique called block prefetch is applied. Much as read
grouping gave a boost to performance, block prefetch is an
extreme extension of this idea. The strategy is to read a large
stream of sequential data from main memory into the cache,
without any interruptions.

In block prefetch, the MOV instruction is used, rather than the
software prefetch instruction. Unlike a prefetch instruction, the
MOV instruction cannot be ignored by the CPU. The result is
that a series of MOVs will force the memory system to read
sequential, back-to-back address blocks, which maximizes
memory bandwidth.

And because the processor always loads an entire cache line
(e.g. 64 bytes) whenever it accesses main memory, the block
prefetch MOV instructions only need to read ONE address per
cache line. Reading just one address per cache line is a subtle
trick, which is essential in achieving maximum read
performance.

Example: Block Prefetching

(bandwidth: ~1630 Mbytes/sec improvement: 30%)

#define CACHEBLOCK 400h // QWORDs in a block (8K bytes)

 mov esi, [src] // source array
 mov edi, [dst] // destination array

 mov ecx, [len] // total number of QWORDS (8 bytes)
 // (assumes len / CACHEBLOCK = integer)

 lea esi, [esi+ecx*8]
 lea edi, [edi+ecx*8]

 neg ecx
 emms

mainloop:

 mov eax, CACHEBLOCK / 16 // note: prefetch loop is
 // unrolled 2X
Chapter 5 Cache and Memory Optimizations 73

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
prefetchloop:
 mov ebx, [esi+ecx*8] // Read one address in line,
 mov ebx, [esi+ecx*8+64]// and one address in the next.
 add ecx, 16 // add 16 QWORDS, = 2 64-byte
 // cache lines
 dec eax
 jnz prefetchloop
 sub ecx, CACHEBLOCK

 mov eax, CACHEBLOCK / 8

writeloop:
 movq mm0, qword ptr [esi+ecx*8]
 .
 .
 movq mm7, qword ptr [esi+ecx*8+56]

 movntq qword ptr [edi+ecx*8], mm0
 .
 .
 movntq qword ptr [edi+ecx*8+56], mm7
 add ecx, 8
 dec eax
 jnz writeloop

 or ecx, ecx
 jnz mainloop

 sfence
 emms

Array Addition

The following Two Array Addition example applies the block
prefetch technique and other concepts from the memory copy
optimization example, and optimizes a memory-intensive loop
that processes large arrays.

Baseline Code This loop adds two arrays of floating-point numbers together,
using the x87 FPU, and writes the results to a third array. This
example also shows how to handle the issue of combining MMX
code (required for using the MOVNTQ instruction) with FPU
code (needed for adding the numbers).

The Two Array Baseline example is a slightly optimized, first
pass, baseline version of the code.
74 Cache and Memory Optimizations Chapter 5

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Example: Two Array Add Baseline

(bandwidth: ~840 MB/sec baseline performance)

mov esi, [src1] // source array one
mov ebx, [src2] // source array two
mov edi, [dst] // destination array

mov ecx, [len] // number of Floats (8 bytes)
 // (assumes len / 8 = integer)

lea esi, [esi+ecx*8]
 lea ebx, [ebx+ecx*8]

lea edi, [edi+ecx*8]

neg ecx

addloop:

 fld qword ptr [esi+ecx*8+56]
 fadd qword ptr [ebx+ecx*8+56]
 fld qword ptr [esi+ecx*8+48]
 fadd qword ptr [ebx+ecx*8+48]
 fld qword ptr [esi+ecx*8+40]
 fadd qword ptr [ebx+ecx*8+40]
 fld qword ptr [esi+ecx*8+32]
 fadd qword ptr [ebx+ecx*8+32]
 fld qword ptr [esi+ecx*8+24]
 fadd qword ptr [ebx+ecx*8+24]
 fld qword ptr [esi+ecx*8+16]
 fadd qword ptr [ebx+ecx*8+16]
 fld qword ptr [esi+ecx*8+8]
 fadd qword ptr [ebx+ecx*8+8]
 fld qword ptr [esi+ecx*8+0]
 fadd qword ptr [ebx+ecx*8+0]

 fstp qword ptr [edi+ecx*8+0]
 fstp qword ptr [edi+ecx*8+8]
 fstp qword ptr [edi+ecx*8+16]
 fstp qword ptr [edi+ecx*8+24]
 fstp qword ptr [edi+ecx*8+32]
 fstp qword ptr [edi+ecx*8+40]
 fstp qword ptr [edi+ecx*8+48]
 fstp qword ptr [edi+ecx*8+56]
 add ecx, 8
 jnz addloop
Chapter 5 Cache and Memory Optimizations 75

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Optimized Code After all the relevant optimization techniques have been
applied, the code appears as in the Two Array Add with
Optimizations Example. The data is still processed in blocks, as
in the memory copy example. But in this case, the code must
process the data using the FPU, not simply copy it. Because of
this need for FPU mode operation, the processing is divided
into three distinct phases: block prefetch, processing, and
memory write. The block prefetch phase reads the input data
into the cache at maximum bandwidth. The processing phase
operates on the in-cache input data and writes the results to an
in-cache temporary buffer. The memory write phase uses
MOVNTQ to quickly transfer the temporary buffer to the
destination array in main memory.

These three phases are the components of three phase
processing. This general technique provides a significant
performance boost, as seen in this optimized code.

Example: Two Array Add with Optimizations

(bandwidth: ~1370 MB/sec improvement: 63%)

#define CACHEBLOCK 400h // QWORDs in a block, (8K bytes)
int* storedest
char buffer[CACHEBLOCK * 8] // in-cache temporary storage

 mov esi, [src1] // source array one
 mov ebx, [src2] // source array two
 mov edi, [dst] // destination array

 mov ecx, [len] // number of Floats (8 bytes)
 // (assumes len /CACHEBLOCK = integer)
 lea esi, [esi+ecx*8]
 lea ebx, [ebx+ecx*8]
 lea edi, [edi+ecx*8]

 mov [storedest], edi // save the real dest for later

 mov edi, [buffer] // temporary in-cache buffer...
 lea edi, [edi+ecx*8] // stays in cache from heavy use
 neg ecx

mainloop:
 mov eax, CACHEBLOCK / 16

prefetchloop1: // block prefetch array #1
 mov edx, [esi+ecx*8]
 mov edx, [esi+ecx*8+64] // (this loop is unrolled 2X)
 add ecx, 16
76 Cache and Memory Optimizations Chapter 5

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
 dec eax
 jnz prefetchloop1
 sub ecx, CACHEBLOCK
 mov eax, CACHEBLOCK / 16

prefetchloop2: // block prefetch array #2
 mov edx, [ebx+ecx*8]
 mov edx, [ebx+ecx*8+64] // (this loop is unrolled 2X)
 add ecx, 16
 dec eax
 jnz prefetchloop2
 sub ecx, CACHEBLOCK
 mov eax, CACHEBLOCK / 8

processloop: // this loop read/writes all in cache!
 fld qword ptr [esi+ecx*8+56]
 fadd qword ptr [ebx+ecx*8+56]
 ...
 fld qword ptr [esi+ecx*8+0]
 fadd qword ptr [ebx+ecx*8+0]

 fstp qword ptr [edi+ecx*8+0]
 ...
 fstp qword ptr [edi+ecx*8+56]

 add ecx, 8
 dec eax
 jnz processloop

 emms

 sub ecx, CACHEBLOCK
 mov edx, [storedest]
 mov eax, CACHEBLOCK / 8
writeloop: // write buffer to main mem
 movq mm0, qword ptr [edi+ecx*8]
 ...
 movq mm7, qword ptr [edi+ecx*8+56]

 movntq qword ptr [edx+ecx*8], mm0
 ...
 movntq qword ptr [edx+ecx*8+56], mm7

 add ecx, 8
 dec eax
 jnz writeloop
 or ecx, ecx
 jge exit

 sub edi, CACHEBLOCK * 8 // reset edi back to start of
 // buffer
Chapter 5 Cache and Memory Optimizations 77

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
 sfence
 emms

 jmp mainloop
exit:

Summary

Block prefetch and three phase processing are general
techniques for improving the performance of memory-intensive
applications. The key points are:

■ To get the maximum memory read bandwidth, read data
into the cache in large blocks, using block prefetch. A block
prefetch loop should:

• Be unrolled by at least 2X

• Use the MOV instruction (not the Prefetch instruction)

• Read only one address per cache line

• Read data into an ALU scratch register, e.g. EAX

• Make sure all data is aligned

• Read only one address stream per loop

• Use separate loops to prefetch several streams

■ To get maximum memory write bandwidth, write data from
the cache to main memory in large blocks, using streaming
store instructions. The write loop should:

• Use the MMX registers to pass the data

• Read from cache

• Use MOVNTQ (streaming store) for writing to memory

• Make sure the data is aligned

• Write every address, in ascending order, without gaps

• End with an SFENCE to flush the write buffer

■ Whenever possible, code that actually “does the real work”
should read data from cache, and write output to an in-
cache buffer. To enable this cache access, follow the first
two guidelines above.

Align branch targets to 16-byte boundaries, in these critical
sections of code. This optimization is described in “Align
Branch Targets in Program Hot Spots” on page 54.
78 Cache and Memory Optimizations Chapter 5

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Use the PREFETCH 3DNow!™ Instruction

For code that can take advantage of prefetching, and situations
where small data sizes or other constraints limit the applicability
of block prefetch optimizations, use the 3DNow! PREFETCH and
PREFETCHW instructions to increase the effective bandwidth to
the AMD Athlon processor.

The PREFETCH and PREFETCHW instructions take
advantage of the high bus bandwidth of the AMD Athlon
processor to hide long latencies when fetching data from
system memory.

The prefetch instructions are essentially integer instructions
and can be used anywhere, in any type of code (integer, x87,
3DNow!, MMX, etc.).

Prefetching versus
Preloading

In code that uses the block prefetch technique as described in
“Optimizing Main Memory Performance for Large Arrays” on
page 66, a standard load instruction is the best way to prefetch
data. But in other situations, load instructions may be able to
mimic the functionality of prefetch instructions, but they do not
offer the same performance advantage.Prefetch instructions
only update the cache line in the L1/L2 cache and do not update
an architectural register. This uses one less register compared
to a load instruction. Prefetch instructions also do not cause
normal instruction retirement to stall.

Another benefit of prefetching versus preloading is that the
prefetching instructions can retire even if the load data has not
arrived yet. A regular load used for preloading will stall the
machine if it gets to the bottom of the fixed-issue reorder buffer
(part of the Instruction Control Unit) and the load data has not
arrived yet. The load is "blocking" whereas the prefetch is
"non-blocking."

Unit-Stride Access Large data sets typically require unit-stride access to ensure
that all data pulled in by PREFETCH or PREFETCHW is
actually used. If necessary, reorganize algorithms or data
structures to allow unit-stride access. See “Definitions” on
page 84 for a definition of unit-stride access.

✩TOP
Chapter 5 Cache and Memory Optimizations 79

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Hardware Prefetch Some AMD Athlon processors implement a hardware prefetch
mechanism. This feature was implemented beginning with
AMD Athlon processor Model 6. The data is loaded into the L2
cache. The hardware prefetcher works most efficiently when
data is accessed on a cache-line-by-cache-line basis (that is,
without skipping cache lines). Cache lines on current AMD
Athlon processors are 64 bytes, but cache line size is
implementation dependent.

In some cases, using the PREFETCH or PREFETCHW
instruction on processors with hardware prefetch may incur a
reduction in performance. In these cases, the PREFETCH
instruction may need to be removed. The engineer needs to
weigh the measured gains obtained on non-hardware prefetch
enabled processors by using the PREFETCH instruction, versus
any loss in performance on processors with the hardware
prefetcher.

PREFETCH/W versus
PREFETCHNTA/T0/T1
/T2

The PREFETCHNTA/T0/T1/T2 instructions in the MMX
extensions are processor implementation dependent. If the
developer needs to maintain compatibility with the 25 million
AMD-K6®-2 and AMD-K6-III processors already sold, use the
3DNow! PREFETCH/W instructions instead of the various
prefetch instructions that are new MMX extensions.

PREFETCHW Usage Code that intends to modify the cache line brought in through
prefetching should use the PREFETCHW instruction. While
PREFETCHW works the same as a PREFETCH on the
AMD-K6-2 and AMD-K6-III processors, PREFETCHW gives a
hint to the AMD Athlon processor of an intent to modify the
cache line. The AMD Athlon processor marks the cache line
being brought in by PREFETCHW as modified . Using
PREFETCHW can save an additional 15−25 cycles compared to
a PREFETCH and the subsequent cache state change caused by
a write to the prefetched cache line. Only use PREFETCHW if
there is a write to the same cache line afterwards.
80 Cache and Memory Optimizations Chapter 5

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Multiple Prefetches Programmers can initiate multiple outstanding prefetches on
the AMD Athlon processor. While the AMD-K6-2 and
AMD-K6-III processors can have only one outstanding prefetch,
the AMD Athlon processor can have up to six outstanding
prefetches. When all six buffers are filled by various memory
read requests, the processor will simply ignore any new
prefetch requests until a buffer frees up. Multiple prefetch
requests are essentially handled in-order. Prefetch data in the
order that it is needed.

The following example shows how to initiate multiple
prefetches when traversing more than one array.

Example 1: Multiple Prefetches Code
.CODE
.K3D
.686

; original C code
;
; #define LARGE_NUM 65536
; #define ARR_SIZE (LARGE_NUM*8)
;
; double array_a[LARGE_NUM];
; double array_b[LARGE_NUM];
; double array_c[LARGE_NUM];
; int i;
;
; for (i = 0; i < LARGE_NUM; i++) {
; a[i] = b[i] * c[i]
; }

MOV EDX, (-LARGE_NUM) ;used biased index
MOV EAX, OFFSET array_a ;get address of array_a
MOV EBX, OFFSET array_b ;get address of array_b
MOV ECX, OFFSET array_c ;get address of array_c

$loop:

PREFETCHW [EAX+128] ;two cachelines ahead
PREFETCH [EBX+128] ;two cachelines ahead
PREFETCH [ECX+128] ;two cachelines ahead
FLD QWORD PTR [EBX+EDX*8+ARR_SIZE] ;b[i]
FMUL QWORD PTR [ECX+EDX*8+ARR_SIZE] ;b[i]*c[i]
FSTP QWORD PTR [EAX+EDX*8+ARR_SIZE] ;a[i] = b[i]*c[i]
FLD QWORD PTR [EBX+EDX*8+ARR_SIZE+8] ;b[i+1]
FMUL QWORD PTR [ECX+EDX*8+ARR_SIZE+8] ;b[i+1]*c[i+1]
FSTP QWORD PTR [EAX+EDX*8+ARR_SIZE+8] ;a[i+1] =

; b[i+1]*c[i+1]
Chapter 5 Cache and Memory Optimizations 81

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
FLD QWORD PTR [EBX+EDX*8+ARR_SIZE+16] ;b[i+2]
FMUL QWORD PTR [ECX+EDX*8+ARR_SIZE+16] ;b[i+2]*c[i+2]
FSTP QWORD PTR [EAX+EDX*8+ARR_SIZE+16] ;a[i+2] =

; [i+2]*c[i+2]
FLD QWORD PTR [EBX+EDX*8+ARR_SIZE+24] ;b[i+3]
FMUL QWORD PTR [ECX+EDX*8+ARR_SIZE+24] ;b[i+3]*c[i+3]
FSTP QWORD PTR [EAX+EDX*8+ARR_SIZE+24] ;a[i+3] =

; b[i+3]*c[i+3]
FLD QWORD PTR [EBX+EDX*8+ARR_SIZE+32] ;b[i+4]
FMUL QWORD PTR [ECX+EDX*8+ARR_SIZE+32] ;b[i+4]*c[i+4]
FSTP QWORD PTR [EAX+EDX*8+ARR_SIZE+32] ;a[i+4] =

; b[i+4]*c[i+4]
FLD QWORD PTR [EBX+EDX*8+ARR_SIZE+40] ;b[i+5]
FMUL QWORD PTR [ECX+EDX*8+ARR_SIZE+40] ;b[i+5]*c[i+5]
FSTP QWORD PTR [EAX+EDX*8+ARR_SIZE+40] ;a[i+5] =

; b[i+5]*c[i+5]
FLD QWORD PTR [EBX+EDX*8+ARR_SIZE+48] ;b[i+6]
FMUL QWORD PTR [ECX+EDX*8+ARR_SIZE+48] ;b[i+6]*c[i+6]
FSTP QWORD PTR [EAX+EDX*8+ARR_SIZE+48] ;a[i+6] =

; b[i+6]*c[i+6]
FLD QWORD PTR [EBX+EDX*8+ARR_SIZE+56] ;b[i+7]
FMUL QWORD PTR [ECX+EDX*8+ARR_SIZE+56] ;b[i+7]*c[i+7]
FSTP QWORD PTR [EAX+EDX*8+ARR_SIZE+56] ;a[i+7] =

; b[i+7]*c[i+7]
ADD EDX, 8 ;next 8 products
JNZ $loop ;until none left

END

The following optimization rules are applied to this example:

■ Partially unroll loops to ensure that the data stride per loop
iteration is equal to the length of a cache line. This avoids
overlapping PREFETCH instructions and thus makes opti-
mal use of the available number of outstanding
PREFETCHes.

■ Since the array "array_a" is written rather than read, use
PREFETCHW instead of PREFETCH to avoid overhead for
switching cache lines to the correct MESI state. The
PREFETCH lookahead is optimized such that each loop
iteration is working on three cache lines while six active
PREFETCHes bring in the next six cache lines.

■ Reduce index arithmetic to a minimum by use of complex
addressing modes and biasing of the array base addresses in
order to cut down on loop overhead.
82 Cache and Memory Optimizations Chapter 5

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Determining Prefetch Distance

When determining how far ahead to prefetch, the basic
guideline is to initiate the prefetch early enough so that the
data is in the cache by the time it is needed, under the
constraint that there can't be more than six PREFETCHes in
flight at any given time. As processors achieve speeds of 1 GHz
and faster, the second constraint starts to limit how far ahead a
programmer can PREFETCH.

Formula Given the latency of a typical AMD Athlon processor system
and expected processor speeds, use the following formula to
determine the prefetch distance in bytes for a single array:

Prefetch Distance = 200 × (DS/C) bytes

■ Round up to the nearest 64-byte cache line.

■ The number 200 is a constant based upon expected
AMD Athlon processor clock frequencies and typical system
memory latencies.

■ DS is the data stride in bytes per loop iteration.

■ C is the number of cycles for one loop to execute entirely
from the L1 cache.

Programmers should isolate the loop and have the loop work on
a data set that fits in L1 and determine the L1 loop time.

L1_loop_time = execution time in cycles / # loop iterations

Where multiple arrays are being prefetched, the prefetch
distance usually needs to be increased over what the above
formula suggests, as prefetches for one array are delayed by
prefetches to a different array.
Chapter 5 Cache and Memory Optimizations 83

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Definitions Unit-stride access refers to a memory access pattern where
consecutive memory accesses are to consecutive array
elements, in ascending or descending order. If the arrays are
made of elemental types, then it implies adjacent memory
locations as well. For example:

char j, k[MAX];
for (i=0; i<MAX; i++) {
...
j += k[i];
...
}
double x, y[MAX];
for (i=0; i<MAX; i++) {
...
x += y[i];
...
}

Exception to Unit
Stride

The unit-stride concept works well when stepping through
arrays of elementary data types. In some instances, unit stride
alone may not be sufficient to determine how to use
PREFETCH properly. For example, assume a vertex structure
of 256 bytes and the code steps through the vertices in unit
stride, but using only the x, y, z, w components, each being of
type float (e.g., the first 16 bytes of each vertex). In this case,
the prefetch distance obviously should be some function of the
data size structure (for a properly chosen "n"):

PREFETCH [EAX+n*STRUCTURE_SIZE]
...
ADD EAX, STRUCTURE_SIZE

Programmers may need to experiment to find the optimal
prefetch distance; there is no formula that works for all
situations.

Data Stride per Loop
Iteration

Assuming unit-stride access to a single array, the data stride of
a loop refers to the number of bytes accessed in the array per
loop iteration. For example:

FLDZ
$add_loop:
FADD QWORD PTR [EBX*8+base_address]
DEC EBX
JNZ $add_loop

The data stride of the above loop is 8 bytes. In general, for
optimal use of prefetch, the data stride per iteration is the
length of a cache line (64 bytes in the AMD Athlon processor).
84 Cache and Memory Optimizations Chapter 5

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
If the "loop stride" is smaller, unroll the loop. Note that this can
be unfeasible if the original loop stride is very small, e.g., 2
bytes.

Prefetch at Least 64
Bytes Away from
Surrounding Stores

The PREFETCH and PREFETCHW instructions can be
affected by false dependencies on stores. If there is a store to an
address that matches a request, that request (the PREFETCH
or PREFETCHW instruction) may be blocked until the store is
written to the cache. Therefore, code should prefetch data that
is located at least 64 bytes away from any surrounding store’s
data address.

Take Advantage of Write Combining

Operating system and device driver programmers should take
advantage of the write-combining capabilities of the
AMD Athlon processor. The AMD Athlon processor has a very
aggressive write-combining algorithm that improves
performance significantly.

See Appendix C, “Implementation of Write Combining,” for
more details.

Avoid Placing Code and Data in the Same 64-Byte Cache
Line

Sharing code and data in the same 64-byte cache line may cause
the L1 caches to thrash (unnecessary castout of code/data) in
order to maintain coherency between the separate instruction
and data caches. The AMD Athlon processor has a cache-line
size of 64 bytes, which is twice the size of previous processors.
Programmers must be aware that code and data should not be
shared within this larger cache line, especially if the data
becomes modified.

For example, programmers should consider that a memory
indirect JMP instruction may have the data for the jump table
residing in the same 64-byte cache line as the JMP instruction,
which would result in lower performance.

✩TOP

✩TOP
Chapter 5 Cache and Memory Optimizations 85

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Although unlikely, do not place critical code at the border
between 32-byte aligned code segments and data segments. The
code at the start or end of your data segment should be
executed as infrequently as possible or simply padded with
garbage.

In summary, avoid self-modifying code and storing data in code
segments.

Multiprocessor Considerations

Sharing data between processors which reside in the same
cache line can reduce performance. Whenever possible,
restructure the data organization so this does not occur. Cache
lines on AMD Athlon™ processors are presently 64 bytes but a
scheme which avoids this problem regardless of cache line size
makes for more performance portable code.

Store-to-Load Forwarding Restrictions

Store-to-load forwarding refers to the process of a load reading
(forwarding) data from the store buffer (LS2). There are
instances in the AMD Athlon processor load/store architecture
when either a load operation is not allowed to read needed data
from a store in the store buffer, or a load MacroOP detects a
false data dependency on a store in the store buffer

In either case, the load cannot complete (load the needed data
into a register) until the store has retired out of the store buffer
and written to the data cache. A store-buffer entry cannot retire
and write to the data cache until every instruction before the
store has completed and retired from the reorder buffer.

The implication of this restriction is that all instructions in the
reorder buffer, up to and including the store, must complete
and retire out of the reorder buffer before the load can
complete. Effectively, the load has a false dependency on every
instruction up to the store.

Due to the significant depth of the AMD Athlon processor LS
buffer, any load dependent on a store that cannot bypass data
86 Cache and Memory Optimizations Chapter 5

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
through LS can experience significant delays of up to tens of
clock cycles, where the exact delay is a function of pipeline
conditions.

The following sections describe store-to-load forwarding
examples that are acceptable and those to avoid.

Store-to-Load Forwarding Pitfalls—True Dependencies

A load is allowed to read data from the store-buffer entry only if
all of the following conditions are satisfied:

■ The start address of the load matches the start address of
the store.

■ The load operand size is equal to or smaller than the store
operand size.

■ Neither the load or store is misaligned.

■ The store data is not from a high-byte register (AH, BH, CH,
or DH).

The following sections describe common-case scenarios to avoid
whereby a load has a true dependency on a LS2-buffered store,
but cannot read (forward) data from a store-buffer entry.

Narrow-to-Wide
Store-Buffer Data
Forwarding
Restriction

If the following conditions are present, there is a narrow-to-
wide store-buffer data forwarding restriction:

■ The operand size of the store data is smaller than the oper-
and size of the load data.

■ The range of addresses spanned by the store data covers
some subregion of range of addresses spanned by the load
data.

Avoid the type of code shown in the following two examples.

Example 1 (avoid):
MOV EAX, 10h
MOV WORD PTR [EAX], BX ;word store
...
MOV ECX, DWORD PTR [EAX] ;doubleword load

;cannot forward upper
; byte from store buffer
Chapter 5 Cache and Memory Optimizations 87

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Example 2 (avoid):
MOV EAX, 10h
MOV BYTE PTR [EAX + 3], BL ;byte store
...
MOV ECX, DWORD PTR [EAX] ;doubleword load

 ;cannot forward upper byte
 ; from store buffer

Wide-to-Narrow
Store-Buffer Data
Forwarding
Restriction

If the following conditions are present, there is a wide-to-
narrow store-buffer data forwarding restriction:

■ The operand size of the store data is greater than the oper-
and size of the load data.

■ The start address of the store data does not match the start
address of the load.

Example 3 (avoid):
MOV EAX, 10h
ADD DWORD PTR [EAX], EBX ;doubleword store
MOV CX, WORD PTR [EAX + 2] ;word load-cannot forward high

; word from store buffer

Example 4 (avoid):
MOVQ [foo], MM1 ;store upper and lower half
...
ADD EAX, [foo] ;fine
ADD EDX, [foo+4] ;not good!

Example 5(preferred):
MOVD [foo], MM1 ;store lower half
PUNPCKHDQ MM1, MM1 ;get upper half into lower half
MOVD [foo+4], MM1 ;store lower half
...
ADD EAX, [foo] ;fine
ADD EDX, [foo+4] ;fine

Misaligned Store-
Buffer Data
Forwarding
Restriction

If the following condition is present, there is a misaligned store-
buffer data forwarding restriction:

■ The store or load address is misaligned. For example, a
quadword store is not aligned to a quadword boundary, a
doubleword store is not aligned to doubleword boundary,
etc.

A common case of misaligned store-data forwarding involves the
passing of misaligned quadword floating-point data on the
88 Cache and Memory Optimizations Chapter 5

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
doubleword-aligned integer stack. Avoid the type of code shown in
the following example.

Example 6(avoid):
MOV ESP, 24h
FSTP QWORD PTR [ESP] ;esp=24
. ;store occurs to quadword
. ; misaligned address
.
FLD QWORD PTR[ESP] ;quadword load cannot forward

; from quadword misaligned
; ‘fstp[esp]’ store MacroOP

High-Byte Store-
Buffer Data
Forwarding
Restriction

If the following condition is present, there is a high-byte store-
data buffer forwarding restriction − the store data is from a
high-byte register (AH, BH, CH, DH).

Avoid the type of code shown in the following example.

Example 6 (avoid):
MOV EAX, 10h
MOV [EAX], BH ;high-byte store
.
MOV DL, [EAX] ;load cannot forward from

; high-byte store

One Supported Store-
to-Load Forwarding
Case

There is one case of a mismatched store-to-load forwarding that
is supported by the AMD Athlon processor. The lower 32 bits
from an aligned QWORD write feeding into a DWORD read is
allowed.

Example 7 (allowed):
MOVQ [AlignedQword], mm0
...
MOV EAX, [AlignedQword]
Chapter 5 Cache and Memory Optimizations 89

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Summary of Store-to-Load Forwarding Pitfalls to Avoid

To avoid store-to-load forwarding pitfalls, conform code to the
following guidelines:

■ Maintain consistent use of operand size across all loads and
stores. Preferably, use doubleword or quadword operand
sizes.

■ Avoid misaligned data references.

■ Avoid narrow-to-wide and wide-to-narrow forwarding cases.

■ When using word or byte stores, avoid loading data from
anywhere in the same doubleword of memory other than the
identical start addresses of the stores.

Stack Alignment Considerations

Make sure the stack is suitably aligned for the local variable
with the largest base type. Then, using the technique described
in “C Language Structure Component Considerations” on
page 91, all variables can be properly aligned with no padding.

Extend to 32 Bits
Before Pushing onto
Stack

Function arguments smaller than 32 bits should be extended to
32 bits before being pushed onto the stack, which ensures that
the stack is always doubleword aligned on entry to a function.

If a function has no local variables with a base type larger than
doubleword, no further work is necessary. If the function does
have local variables whose base type is larger than a
doubleword, insert additional code to ensure proper alignment
of the stack. For example, the following code achieves
quadword alignment:

Example 1 (preferred):
Prologue:
PUSH EBP
MOV EBP, ESP
SUB ESP, SIZE_OF_LOCALS ;size of local variables
AND ESP, –8

;push registers that need to be preserved

Epilogue: ;pop register that needed to be preserved
LEAVE
RET
90 Cache and Memory Optimizations Chapter 5

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
With this technique, function arguments can be accessed via
EBP, and local variables can be accessed via ESP. In order to
free EBP for general use, it needs to be saved and restored
between the prologue and the epilogue.

Align TBYTE Variables on Quadword Aligned Addresses

Align variables of type TBYTE on quadword aligned addresses.
In order to make an array of TBYTE variables that are aligned,
array elements are 16 bytes apart. In general, TBYTE variables
should be avoided. Use double-precision variables instead.

C Language Structure Component Considerations

Structures (‘struct’ in C language) should be made the size of a
multiple of the largest base type of any of their components. To
meet this requirement, use padding where necessary. This
ensures that all elements of an array of structures are properly
aligned provided the array itself is properly aligned.

To minimize padding, sort and allocate structure components
(language definitions permitting) such that the components
with a larger base type are allocated ahead of those with a
smaller base type. For example, consider the following code:

Example 1:
struct {

char a[5];
long k;
double x;
} baz;

Allocate the structure components (lowest to highest address)
as follows:

x, k, a[4], a[3], a[2], a[1], a[0], padbyte6, ..., padbyte0

See “C Language Structure Component Considerations” on
page 36 for more information from a C source code perspective.
Chapter 5 Cache and Memory Optimizations 91

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Sort Variables According to Base Type Size

Sort local variables according to their base type size and
allocate variables with larger base type size ahead of those with
smaller base type size. Assuming the first variable allocated is
naturally aligned, all other variables are naturally aligned
without any padding. The following example is a declaration of
local variables in a C function:

Example 1:
short ga, gu, gi;
long foo, bar;
double x, y, z[3];
char a, b;
float baz;

Allocate variables in the following order from left to right (from
higher to lower addresses):

x, y, z[2], z[1], z[0], foo, bar, baz, ga, gu, gi, a, b;

See “Sort Local Variables According to Base Type Size” on
page 37 for more information from a C source code perspective.
92 Cache and Memory Optimizations Chapter 5

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
6
Branch Optimizations
While the AMD Athlon™ processor contains a very
sophisticated branch unit, certain optimizations increase the
effectiveness of the branch prediction unit. This chapter
discusses rules that improve branch prediction and minimize
branch penalties. Guidelines are listed in order of importance.

Avoid Branches Dependent on Random Data

Avoid conditional branches depending on random data, as these
are difficult to predict. For example, a piece of code receives a
random stream of characters “A” through “Z” and branches if
the character is before “M” in the collating sequence. Data-
dependent branches acting upon basically random data causes
the branch prediction logic to mispredict the branch about 50%
of the time.

If possible, design branch-free alternative code sequences,
which results in shorter average execution time. This technique
is especially important if the branch body is small. Examples 1
and 2 illustrate this concept using the CMOV instruction. Note
that the AMD-K6® processor does not support the CMOV
instruction. Therefore, blended AMD-K6 and AMD Athlon
processor code should use Examples 3 and 4.

✩TOP
Chapter 6 Branch Optimizations 93

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
AMD Athlon™ Processor Specific Code

Example 1 — Signed integer ABS function (X = labs(X)):
MOV ECX, [X] ;load value
MOV EBX, ECX ;save value
NEG ECX ;–value
CMOVS ECX, EBX ;if –value is negative, select value
MOV [X], ECX ;save labs result

Example 2 — Unsigned integer min function (z = x < y ? x : y):
MOV EAX, [X] ;load X value
MOV EBX, [Y] ;load Y value
CMP EAX, EBX ;EBX<=EAX ? CF=0 : CF=1
CMOVNC EAX, EBX ;EAX=(EBX<=EAX) ? EBX:EAX
MOV [Z], EAX ;save min (X,Y)

Blended AMD-K6® and AMD Athlon™ Processor Code

Example 3 — Signed integer ABS function (X = labs(X)):
MOV ECX, [X] ;load value
MOV EBX, ECX ;save value
SAR ECX, 31 ;x < 0 ? 0xffffffff : 0
XOR EBX, ECX ;x < 0 ? ~x : x
SUB EBX, ECX ;x < 0 ? (~x)+1 : x
MOV [X], EBX ;x < 0 ? -x : x

Example 4 — Unsigned integer min function (z = x < y ? x : y):
MOV EAX, [x] ;load x
MOV EBX, [y] ;load y
SUB EAX, EBX ;x < y ? CF : NC ; x - y
SBB ECX, ECX ;x < y ? 0xffffffff : 0
AND ECX, EAX ;x < y ? x - y : 0
ADD ECX, EBX ;x < y ? x - y + y : y
MOV [z], ECX ;x < y ? x : y

Example 5 — Hexadecimal to ASCII conversion
(y=x < 10 ? x + 0x30: x + 0x41):
MOV AL, [X] ;load X value
CMP AL, 10 ;if x is less than 10, set carry
flag
SBB AL, 69h ;0..9 –> 96h, Ah..Fh –> A1h...A6h
DAS ;0..9: subtract 66h, Ah..Fh: Sub.
60h
MOV [Y], AL ;save conversion in y
94 Branch Optimizations Chapter 6

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Example 6 — Increment Ring Buffer Offset:
//C Code
char buf[BUFSIZE];
 int a;

 if (a < (BUFSIZE-1)) {
 a++;
 } else {
 a = 0;
 }

;-------------
;Assembly Code
MOV EAX, [a] ; old offset
CMP EAX, (BUFSIZE-1) ; a < (BUFSIZE-1) ? CF : NC
INC EAX ; a++
SBB EDX, EDX ; a < (BUFSIZE-1) ? 0xffffffff :0
AND EAX, EDX ; a < (BUFSIZE-1) ? a++ : 0
MOV [a], EAX ; store new offset

Example 7 — Integer Signum Function:
//C Code
int a, s;

if (!a) {
 s = 0;
} else if (a < 0) {
 s = -1;
} else {
 s = 1;
}

;-------------
;Assembly Code
MOV EAX, [a] ;load a
CDQ ;t = a < 0 ? 0xffffffff : 0
CMP EDX, EAX ;a > 0 ? CF : NC
ADC EDX, 0 ;a > 0 ? t+1 : t
MOV [s], EDX ;signum(x)
Chapter 6 Branch Optimizations 95

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Example 8 — Conditional Write:
//C Code

int a, b, i, dummy, c[BUFSIZE];

if (a < b) {
 c[i++] = a;
}

;--------------
; Assembly code

LEA ESI, [dummy] ;&dummy
XOR ECX, ECX ;i = 0

...

LEA EDI, [c+ECX*4] ;&c[i]
LEA EDX, [ECX+1] ;i++
CMP EAX, EBX ;a < b ?
CMOVGE EDI, ESI ;ptr = (a >= b) ? &dummy : &c[i]
CMOVL ECX, EDX ;a < b ? i : i+1
MOV [EDI], EAX ;*ptr = a

Always Pair CALL and RETURN

When the 12 entry return-address stack gets out of
synchronization, the latency of returns increase. The return-
address stack becomes out of sync when:

■ calls and returns do not match

■ the depth of the return-address stack is exceeded because
of too many levels of nested functions calls
96 Branch Optimizations Chapter 6

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Recursive Functions

Because returns are predicted as described in the prior section,
recursive functions should be written carefully. If there are only
recursive function calls within the function as shown in
Example 1, the return address for each iteration of the
recursive function is properly predicted.

Example 1 (Preferred):
long fac(long a)
{

if (a==0) {
return (1);

} else {
return (a*fac(a–1));

}
}

If there are any other calls within the recursive function except
to itself as shown in Example 2, some returns can be mis-
predicted. If the number of recursive function calls plus the
number of non-recursive function calls within the recursive
function is greater than 12, the return stack does not predict the
correct return address for some of the returns once the
recursion begins to unwind.

Example 2 (Avoid):
long fac(long a)
{

if (a==0) {
return (1);

}
else {

myp(a); // Can cause returns to be mispredicted
return (a*fac(a-1));

}
}

void myp(long a)
{

printf("myp ");
return;

}

Chapter 6 Branch Optimizations 97

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Since the function fac in Example 2 is end-recursive, it can be
converted to iterative code. A recursive function is classified as
end-recursive when the function call to itself is at the end of the
code. Example 3 shows the re-written code.

Example 3 (Preferred):
long fac1(long a)
{

long t=1;
while (a > 0) {

myp(a);
t *= a;
a--;

}
return (t);

}

Replace Branches with Computation in 3DNow!™ Code
Branches negatively impact the performance of 3DNow! code.
Branches can operate only on one data item at a time, i.e., they
are inherently scalar and inhibit the SIMD processing that
makes 3DNow! code superior. Also, branches based on 3DNow!
comparisons require data to be passed to the integer units,
which requires either transport through memory, or the use of
“MOVD reg, MMreg” instructions. If the body of the branch is
small, one can achieve higher performance by replacing the
branch with computation. The computation simulates
predicated execution or conditional moves. The principal tools
for this are the following instructions: PCMPGT, PFCMPGT,
PFCMPGE, PFMIN, PFMAX, PAND, PANDN, POR, PXOR.

Muxing Constructs

The most important construct to avoiding branches in 3DNow!
and MMX™ code is a 2-way muxing construct that is equivalent
to the ternary operator “?:” in C and C++. It is implemented
using the PCMP/PFCMP, PAND, PANDN, and POR instructions.
To maximize performance, it is important to apply the PAND
and PANDN instructions in the proper order.
98 Branch Optimizations Chapter 6

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Example 1 (Avoid):
; r = (x < y) ? a : b
;
; in: mm0 a
; mm1 b
; mm2 x
; mm3 y
; out: mm0 r

PCMPGTD MM3, MM2 ; y > x ? 0xffffffff : 0
MOVQ MM4, MM3 ; duplicate mask
PANDN MM3, MM1 ; y > x ? 0 : b
PAND MM0, MM4 ; y > x ? a: 0
POR MM0, MM3 ; r = y > x ? a: b

Because the use of PANDN destroys the mask created by PCMP,
the mask needs to be saved, which requires an additional
register. This adds an instruction, lengthens the dependency
chain, and increases register pressure. Therefore, write 2-way
muxing constructs as follows.

Example 1 (Preferred):
; r = (x < y) ? a : b
;
; in: mm0 a
; mm1 b
; mm2 x
; mm3 y
; out: mm0 r

PCMPGTD MM3, MM2 ; y > x ? 0xffffffff : 0
PAND MM0, MM3 ; y > x ? a: 0
PANDN MM3, MM1 ; y > x > 0 : b
POR MM0, MM3 ; r = y > x ? a: b
Chapter 6 Branch Optimizations 99

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Sample Code Translated into 3DNow!™ Code

The following examples use scalar code translated into 3DNow!
code. Note that it is not recommended to use 3DNow! SIMD
instructions for scalar code, because the advantage of 3DNow!
instructions lies in their “SIMDness”. These examples are
meant to demonstrate general techniques for translating source
code with branches into branchless 3DNow! code. Scalar source
code was chosen to keep the examples simple. These techniques
work in an identical fashion for vector code.

Each example shows the C code and the resulting 3DNow! code.

Example 2 C code:
float x,y,z;
if (x < y) {

z += 1.0;
}
else {

z -= 1.0;
}

3DNow! code:
;in: MM0 = x
; MM1 = y
; MM2 = z
;out: MM0 = z
MOVQ MM3, MM0 ;save x
MOVQ MM4, one ;1.0
PFCMPGE MM0, MM1 ;x < y ? 0 : 0xffffffff
PSLLD MM0, 31 ;x < y ? 0 : 0x80000000
PXOR MM0, MM4 ;x < y ? 1.0 : -1.0
PFADD MM0, MM2 ;x < y ? z+1.0 : z-1.0

Example 3 C code:
float x,z;
z = abs(x);
if (z >= 1) {

z = 1/z;
}

3DNow! code:
;in: MM0 = x
;out: MM0 = z
MOVQ MM5, mabs ;0x7fffffff
PAND MM0, MM5 ;z=abs(x)
PFRCP MM2, MM0 ;1/z approx
MOVQ MM1, MM0 ;save z
100 Branch Optimizations Chapter 6

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
PFRCPIT1 MM0, MM2 ;1/z step
PFRCPIT2 MM0, MM2 ;1/z final
PFMIN MM0, MM1 ;z = z < 1 ? z : 1/z

Example 4 C code:
float x,z,r,res;
z = fabs(x)
if (z < 0.575) {
 res = r;
}
else {
 res = PI/2 - 2*r;
}

3DNow! code:
;in: MM0 = x
; MM1 = r
;out: MM0 = res
MOVQ MM7, mabs ;mask for absolute value
PAND MM0, MM7 ;z = abs(x)
MOVQ MM2, bnd ;0.575
PCMPGTD MM2, MM0 ;z < 0.575 ? 0xffffffff : 0
MOVQ MM3, pio2 ;pi/2
MOVQ MM0, MM1 ;save r
PFADD MM1, MM1 ;2*r
PFSUBR MM1, MM3 ;pi/2 - 2*r
PAND MM0, MM2 ;z < 0.575 ? r : 0
PANDN MM2, MM1 ;z < 0.575 ? 0 : pi/2 - 2*r
POR MM0, MM2 ;z < 0.575 ? r : pi/2 - 2 * r
Chapter 6 Branch Optimizations 101

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Example 5 C code:
#define PI 3.14159265358979323
float x,z,r,res;
/* 0 <= r <= PI/4 */
z = abs(x)
if (z < 1) {
 res = r;
}
else {
 res = PI/2-r;
}

3DNow! code:
;in: MM0 = x
; MM1 = r
;out: MM1 = res
MOVQ MM5, mabs ; mask to clear sign bit
MOVQ MM6, one ; 1.0
PAND MM0, MM5 ; z=abs(x)
PCMPGTD MM6, MM0 ; z < 1 ? 0xffffffff : 0
MOVQ MM4, pio2 ; pi/2
PFSUB MM4, MM1 ; pi/2-r
PANDN MM6, MM4 ; z < 1 ? 0 : pi/2-r
PFMAX MM1, MM6 ; res = z < 1 ? r : pi/2-r
102 Branch Optimizations Chapter 6

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Example 6 C code:
#define PI 3.14159265358979323
float x,y,xa,ya,r,res;
int xs,df;
xs = x < 0 ? 1 : 0;
xa = fabs(x);
ya = fabs(y);
df = (xa < ya);
if (xs && df) {
 res = PI/2 + r;
}
else if (xs) {
 res = PI - r;
}
else if (df) {
 res = PI/2 - r;
}
else {
 res = r;
}

3DNow! code:
;in: MM0 = r
; MM1 = y
; MM2 = x
;out: MM0 = res
MOVQ MM7, sgn ;mask to extract sign bit
MOVQ MM6, sgn ;mask to extract sign bit
MOVQ MM5, mabs ;mask to clear sign bit
PAND MM7, MM2 ;xs = sign(x)
PAND MM1, MM5 ;ya = abs(y)
PAND MM2, MM5 ;xa = abs(x)
MOVQ MM6, MM1 ;y
PCMPGTD MM6, MM2 ;df = (xa < ya) ? 0xffffffff : 0
PSLLD MM6, 31 ;df = bit<31>
MOVQ MM5, MM7 ;xs
PXOR MM7, MM6 ;xs^df ? 0x80000000 : 0
MOVQ MM3, npio2 ;-pi/2
PXOR MM5, MM3 ;xs ? pi/2 : -pi/2
PSRAD MM6, 31 ;df ? 0xffffffff : 0
PANDN MM6, MM5 ;xs ? (df ? 0 : pi/2) : (df ? 0 : -pi/2)
PFSUB MM6, MM3 ;pr = pi/2 + (xs ? (df ? 0 : pi/2) :

; (df ? 0 : -pi/2))
POR MM0, MM7 ;ar = xs^df ? -r : r
PFADD MM0, MM6 ;res = ar + pr
Chapter 6 Branch Optimizations 103

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Avoid the Loop Instruction

The LOOP instruction in the AMD Athlon™ processor requires
eight cycles to execute. Use the preferred code shown below:

Example 1 (Avoid):
LOOP LABEL

Example 1 (Preferred):
DEC ECX
JNZ LABEL

Avoid Far Control Transfer Instructions

Avoid using far control transfer instructions. Far control
transfer branches cannot be predicted by the branch target
buffer.
104 Branch Optimizations Chapter 6

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
7
Scheduling Optimizations
This chapter describes how to code instructions for efficient
scheduling. Guidelines are listed in order of importance.

Schedule Instructions According to their Latency

The AMD Athlon™ processor can execute up to three x86
instructions per cycle, with each x86 instruction possibly having
a different latency. The AMD Athlon processor has flexible
scheduling, but for absolute maximum performance, schedule
instructions, especially FPU and 3DNow!™ instructions,
according to their latency. Dependent instructions will then not
have to wait on instructions with longer latencies.

See Appendix F, “Instruction Dispatch and Execution
Resources/Timing,” for a list of latency numbers.
Chapter 7 Scheduling Optimizations 105

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Unrolling Loops

Complete Loop Unrolling

Make use of the large AMD Athlon processor 64-Kbyte
instruction cache and unroll loops to get more parallelism and
reduce loop overhead, even with branch prediction. Complete
unrolling reduces register pressure by removing the loop
counter. To completely unroll a loop, remove the loop control
and replicate the loop body N times. In addition, completely
unrolling a loop increases scheduling opportunities.

Only unrolling very large code loops can result in the inefficient
use of the L1 instruction cache. Loops can be unrolled
completely, if all of the following conditions are true:

■ The loop is in a frequently executed piece of code.

■ The loop count is known at compile time.

■ The loop body, once unrolled, is less than 100 instructions,
which is approximately 400 bytes of code.

Partial Loop Unrolling

Partial loop unrolling can increase register pressure, which can
make it inefficient due to the small number of registers in the
x86 architecture. However, in certain situations, partial
unrolling can be efficient due to the performance gains
possible. Consider partial loop unrolling if the following
conditions are met:

■ Spare registers are available

■ Loop body is small, so that loop overhead is significant

■ Number of loop iterations is likely > 10

Consider the following piece of C code:

double a[MAX_LENGTH], b[MAX_LENGTH];

 for (i=0; i< MAX_LENGTH; i++) {
 a[i] = a[i] + b[i];
 }
106 Scheduling Optimizations Chapter 7

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Without loop unrolling, the code looks like the following:

Example 1 (Without Loop Unrolling):
MOV ECX, MAX_LENGTH
MOV EAX, OFFSET A
MOV EBX, OFFSET B

$add_loop:
FLD QWORD PTR [EAX]
FADD QWORD PTR [EBX]
FSTP QWORD PTR [EAX]
ADD EAX, 8
ADD EBX, 8
DEC ECX
JNZ $add_loop

The loop consists of seven instructions. The AMD Athlon
processor can decode/retire three instructions per cycle, so it
cannot execute faster than three iterations in seven cycles, or
3/7 floating-point adds per cycle. However, the pipelined
floating-point adder allows one add every cycle. In the following
code, the loop is partially unrolled by a factor of two, which
creates potential endcases that must be handled outside the
loop:

Example 1 (With Partial Loop Unrolling):
MOV ECX, MAX_LENGTH
MOV EAX, offset A
MOV EBX, offset B
SHR ECX, 1
JNC $add_loop
FLD QWORD PTR [EAX]
FADD QWORD PTR [EBX]
FSTP QWORD PTR [EAX]
ADD EAX, 8
ADD EBX, 8

$add_loop:
FLD QWORD PTR[EAX]
FADD QWORD PTR[EBX]
FSTP QWORD PTR[EAX]
FLD QWORD PTR[EAX+8]
FADD QWORD PTR[EBX+8]
FSTP QWORD PTR[EAX+8]
ADD EAX, 16
ADD EBX, 16
DEC ECX
JNZ $add_loop
Chapter 7 Scheduling Optimizations 107

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Now the loop consists of ten instructions. Based on the
decode/retire bandwidth of three MacroOPs per cycle, this loop
goes no faster than three iterations in ten cycles, or 6/10
floating-point adds per cycle, or 1.4 times as fast as the original
loop.

Deriving Loop
Control For Partially
Unrolled Loops

A frequently used loop construct is a counting loop. In a typical
case, the loop count starts at some lower bound lo, increases by
some fixed, positive increment inc for each iteration of the
loop, and may not exceed some upper bound hi. The following
example shows how to partially unroll such a loop by an
unrolling factor of fac, and how to derive the loop control for
the partially unrolled version of the loop.

Example 2 (Rolled Loop):
for (k = lo; k <= hi; k += inc) {
 x[k] =
 ...
 }

Example 2 (Partially Unrolled Loop):
for (k = lo; k <= (hi - (fac-1)*inc); k += fac*inc) {
 x[k] =
 ...
 x[k+inc] =
 ...
 ...
 x[k+(fac-1)*inc] =
 ...
 }

 /* handle end cases */

 for (k = k; k <= hi; k += inc) {
 x[k] =
 ...
 }
108 Scheduling Optimizations Chapter 7

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Use Function Inlining

Overview

Make use of the AMD Athlon processor large 64-Kbyte
instruction cache by inlining small routines to avoid procedure-
call overhead. Consider the cost of possible increased register
usage, which can increase load/store instructions for register
spilling.

Function inlining has the advantage of eliminating function call
overhead and allowing better register allocation and
instruction scheduling at the site of the function call. The
disadvantage is decreasing code locality, which can increase
execution time due to instruction cache misses. Therefore,
function inlining is an optimization that has to be used
judiciously.

In general, due to its very large instruction cache, the
AMD Athlon processor is less susceptible than other processors
to the negative side effect of function inlining. Function call
overhead on the AMD Athlon processor can be low because
calls and returns are executed at high speed due to the use of
prediction mechanisms. However, there is still overhead due to
passing function arguments through memory, which creates
STLF (store-to-load forwarding) dependencies. Some compilers
allow for a reduction of this overhead by allowing arguments to
be passed in registers in one of their calling conventions, which
has the drawback of constraining register allocation in the
function and at the site of the function call.

In general, function inlining works best if the compiler can
utilize feedback from a profiler to identify the function call
sites most frequently executed. If such data is not available, a
reasonable heuristic is to concentrate on function calls inside
loops. Functions that are directly recursive should not be
considered candidates for inlining. However, if they are end-
recursive, the compiler should convert them to an iterative
equivalent to avoid potential overflow of the AMD Athlon
processor return prediction mechanism (return stack) during
deep recursion. For best results, a compiler should support
function inlining across multiple source files. In addition, a
compiler should provide inline templates for commonly used
library functions, such as sin(), strcmp(), or memcpy().
Chapter 7 Scheduling Optimizations 109

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Always Inline Functions if Called from One Site

Always inline a function if it can be established that this
function is called from just one site in the code. For the C
language, determination of this characteristic is made easier if
functions are explicitly declared static unless they require
external linkage. This case occurs quite frequently, as
functionality that could be concentrated in a single large
function is split across multiple small functions for improved
maintainability and readability.

Always Inline Functions with Fewer than 25 Machine Instructions

In addition, functions that create fewer than 25 machine
instructions once inlined should always be inlined because it is
likely that the function call overhead is close to or more than
the time spent executing the function body. For large functions,
the benefits of reduced function call overhead gives
diminishing returns. Therefore, a function that results in the
insertion of more than 500 machine instructions at the call site
should probably not be inlined. Some larger functions might
consist of multiple, relatively short paths that are negatively
affected by function overhead. In such a case, it can be
advantageous to inline larger functions. Profiling information is
the best guide in determining whether to inline such large
functions.

Avoid Address Generation Interlocks
Loads and stores are scheduled by the AMD Athlon processor to
access the data cache in program order. Newer loads and stores
with their addresses calculated can be blocked by older loads
and stores whose addresses are not yet calculated—this is
known as an address generation interlock. Therefore, it is
advantageous to schedule loads and stores that can calculate
their addresses quickly, ahead of loads and stores that require
the resolution of a long dependency chain in order to generate
their addresses. Consider the following code examples:
110 Scheduling Optimizations Chapter 7

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Example 1 (Avoid):
ADD EBX, ECX ;inst 1
MOV EAX, DWORD PTR [10h] ;inst 2 (fast address calc.)
MOV ECX, DWORD PTR [EAX+EBX] ;inst 3 (slow address calc.)
MOV EDX, DWORD PTR [24h] ;this load is stalled from

 ; accessing data cache due
 ; to long latency for

 ; generating address for
 ; inst 3

Example 1 (Preferred):
ADD EBX, ECX ;inst 1
MOV EAX, DWORD PTR [10h] ;inst 2
MOV EDX, DWORD PTR [24h] ;place load above inst 3

 ; to avoid address
 ; generation interlock stall

MOV ECX, DWORD PTR [EAX+EBX] ;inst 3

Use MOVZX and MOVSX
Use the MOVZX and MOVSX instructions to zero-extend and
sign-extend byte-size and word-size operands to doubleword
length. Typical code for zero extension that replaces MOVZX,
as shown in Example 1 (Avoid), uses more decode and execution
resources than MOVZX. It also has higher latency due to the
superset dependency between the XOR and the MOV which
requires a merge operation.

Example 1 (Avoid):
XOR EAX, EAX
MOV AL, [MEM]

Example 1 (Preferred):
MOVZX EAX, BYTE PTR [MEM]
Chapter 7 Scheduling Optimizations 111

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Minimize Pointer Arithmetic in Loops

Minimize pointer arithmetic in loops, especially if the loop
body is small. In this case, the pointer arithmetic would cause
significant overhead. Instead, take advantage of the complex
addressing modes to utilize the loop counter to index into
memory arrays. Using complex addressing modes does not have
any negative impact on execution speed, but the reduced
number of instructions preserves decode bandwidth.

Example 1 (Avoid):
int a[MAXSIZE], b[MAXSIZE], c[MAXSIZE], i;

for (i=0; i < MAXSIZE; i++) {
 c [i] = a[i] + b[i];
}
MOV ECX, MAXSIZE ;initialize loop counter
XOR ESI, ESI ;initialize offset into array a
XOR EDI, EDI ;initialize offset into array b
XOR EBX, EBX ;initialize offset into array c

$add_loop:
MOV EAX, [ESI + a] ;get element a
MOV EDX, [EDI + b] ;get element b
ADD EAX, EDX ;a[i] + b[i]
MOV [EBX + c], EAX ;write result to c
ADD ESI, 4 ;increment offset into a
ADD EDI, 4 ;increment offset into b
ADD EBX, 4 ;increment offset into c
DEC ECX ;decrement loop count
JNZ $add_loop ;until loop count 0

Example 1 (Preferred):
int a[MAXSIZE], b[MAXSIZE], c[MAXSIZE], i;

for (i=0; i < MAXSIZE; i++) {
 c [i] = a[i] + b[i];
}
MOV ECX, MAXSIZE-1;initialize loop counter

$add_loop:
MOV EAX, [ECX*4 + a] ;get element a
MOV EDX, [ECX*4 + b] ;get element b
ADD EAX, EDX ;a[i] + b[i]
MOV [ECX*4 + c], EAX ;write result to c
DEC ECX ;decrement index
JNS $add_loop ;until index negative
112 Scheduling Optimizations Chapter 7

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Note that the code in the preferred example traverses the
arrays in a downward direction (i.e., from higher addresses to
lower addresses), whereas the original code to avoid traverses
the arrays in an upward direction. Such a change in the
direction of the traversal is possible if each loop iteration is
completely independent of all other loop iterations, as is the
case here.

In code where the direction of the array traversal can't be
switched, it is still possible to minimize pointer arithmetic by
appropriately biasing base addresses and using an index
variable that starts with a negative value and reaches zero when
the loop expires. Note that if the base addresses are held in
registers (e.g., when the base addresses are passed as
arguments of a function) biasing the base addresses requires
additional instructions to perform the biasing at run time and a
small amount of additional overhead is incurred. In the
examples shown here, the base addresses are used in the
displacement port ion of the address and bias ing i s
accomplished at compile time by simply modifying the
displacement.

Example 2 (Preferred):
int a[MAXSIZE], b[MAXSIZE], c[MAXSIZE], i;

for (i=0; i < MAXSIZE; i++) {
c [i] = a[i] + b[i];

}
MOV ECX, (-MAXSIZE) ;initialize index

$add_loop:
MOV EAX, [ECX*4 + a + MAXSIZE*4] ;get a element
MOV EDX, [ECX*4 + b + MAXSIZE*4] ;get b element
ADD EAX, EDX ;a[i] + b[i]
MOV [ECX*4 + c + MAXSIZE*4], EAX ;write result to c
INC ECX ;increment index
JNZ $add_loop ;until index==0
Chapter 7 Scheduling Optimizations 113

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Push Memory Data Carefully

Carefully choose the best method for pushing memory data. To
reduce register pressure and code dependencies, follow
Example 2 below.

Example 1 (Avoid):
MOV EAX, [MEM]
PUSH EAX

Example 2 (Preferred):
PUSH [MEM]
114 Scheduling Optimizations Chapter 7

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
8
Integer Optimizations
This chapter describes ways to improve integer performance
through optimized programming techniques. The guidelines are
listed in order of importance.

Replace Divides with Multiplies

Replace integer division by constants with multiplication by
the reciprocal. Because the AMD Athlon™ processor has a very
fast integer multiply (5–9 cycles signed, 4–8 cycles unsigned)
and the integer division delivers only one bit of quotient per
cycle (22–47 cycles signed, 17–41 cycles unsigned), the
equivalent code is much faster. The user can follow the
examples in this chapter that illustrate the use of integer
division by constants, or access the executables in the
opt_utilities directory in the AMD documentation CD-ROM
(order no. 21860) to find alternative code for dividing by a
constant.
Chapter 8 Integer Optimizations 115

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Multiplication by Reciprocal (Division) Utility

The code for the utilities can be found at “Derivation of
Multiplier Used for Integer Division by Constants” on page 144.
All utilities were compiled for the Microsoft® Windows 95,
Windows 98, and Windows NT® environments. All utilities are
provided ‘as is’ and are not supported by AMD.

Signed Division
Utility

In the opt_utilities directory of the AMD documentation
CDROM, run sdiv.exe in a DOS window to find the fastest code
for signed division by a constant. The utility displays the code
after the user enters a signed constant divisor. Type “sdiv >
example.out” to output the code to a file.

Unsigned Division
Utility

In the opt_utilities directory of the AMD documentation
CDROM, run udiv.exe in a DOS window to find the fastest code
for unsigned division by a constant. The utility displays the code
after the user enters an unsigned constant divisor. Type “udiv >
example.out” to output the code to a file.

Unsigned Division by Multiplication of Constant
Algorithm: Divisors
Where 1 <= d < 231,
Odd d

The following code shows an unsigned division using a constant
value multiplier.

; a = algorithm
; m = multiplier
; s = shift factor

; a == 0
MOV EAX, m
MUL dividend
SHR EDX, s ;EDX=quotient

; a == 1
MOV EAX, m
MUL dividend
ADD EAX, m
ADC EDX, 0
SHR EDX, s ;EDX=quotient

Determination of a,
m, s

How to determine the algorithm (a), multiplier (m), and shift
factor (s) from the divisor (d) is found in the section “Derivation
of Algorithm, Multiplier, and Shift Factor for Unsigned Integer
Division” on page 144.
116 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Algorithm: Divisors
Where 231 <= d < 232

For divisors 231 <= d < 232, the possible quotient values are
either 0 or 1. This makes it easy to establish the quotient by
simple comparison of the dividend and divisor. In cases where
the div idend needs to be preserved, Example 1 i s
recommended.

Example 1:
;In: EAX = dividend
;Out: EDX = quotient
XOR EDX, EDX ;0
CMP EAX, d ;CF = (dividend < divisor) ? 1 : 0
SBB EDX, -1 ;quotient = 0+1-CF = (dividend < divisor) ? 0 : 1

In cases where the dividend does not need to be preserved, the
division can be accomplished without the use of an additional
register, thus reducing register pressure. This is shown in
Example 2 below:

Example 2:
;In: EAX = dividend
;Out: EDX = quotient
CMP EDX, d ;CF = (dividend < divisor) ? 1 : 0
MOV EAX, 0 ;0
SBB EAX, -1 ;quotient = 0+1-CF = (dividend < divisor) ? 0 : 1

Simpler Code for
Restricted Dividend

Integer division by a constant can be made faster if the range of
the dividend is limited, which removes a shift associated with
most divisors. For example, for a divide by 10 operation, use the
following code if the dividend is less than 4000_0005h:

MOV EAX, dividend
MOV EDX, 01999999Ah
MUL EDX
MOV quotient, EDX
Chapter 8 Integer Optimizations 117

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Signed Division by Multiplication of Constant

Algorithm: Divisors
Where 2 <= d < 231

These algorithms work if the divisor is positive. If the divisor is
negative, use abs(d) instead of d, and append a ‘NEG EDX’ to
the code. These changes make use of the fact that n/–d = –(n/d).

; a = algorithm
; m = multiplier
; s = shift count

; a == 0
MOV EAX, m
IMUL dividend
MOV EAX, dividend
SHR EAX, 31
SAR EDX, s
ADD EDX, EAX ;quotient in EDX

; a == 1
MOV EAX, m
IMUL dividend
MOV EAX, dividend
ADD EDX, EAX
SHR EAX, 31
SAR EDX, s
ADD EDX, EAX ;quotient in EDX

Determination for a,
m, s

How to determine the algorithm (a), multiplier (m), and shift
factor (s) is found in the section “Derivation of Algorithm,
Multiplier, and Shift Factor for Signed Integer Division” on
page 148.

Signed Division by 2 ;IN: EAX = dividend
;OUT: EAX = quotient
CMP EAX, 800000000h ;CY = 1, if dividend >=0
SBB EAX, –1 ;Increment dividend if it is < 0
SAR EAX, 1 ;Perform a right shift

Signed Division by 2n ;IN: EAX = dividend
;OUT: EAX = quotient
CDQ ;Sign extend into EDX
AND EDX, (2^n–1) ;Mask correction (use divisor –1)
ADD EAX, EDX ;Apply correction if necessary
SAR EAX, (n) ;Perform right shift by
 ; log2 (divisor)
118 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Signed Division by –2 ;IN: EAX = dividend
;OUT: EAX = quotient
CMP EAX, 800000000h ;CY = 1, if dividend >= 0
SBB EAX, –1 ;Increment dividend if it is < 0
SAR EAX, 1 ;Perform right shift
NEG EAX ;Use (x/–2) == –(x/2)

Signed Division by
–(2n)

;IN: EAX = dividend
;OUT: EAX = quotient
CDQ ;Sign extend into EDX
AND EDX, (2^n–1) ;Mask correction (–divisor –1)
ADD EAX, EDX ;Apply correction if necessary
SAR EAX, (n) ;Right shift by log2(–divisor)
NEG EAX ;Use (x/–(2^n)) == (–(x/2^n))

Remainder of Signed
Division by 2 or –2

;IN: EAX = dividend
;OUT: EAX = remainder
CDQ ;Sign extend into EDX
AND EDX, 1 ;Compute remainder
XOR EAX, EDX ;Negate remainder if
SUB EAX, EDX ;Dividend was < 0

Remainder of Signed
Division 2n or –(2n)

;IN: EAX = dividend
;OUT: EAX = remainder
CDQ ;Sign extend into EDX
AND EDX, (2^n–1) ;Mask correction (abs(divison)–1)
ADD EAX, EDX ;Apply pre-correction
AND EAX, (2^n–1) ;Mask out remainder (abs(divison)–1)
SUB EAX, EDX ;Apply pre-correction, if necessary
Chapter 8 Integer Optimizations 119

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Consider Alternative Code When Multiplying by a Constant

A 32-bit integer multiplied by a constant has a latency of five
cycles. For certain constant multipliers, instruction sequences
can be devised which accomplish the multiplication with lower
latency. Since the AMD Athlon processor contains only one
integer multiplier, but three integer execution units, the
throughput of the replacement code may provide better
throughput as well.

Most replacement sequences require the use of an additional
temporary register, thus increasing register pressure. If register
pressure in a piece of code using an integer multiply with a
constant is already high, it might still be better for overall
performance of that code to use the IMUL instruction instead
of the replacement code. Similarly, replacement sequences
with low latency but containing many instructions may
negatively influence decode bandwidth as compared to the
IMUL instruction. In general, replacement sequences
containing more than four instructions are not recommended.

The following code samples are designed such that the original
source also receives the final result. Other sequences are
possible if the result is in a different register. Sequences
requiring no temporary register have been favored over ones
requiring a temporary register even if the latency is higher.
ALU operations have preferred over shifts to keep code size
small. Similarly, both ALU operations and shifts have been
favored over the LEA instruction.

Replacement sequences for other multipliers are found in the
file multiply_by_constants.txt located in the same directory
where this document is located in the SDK. The user may also
use the program “FINDMUL” to find the appropriate sequence
for other multipliers. FINDMUL is located in the opt_utilities
directory of the AMD Documentation CD-ROM.
120 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
by 2: ADD REG1, REG1 ;1 cycle

by 3: LEA REG1, [REG1+REG1*2] ;2 cycles

by 4: SHL REG1, 2 ;1 cycle

by 5: LEA REG1, [REG1+REG1*4] ;2 cycles

by 6: LEA REG1, [REG1+REG1*2] ;3 cycles
 ADD REG1, REG1

by 7: MOV REG2, REG1 ;2 cycles
 SHL REG1, 3
 SUB REG1, REG2

by 8: SHL REG1, 3 ;1 cycle

by 9: LEA REG1, [REG1+REG1*8] ;2 cycles

by 10: LEA REG1, [REG1+REG1*4] ;3 cycles
 ADD REG1, REG1

by 11: LEA REG2, [REG1+REG1*8] ;3 cycles
 ADD REG1, REG1
 ADD REG1, REG2

by 12: LEA REG1, [REG1+REG1*2] ;3 cycles
 SHL REG1, 2

by 13: LEA REG2, [REG1+REG1*2] ;3 cycles
 SHL REG1, 4
 SUB REG1, REG2

by 14: LEA REG2, [REG1+REG1] ;3 cycles
 SHL REG1, 4
 SUB REG1, REG2

by 15: LEA REG1, [REG1+REG1*2] ;4 cycles
 LEA REG1, [REG1+REG1*4]

by 16: SHL REG1, 4 ;1 cycle

by 17: MOV REG2, REG1 ;2 cycles
 SHL REG1, 4
 ADD REG1, REG2

by 18: LEA REG1, [REG1+REG1*8] ;3 cycles
 ADD REG1, REG1
Chapter 8 Integer Optimizations 121

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
by 19: LEA REG2, [REG1+REG1*2] ;3 cycles
SHLREG1, 4
ADDREG1, REG2

by 20: LEA REG1, [REG1+REG1*4] ;3 cycles
 SHL REG1, 2

by 21: LEA REG2, [REG1+REG1*4] ;3 cycles
 SHL REG1, 4
 ADD REG1, REG2

by 22: LEA REG2, [REG1+REG1*4] ;4 cycles
 ADD REG1, REG1
 LEA REG1, [REG1+REG2*4]

by 23: LEA REG2, [REG1+REG1*8] ;3 cycles
 SHL REG1, 5
 SUB REG1, REG2

by 24: LEA REG1, [REG1+REG1*2] ;3 cycles
 SHL REG1, 3

by 25: LEA REG1, [REG1+REG1*4] ;4 cycles
 LEA REG1, [REG1+REG1*4]

by 26: LEA REG2, [REG1+REG1*2] ;4 cycles
 ADD REG1, REG1
 LEA REG1, [REG1+REG2*8]

by 27: LEA REG1, [REG1+REG1*2] ;4 cycles
 LEA REG1, [REG1+REG1*8]

by 28: LEA REG2, [REG1*4] ;3 cycles
 SHL REG1, 5
 SUB REG1, REG2

by 29: LEA REG2, [REG1+REG1*2] ;3 cycles
 SHL REG1, 5
 SUB REG1, REG2

by 30: LEA REG2, [REG1+REG1] ;3 cycles
 SHL REG1, 5
 SUB REG1, REG2

by 31: MOV REG2, REG1 ;2 cycles
 SHL REG1, 5
 SUB REG1, REG2

by 32: SHL REG1, 5 ;1 cycle
122 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Use MMX™ Instructions for Integer-Only Work

In many programs it can be advantageous to use MMX
instructions to do integer-only work, especially if the function
already uses 3DNow!™ or MMX code. Using MMX instructions
relieves register pressure on the integer registers. As long as
data is simply loaded/stored, added, shifted, etc., MMX
instructions are good substitutes for integer instructions.
Integer registers are freed up with the following results:

■ May be able to reduce the number of integer registers to
saved/restored on function entry/edit.

■ Free up integer registers for pointers, loop counters, etc., so
that they do not have to be spilled to memory, which
reduces memory traffic and latency in dependency chains.

Be careful with regards to passing data between MMX and
integer registers and of creating mismatched store-to-load
forwarding cases. See “Unrolling Loops” on page 106.

In addition, using MMX instructions increases the available
parallelism. The AMD Athlon processor can issue three integer
OPs and two MMX OPs per cycle.

Repeated String Instruction Usage

Latency of Repeated String Instructions

Table 1 shows the latency for repeated string instructions on
the AMD Athlon processor.

Table 1. Latency of Repeated String Instructions

Instruction ECX=0 (cycles) DF = 0 (cycles) DF = 1 (cycles)

REP MOVS 11 15 + (4/3*c) 25 + (4/3*c)

REP STOS 11 14 + (1*c) 24 + (1*c)

REP LODS 11 15 + (2*c) 15 + (2*c)

REP SCAS 11 15 + (5/2*c) 15 + (5/2*c)

REP CMPS 11 16 + (10/3*c) 16 + (10/3*c)
Note:

c = value of ECX, (ECX > 0)
Chapter 8 Integer Optimizations 123

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Table 1 lists the latencies with the direction flag (DF) = 0
(increment) and DF = 1. In addition, these latencies are
assumed for aligned memory operands. Note that for
MOVS/STOS, when DF = 1 (DOWN), the overhead portion of the
latency increases significantly. However, these types are less
commonly found. The user should use the formula and round up
to the nearest integer value to determine the latency.

Guidelines for Repeated String Instructions

To help achieve good performance, this section contains
guidelines for the careful scheduling of VectorPath repeated
string instructions.

Use the Largest
Possible Operand
Size

Always move data using the largest operand size possible. For
example, use REP MOVSD rather than REP MOVSW and REP
MOVSW rather than REP MOVSB. Use REP STOSD rather than
REP STOSW and REP STOSW rather than REP MOVSB.

Ensure DF=0 (UP) Always make sure that DF = 0 (UP) (after execution of CLD) for
REP MOVS and REP STOS. DF = 1 (DOWN) is only needed for
certain cases of overlapping REP MOVS (for example, source
and destination overlap).

While string instructions with DF = 1 (DOWN) are slower, only
the overhead part of the cycle equation is larger and not the
throughput part. See Table 1 on page 123 for additional latency
numbers.

Align Source and
Destination with
Operand Size

For REP MOVS, make sure that both source and destination are
aligned with regard to the operand size. Handle the end case
separately, if necessary. If either source or destination cannot
be aligned, make the destination aligned and the source
misaligned. For REP STOS, make the destination aligned.

Inline REP String
with Low Counts

Expand REP string instructions into equivalent sequences of
simple x86 instructions, if the repeat count is constant and less
than eight. Use an inline sequence of loads and stores to
accomplish the move. Use a sequence of stores to emulate REP
STOS. This technique eliminates the setup overhead of REP
instructions and increases instruction throughput.
124 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Use Loop for REP
String with Low
Variable Counts

If the repeated count is variable, but is likely less than eight,
use a simple loop to move/store the data. This technique avoids
the overhead of REP MOVS and REP STOS.

Using MOVQ and
MOVNTQ for Block
Copy/Fill

To fill or copy blocks of data that are larger than 512 bytes, or
where the destination is in uncacheable memory, use the MMX
instructions MOVQ/MOVNTQ instead of REP STOS and REP
MOVS in order to achieve maximum performance. (See the
guideline, “Use MMX™ Instructions for Block Copies and Block
Fills” on page 174.)

Use XOR Instruction to Clear Integer Registers

To clear an integer register to all 0s, use “XOR reg, reg”. The
AMD Athlon processor is able to avoid the false read
dependency on the XOR instruction.

Example 1 (Acceptable):
MOV REG, 0

Example 2 (Preferred):
XOR REG, REG

Efficient 64-Bit Integer Arithmetic

This section contains a collection of code snippets and
subroutines showing the efficient implementation of 64-bit
arithmetic. Addition, subtraction, negation, and shifts are best
handled by inline code. Multiplies, divides, and remainders are
less common operations and should usually be implemented as
subroutines. If these subroutines are used often, the
programmer should consider inlining them. Except for division
and remainder, the code presented works for both signed and
unsigned integers. The division and remainder code shown
works for unsigned integers, but can easily be extended to
handle signed integers.
Chapter 8 Integer Optimizations 125

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Example 1 (Addition):
;add operand in ECX:EBX to operand EDX:EAX, result in
; EDX:EAX
ADD EAX, EBX
ADC EDX, ECX

Example 2 (Subtraction):
;subtract operand in ECX:EBX from operand EDX:EAX, result in
; EDX:EAX
SUB EAX, EBX
SBB EDX, ECX

Example 3 (Negation):
;negate operand in EDX:EAX
NOT EDX
NEG EAX
SBB EDX, –1 ;fixup: increment hi-word if low-word was 0

Example 4 (Left shift):
;shift operand in EDX:EAX left, shift count in ECX (count
; applied modulo 64)
SHLD EDX, EAX, CL ;first apply shift count
SHL EAX, CL ; mod 32 to EDX:EAX
TEST ECX, 32 ;need to shift by another 32?
JZ $lshift_done ;no, done
MOV EDX, EAX ;left shift EDX:EAX
XOR EAX, EAX ; by 32 bits

$lshift_done:

Example 5 (Right shift):
SHRD EAX, EDX, CL ;first apply shift count
SHR EDX, CL ; mod 32 to EDX:EAX
TEST ECX, 32 ;need to shift by another 32?
JZ $rshift_done ;no, done
MOV EAX, EDX ;left shift EDX:EAX
XOR EDX, EDX ; by 32 bits

$rshift_done:
126 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Example 6 (Multiplication):
;_llmul computes the low-order half of the product of its
; arguments, two 64-bit integers
;
;INPUT: [ESP+8]:[ESP+4] multiplicand
; [ESP+16]:[ESP+12] multiplier
;
;OUTPUT: EDX:EAX (multiplicand * multiplier) % 2^64
;
;DESTROYS: EAX,ECX,EDX,EFlags

_llmul PROC
MOV EDX, [ESP+8] ;multiplicand_hi
MOV ECX, [ESP+16] ;multiplier_hi
OR EDX, ECX ;one operand >= 2^32?
MOV EDX, [ESP+12] ;multiplier_lo
MOV EAX, [ESP+4] ;multiplicand_lo
JNZ $twomul ;yes, need two multiplies
MUL EDX ;multiplicand_lo * multiplier_lo
RET ;done, return to caller

$twomul:
IMUL EDX, [ESP+8] ;p3_lo = multiplicand_hi*multiplier_lo
IMUL ECX, EAX ;p2_lo = multiplier_hi*multiplicand_lo
ADD ECX, EDX ; p2_lo + p3_lo
MUL DWORD PTR [ESP+12] ;p1=multiplicand_lo*multiplier_lo
ADD EDX, ECX ;p1+p2lo+p3_lo = result in EDX:EAX
RET ;done, return to caller

_llmul ENDP
Chapter 8 Integer Optimizations 127

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Example 7 (Unsigned Division):
;_ulldiv divides two unsigned 64-bit integers, and returns
; the quotient.
;
;INPUT: [ESP+8]:[ESP+4] dividend
; [ESP+16]:[ESP+12] divisor
;
;OUTPUT: EDX:EAX quotient of division
;
;DESTROYS: EAX,ECX,EDX,EFlags
_ulldiv PROC
PUSH EBX ;save EBX as per calling convention
MOV ECX, [ESP+20] ;divisor_hi
MOV EBX, [ESP+16] ;divisor_lo
MOV EDX, [ESP+12] ;dividend_hi
MOV EAX, [ESP+8] ;dividend_lo
TEST ECX, ECX ;divisor > 2^32–1?
JNZ $big_divisor ;yes, divisor > 32^32–1
CMP EDX, EBX ;only one division needed? (ECX = 0)
JAE $two_divs ;need two divisions
DIV EBX ;EAX = quotient_lo
MOV EDX, ECX ;EDX = quotient_hi = 0 (quotient in
 ; EDX:EAX)
POP EBX ;restore EBX as per calling convention
RET ;done, return to caller

$two_divs:
MOV ECX, EAX ;save dividend_lo in ECX
MOV EAX, EDX ;get dividend_hi
XOR EDX, EDX ;zero extend it into EDX:EAX
DIV EBX ;quotient_hi in EAX
XCHG EAX, ECX ;ECX = quotient_hi, EAX = dividend_lo
DIV EBX ;EAX = quotient_lo
MOV EDX, ECX ;EDX = quotient_hi (quotient in EDX:EAX)
POP EBX ;restore EBX as per calling convention
RET ;done, return to caller

$big_divisor:
PUSH EDI ;save EDI as per calling convention
MOV EDI, ECX ;save divisor_hi
SHR EDX, 1 ;shift both divisor and dividend right
RCR EAX, 1 ; by 1 bit
ROR EDI, 1
RCR EBX, 1
BSR ECX, ECX ;ECX = number of remaining shifts
SHRD EBX, EDI, CL ;scale down divisor and dividend
SHRD EAX, EDX, CL ; such that divisor is
SHR EDX, CL ; less than 2^32 (i.e. fits in EBX)
ROL EDI, 1 ;restore original divisor_hi
DIV EBX ;compute quotient
MOV EBX, [ESP+12] ;dividend_lo
128 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
MOV ECX, EAX ;save quotient
IMUL EDI, EAX ;quotient * divisor hi-word
 ; (low only)
MUL DWORD PTR [ESP+20] ;quotient * divisor lo-word
ADD EDX, EDI ;EDX:EAX = quotient * divisor
SUB EBX, EAX ;dividend_lo – (quot.*divisor)_lo
MOV EAX, ECX ;get quotient
MOV ECX, [ESP+16] ;dividend_hi
SBB ECX, EDX ;subtract divisor * quot. from dividend
SBB EAX, 0 ;adjust quotient if remainder negative
XOR EDX, EDX ;clear hi-word of quot(EAX<=FFFFFFFFh)
POP EDI ;restore EDI as per calling convention
POP EBX ;restore EBX as per calling convention
RET ;done, return to caller

_ulldiv ENDP
Chapter 8 Integer Optimizations 129

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Example 8 (Signed Division):
; _lldiv divides two signed 64-bit numbers and delivers the
quotient
;
; INPUT: [ESP+8]:[ESP+4] dividend
; [ESP+16]:[ESP+12] divisor
;
; OUTPUT: EDX:EAX quotient of division
;
; DESTROYS: EAX,ECX,EDX,EFlags
_lldiv PROC
PUSH EBX ;save EBX as per calling convention
PUSH ESI ;save ESI as per calling convention
PUSH EDI ;save EDI as per calling convention
MOV ECX, [ESP+28] ;divisor-hi
MOV EBX, [ESP+24] ;divisor-lo
MOV EDX, [ESP+20] ;dividend-hi
MOV EAX, [ESP+16] ;dividend-lo
MOV ESI, ECX ;divisor-hi
XOR ESI, EDX ;divisor-hi ^ dividend-hi
SAR ESI, 31 ;(quotient < 0) ? -1 : 0
MOV EDI, EDX ;dividend-hi
SAR EDI, 31 ;(dividend < 0) ? -1 : 0
XOR EAX, EDI ;if (dividend < 0)
XOR EDX, EDI ;compute 1's complement of dividend
SUB EAX, EDI ;if (dividend < 0)
SBB EDX, EDI ;compute 2's complement of dividend
MOV EDI, ECX ;divisor-hi
SAR EDI, 31 ;(divisor < 0) ? -1 : 0
XOR EBX, EDI ;if (divisor < 0)
XOR ECX, EDI ;compute 1's complement of divisor
SUB EBX, EDI ;if (divisor < 0)
SBB ECX, EDI ; compute 2's complement of divisor
JNZ $big_divisor ; divisor > 2^32-1
CMP EDX, EBX ;only one division needed ? (ECX = 0)
JAE $two_divs ;need two divisions
DIV EBX ;EAX = quotient-lo
MOV EDX, ECX ;EDX = quotient-hi = 0
 ; (quotient in EDX:EAX)
XOR EAX, ESI ;if (quotient < 0)
XOR EDX, ESI ;compute 1's complement of result
SUB EAX, ESI ;if (quotient < 0)
SBB EDX, ESI ;compute 2's complement of result
POP EDI ;restore EDI as per calling convention
POP ESI ;restore ESI as per calling convention
POP EBX ;restore EBX as per calling convention
RET ;done, return to caller

$two_divs:
MOV ECX, EAX ;save dividend-lo in ECX
MOV EAX, EDX ;get dividend-hi
130 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
XOR EDX, EDX ;zero extend it into EDX:EAX
DIV EBX ;quotient-hi in EAX
XCHG EAX, ECX ;ECX = quotient-hi, EAX = dividend-lo
DIV EBX ;EAX = quotient-lo
MOV EDX, ECX ;EDX = quotient-hi
 ; (quotient in EDX:EAX)
JMP $make_sign ;make quotient signed

$big_divisor:
SUB ESP, 12 ;create three local variables
MOV [ESP], EAX ;dividend-lo
MOV [ESP+4], EBX ;divisor-lo
MOV [ESP+8], EDX ; dividend-hi
MOV EDI, ECX ;save divisor-hi
SHR EDX, 1 ;shift both
RCR EAX, 1 ;divisor and
ROR EDI, 1 ;and dividend
RCR EBX, 1 ;right by 1 bit
BSR ECX, ECX ;ECX = number of remaining shifts
SHRD EBX, EDI, CL ;scale down divisor and
SHRD EAX, EDX, CL ;dividend such that divisor
SHR EDX, CL ;less than 2^32 (i.e. fits in EBX)
ROL EDI, 1 ;restore original divisor-hi
DIV EBX ;compute quotient
MOV EBX, [ESP] ;dividend-lo
MOV ECX, EAX ;save quotient
IMUL EDI, EAX ;quotient * divisor hi-word (low only)
MUL DWORD PTR [ESP+4] ;quotient * divisor lo-word
ADD EDX, EDI ;EDX:EAX = quotient * divisor
SUB EBX, EAX ;dividend-lo - (quot.*divisor)-lo
MOV EAX, ECX ;get quotient
MOV ECX, [ESP+8] ;dividend-hi
SBB ECX, EDX ;subtract divisor * quot. from dividend
SBB EAX, 0 ;adjust quotient if remainder negative
XOR EDX, EDX ;clear hi-word of quotient
ADD ESP, 12 ;remove local variables

$make_sign:
XOR EAX, ESI ;if (quotient < 0)
XOR EDX, ESI ;compute 1's complement of result
SUB EAX, ESI ;if (quotient < 0)
SBB EDX, ESI ;compute 2's complement of result
POP EDI ;restore EDI as per calling convention
POP ESI ;restore ESI as per calling convention
POP EBX ;restore EBX as per calling convention
RET ;done, return to caller
_lldiv ENDP
Chapter 8 Integer Optimizations 131

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Example 9 (Unsigned Remainder):
;_ullrem divides two unsigned 64-bit integers, and returns
; the remainder.
;
;INPUT: [ESP+8]:[ESP+4] dividend
; [ESP+16]:[ESP+12] divisor
;
;OUTPUT: EDX:EAX remainder of division
;
;DESTROYS: EAX,ECX,EDX,EFlags

_ullrem PROC
PUSH EBX ;save EBX as per calling convention
MOV ECX, [ESP+20] ;divisor_hi
MOV EBX, [ESP+16] ;divisor_lo
MOV EDX, [ESP+12] ;dividend_hi
MOV EAX, [ESP+8] ;dividend_lo
TEST ECX, ECX ;divisor > 2^32–1?
JNZ $r_big_divisor ;yes, divisor > 32^32–1
CMP EDX, EBX ;only one division needed? (ECX = 0)
JAE $r_two_divs ;need two divisions
DIV EBX ;EAX = quotient_lo
MOV EAX, EDX ;EAX = remainder_lo
MOV EDX, ECX ;EDX = remainder_hi = 0
POP EBX ;restore EBX as per calling convention
RET ;done, return to caller

$r_two_divs:
MOV ECX, EAX ;save dividend_lo in ECX
MOV EAX, EDX ;get dividend_hi
XOR EDX, EDX ;zero extend it into EDX:EAX
DIV EBX ;EAX = quotient_hi, EDX = intermediate
 ; remainder
MOV EAX, ECX ;EAX = dividend_lo
DIV EBX ;EAX = quotient_lo
MOV EAX, EDX ;EAX = remainder_lo
XOR EDX, EDX ;EDX = remainder_hi = 0
POP EBX ;restore EBX as per calling convention
RET ;done, return to caller

$r_big_divisor:
PUSH EDI ;save EDI as per calling convention
MOV EDI, ECX ;save divisor_hi
SHR EDX, 1 ;shift both divisor and dividend right
RCR EAX, 1 ; by 1 bit
ROR EDI, 1
RCR EBX, 1
BSR ECX, ECX ;ECX = number of remaining shifts
SHRD EBX, EDI, CL ;scale down divisor and dividend such
SHRD EAX, EDX, CL ; that divisor is less than 2^32
SHR EDX, CL ; (i.e. fits in EBX)
132 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
ROL EDI, 1 ;restore original divisor (EDI:ESI)
DIV EBX ;compute quotient
MOV EBX, [ESP+12] ;dividend lo-word
MOV ECX, EAX ;save quotient
IMUL EDI, EAX ;quotient * divisor hi-word (low only)
MUL DWORD PTR [ESP+20] ;quotient * divisor lo-word
ADD EDX, EDI ;EDX:EAX = quotient * divisor
SUB EBX, EAX ;dividend_lo – (quot.*divisor)–lo
MOV ECX, [ESP+16] ;dividend_hi
MOV EAX, [ESP+20] ;divisor_lo
SBB ECX, EDX ;subtract divisor * quot. from
 ; dividend
SBB EDX, EDX ;(remainder < 0)? 0xFFFFFFFF : 0
AND EAX, EDX ;(remainder < 0)? divisor_lo : 0
AND EDX, [ESP+24] ;(remainder < 0)? divisor_hi : 0
ADD EAX, EBX ;remainder += (remainder < 0)?
ADC EDX, ECX ; divisor : 0
POP EDI ;restore EDI as per calling convention
POP EBX ;restore EBX as per calling convention
RET ;done, return to caller

_ullrem ENDP
Chapter 8 Integer Optimizations 133

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Example 10 (Signed Remainder):
_llrem divides two signed 64-bit numbers and returns the
remainder
;
; INPUT: [ESP+8]:[ESP+4] dividend
; [ESP+16]:[ESP+12] divisor
;
; OUTPUT: EDX:EAX remainder of division
;
; DESTROYS: EAX,ECX,EDX,EFlags

PUSH EBX ;save EBX as per calling convention
PUSH ESI ;save ESI as per calling convention
PUSH EDI ;save EDI as per calling convention
MOV ECX, [ESP+28] ;divisor-hi
MOV EBX, [ESP+24] ;divisor-lo
MOV EDX, [ESP+20] ;dividend-hi
MOV EAX, [ESP+16] ;dividend-lo
MOV ESI, EDX ;sign(remainder) == sign(dividend)
SAR ESI, 31 ;(remainder < 0) ? -1 : 0
MOV EDI, EDX ;dividend-hi
SAR EDI, 31 ;(dividend < 0) ? -1 : 0
XOR EAX, EDI ;if (dividend < 0)
XOR EDX, EDI ;compute 1's complement of dividend
SUB EAX, EDI ;if (dividend < 0)
SBB EDX, EDI ;compute 2's complement of dividend
MOV EDI, ECX ;divisor-hi
SAR EDI, 31 ;(divisor < 0) ? -1 : 0
XOR EBX, EDI ;if (divisor < 0)
XOR ECX, EDI ;compute 1's complement of divisor
SUB EBX, EDI ;if (divisor < 0)
SBB ECX, EDI ;compute 2's complement of divisor
JNZ $sr_big_divisor ;divisor > 2^32-1
CMP EDX, EBX ;only one division needed ? (ECX = 0)
JAE $sr_two_divs ;nope, need two divisions
DIV EBX ;EAX = quotient_lo
MOV EAX, EDX ;EAX = remainder_lo
MOV EDX, ECX ;EDX = remainder_lo = 0
XOR EAX, ESI ;if (remainder < 0)
XOR EDX, ESI ;compute 1's complement of result
SUB EAX, ESI ;if (remainder < 0)
SBB EDX, ESI ;compute 2's complement of result
POP EDI ;restore EDI as per calling convention
POP ESI ;restore ESI as per calling convention
POP EBX ;restore EBX as per calling convention
RET ;done, return to caller

$sr_two_divs:
MOV ECX, EAX ;save dividend_lo in ECX
MOV EAX, EDX ;get_dividend_hi
XOR EDX, EDX ;zero extend it into EDX:EAX
134 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
DIV EBX ;EAX = quotient_hi,
 ;EDX = intermediate remainder
MOV EAX, ECX ;EAX = dividend_lo
DIV EBX ;EAX = quotient_lo
MOV EAX, EDX ;remainder_lo
XOR EDX, EDX ;remainder_hi = 0
JMP $sr_makesign ;make remainder signed

$sr_big_divisor:
SUB ESP, 16 ;create three local variables
MOV [ESP], EAX ;dividend_lo
MOV [ESP+4], EBX ;divisor_lo
MOV [ESP+8], EDX ;dividend_hi
MOV [ESP+12], ECX ;divisor_hi
MOV EDI, ECX ;save divisor_hi
SHR EDX, 1 ;shift both
RCR EAX, 1 ;divisor and
ROR EDI, 1 ;and dividend
RCR EBX, 1 ;right by 1 bit
BSR ECX, ECX ;ECX = number of remaining shifts
SHRD EBX, EDI, CL ;scale down divisor and
SHRD EAX, EDX, CL ;dividend such that divisor
SHR EDX, CL ;less than 2^32 (i.e. fits in EBX)
ROL EDI, 1 ;restore original divisor_hi
DIV EBX ;compute quotient
MOV EBX, [ESP] ;dividend_lo
MOV ECX, EAX ;save quotient
IMUL EDI, EAX ;quotient * divisor hi-word (low only)
MUL DWORD PTR [ESP+4] ;quotient * divisor lo-word
ADD EDX, EDI ;EDX:EAX = quotient * divisor
SUB EBX, EAX ;dividend_lo - (quot.*divisor)-lo
MOV ECX, [ESP+8] ;dividend_hi
SBB ECX, EDX ;subtract divisor * quot. from dividend
SBB EAX, EAX ;remainder < 0 ? 0xffffffff : 0
MOV EDX, [ESP+12] ;divisor_hi
AND EDX, EAX ; remainder < 0 ? divisor_hi : 0
AND EAX, [ESP+4] ;remainder < 0 ? divisor_lo : 0
ADD EAX, EBX ;remainder_lo
ADD EDX, ECX ;remainder_hi
ADD ESP, 16 ;remove local variables

$sr_makesign:
XOR EAX, ESI ;if (remainder < 0)
XOR EDX, ESI ;compute 1's complement of result
SUB EAX, ESI ;if (remainder < 0)
SBB EDX, ESI ;compute 2's complement of result
POP EDI ;restore EDI as per calling convention
POP ESI ;restore ESI as per calling convention
POP EBX ;restore EBX as per calling convention
RET ;done, return to caller
Chapter 8 Integer Optimizations 135

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Efficient Implementation of Population Count Function

Population count is an operation that determines the number of
set bits in a bit string. For example, this can be used to
determine the cardinality of a set. The following example code
shows how to efficiently implement a population count
operation for 32-bit operands. The example is written for the
inline assembler of Microsoft Visual C.

For an efficient population count function operating on 64-bit
integers, see “Efficient 64-Bit Population Count Using MMX™
Instructions” on page 184.

Function popcount() implements a branchless computation of
the population count. It is based on a O(log(n)) algorithm that
successively groups the bits into groups of 2, 4, 8, 16, and 32,
while maintaining a count of the set bits in each group. The
algorithms consist of the following steps:

Step 1 Partition the integer into groups of two bits. Compute the
population count for each 2-bit group and store the result in the
2-bit group. This calls for the following transformation to be
performed for each 2-bit group:

00b -> 00b
01b -> 01b
10b -> 01b
11b -> 10b

If the original value of a 2-bit group is v, then the new value will
be v - (v >> 1). In order to handle all 2-bit groups simultaneously,
it is necessary to mask appropriately to prevent spilling from
one bit group to the next lower bit group. Thus:

w = v - ((v >> 1) & 0x55555555)

Step 2 Add the population count of adjacent 2-bit group and store the
sum to the 4-bit group resulting from merging these adjacent
2-bit groups. To do this simultaneously to all groups, mask out
the odd numbered groups, mask out the even numbered groups,
and then add the odd numbered groups to the even numbered
groups:

x = (w & 0x33333333) + ((w >> 2) & 0x33333333)

Each 4-bit field now has value 0000b, 0001b, 0010b, 0011b, or
0100b.
136 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Step 3 For the first time, the value in each k-bit field is small enough
that adding two k-bit fields results in a value that still fits in the
k-bit field. Thus the following computation is performed:

y = (x + (x >> 4)) & 0x0F0F0F0F

The result is four 8-bit fields whose lower half has the desired
sum and whose upper half contains "junk" that has to be
masked out. In a symbolic form:

x = 0aaa0bbb0ccc0ddd0eee0fff0ggg0hhh
x >> 4 = 00000aaa0bbb0ccc0ddd0eee0fff0ggg
sum = 0aaaWWWWiiiiXXXXjjjjYYYYkkkkZZZZ

The WWWW, XXXX, YYYY, and ZZZZ values are the
interesting sums with each at most 1000b, or 8 decimal.

Step 4 The four 4-bit sums can now be rapidly accumulated by means
of a multiply with a "magic" multiplier. This can be derived
from looking at the following chart of partial products:

0p0q0r0s * 01010101 =

 :0p0q0r0s
 0p:0q0r0s
 0p0q:0r0s
 0p0q0r:0s
000pxxww:vvuutt0s

Here p, q, r, and s are the 4-bit sums from the previous step, and
vv is the final result in which we are interested. Thus, the final
result:

z = (y * 0x01010101) >> 24

Example 1 (Integer Version):
unsigned int popcount(unsigned int v)
{
 unsigned int retVal;
 __asm {
 MOV EAX, [v] ;v
 MOV EDX, EAX ;v
 SHR EAX, 1 ;v >> 1
 AND EAX, 055555555h ;(v >> 1) & 0x55555555
 SUB EDX, EAX ;w = v - ((v >> 1) & 0x55555555)
 MOV EAX, EDX ;w
 SHR EDX, 2 ;w >> 2
 AND EAX, 033333333h ;w & 0x33333333
 AND EDX, 033333333h ;(w >> 2) & 0x33333333
 ADD EAX, EDX ;x = (w & 0x33333333) + ((w >> 2) &
 ; 0x33333333)
Chapter 8 Integer Optimizations 137

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
 MOV EDX, EAX ;x
 SHR EAX, 4 ;x >> 4
 ADD EAX, EDX ;x + (x >> 4)
 AND EAX, 00F0F0F0Fh ;y = (x + (x >> 4) & 0x0F0F0F0F)
 IMUL EAX, 001010101h ;y * 0x01010101
 SHR EAX, 24 ;population count = (y *
 ; 0x01010101) >> 24
 MOV retVal, EAX ;store result
 }
 return (retVal);
}

MMX Version The following code sample is an MMX version of popcount()
that works on 64 bits at a time. This MMX code can do
popcounts about twice as fast as the integer version (for an
identical number of bits). Notice that the source was loaded
using two instructions instead of a simple MOVQ to avoid a bad
STLF case (size mismatch from two DWORDs feeding into a
QWORD).

Example 1 (MMX version):
#include "amd3d.h"

__declspec (naked) unsigned int __stdcall popcount64_1
(unsigned __int64 v)
{
static const __int64 C55 = 0x5555555555555555;
static const __int64 C33 = 0x3333333333333333;
static const __int64 C0F = 0x0F0F0F0F0F0F0F0F;

__asm {
 MOVD MM0, [ESP+4] ;v_low
 PUNPCKLDQ MM0, [ESP+8] ;v
 MOVQ MM1, MM0 ;v
 PSRLD MM0, 1 ;v >> 1
 PAND MM0, [C55] ;(v >> 1) & 0x55555555
 PSUBD MM1, MM0 ;w = v - ((v >> 1) & 0x55555555)
 MOVQ MM0, MM1 ;w
 PSRLD MM1, 2 ;w >> 2
 PAND MM0, [C33] ;w & 0x33333333
 PAND MM1, [C33] ;(w >> 2) & 0x33333333
 PADDD MM0, MM1 ;x = (w & 0x33333333) +
 ; ((w >> 2) & 0x33333333)
 MOVQ MM1, MM0 ;x
 PSRLD MM0, 4 ;x >> 4
 PADDD MM0, MM1 ;x + (x >> 4)
 PAND MM0, [C0F] ;y = (x + (x >> 4) & 0x0F0F0F0F)
 PXOR MM1, MM1 ;0
 PSADBW (MM0, MM1) ;sum across all 8 bytes
 MOVD EAX, MM0 ;result in EAX per calling
138 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
 ; convention
 EMMS ;clear MMX state
 RET 8 ;pop 8-byte argument off stack
 ; and return
 }
}

Efficient Binary-to-ASCII Decimal Conversion

Fast binary-to-ASCII decimal conversion can be important to
the performance of software working with text oriented
protocols like HTML, such as web servers. The following
examples show two optimized functions for fast conversion of
unsigned integers-to-ASCII decimal strings on AMD Athlon
processors. The code is written for the Microsoft Visual C
compiler.

Function uint_to_ascii_lz() converts like sprintf (sptr, "%010u",
x), i .e. , leading zeros are retained, whereas function
uint_to_ascii_nlz() converts like sprintf (sptr, "%u", x), i.e.,
leading zeros are suppressed.

This code can easily be extended to convert signed integers by
isolating the sign information and computing the absolute
value as shown in Example 3 in “Avoid Branches Dependent on
Random Data” on page 93 before starting the conversion
process. For restricted argument range, more efficient
conversion routines can be constructed using the same
algorithm as is used for the general case presented here.

The algorithm first splits the input argument into suitably sized
blocks by dividing the input by an appropriate power of ten,
and working separately on the quotient and remainder of that
division. The DIV instruction is avoided as described in
“Replace Divides with Multiplies” on page 115. Each block is
then converted into a fixed-point format that consists of one
(decimal) integer digit and a binary fraction. This allows
generation of additional decimal digits by repeated
multiplication of the fraction by 10. For efficiency reasons the
algorithm implements this multiplication by multiplying by five
and moving the binary point to the right by one bit for each step
of the algorithm. To avoid loop overhead and branch
mispredicts, the digit generation loop is completely unrolled. In
Chapter 8 Integer Optimizations 139

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
order to maximize parallelism, the code in uint_to_ascii_lz()
splits the input into two equally sized blocks each of which
yields five decimal digits for the result.

Example 1 (Binary-to-ASCII decimal conversion retaining leading zeros):
__declspec(naked) void __stdcall uint_to_ascii_lz (char *sptr, unsigned int x)
{
 __asm {
 PUSH EDI ;save as per calling conventions
 PUSH ESI ;save as per calling conventions
 PUSH EBX ;save as per calling conventions
 MOV EAX, [esp+20] ;x
 MOV EDI, [esp+16] ;sptr
 MOV ESI, EAX ;x
 MOV EDX, 0xA7C5AC47 ;divide x by
 MUL EDX ; 10000 using
 ADD EAX, 0xA7C5AC47 ; multiplication
 ADC EDX, 0 ; with reciprocal
 SHR EDX, 16 ;y1 = x / 1e5
 MOV ECX, EDX ;y1
 IMUL EDX, 100000 ;(x / 1e5) * 1e5
 SUB ESI, EDX ;y2 = x % 1e5
 MOV EAX, 0xD1B71759 ;2^15/1e4*2^30
 MUL ECX ;divide y1 by 1e4
 SHR EAX, 30 ; converting it into
 LEA EBX, [EAX+EDX*4+1] ; 17.15 fixed point format
 MOV ECX, EBX ; such that 1.0 = 2^15
 MOV EAX, 0xD1B71759 ;2^15/1e4*2^30
 MUL ESI ;divide y2 by 1e4
 SHR EAX, 30 ; converting it into
 LEA ESI, [EAX+EDX*4+1] ; 17.15 fixed point format
 MOV EDX, ESI ; such that 1.0 = 2^15
 SHR ECX, 15 ;1st digit
 AND EBX, 0x00007fff ;fraction part
 OR ECX, '0' ;convert 1st digit to ASCII
 MOV [EDI+0], C L ;store 1st digit out to memory
 LEA ECX, [EBX+EBX*4] ;5*fraction, new digit ECX<31:14>
 LEA EBX, [EBX+EBX*4] ;5*fraction, new fraction EBX<13:0>
 SHR EDX, 15 ;6th digit
 AND ESI, 0x00007fff ;fraction part
 OR EDX, '0' ;convert 6th digit to ASCII
 MOV [EDI+5], DL ;store 6th digit out to memory
 LEA EDX, [ESI+ESI*4] ;5*fraction, new digit EDX<31:14>
 LEA ESI, [ESI+ESI*4] ;5*fraction, new fraction ESI<13:0>
 SHR ECX, 14 ;2nd digit
 AND EBX, 0x00003fff ;fraction part
 OR ECX, '0' ;convert 2nd digit to ASCII
 MOV [EDI+1], C L ;store 2nd digit out to memory
 LEA ECX, [EBX+EBX*4] ;5*fraction, new digit ECX<31:13>
 LEA EBX, [EBX+EBX*4] ;5*fraction, new fraction EBX<12:0>
140 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
 SHR EDX, 14 ;7th digit
 AND ESI, 0x00003fff ;fraction part
 OR EDX, '0' ;convert 7th digit to ASCII
 MOV [EDI+6], DL ;store 7th digit out to memory
 LEA EDX, [ESI+ESI*4] ;5*fraction, new digit EDX<31:13>
 LEA ESI, [ESI+ESI*4] ;5*fraction, new fraction ESI<12:0>
 SHR ECX, 13 ;3rd digit
 AND EBX, 0x00001fff ;fraction part
 OR ECX, '0' ;convert 3rd digit to ASCII
 MOV [EDI+2], C L ;store 3rd digit out to memory
 LEA ECX, [EBX+EBX*4] ;5*fraction, new digit ECX<31:12>
 LEA EBX, [EBX+EBX*4] ;5*fraction, new fraction EBX<11:0>
 SHR EDX, 13 ;8th digit
 AND ESI, 0x00001fff ;fraction part
 OR EDX, '0' ;convert 8th digit to ASCII
 MOV [EDI+7], DL ;store 8th digit out to memory
 LEA EDX, [ESI+ESI*4] ;5*fraction, new digit EDX<31:12>
 LEA ESI, [ESI+ESI*4] ;5*fraction, new fraction ESI<11:0>
 SHR ECX, 12 ;4th digit
 AND EBX, 0x00000fff ;fraction part
 OR ECX, '0' ;convert 4th digit to ASCII
 MOV [EDI+3], C L ;store 4th digit out to memory
 LEA ECX, [EBX+EBX*4] ;5*fraction, new digit ECX<31:11>
 SHR EDX, 12 ;9th digit
 AND ESI, 0x00000fff ;fraction part
 OR EDX, '0' ;convert 9th digit to ASCII
 MOV [EDI+8], DL ;store 9th digit out to memory
 LEA EDX, [ESI+ESI*4] ;5*fraction, new digit EDX<31:11>
 SHR ECX, 11 ;5th digit
 OR ECX, '0' ;convert 5th digit to ASCII
 MOV [EDI+4], C L ;store 5th digit out to memory
 SHR EDX, 11 ;10th digit
 OR EDX, '0' ;convert 10th digit to ASCII
 MOV [EDI+9], dx ;store 10th digit and end marker to memory
 POP EBX ;restore register as per calling convention
 POP ESI ;restore register as per calling convention
 POP EDI ;restore register as per calling convention
 RET 8 ;POP two DWORD arguments and return
 }
}

Chapter 8 Integer Optimizations 141

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Example 2 (Binary to ASCII decimal conversion suppressing leading zeros):
__declspec(naked) void __stdcall uint_to_ascii_nlz (char *sptr, unsigned int x)
{
 __asm {
 PUSH EDI ;save as per calling conventions
 PUSH EBX ;save as per calling conventions
 MOV EDI, [esp+12] ;sptr
 MOV EAX, [esp+16] ;x
 MOV ECX, EAX ;save original argument
 MOV EDX, 89705F41h ;1e-9*2^61 rounded
 MUL EDX ;divide by 1e9 by multplying with reciprocal
 ADD EAX, EAX ;round division result
 ADC EDX, 0 ;EDX<31:29> = argument / 1e9
 SHR EDX, 29 ;leading decimal digit, 0...4
 MOV EAX, EDX ;leading digit
 MOV EBX, EDX ;init digit accumulator with leading digit
 IMUL EAX, 1000000000 ;leading digit * 1e9
 SUB ECX, EAX ;subtract (leading digit * 1e9) from argument
 OR DL, '0' ;convert leading digit to ASCII
 MOV [EDI], DL ;store leading digit
 CMP EBX, 1 ;any non-zero digit yet ?
 SBB EDI, -1 ;yes->increment ptr, no->keep old ptr
 MOV EAX, ECX ;get reduced argument < 1e9
 MOV EDX, 0abcc7712h ;2^28/1e8 * 2^30 rounded up
 MUL EDX ; divide reduced
 SHR EAX, 30 ; argument < 1e9 by 1e8
 LEA EDX, [EAX+4*EDX+1] ; converting it into 4.28 fixed
 MOV EAX, EDX ; point format such that 1.0 = 2^28
 SHR EAX, 28 ;next digit
 AND EDX, 0fffffffh ;fraction part
 OR EBX, EAX ;accumulate next digit
 OR EAX, '0' ;convert digit to ASCII
 MOV [EDI], AL ;store digit out to memory
 LEA EAX, [EDX*4+EDX] ;5*fraction, new digit EAX<31:27>
 LEA EDX, [EDX*4+EDX] ;5*fraction, new fraction EDX<26:0>
 CMP EBX, 1 ;any non-zero digit yet ?
 SBB EDI, -1 ;yes->increment ptr, no->keep old ptr
 SHR EAX, 27 ;next digit
 AND EDX, 07ffffffh ;fraction part
 OR EBX, EAX ;accumulate next digit
 OR EAX, '0' ;convert digit to ASCII
 MOV [EDI], AL ;store digit out to memory
 LEA EAX, [EDX*4+EDX] ;5*fraction, new digit EAX<31:26>
 LEA EDX, [EDX*4+EDX] ;5*fraction, new fraction EDX<25:0>
 CMP EBX, 1 ;any non-zero digit yet ?
 SBB EDI, -1 ;yes->increment ptr, no->keep old ptr
 SHR EAX, 26 ;next digit
 AND EDX, 03ffffffh ;fraction part
 OR EBX, EAX ;accumulate next digit
 OR EAX, '0' ;convert digit to ASCII
 MOV [EDI], AL ;store digit out to memory
142 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
 LEA EAX, [EDX*4+EDX] ;5*fraction, new digit EAX<31:25>
 LEA EDX, [EDX*4+EDX] ;5*fraction, new fraction EDX<24:0>
 CMP EBX, 1 ;any non-zero digit yet ?
 SBB EDI, -1 ;yes->increment ptr, no->keep old ptr
 SHR EAX, 25 ;next digit
 AND EDX, 01ffffffh ;fraction part
 OR EBX, EAX ;accumulate next digit
 OR EAX, '0' ;convert digit to ASCII
 MOV [EDI], AL ;store digit out to memory
 LEA EAX, [EDX*4+EDX] ;5*fraction, new digit EAX<31:24>
 LEA EDX, [EDX*4+EDX] ;5*fraction, new fraction EDX<23:0>
 CMP EBX, 1 ;any non-zero digit yet ?
 SBB EDI, -1 ;yes->increment ptr, no->keep old ptr
 SHR EAX, 24 ;next digit
 AND EDX, 00ffffffh ;fraction part
 OR EBX, EAX ;accumulate next digit
 OR EAX, '0' ;convert digit to ASCII
 MOV [EDI], AL ;store digit out to memory
 LEA EAX, [EDX*4+EDX] ;5*fraction, new digit EAX<31:23>
 LEA EDX, [EDX*4+EDX] ;5*fraction, new fraction EDX<31:23>
 CMP EBX, 1 ;any non-zero digit yet ?
 SBB EDI, -1 ;yes->increment ptr, no->keep old ptr
 SHR EAX, 23 ;next digit
 AND EDX, 007fffffh ;fraction part
 OR EBX, EAX ;accumulate next digit
 OR EAX, '0' ;convert digit to ASCII
 MOV [EDI], AL ;store digit out to memory
 LEA EAX, [EDX*4+EDX] ;5*fraction, new digit EAX<31:22>
 LEA EDX, [EDX*4+EDX] ;5*fraction, new fraction EDX<22:0>
 CMP EBX, 1 ;any non-zero digit yet ?
 SBB EDI, -1 ;yes->increment ptr, no->keep old ptr
 SHR EAX, 22 ;next digit
 AND EDX, 003fffffh ;fraction part
 OR EBX, EAX ;accumulate next digit
 OR EAX, '0' ;convert digit to ASCII
 MOV [EDI], AL ;store digit out to memory
 LEA EAX, [EDX*4+EDX] ;5*fraction, new digit EAX<31:21>
 LEA EDX, [EDX*4+EDX] ;5*fraction, new fraction EDX<21:0>
 CMP EBX, 1 ;any non-zero digit yet ?
 SBB EDI, -1 ;yes->increment ptr, no->keep old ptr
 SHR EAX, 21 ;next digit
 AND EDX, 001fffffh ;fraction part
 OR EBX, EAX ;accumulate next digit
 OR EAX, '0' ;convert digit to ASCII
 MOV [EDI], AL ;store digit out to memory
 LEA EAX, [EDX*4+EDX] ;5*fraction, new digit EAX<31:20>
 CMP EBX, 1 ;any-non-zero digit yet ?
 SBB EDI, -1 ;yes->increment ptr, no->keep old ptr
 SHR EAX, 20 ;next digit
 OR EAX, '0' ;convert digit to ASCII
 MOV [EDI], AX ;store last digit and end marker out to memory
Chapter 8 Integer Optimizations 143

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
 POP EBX ;restore register as per calling convention
 POP EDI ;restore register as per calling convention
 RET 8 ;POP two DWORD arguments and return
 }
}

Derivation of Multiplier Used for Integer Division by
Constants

Derivation of Algorithm, Multiplier, and Shift Factor for Unsigned Integer
Division

The utility udiv.exe was compiled using the code shown in this
section. The executable and source code are located in the
opt_utilities directory of the AMD Documentation CDROM and
the SDK. The program is provided “as is.”

The following code derives the multiplier value used when
performing integer division by constants. The code works for
unsigned integer division and for odd divisors between 1 and
231–1, inclusive. For divisors of the form d = d’*2n, the multiplier
is the same as for d’ and the shift factor is s + n.

Example Code

/* Program to determine algorithm, multiplier, and shift factor to be
 used to accomplish unsigned division by a constant divisor. Compile
 with MSVC.
*/

#include <stdio.h>

typedef unsigned __int64 U64;
typedef unsigned long U32;

U32 log2 (U32 i)
{
 U32 t = 0;
 i = i >> 1;
 while (i) {
 i = i >> 1;
 t++;
 }
 return (t);
144 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
}

U32 res1, res2;

U32 d, l, s, m, a, r, n, t;
U64 m_low, m_high, j, k;

int main (void)
{
 fprintf (stderr, "\n");
 fprintf (stderr, "Unsigned division by constant\n");
 fprintf (stderr, "=============================\n\n");

 fprintf (stderr, "enter divisor: ");
 scanf ("%lu", &d);
 printf ("\n");

 if (d == 0) goto printed_code;

 if (d >= 0x80000000UL) {
 printf ("; dividend: register or memory location\n");
 printf ("\n");
 printf ("CMP dividend, 0%08lXh\n", d);
 printf ("MOV EDX, 0\n");
 printf ("SBB EDX, -1\n");
 printf ("\n");
 printf ("; quotient now in EDX\n");
 goto printed_code;
 }

 /* Reduce divisor until it becomes odd */

 n = 0;
 t = d;
 while (!(t & 1)) {
 t >>= 1;
 n++;
 }

 if (t==1) {
 if (n==0) {
 printf ("; dividend: register or memory location\n");
 printf ("\n");
 printf ("MOV EDX, dividend\n", n);
 printf ("\n");
 printf ("; quotient now in EDX\n");
 }
 else {
 printf ("; dividend: register or memory location\n");
Chapter 8 Integer Optimizations 145

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
 printf ("\n");
 printf ("SHR dividend, %d\n", n);
 printf ("\n");
 printf ("; quotient replaced dividend\n");
 }
 goto printed_code;
 }

 /* Generate m, s for algorithm 0. Based on: Granlund, T.; Montgomery,
 P.L.: "Division by Invariant Integers using Multiplication".
 SIGPLAN Notices, Vol. 29, June 1994, page 61.
 */

 l = log2(t) + 1;
 j = (((U64)(0xffffffff)) % ((U64)(t)));
 k = (((U64)(1)) << (32+l)) / ((U64)(0xffffffff-j));
 m_low = (((U64)(1)) << (32+l)) / t;
 m_high = ((((U64)(1)) << (32+l)) + k) / t;
 while (((m_low >> 1) < (m_high >> 1)) && (l > 0)) {
 m_low = m_low >> 1;
 m_high = m_high >> 1;
 l = l - 1;
 }
 if ((m_high >> 32) == 0) {
 m = ((U32)(m_high));
 s = l;
 a = 0;
 }

 /* Generate m, s for algorithm 1. Based on: Magenheimer, D.J.; et al:
 "Integer Multiplication and Division on the HP Precision Architecture".
 IEEE Transactions on Computers, Vol 37, No. 8, August 1988, page 980.
 */

 else {
 s = log2(t);
 m_low = (((U64)(1)) << (32+s)) / ((U64)(t));
 r = ((U32)((((U64)(1)) << (32+s)) % ((U64)(t))));
 m = (r < ((t>>1)+1)) ? ((U32)(m_low)) : ((U32)(m_low))+1;
 a = 1;
 }

 /* Reduce multiplier for either algorithm to smallest possible */

 while (!(m&1)) {
 m = m >> 1;
 s--;
 }
146 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
 /* Adjust multiplier for reduction of even divisors */

 s += n;

 if (a) {
 printf ("; dividend: register other than EAX or memory location\n");
 printf ("\n");
 printf ("MOV EAX, 0%08lXh\n", m);
 printf ("MUL dividend\n");
 printf ("ADD EAX, 0%08lXh\n", m);
 printf ("ADC EDX, 0\n");
 if (s) printf ("SHR EDX, %d\n", s);
 printf ("\n");
 printf ("; quotient now in EDX\n");
 }
 else {
 printf ("; dividend: register other than EAX or memory location\n");
 printf ("\n");
 printf ("MOV EAX, 0%08lXh\n", m);
 printf ("MUL dividend\n");
 if (s) printf ("SHR EDX, %d\n", s);
 printf ("\n");
 printf ("; quotient now in EDX\n");
 }

printed_code:

 fprintf(stderr, "\n");
 exit(0);

 return(0);
}

Chapter 8 Integer Optimizations 147

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Derivation of Algorithm, Multiplier, and Shift Factor for Signed Integer
Division

The utility sdiv.exe was compiled using the following code. The
executable and source code are located in the opt_utilities
directory of the AMD Documentation CDROM and the SDK.
The program is provided “as is.”

Example Code

/* Program to determine algorithm, multiplier, and shift factor to be
 used to accomplish signed division by a constant divisor. Compile
 with MSVC.
*/

#include <stdio.h>

typedef unsigned __int64 U64;
typedef unsigned long U32;

U32 log2 (U32 i)
{
 U32 t = 0;
 i = i >> 1;
 while (i) {
 i = i >> 1;
 t++;
 }
 return (t);
}

long e;
U32 res1, res2;
U32 oa, os, om;
U32 d, l, s, m, a, r, t;
U64 m_low, m_high, j, k;

int main (void)

{

 fprintf (stderr, "\n");
 fprintf (stderr, "Signed division by constant\n");
 fprintf (stderr, "===========================\n\n");

 fprintf (stderr, "enter divisor: ");
 scanf ("%ld", &d);
 fprintf (stderr, "\n");
148 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
 e = d;
 d = labs(d);

 if (d==0) goto printed_code;

 if (e==(-1)) {
 printf ("; dividend: register or memory location\n");
 printf ("\n");
 printf ("NEG dividend\n");
 printf ("\n");
 printf ("; quotient replaced dividend\n");
 goto printed_code;
 }
 if (d==2) {
 printf ("; dividend expected in EAX\n");
 printf ("\n");
 printf ("CMP EAX, 080000000h\n");
 printf ("SBB EAX, -1\n");
 printf ("SAR EAX, 1\n");
 if (e < 0) printf ("NEG EAX\n");
 printf ("\n");
 printf ("; quotient now in EAX\n");
 goto printed_code;
 }

 if (!(d & (d-1))) {
 printf ("; dividend expected in EAX\n");
 printf ("\n");
 printf ("CDQ\n");
 printf ("AND EDX, 0%08lXh\n", (d-1));
 printf ("ADD EAX, EDX\n");
 if (log2(d)) printf ("SAR EAX, %d\n", log2(d));
 if (e < 0) printf ("NEG EAX\n");
 printf ("\n");
 printf ("; quotient now in EAX\n");
 goto printed_code;
 }

 /* Determine algorithm (a), multiplier (m), and shift factor (s) for 32-bit
 signed integer division. Based on: Granlund, T.; Montgomery, P.L.:
 "Division by Invariant Integers using Multiplication". SIGPLAN Notices,
 Vol. 29, June 1994, page 61.
 */

 l = log2(d);
 j = (((U64)(0x80000000)) % ((U64)(d)));
 k = (((U64)(1)) << (32+l)) / ((U64)(0x80000000-j));
 m_low = (((U64)(1)) << (32+l)) / d;
 m_high = ((((U64)(1)) << (32+l)) + k) / d;
Chapter 8 Integer Optimizations 149

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
 while (((m_low >> 1) < (m_high >> 1)) && (l > 0)) {
 m_low = m_low >> 1;
 m_high = m_high >> 1;
 l = l - 1;
 }
 m = ((U32)(m_high));
 s = l;
 a = (m_high >> 31) ? 1 : 0;

 if (a) {
 printf ("; dividend: memory location or register other than EAX or EDX\n");
 printf ("\n");
 printf ("MOV EAX, 0%08LXh\n", m);
 printf ("IMUL dividend\n");
 printf ("MOV EAX, dividend\n");
 printf ("ADD EDX, EAX\n");
 if (s) printf ("SAR EDX, %d\n", s);
 printf ("SHR EAX, 31\n");
 printf ("ADD EDX, EAX\n");
 if (e < 0) printf ("NEG EDX\n");
 printf ("\n");
 printf ("; quotient now in EDX\n");
 }
 else {
 printf ("; dividend: memory location of register other than EAX or EDX\n");
 printf ("\n");
 printf ("MOV EAX, 0%08LXh\n", m);
 printf ("IMUL dividend\n");
 printf ("MOV EAX, dividend\n");
 if (s) printf ("SAR EDX, %d\n", s);
 printf ("SHR EAX, 31\n");
 printf ("ADD EDX, EAX\n");
 if (e < 0) printf ("NEG EDX\n");
 printf ("\n");
 printf ("; quotient now in EDX\n");
 }

printed_code:

 fprintf (stderr, "\n");
 exit(0);

}

150 Integer Optimizations Chapter 8

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
9
Floating-Point Optimizations
This chapter details the methods used to optimize floating-
point code to the pipelined floating-point unit (FPU).
Guidelines are listed in order of importance.

Ensure All FPU Data is Aligned

As described in “Memory Size and Alignment Issues” on
page 63, align floating-point data naturally. That is, align words
on word boundaries, doublewords on doubleword boundaries,
and quadwords on quadword boundaries. Misaligned memory
accesses reduce the available memory bandwidth.

Use Multiplies Rather than Divides

If accuracy requirements allow, convert floating-point division
by a constant to a multiply by the reciprocal. Divisors that are
powers of two and their reciprocals are exactly representable,
and therefore do not cause an accuracy issue, except for the
rare cases in which the reciprocal overflows or underflows.
Unless such an overflow or underflow occurs, always convert a
division by a power of two to a multiply. Although the
AMD Athlon™ processor has high-performance division,
multiplies are significantly faster than divides.
Chapter 9 Floating-Point Optimizations 151

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Use FFREEP Macro to Pop One Register from the FPU Stack

In FPU intensive code, frequently accessed data is often
preloaded at the bottom of the FPU stack before processing
floating-point data. After completion of processing, it is
desirable to remove the preloaded data from the FPU stack as
quickly as possible. The classical way to clean up the FPU stack
is to use either of the following instructions:

FSTP ST(0) ;removes one register from stack

FCOMPP ;removes two registers from stack

On the AMD Athlon processor, a faster alternative is to use the
FFREEP instruction below. Note that the FFREEP instruction,
although insufficiently documented in the past, is supported by
all 32-bit x86 processors. The opcode bytes for FFREEP ST(i)
are listed in Table 22 on page 292.

FFREEP ST(0) ;removes one register from stack

FFREEP ST(i) works like FFREE ST(i) except that it
increments the FPU top-of-stack after doing the FFREE work.
In other words, FFREEP ST(i) marks ST(i) as empty, then
increments the x87 stack pointer. On the AMD Athlon
processor, the FFREEP instruction converts to an internal NOP,
which can go down any pipe with no dependencies.

Many assemblers do not support the FFREEP instruction. In
these cases, a simple text macro can be created to facilitate use
of the FFREEP ST(0).

FFREEP_ST0 TEXTEQU <DB 0DFh, 0C0h>

To free up all remaining occupied FPU stack register and set
the x87 stack pointer to zero, use the FEMMS or EMMS
instruction instead of a series of FFREEP ST(0) instructions.
This promotes code density and preserves decode and
execution bandwidth. Note that use of FEMMS/EMMS in this
fashion is not recommended for AMD-K6 family processors.
152 Floating-Point Optimizations Chapter 9

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Floating-Point Compare Instructions

For branches that are dependent on floating-point comparisons,
use the following instructions:

■ FCOMI

■ FCOMIP

■ FUCOMI

■ FUCOMIP

These instructions are much faster than the classical approach
using FSTSW, because FSTSW is essentially a serializing
instruction on the AMD Athlon processor. When FSTSW cannot
be avoided (for example, backward compatibility of code with
older processors), no FPU instruction should occur between an
FCOM[P], FICOM[P], FUCOM[P], or FTST and a dependent
FSTSW. This optimization allows the use of a fast forwarding
mechanism for the FPU condition codes internal to the
AMD Athlon processor FPU and increases performance.

Use the FXCH Instruction Rather than FST/FLD Pairs

Increase parallelism by breaking up dependency chains or by
evaluating multiple dependency chains simultaneously by
explicitly switching execution between them. Although the
AMD Athlon processor FPU has a deep scheduler, which in
most cases can extract sufficient parallelism from existing code,
long dependency chains can stall the scheduler while issue slots
are still available. The maximum dependency chain length that
the scheduler can absorb is about six 4-cycle instructions.

To switch execution between dependency chains, use of the
FXCH instruction is recommended because it has an apparent
latency of zero cycles and generates only one MacroOP. The
AMD Athlon processor FPU contains special hardware to
handle up to three FXCH instructions per cycle. Using FXCH is
preferred over the use of FST/FLD pairs, even if the FST/FLD
pair works on a register. An FST/FLD pair adds two cycles of
latency and consists of two MacroOPs.
Chapter 9 Floating-Point Optimizations 153

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Avoid Using Extended-Precision Data

Store data as either single-precision or double-precision
quantities. Loading and storing extended-precision data is
comparatively slower.

Minimize Floating-Point-to-Integer Conversions

C++, C, and Fortran define floating-point-to-integer conversions
as truncating. This creates a problem because the active
rounding mode in an application is typically round-to-nearest
even. The classical way to do a double-to-int conversion
therefore works as follows:

Example 1 (Fast):
FLD QWORD PTR [X] ;load double to be converted
FSTCW [SAVE_CW] ;save current FPU control word
MOVZX EAX, WORD PTR[SAVE_CW];retrieve control word
OR EAX, 0C00h ;rounding control field = truncate
MOV WORD PTR [NEW_CW], AX ;new FPU control word
FLDCW [NEW_CW] ;load new FPU control word
FISTP DWORD PTR [I] ;do double->int conversion
FLDCW [SAVE_CW] ;restore original control word

The AMD Athlon processor contains special acceleration
hardware to execute such code as quickly as possible. In most
situations, the above code is therefore the fastest way to
perform floating-point-to-integer conversion and the conversion
is compliant both with programming language standards and
the IEEE-754 standard.

According to the recommendations for inlining (see “Always
Inline Functions with Fewer than 25 Machine Instructions” on
page 110), the above code should not be put into a separate
subroutine (e.g., ftol). It should rather be inlined into the main
code.

In some codes, floating-point numbers are converted to an
integer and the result is immediately converted back to
floating-point. In such cases, use the FRNDINT instruction for
maximum performance instead of FISTP in the code above.
FRNDINT delivers the integral result directly to a FPU register
154 Floating-Point Optimizations Chapter 9

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
in floating-point form, which is faster than first using FISTP to
store the integer result and then converting it back to floating-
point with FILD.

If there are multiple, consecutive floating-point-to-integer
conversions, the cost of FLDCW operations should be
minimized by saving the current FPU control word, forcing the
FPU into truncating mode, and performing all of the
conversions before restoring the original control word.

The speed of the code in Example 1 is somewhat dependent on
the nature of the code surrounding it. For applications in which
the speed of floating-point-to-integer conversions is extremely
critical for application performance, experiment with either of
the following substitutions, which may or may not be faster than
the code above.

The first substitution simulates a truncating floating-point to
integer conversion provided that there are no NaNs, infinities,
and overflows. This conversion is therefore not IEEE-754
compliant. This code works properly only if the current FPU
rounding mode is round-to-nearest even, which is usually the
case.

Example 2 (Potentially faster)
FLD QWORD PTR [X] ;load double to be converted
FST DWORD PTR [TX] ;store X because sign(X) is needed
FIST DWORD PTR [I] ;store rndint(x) as default result
FISUB DWORD PTR [I] ;compute DIFF = X - rndint(X)
FSTP DWORD PTR [DIFF] ;store DIFF as we need sign(DIFF)
MOV EAX, [TX] ;X
MOV EDX, [DIFF] ;DIFF
TEST EDX, EDX ;DIFF == 0 ?
JZ $DONE ;default result is OK, done
XOR EDX, EAX ;need correction if sign(X) != sign(DIFF)
SAR EAX, 31 ;(X<0) ? 0xFFFFFFFF : 0
SAR EDX, 31 ; sign(X)!=sign(DIFF)?0xFFFFFFFF:0
LEA EAX, [EAX+EAX+1] ;(X<0) ? 0xFFFFFFFF : 1
AND EDX, EAX ;correction: -1, 0, 1
SUB [I], EDX ;trunc(X)=rndint(X)-correction
$DONE:

The second substitution simulates a truncating floating-point to
integer conversion using only integer instructions and therefore
works correctly independent of the FPUs current rounding
mode. It does not handle NaNs, infinities, and overflows
according to the IEEE-754 standard. Note that the first
Chapter 9 Floating-Point Optimizations 155

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
instruction of this code may cause an STLF size mismatch
resulting in performance degradation if the variable to be
converted has been stored recently.

Example 3 (Potentially faster):
MOV ECX, DWORD PTR[X+4] ;get upper 32 bits of double
XOR EDX, EDX ;i = 0
MOV EAX, ECX ;save sign bit
AND ECX, 07FF00000h ;isolate exponent field
CMP ECX, 03FF00000h ;if abs(x) < 1.0
JB $DONE2 ; then i = 0
MOV EDX, DWORD PTR[X] ;get lower 32 bits of double
SHR ECX, 20 ;extract exponent
SHRD EDX, EAX, 21 ;extract mantissa
NEG ECX ;compute shift factor for extracting
ADD ECX, 1054 ;non-fractional mantissa bits
OR EDX, 080000000h ;set integer bit of mantissa
SAR EAX, 31 ;x < 0 ? 0xffffffff : 0
SHR EDX, CL ;i = trunc(abs(x))
XOR EDX, EAX ;i = x < 0 ? ~i : i
SUB EDX, EAX ;i = x < 0 ? -i : i
$DONE2:
MOV [I], EDX ;store result

For applications that can tolerate a floating-point-to-integer
conversion that is not compliant with existing programming
language standards (but is IEEE-754 compliant), perform the
conversion using the rounding mode that is currently in effect
(usually round-to-nearest even).

Example 4 (Fastest):
FLD QWORD PTR [X] ; get double to be converted
FISTP DWORD PTR [I] ; store integer result

Some compilers offer an option to use the code from Example 4
for floating-point-to-integer conversion, using the default
rounding mode.

Lastly, consider setting the rounding mode throughout an
application to truncate and using the code from Example 4 to
perform extremely fast conversions that are compliant with
language standards and IEEE-754. This mode is also provided
as an option by some compilers. The use of this technique also
changes the rounding mode for all other FPU operations inside
the application, which can lead to significant changes in
numerical results and even program failure (for example, due to
lack of convergence in iterative algorithms).
156 Floating-Point Optimizations Chapter 9

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Check Argument Range of Trigonometric Instructions
Efficiently

The transcendental instructions FSIN, FCOS, FPTAN, and
FSINCOS are architecturally restricted in their argument
range. Only arguments with a magnitude of <= 263 can be
evaluated. If the argument is out of range, the C2 bit in the FPU
status word is set, and the argument is returned as the result.
Software needs to guard against such (extremely infrequent)
cases.

If an “argument out of range” is detected, a range reduction
subroutine is invoked which reduces the argument to less than
263 before the instruction is attempted again. While an
argument > 263 is unusual, it often indicates a problem
elsewhere in the code and the code may completely fail in the
absence of a properly guarded trigonometric instruction. For
example, in the case of FSIN or FCOS generated from a sin() or
cos() function invocation in the high-level language, the
downstream code might reasonably expect that the returned
result is in the range [-1,1].

A overly simple solution for guarding a trigonometric
instruction may check the C2 bit in the FPU status word after
each FSIN, FCOS, FPTAN, and FSINCOS instruction, and take
appropriate action if it is set (indicating an argument out of
range).

Example 1 (Avoid):
FLD QWORD PTR [x] ;argument
FSIN ;compute sine
FSTSW AX ;store FPU status word to AX
TEST AX, 0400h ;is the C2 bit set?
JZ $in_range ;no, argument was in range, all OK
CALL $reduce_range ;reduce argument in ST(0) to < 2^63
FSIN ;compute sine (in-range argument
 ; guaranteed)
$in_range:

Such a solution is inefficient since the FSTSW instruction is
serializing with respect to all x87TM/3DNow!TM/MMXTM

instructions and should thus be avoided (see the section
“Floating-Point Compare Instructions” on page 153). Use of
Chapter 9 Floating-Point Optimizations 157

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
FSTSW in the above fashion slows down the common path
through the code.

Instead, it is advisable to check the argument before one of the
trigonometric instructions is invoked.

Example 2 (Preferred):
FLD QWORD PTR [x] ;argument
FLD DWORD PTR [two_to_the_63] ;2^63
FCOMIP ST,ST(1) ;argument <= 2^63 ?
JBE $in_range ;Yes, It is in range.
CALL $reduce_range ;reduce argument in ST(0) to < 2^63
$in_range:
FSIN ;compute sine (in-range argument
 ; guaranteed)

Since out-of-range arguments are extremely uncommon, the
conditional branch will be perfectly predicted, and the other
instructions used to guard the trigonometric instruction can
execute in parallel to it.
158 Floating-Point Optimizations Chapter 9

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Take Advantage of the FSINCOS Instruction

Frequently, a piece of code that needs to compute the sine of an
argument also needs to compute the cosine of that same
argument. In such cases, use the FSINCOS instruction to
compute both trigonometric functions concurrently, which is
faster than using separate FSIN and FCOS instructions to
accomplish the same task.

Example 1 (Avoid):
FLD QWORD PTR [x]
FLD DWORD PTR [two_to_the_63]
FCOMIP ST,ST(1)
JBE $in_range
CALL $reduce_range
$in_range:
FLD ST(0)
FCOS
FSTP QWORD PTR [cosine_x]
FSIN
FSTP QWORD PTR [sine_x]

Example 1 (Preferred):
FLD QWORD PTR [x]
FLD DWORD PTR [two_to_the_63]
FCOMIP ST,ST(1)
JBE $in_range
CALL $reduce_range
$in_range:
FSINCOS
FSTP QWORD PTR [cosine_x]
FSTP QWORD PTR [sine_x]
Chapter 9 Floating-Point Optimizations 159

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
160 Floating-Point Optimizations Chapter 9

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
10
3DNow!™ and MMX™
Optimizations
This chapter describes 3DNow! and MMX code optimization
techniques for the AMD Athlon™ processor. Guidelines are
listed in order of importance. 3DNow! porting guidelines can be
found in the 3DNow!™ Instruction Porting Guide, order
no. 22621.

Use 3DNow!™ Instructions

When single precision is required, perform floating-point
computations using the 3DNow! instructions instead of x87
instructions. The SIMD nature of 3DNow! achieves twice the
number of FLOPs that are achieved through x87 instructions.
3DNow! instructions provide for a flat register file instead of
the stack-based approach of x87 instructions.

See the 3DNow!™ Technology Manual, order no. 21928, for
information on instruction usage.

✩TOP
Chapter 10 3DNow!™ and MMX™ Optimizations 161

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Use FEMMS Instruction

Though there is no penalty for switching between x87 FPU and
3DNow!/MMX instructions in the AMD Athlon processor, the
FEMMS instruction should be used to ensure the same code
also runs optimally on AMD-K6® family processors. The
FEMMS instruction is supported for backward compatibility
with AMD-K6 family processors, and is aliased to the EMMS
instruction.

3DNow! and MMX instructions are designed to be used
concurrently with no switching issues. Likewise, enhanced
3DNow! instructions can be used simultaneously with MMX
instructions. However, x87 and 3DNow! instructions share the
same architectural registers so there is no easy way to use them
concurrently without cleaning up the register file in between
using FEMMS/EMMS.

Use 3DNow!™ Instructions for Fast Division

3DNow! instructions can be used to compute a very fast, highly
accurate reciprocal or quotient.

Optimized 14-Bit Precision Divide

This divide operation executes with a total latency of seven
cycles, assuming that the program hides the latency of the first
MOVD/MOVQ instructions within preceding code.

Example 1:
MOVD MM0, [MEM] ; 0 | W
PFRCP MM0, MM0 ; 1/W | 1/W (approximate)
MOVQ MM2, [MEM] ; Y | X
PFMUL MM2, MM0 ; Y/W | X/W
162 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Optimized Full 24-Bit Precision Divide

This divide operation executes with a total latency of 15 cycles,
assuming that the program hides the latency of the first
MOVD/MOVQ instructions within preceding code.

Example 2:
MOVD MM0, [W] ; 0 | W
PFRCP MM1, MM0 ; 1/W | 1/W (approximate)
PUNPCKLDQ MM0, MM0 ; W | W (MMX instr.)
PFRCPIT1 MM0, MM1 ; 1/W | 1/W (refine)
MOVQ MM2, [X_Y] ; Y | X
PFRCPIT2 MM0, MM1 ; 1/W | 1/W (final)
PFMUL MM2, MM0 ; Y/W | X/W

Pipelined Pair of 24-Bit Precision Divides

This divide operation executes with a total latency of 21 cycles,
assuming that the program hides the latency of the first
MOVD/MOVQ instructions within preceding code.

Example 3:
MOVQ MM0, [DIVISORS] ; y | x
PFRCP MM1, MM0 ; 1/x | 1/x (approximate)
MOVQ MM2, MM0 ; y | x
PUNPCKHDQ MM0, MM0 ; y | y
PFRCP MM0, MM0 ; 1/y | 1/y (approximate)
PUNPCKLDQ MM1, MM0 ; 1/y | 1/x (approximate)
MOVQ MM0, [DIVIDENDS] ; z | w
PFRCPIT1 MM2, MM1 ; 1/y | 1/x (intermediate)
PFRCPIT2 MM2, MM1 ; 1/y | 1/x (final)
PFMUL MM0, MM2 ; z/y | w/x
Chapter 10 3DNow!™ and MMX™ Optimizations 163

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Newton-Raphson Reciprocal

Consider the quotient q = a/b. An (on-chip) ROM-based table
lookup can be used to quickly produce a 14-to-15-bit precision
approximation of 1/b using just one 3-cycle latency PFRCP
instruction. A full 24-bit precision reciprocal can then be
quickly computed from this approximation using a Newton-
Raphson algorithm.

The general Newton-Raphson recurrence for the reciprocal is as
follows:

Zi+1 = Zi • (2 – b • Zi)

Given that the initial approximation is accurate to at least 14
bits, and that a full IEEE single-precision mantissa contains 24
bits, just one Newton-Raphson iteration is required. The
following sequence shows the 3DNow! instructions that produce
the initial reciprocal approximation, compute the full precision
reciprocal from the approximation, and finally, complete the
desired divide of a/b.

X0 = PFRCP(b)
X1 = PFRCPIT1(b,X0)
X2 = PFRCPIT2(X1,X0)
q = PFMUL(a,X2)

The 24-bit final reciprocal value is X2. In the AMD Athlon
processor 3DNow! technology implementation the operand X2
contains the correct round-to-nearest single precision
reciprocal for approximately 99% of all arguments.
164 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Use 3DNow!™ Instructions for Fast Square Root and
Reciprocal Square Root

3DNow! instructions can be used to compute a very fast, highly
accurate square root and reciprocal square root.

Optimized 15-Bit Precision Square Root
This square root operation can be executed in only seven cycles,
assuming a program hides the latency of the first MOVD
instruction within previous code. The reciprocal square root
operation requires four cycles less than the square root
operation.

Example 1:
MOVD MM0, [MEM] ; 0 | a
PFRSQRT MM1, MM0 ;1/sqrt(a) | 1/sqrt(a) (approximate)
PUNPCKLDQ MM0, MM0 ; a | a (MMX instr.)
PFMUL MM0, MM1 ; sqrt(a) | sqrt(a)

Optimized 24-Bit Precision Square Root

This square root operation can be executed in only 19 cycles,
assuming a program hides the latency of the first MOVD
instruction within previous code. The reciprocal square root
operation requires four cycles less than the square root
operation.

Example 2:
MOVD MM0, [MEM] ; 0 | a
PFRSQRT MM1, MM0 ; 1/sqrt(a) | 1/sqrt(a) (approx.)
MOVQ MM2, MM1 ; X_0 = 1/(sqrt a) (approx.)
PFMUL MM1, MM1 ; X_0 * X_0 | X_0 * X_0 (step 1)
PUNPCKLDQ MM0, MM0 ; a | a (MMX instr)
PFRSQIT1 MM1, MM0 ; (intermediate) (step 2)
PFRCPIT2 MM1, MM2 ; 1/sqrt(a) | 1/sqrt(a) (step 3)
PFMUL MM0, MM1 ; sqrt(a) | sqrt(a)
Chapter 10 3DNow!™ and MMX™ Optimizations 165

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Newton-Raphson Reciprocal Square Root

The general Newton-Raphson reciprocal square root recurrence
is:

Zi+1 = 1/2 • Zi • (3 – b • Zi
2)

To reduce the number of iterations, the initial approximation is
read from a table. The 3DNow! reciprocal square root
approximation is accurate to at least 15 bits. Accordingly, to
obtain a single-precision 24-bit reciprocal square root of an
input operand b, one Newton-Raphson iteration is required,
using the following sequence of 3DNow! instructions:

X0 = PFRSQRT(b)
X1 = PFMUL(X0,X0)
X2 = PFRSQIT1(b,X1)
X3 = PFRCPIT2(X2,X0)
X4 = PFMUL(b,X3)

The 24-bit final reciprocal square root value is X3. In the
AMD Athlon processor 3DNow! implementation, the estimate
contains the correct round-to-nearest value for approximately
87% of all arguments. The remaining arguments differ from the
correct round-to-nearest value by one unit-in-the-last-place. The
square root (X4) is formed in the last step by multiplying by the
input operand b.
166 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Use MMX™ PMADDWD Instruction to Perform Two 32-Bit
Multiplies in Parallel

The MMX PMADDWD instruction can be used to perform two
signed 16x16→32 bit multiplies in parallel, with much higher
performance than can be achieved using the IMUL instruction.
The PMADDWD instruction is designed to perform four
16x16→32 bit signed multiplies and accumulate the results
pairwise. By making one of the results in a pair a zero, there are
now just two multiplies. The following example shows how to
multiply 16-bit signed numbers a, b, c, d into signed 32-bit
products a*c and b*d:

Example 1:
PXOR MM2, MM2 ; 0 | 0
MOVD MM0, [ab] ; 0 0 | b a
MOVD MM1, [cd] ; 0 0 | d c
PUNPCKLWD MM0, MM2 ; 0 b | 0 a
PUNCPKLWD MM1, MM2 ; 0 d | 0 c
PMADDWD MM0, MM1 ; b*d | a*c

Use PMULHUW to Compute Upper Half of Unsigned
Products

The PMULHUW is an MMX extension that computes the upper
16 bits of four unsigned 16x16->32 products. The previously
available MMX PMULHW instruction can be used to compute
the upper 16 bits of four signed 16x16->32 products. Note that
PMULLW can be used to compute the lower 16 bits of four
16x16->32 bit products regardless of whether the multiplication
is signed or unsigned.

Without PMULHUW, it is actually quite difficult to perform
unsigned multiplies using MMX instructions. Example 2 shows
how this can be accomplished if this is required in blended code
that needs to run well on both the AMD Athlon processor and
AMD-K6 family processors. A restriction of the replacement
code is that all words of the multiplicand must be in range
0...0x7FFF, a condition that is frequently met.
Chapter 10 3DNow!™ and MMX™ Optimizations 167

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
The replacement code uses the following algorithm. Let A be
the unsigned multiplicand in range 0...0x7FFF, and let B be the
unsigned multiplier in range 0...0xFFFF. The unsigned
multiplication A*B can be accomplished as follows when only
signed multiplication, denoted by @, is available.

If B is in range 0...0x7FFF, A*B = A @ B. However, if B is in range
0x8000...0xFFFF, then B is interpreted as a signed operand with
value B'=B-2^16. Thus A @ B = A*B - 2^16*A, or A*B = A @ B +
2^16*A. Given that PMULLW computes the lower 16 bits of the
result, only the upper 16 bits of the result, R = (A*B >> 16),
needs to be found. Thus R = PMULHW(A,B) if B in 0...0x7FFFF,
and R = A + PMULHW(A,B) if B in 0x8000...0xFFFF. This means
that the next step is to conditionally add A to the output of
PMULHW if bit 15 of B is set, i.e., if B is negative under a signed
interpretation.

AMD Athlon™
Processor-Specific
Code

Example 1:
: IN: MM0 = A3 A2 | A1 A0 Ai are unsigned words
; MM1 = B3 B2 | B2 B1 Bi are unsigned words
; OUT: MM0 = A1*B1 | A0*B0 unsigned DWORD results
; MM2 = A3*B3 | A2*B2 unsigned DWORD results

MOVQ MM2, MM0 ; Ai, i = {0..4}
PMULLW MM0, MM1 ; (Ai*Bi)<15:0>, i = {0..4}
PMULHUW MM1, MM2 ; (Ai*Bi)<31:16>, i = {0..4}
MOVQ MM2, MM0 ; (Ai*Bi)<15:0>, i = {0..4}
PUNPCKLWD MM0, MM1 ; (A1*B1)<31:0> | (A0*B0)<31:0>
PUNPCKHWD MM2, MM1 ; (A3*B3)<31:0> | (A2*B2)<31:0>

AMD-K6® and
AMD Athlon™
Processor Blended
Code

Example 2:
; IN: MM0 = A3 A2 | A1 A0 Ai are unsigned words <= 0x7FFF
; MM1 = B3 B2 | B2 B1 Bi are unsigned words
; OUT: MM0 = A1*B1 | A0*B0 unsigned DWORD results
; MM2 = A3*B3 | A2*B2 unsigned DWORD results

MOVQ MM2, MM0 ; Ai, i = {0..4}
PMULLW MM0, MM1 ; (Ai*Bi)<15:0>, i = {0..4}
MOVQ MM3, MM1 ; Bi, i = {0..4}
PSRAW MM3, 15 ; Mi = Bi < 0 ? 0xffff : 0, i = {0..4}
PAND MM3, MM2 ; Mi = Bi < 0 ? Ai : 0, i = {0..4}
PMULHW MM1, MM2 ; (Ai@Bi)<31:16>, i = {0..4}
PADDW MM1, MM3 ; (Ai*Bi)<31:16> = (Ai < 0) ?

 ; (Ai@Bi)<31:16>+Ai : (Ai@Bi)<31:16>
MOVQ MM2, MM0 ; (Ai*Bi)<15:0>, i = {0..4}
PUNPCKLWD MM0, MM1 ; (A1*B1)<31:0> | (A0*B0)<31:0>
PUNPCKHWD MM2, MM1 ; (A3*B3)<31:0> | (A2*B2)<31:0>
168 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
3DNow!™ and MMX™ Intra-Operand Swapping

AMD Athlon™
Processor-Specific
Code

If the swapping of MMX register halves is necessary, use the
PSWAPD instruction, which is a new AMD Athlon 3DNow! DSP
extension. Use this instruction only for AMD Athlon processor-
specific code. “PSWAPD MMreg1, MMreg2” performs the
following operation:

temp = mmreg2
mmreg1[63:32] = temp[31:0]
mmreg1[31:0] = temp[63:32]

See the AMD Extensions to the 3DNow!™ and MMX™ Instruction
Set Manual, order no. 22466, for more usage information.

AMD-K6® and
AMD Athlon™
Processor Blended
Code

Otherwise, for blended code, which needs to run well on
AMD-K6 and AMD Athlon family processors, the following code
is recommended:

Example 1 (Preferred, faster):
;MM1 = SWAP (MM0), MM0 destroyed
MOVQ MM1, MM0 ;make a copy
PUNPCKLDQ MM0, MM0 ;duplicate lower half
PUNPCKHDQ MM1, MM0 ;combine lower halves

Example 2 (Preferred, fast):
;MM1 = SWAP (MM0), MM0 preserved
MOVQ MM1, MM0 ;make a copy
PUNPCKHDQ MM1, MM1 ;duplicate upper half
PUNPCKLDQ MM1, MM0 ;combine upper halves

Both examples accomplish the swapping, but the first example
should be used if the original contents of the register do not
need to be preserved. The first example is faster due to the fact
that the MOVQ and PUNPCKLDQ instructions can execute in
parallel. The instructions in the second example are dependent
on one another and take longer to execute.
Chapter 10 3DNow!™ and MMX™ Optimizations 169

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Fast Conversion of Signed Words to Floating-Point

In many applications there is a need to quickly convert data
consisting of packed 16-bit signed integers into floating-point
numbers. The following two examples show how this can be
accomplished efficiently on AMD processors.

The first example shows how to do the conversion on a processor
that supports AMD's 3DNow! extensions, such as the
AMD Athlon processor. It demonstrates the increased
efficiency from using the PI2FW instruction. Use of this
instruction should only be for AMD Athlon processor specific
code. See the AMD Extensions to the 3DNow!™ and MMX™
Instruction Set Manual, order no. 22466 for more information on
this instruction.

The second example demonstrates how to accomplish the same
task in blended code that achieves good performance on the
AMD Athlon processor as well as on the AMD-K6 family
processors that support 3DNow! technology.

Example 1 (AMD Athlon processor specific code using 3DNow! DSP
extension):

MOVD MM0, [packed_signed_word] ; 0 0 | b a
PUNPCKLWD MM0, MM0 ; b b | a a
PI2FW MM0, MM0 ;xb=float(b) | xa=float(a)
MOVQ [packed_float], MM0 ; store xb | xa

Example 2 (AMD-K6 and AMD Athlon processor blended code):
MOVD MM1, [packed_signed_word] ; 0 0 | b a
PXOR MM0, MM0 ; 0 0 | 0 0
PUNPCKLWD MM0, MM1 ; b 0 | a 0
PSRAD MM0, 16 ; sign extend: b | a
PI2FD MM0, MM0 ; xb=float(b) | xa=float(a)
MOVQ [packed_float], MM0 ; store xb | xa
170 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Width of Memory Access Differs Between PUNPCKL* and
PUNPCKH*

The width of the memory access performed by the load-execute
forms of PUNPCKLBW, PUNPCKLWD, and PUNPCKLDQ is 32
bits (a DWORD), while the width of the memory access of the
load-execute forms of PUNPCKHBW, PUNPCKHWD, and
PUNPCKHDQ is 64 bits (a QWORD).

This means that the alignment requirements for memory
operands of PUNPCKL* instructions (DWORD alignment) are
less strict than the alignment requirements for memory
operands of PUNPCKH* instructions (QWORD alignment).
Code can take advantage of this in order to reduce the number
of misaligned loads in a program. A second advantage of using
PUNPCKL* instead of PUNPCKH* is that it helps avoid size
mismatches during load-to-store forwarding. Store data from
either a DWORD store or the lower DWORD of a QWORD store
can be bypassed inside the load/store buffer to PUNPCKL*, but
only store data from a QWORD store can be bypassed to
PUNPCKH*.

Example 1 (Avoid):
MOV [foo], EAX ; a // DWORD aligned store
MOV [foo+4], EDX ; b // DWORD aligned store
PUNPCKHDQ MM0, [foo-4] ; a | <junk> // STLF size mismatch,
 // potentially misaligned
PUNPCKHDQ MM0, [foo] ; b | a // STLF size mismatch,
 // potentially misaligned

Example 2 (Preferred):
MOV [foo], EAX ; a // DWORD aligned store
MOV [foo+4], EDX ; b // DWORD aligned store
MOVD MM0, [foo] ; 0 | a // DWORD aligned load,
 // STLF size match
PUNPCKLDQ MM0, [foo+4] ; b | a // DWORD aligned load,
 // STLF size match
Chapter 10 3DNow!™ and MMX™ Optimizations 171

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Use MMX™ PXOR to Negate 3DNow!™ Data

For both the AMD Athlon and AMD-K6 processors, it is
recommended that code use the MMX PXOR instruction to
change the sign bit of 3DNow! operations instead of the 3DNow!
PFMUL instruction. On the AMD Athlon processor, using
PXOR allows for more parallelism, as it can execute in either
the FADD or FMUL pipes. PXOR has an execution latency of
two, but because it is an MMX instruction, there is an initial one
cycle bypassing penalty, and another one cycle penalty if the
result goes to a 3DNow! operation. The PFMUL execution
latency is four, therefore, in the worst case, the PXOR and
PMUL instructions are the same in terms of latency. On the
AMD-K6 processor, there is only a one cycle latency for PXOR,
versus a two cycle latency for the 3DNow! PFMUL instruction.

Use the following code to negate 3DNow! data:

msgn DQ 8000000080000000h
PXOR MM0, [msgn] ;toggle sign bit
172 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Use MMX™ PCMP Instead of 3DNow!™ PFCMP

Use the MMX PCMP instruction instead of the 3DNow! PFCMP
instruction. On the AMD Athlon processor, the PCMP has a
latency of two cycles while the PFCMP has a latency of four
cycles. In addition to the shorter latency, PCMP can be issued to
either the FADD or the FMUL pipe, while PFCMP is restricted
to the FADD pipe.

Note: The PFCMP instruction has a ‘GE’ (greater or equal)
version (PFCMPGE) that is missing from PCMP.

Both Numbers
Positive

If both arguments are positive, PCMP always works.

One Negative, One
Positive

If one number is negative and the other is positive, PCMP still
works, except when one number is a positive zero and the other
is a negative zero.

Both Numbers
Negative

Be careful when performing integer comparison using PCMPGT
on two negative 3DNow! numbers. The result is the inverse of
the PFCMPGT floating-point comparison. For example:

–2 = 84000000
–4 = 84800000

PCMPGT gives 84800000 > 84000000, but –4 < –2. To address
this issue, simply reverse the comparison by swapping the
source operands.
Chapter 10 3DNow!™ and MMX™ Optimizations 173

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Use MMX™ Instructions for Block Copies and Block Fills

For moving or filling small blocks of data of less than 512 bytes
between cacheable memory areas, the REP MOVS and REP
STOS families of instructions deliver good performance and are
straightforward to use. For moving and filling larger blocks of
data, or to move/fill blocks of data where the destination is in
non-cacheable space, it is recommended to make use of MMX
instructions and extended MMX instructions. The following
examples demonstrate how to copy any number of DWORDs
between a DWORD aligned source and a DWORD aligned
destination, and how to fill any number of DWORDs at a
DWORD aligned destination.

AMD-K6® and
AMD Athlon™
Processor Blended
Code

The following example code is written for the inline assembler
of Microsoft Visual C, and uses instruction macros defined in
the file AMD3DX.H from the AMD Athlon Processor SDK. It is
suitable for moving/filling a DWORD aligned block of data in
the following situations:

■ Blended code, i.e., code that needs to perform well on both
the AMD Athlon processor and AMD-K6 family processors,
operating on a data block of more than 512 bytes

■ AMD Athlon processor-specific code where the destination
is in cacheable memory, the data block is smaller than
8 Kbytes, and immediate data re-use of the data at the desti-
nation is expected

■ AMD-K6 processor-specific code where the destination is in
non-cacheable memory and the data block is larger than 64
bytes.
174 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Example 1:

#include "amd3dx.h"

// block copy: copy a number of DWORDs from DWORD aligned source
// to DWORD aligned destination using cacheable stores.

__asm {
 MOV ESI, [src_ptr] ;pointer to src, DWORD aligned
 MOV EDI, [dst_ptr] ;pointer to dst, DWORD aligned
 MOV ECX, [blk_size] ;number of DWORDs to copy
 PREFETCH (ESI) ;prefetch first src cache line
 CMP ECX, 1 ;less than one DWORD to copy ?
 JB $copydone2_cc ;yes, must be no DWORDs to copy, done
 TEST EDI, 7 ;dst QWORD aligned?
 JZ $dstqaligned2_cc ;yes

 MOVD MM0, [ESI] ;read one DWORD from src
 MOVD [EDI], MM0 ;store one DWORD to dst
 ADD ESI, 4 ;src++
 ADD EDI, 4 ;dst++
 DEC ECX ;number of DWORDs to copy

 $dstqaligned2_cc:
 MOV EBX, ECX ;number of DWORDs to copy
 SHR ECX, 4 ;number of cache lines to copy
 JZ $copyqwords2_cc ;no whole cache lines to copy, maybe QWORDs

 prefetchm (ESI,64) ;prefetch src cache line one ahead
 prefetchmlong (ESI,128) ;prefetch src cache line two ahead

 ALIGN 16 ;align loop for optimal performance

 $cloop2_cc:
 prefetchmlong (ESI, 192) ;prefetch cache line three ahead
 MOVQ MM0, [ESI] ;load first QWORD in cache line from src
 ADD EDI, 64 ;src++
 MOVQ MM1, [ESI+8] ;load second QWORD in cache line from src
 ADD ESI, 64 ;dst++
 MOVQ MM2, [ESI-48] ;load third QWORD in cache line from src
 MOVQ [EDI-64], MM0 ;store first DWORD in cache line to dst
 MOVQ MM0, [ESI-40] ;load fourth QWORD in cache line from src
 MOVQ [EDI-56], MM1 ;store second DWORD in cache line to dst
 MOVQ MM1, [ESI-32] ;load fifth QWORD in cache line from src
 MOVQ [EDI-48], MM2 ;store third DWORD in cache line to dst
 MOVQ MM2, [ESI-24] ;load sixth QWORD in cache line from src
 MOVQ [EDI-40], MM0 ;store fourth DWORD in cache line to dst
 MOVQ MM0, [ESI-16] ;load seventh QWORD in cache line from src
 MOVQ [EDI-32], MM1 ;store fifth DWORD in cache line to dst
 MOVQ MM1, [ESI-8] ;load eight QWORD in cache line from src
 MOVQ [EDI-24], MM2 ;store sixth DWORD in cache line to dst
 MOVQ [EDI-16], MM0 ;store seventh DWORD in cache line to dst
 DEC ECX ;count--
 MOVQ [EDI-8], MM1 ;store eighth DWORD in cache line to dst
 JNZ $cloop2_cc ;until no more cache lines to copy
Chapter 10 3DNow!™ and MMX™ Optimizations 175

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
 $copyqwords2_cc:
 MOV ECX, EBX ;number of DWORDs to copy
 AND EBX, 0xE ;number of QWORDS left to copy * 2
 JZ $copydword2_cc ;no QWORDs left, maybe DWORD left

 ALIGN 16 ;align loop for optimal performance

 $qloop2_cc:
 MOVQ MM0, [ESI] ;read QWORD from src
 MOVQ [EDI], MM0 ;store QWORD to dst
 ADD ESI, 8 ;src++
 ADD EDI, 8 ;dst++
 SUB EBX, 2 ;count--
 JNZ $qloop2_cc ;until no more QWORDs left to copy

 $copydword2_cc:
 TEST ECX, 1 ;DWORD left to copy ?
 JZ $copydone2_cc ;nope, we're done
 MOVD MM0, [ESI] ;read last DWORD from src
 MOVD [EDI], MM0 ;store last DWORD to dst

 $copydone2_cc:
 FEMMS ;clear MMX state
}

/* block fill: fill a number of DWORDs at DWORD aligned destination
 with DWORD initializer using cacheable stores
*/
__asm {
 MOV EDI, [dst_ptr] ;pointer to dst, DWORD aligned
 MOV ECX, [blk_size] ;number of DWORDs to copy
 MOVD MM0, [fill_data] ;initialization data
 PUNPCKLDQ MM0, MM0 ;extend fill data to QWORD
 CMP ECX, 1 ;less than one DWORD to fill ?
 JB $filldone2_fc ;yes, must be no DWORDs to fill, done
 TEST EDI, 7 ;dst QWORD aligned?
 JZ $dstqaligned2_fc ;yes

 MOVD [EDI], MM0 ;store one DWORD to dst
 ADD EDI, 4 ;dst++
 DEC ECX ;number of DWORDs to fill

 $dstqaligned2_fc:
 MOV EBX, ECX ;number of DWORDs to fill
 SHR ECX, 4 ;number of cache lines to fill
 JZ $fillqwords2_fc ;no whole cache lines to fill, maybe QWORDs

 ALIGN 16 ;align loop for optimal performance
176 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
 $cloop2_fc:
 ADD EDI, 64 ;dst++
 MOVQ [EDI-64], MM0 ;store 1st DWORD in cache line to dst
 MOVQ [EDI-56], MM0 ;store 2nd DWORD in cache line to dst
 MOVQ [EDI-48], MM0 ;store 3rd DWORD in cache line to dst
 MOVQ [EDI-40], MM0 ;store 4th DWORD in cache line to dst
 MOVQ [EDI-32], MM0 ;store 5th DWORD in cache line to dst
 MOVQ [EDI-24], MM0 ;store 6th DWORD in cache line to dst
 MOVQ [EDI-16], MM0 ;store 7th DWORD in cache line to dst
 DEC ECX ;count--
 MOVQ [EDI -8], MM0 ;store 8th DWORD in cache line to dst
 JNZ $cloop2_fc ;until no more cache lines to copy

 $fillqwords2_fc:
 MOV ECX, EBX ;number of DWORDs to fill
 AND EBX, 0xE ;number of QWORDS left to fill * 2
 JZ $filldword2_fc ;no QWORDs left, maybe DWORD left

 ALIGN 16 ;align loop for optimal performance

 $qloop2_fc:
 MOVQ [EDI], MM0 ;store QWORD to dst
 ADD EDI, 8 ;dst++
 SUB EBX, 2 ;count--
 JNZ $qloop2_fc ;until no more QWORDs left to copy

 $filldword2_fc:
 TEST ECX, 1 ;DWORD left to fill?
 JZ $filldone2_fc ;nope, we're done
 MOVD [EDI], MM0 ;store last DWORD to dst

 $filldone2_fc:
 FEMMS ;clear MMX state
}

Chapter 10 3DNow!™ and MMX™ Optimizations 177

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
AMD Athlon™
Processor-Specific
Code

The following memory copy example is written with Microsoft
Visual C++ in-line assembler syntax, and assumes that the
Microsoft Processor Pack is installed (available from
Microsoft's web site). This is a general purpose memcpy()
routine, which can efficiently copy any size block, small or
large. Data alignment is strongly recommended for good
performance, but this code can handle non-aligned blocks.

Example 2: Optimized memcpy() for Any Data Size or Alignment

#define TINY_BLOCK_COPY 64 // upper limit for movsd type copy
// The smallest copy uses the X86 "movsd" instruction, in an optimized
// form which is an "unrolled loop".

#define IN_CACHE_COPY 64 * 1024 // upper limit for movq/movq copy w/SW prefetch
// Next is a copy that uses the MMX registers to copy 8 bytes at a time,
// also using the "unrolled loop" optimization. This code uses
// the software prefetch instruction to get the data into the cache.

#define UNCACHED_COPY 197 * 1024 // upper limit for movq/movntq w/SW prefetch
// For larger blocks, which will spill beyond the cache, it's faster to
// use the Streaming Store instruction MOVNTQ. This write instruction
// bypasses the cache and writes straight to main memory. This code also
// uses the software prefetch instruction to pre-read the data.
// USE 64 * 1024 FOR THIS VALUE IF YOU'RE ALWAYS FILLING A "CLEAN CACHE"

#define BLOCK_PREFETCH_COPY infinity // no limit for movq/movntq w/block prefetch
#define CACHEBLOCK 80h // # of 64-byte blocks (cache lines) for block prefetch
// For the largest size blocks, a special technique called Block Prefetch
// can be used to accelerate the read operations. Block Prefetch reads
// one address per cache line, for a series of cache lines, in a short loop.
// This is faster than using software prefetch. The technique is great for
// getting maximum read bandwidth, especially in DDR memory systems.

 __asm {

mov ecx, [n] ; number of bytes to copy
mov edi, [dest] ; destination
mov esi, [src] ; source
mov ebx, ecx ; keep a copy of count

cld
cmp ecx, TINY_BLOCK_COPY
jb $memcpy_ic_3 ; tiny? skip mmx copy

cmp ecx, 32*1024 ; don't align between 32k-64k because
jbe $memcpy_do_align ; it appears to be slower
cmp ecx, 64*1024
jbe $memcpy_align_done

// continues on next page
178 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
$memcpy_do_align:
mov ecx, 8 ; a trick that's faster than rep movsb...
sub ecx, edi ; align destination to qword
and ecx, 111b ; get the low bits
sub ebx, ecx ; update copy count
neg ecx ; set up to jump into the array
add ecx, offset $memcpy_align_done
jmp ecx ; jump to array of movsb's

align 4
movsb
movsb
movsb
movsb
movsb
movsb
movsb
movsb

$memcpy_align_done: ; destination is dword aligned
mov ecx, ebx ; number of bytes left to copy
shr ecx, 6 ; get 64-byte block count
jz $memcpy_ic_2 ; finish the last few bytes

cmp ecx, IN_CACHE_COPY/64 ; too big 4 cache? use uncached copy
jae $memcpy_uc_test

// continues on next page
Chapter 10 3DNow!™ and MMX™ Optimizations 179

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
// This is small block copy that uses the MMX registers to copy 8 bytes
// at a time. It uses the "unrolled loop" optimization, and also uses
// the software prefetch instruction to get the data into the cache.

align 16
$memcpy_ic_1: ; 64-byte block copies, in-cache copy

prefetchnta [esi + (200*64/34+192)] ; start reading ahead

movq mm0, [esi+0] ; read 64 bits
movq mm1, [esi+8]
movq [edi+0], mm0 ; write 64 bits
movq [edi+8], mm1 ; note: the normal movq writes the
movq mm2, [esi+16] ; data to cache; a cache line will be
movq mm3, [esi+24] ; allocated as needed, to store the data
movq [edi+16], mm2
movq [edi+24], mm3
movq mm0, [esi+32]
movq mm1, [esi+40]
movq [edi+32], mm0
movq [edi+40], mm1
movq mm2, [esi+48]
movq mm3, [esi+56]
movq [edi+48], mm2
movq [edi+56], mm3

add esi, 64 ; update source pointer
add edi, 64 ; update destination pointer
dec ecx ; count down
jnz $memcpy_ic_1 ; last 64-byte block?

$memcpy_ic_2:
mov ecx, ebx ; has valid low 6 bits of the byte count

$memcpy_ic_3:
shr ecx, 2 ; dword count
and ecx, 1111b ; only look at the "remainder" bits
neg ecx ; set up to jump into the array
add ecx, offset $memcpy_last_few
jmp ecx ; jump to array of movsd's

$memcpy_uc_test:
cmp ecx, UNCACHED_COPY/64 ; big enough? use block prefetch copy
jae $memcpy_bp_1

$memcpy_64_test:
or ecx, ecx ; tail end of block prefetch will jump here
jz $memcpy_ic_2 ; no more 64-byte blocks left

// continues on next page
180 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
// For larger blocks, which will spill beyond the cache, it's faster to
// use the Streaming Store instruction MOVNTQ. This write instruction
// bypasses the cache and writes straight to main memory. This code also
// uses the software prefetch instruction to pre-read the data.
align 16
$memcpy_uc_1: ; 64-byte blocks, uncached copy

prefetchnta [esi + (200*64/34+192)] ; start reading ahead

movq mm0,[esi+0] ; read 64 bits
add edi,64 ; update destination pointer
movq mm1,[esi+8]
add esi,64 ; update source pointer
movq mm2,[esi-48]
movntq [edi-64], mm0 ; write 64 bits, bypassing the cache
movq mm0,[esi-40] ; note: movntq also prevents the CPU
movntq [edi-56], mm1 ; from READING the destination address
movq mm1,[esi-32] ; into the cache, only to be over-written
movntq [edi-48], mm2 ; so that also helps performance
movq mm2,[esi-24]
movntq [edi-40], mm0
movq mm0,[esi-16]
movntq [edi-32], mm1
movq mm1,[esi-8]
movntq [edi-24], mm2
movntq [edi-16], mm0
dec ecx
movntq [edi-8], mm1
jnz $memcpy_uc_1 ; last 64-byte block?

jmp $memcpy_ic_2 ; almost dont

// continues on next page
Chapter 10 3DNow!™ and MMX™ Optimizations 181

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
// For the largest size blocks, a special technique called Block Prefetch
// can be used to accelerate the read operations. Block Prefetch reads
// one address per cache line, for a series of cache lines, in a short loop.
// This is faster than using software prefetch. The technique is great for
// getting maximum read bandwidth, especially in DDR memory systems.
$memcpy_bp_1: ; large blocks, block prefetch copy

cmp ecx, CACHEBLOCK ; big enough to run another prefetch loop?
jl $memcpy_64_test ; no, back to regular uncached copy

mov eax, CACHEBLOCK / 2 ; block prefetch loop, unrolled 2X
add esi, CACHEBLOCK * 64 ; move to the top of the block

align 16
$memcpy_bp_2:

mov edx, [esi-64] ; grab one address per cache line
mov edx, [esi-128] ; grab one address per cache line
sub esi, 128 ; go reverse order
dec eax ; count down the cache lines
jnz $memcpy_bp_2 ; keep grabbing more lines into cache

mov eax, CACHEBLOCK ; now that it's in cache, do the copy
align 16
$memcpy_bp_3:

movq mm0, [esi] ; read 64 bits
movq mm1, [esi+ 8]
movq mm2, [esi+16]
movq mm3, [esi+24]
movq mm4, [esi+32]
movq mm5, [esi+40]
movq mm6, [esi+48]
movq mm7, [esi+56]
add esi, 64 ; update source pointer
movntq [edi], mm0 ; write 64 bits, bypassing cache
movntq [edi+ 8], mm1 ; note: movntq also prevents the CPU
movntq [edi+16], mm2 ; from READING the destination address
movntq [edi+24], mm3 ; into the cache, only to be over-written,
movntq [edi+32], mm4 ; so that also helps performance
movntq [edi+40], mm5
movntq [edi+48], mm6
movntq [edi+56], mm7
add edi, 64 ; update dest pointer

dec eax ; count down

jnz $memcpy_bp_3 ; keep copying
sub ecx, CACHEBLOCK ; update the 64-byte block count
jmp $memcpy_bp_1 ; keep processing blocks

// continues on next page
182 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
// The smallest copy uses the X86 "movsd" instruction, in an optimized
// form which is an "unrolled loop". Then it handles the last few bytes.
align 4

movsd
movsd ; perform last 1-15 dword copies
movsd
movsd
movsd
movsd
movsd
movsd
movsd
movsd ; perform last 1-7 dword copies
movsd
movsd
movsd
movsd
movsd
movsd

$memcpy_last_few: ; dword aligned from before movsd's
mov ecx, ebx ; has valid low 2 bits of the byte count
and ecx, 11b ; the last few cows must come home
jz $memcpy_final ; no more, let's leave
rep movsb ; the last 1, 2, or 3 bytes

$memcpy_final:
emms ; clean up the MMX state
sfence ; flush the write buffer
mov eax, [dest] ; ret value = destination pointer

 }
}

Chapter 10 3DNow!™ and MMX™ Optimizations 183

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Efficient 64-Bit Population Count Using MMX™ Instructions

Population count is an operation that determines the number of
set bits in a bit string. For example, this can be used to
determine the cardinality of a set. The following example code
shows how to efficiently implement a population count function
for 64-bit operands. The example is written for the inline
assembler of Microsoft Visual C.

Function popcount64() is based on an O(log(n)) algorithm that
successively groups the bits into groups of 2, 4, and 8 bits, while
maintaining a count of the set bits in each group. This phase of
the algorithm is described in detail in steps 1 through 3 of the
section “Efficient Implementation of Population Count
Function” on page 136.

In the final phase of popcount64(), the intermediate results
from all eight 8-bit groups are summed using the PSADBW
instruction. PSADBW is an extended MMX instruction that
sums the absolute values of byte-wise differences between two
MMX registers. In order to sum the eight bytes in an MMX
register, the second source operand is set to zero. Thus the
absolute difference for each byte equals the value of that byte
in the first source operand.

Example:
#include "amd3d.h"

__declspec (naked) unsigned int __stdcall popcount64
(unsigned __int64 v)
{
 static const __int64 C55 = 0x5555555555555555;
 static const __int64 C33 = 0x3333333333333333;
 static const __int64 C0F = 0x0F0F0F0F0F0F0F0F;
 __asm {
 MOVD MM0, [ESP+4] ;v_low
 PUNPCKLDQ MM0, [ESP+8] ;v
 MOVQ MM1, MM0 ;v
 PSRLD MM0, 1 ;v >> 1
 PAND MM0, [C55] ;(v >> 1) & 0x55555555
 PSUBD MM1, MM0 ;w = v - ((v >> 1) &

; 0x55555555)
 MOVQ MM0, MM1 ;w
 PSRLD MM1, 2 ;w >> 2
 PAND MM0, [C33] ;w & 0x33333333
 PAND MM1, [C33] ;(w >> 2) & 0x33333333
184 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
 PADDD MM0, MM1 ;x = (w & 0x33333333) +
; ((w >> 2) & 0x33333333)

 MOVQ MM1, MM0 ;x
 PSRLD MM0, 4 ;x >> 4
 PADDD MM0, MM1 ;x + (x >> 4)
 PAND MM0, [C0F] ;y = (x + (x >> 4) &

; 0x0F0F0F0F)
 PXOR MM1, MM1 ;0
 PSADBW (MM0, MM1) ;sum across all 8 bytes
 MOVD EAX, MM0 ;result in EAX per calling

; convention
 FEMMS ;clear MMX state
 RET 8 ;pop 8-byte argument off

; stack and return
 }
}

Use MMX™ PXOR to Clear All Bits in an MMX Register

To clear all the bits in an MMX register to zero, use:

PXOR MMreg, MMreg

Note that PXOR MMreg, MMreg is dependent on previous
writes to MMreg. Therefore, using PXOR in the manner
described can lengthen dependency chains, which in return
may lead to reduced performance. An alternative in such cases
is to use:

zero DD 0

MOVD MMreg, DWORD PTR [zero]

i.e., to load a zero from a statically initialized and properly
aligned memory location. However, loading the data from
memory runs the risk of cache misses. Cases where MOVD is
superior to PXOR are therefore rare and PXOR should be used
in general.
Chapter 10 3DNow!™ and MMX™ Optimizations 185

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Use MMX™ PCMPEQD to Set All Bits in an MMX Register

To set all the bits in an MMX register to one, use:

PCMPEQD MMreg, MMreg

Note that “PCMPEQD MMreg, MMreg” is dependent on
previous writes to MMreg. Therefore, using PCMPEQD in the
manner described can lengthen dependency chains, which in
turn may lead to reduced performance. An alternative in such
cases is to use:

ones DQ 0FFFFFFFFFFFFFFFFh
.
MOVQ MMreg, QWORD PTR [ones]

i.e., to load a quadword of 0xFFFFFFFFFFFFFFFF from a
statically initialized and properly aligned memory location.
However, loading the data from memory runs the risk of cache
misses. Therefore, cases where MOVQ is superior to PCMPEQD
are rare and PCMPEQD should be used in general.

Use MMX™ PAND to Find Floating-Point Absolute Value in
3DNow!™ Code

Use the following to compute the absolute value of 3DNow!
floating-point operands:

mabs DQ 7FFFFFFF7FFFFFFFh
PAND MM0, [mabs] ;mask out sign bit

Integer Absolute Value Computation Using MMX™
Instructions

The following examples show how to efficiently compute the
absolute value of packed signed WORDs and packed signed
DWORDs using MMX instructions. The algorithm works by
checking the sign bit of the operand and constructing a mask
from it. The mask is then used to conditionally compute first the
one's complement and then the two's complement of the
186 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
operand in case the operand is negative, and leave the operand
unchanged if the operand is positive or zero.

Note that the smallest negative number is mapped to itself by
this code, but this also happens for calls to the C library
function labs() and thus is perfectly acceptable.

Example 1 (packed WORDs):
; IN: MM0 = x
; OUT: MM0 = abs(x)
MOVQ MM1, MM0 ;x
PSRAW MM1, 15 ;x < 0 ? 0xffff : 0
PXOR MM0, MM1 ;x < 0 ? ~x : x
PSUBW MM0, MM1 ;x < 0 ? -x : x

Example 2 (packed DWORDs):
; IN: MM0 = x
; OUT: MM0 = abs(x)
MOVQ MM1, MM0 ;x
PSRAD MM1, 31 ;x < 0 ? 0xffffffff : 0
PXOR MM0, MM1 ;x < 0 ? ~x : x
PSUBD MM0, MM1 ;x < 0 ? -x : x

Optimized Matrix Multiplication
The multiplication of a 4x4 matrix with a 4x1 vector is
commonly used in 3D graphics for geometry transformation.
This routine serves to translate, scale, rotate, and apply
perspective to 3D coordinates represented in homogeneous
coordinates. The following code sample is a general 3D vertex
transformation and 3DNow! optimized routine that completes
in 18 cycles if aligned to a 32-byte cache line boundary and 22
cycles if aligned to a 16-byte, but not 32-byte boundary on the
AMD-K6-2 and AMD-K6-III processors. The transformation
takes 16 cycles on the AMD Athlon processor.
Chapter 10 3DNow!™ and MMX™ Optimizations 187

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Matrix Multiplication
Code Sample

/* Function XForm performs a fully generalized 3D transform on an array
 of vertices pointed to by "v" and stores the transformed vertices in
 the location pointed to by "res". Each vertex consists of four floats.
 The 4x4 transform matrix is pointed to by "m". The matrix elements are
 also floats. The argument "numverts" indicates how many vertices have
 to be transformed. The computation performed for each vertex is:

 res->x = v->x*m[0][0] + v->y*m[1][0] + v->z*m[2][0] + v->w*m[3][0]
 res->y = v->x*m[0][1] + v->y*m[1][1] + v->z*m[2][1] + v->w*m[3][1]
 res->z = v->x*m[0][2] + v->y*m[1][2] + v->z*m[2][2] + v->w*m[3][2]
 res->w = v->x*m[0][3] + v->y*m[1][3] + v->z*m[2][3] + v->w*m[3][3]
*/

#define M00 0
#define M01 4
#define M02 8
#define M03 12
#define M10 16
#define M11 20
#define M12 24
#define M13 28
#define M20 32
#define M21 36
#define M22 40
#define M23 44
#define M30 48
#define M31 52
#define M32 56
#define M33 60

void XForm (float *res, const float *v, const float *m, int numverts)
{
 _asm {
 MOV EDX, [V] ;EDX = source vector ptr
 MOV EAX, [M] ;EAX = matrix ptr
 MOV EBX, [RES] ;EBX = destination vector ptr
 MOV ECX, [NUMVERTS] ;ECX = number of vertices to transform

 ;3DNow! version of fully general 3D vertex tranformation.
 ;Optimal for AMD Athlon (completes in 16 cycles)

 FEMMS ;clear MMX state

 ALIGN 16 ;for optimal branch alignment
188 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
 $$xform:

 ADD EBX, 16 ;res++
 MOVQ MM0, QWORD PTR [EDX] ; v->y | v->x
 MOVQ MM1, QWORD PTR [EDX+8] ; v->w | v->z
 ADD EDX, 16 ;v++
 MOVQ MM2, MM0 ; v->y | v->x
 MOVQ MM3, QWORD PTR [EAX+M00] ; m[0][1] | m[0][0]
 PUNPCKLDQ MM0, MM0 ; v->x | v->x
 MOVQ MM4, QWORD PTR [EAX+M10] ; m[1][1] | m[1][0]
 PFMUL MM3, MM0 ;v->x*m[0][1] | v->x*m[0][0]
 PUNPCKHDQ MM2, MM2 ; v->y | v->y
 PFMUL MM4, MM2 ;v->y*m[1][1] | v->y*m[1][0]
 MOVQ MM5, QWORD PTR [EAX+M02] ; m[0][3] | m[0][2]
 MOVQ MM7, QWORD PTR [EAX+M12] ; m[1][3] | m[1][2]
 MOVQ MM6, MM1 ; v->w | v->z
 PFMUL MM5, MM0 ;v->x*m[0][3] | v0>x*m[0][2]
 MOVQ MM0, QWORD PTR [EAX+M20] ; m[2][1] | m[2][0]
 PUNPCKLDQ MM1, MM1 ; v->z | v->z
 PFMUL MM7, MM2 ;v->y*m[1][3] | v->y*m[1][2]
 MOVQ MM2, QWORD PTR [EAX+M22] ; m[2][3] | m[2][2]
 PFMUL MM0, MM1 ;v->z*m[2][1] | v->z*m[2][0]
 PFADD MM3, MM4 ;v->x*m[0][1]+v->y*m[1][1] |

; v->x*m[0][0]+v->y*m[1][0]
 MOVQ MM4, QWORD PTR [EAX+M30] ; m[3][1] | m[3][0]
 PFMUL MM2, MM1 ;v->z*m[2][3] | v->z*m[2][2]
 PFADD MM5, MM7 ;v->x*m[0][3]+v->y*m[1][3] |

; v->x*m[0][2]+v->y*m[1][2]
 MOVQ MM1, QWORD PTR [EAX+M32] ; m[3][3] | m[3][2]
 PUNPCKHDQ MM6, MM6 ; v->w | v->w
 PFADD MM3, MM0 ;v->x*m[0][1]+v->y*m[1][1]+v->z*m[2][1] |

; v->x*m[0][0]+v->y*m[1][0]+v->z*m[2][0]
 PFMUL MM4, MM6 ;v->w*m[3][1] | v->w*m[3][0]
 PFMUL MM1, MM6 ;v->w*m[3][3] | v->w*m[3][2]
 PFADD MM5, MM2 ;v->x*m[0][3]+v->y*m[1][3]+v->z*m[2][3] |

; v->x*m[0][2]+v->y*m[1][2]+v->z*m[2][2]
 PFADD MM3, MM4 ;v->x*m[0][1]+v->y*m[1][1]+v->z*m[2][1]+

; v->w*m[3][1] | v->x*m[0][0]+v->y*m[1][0]+
; v->z*m[2][0]+v->w*m[3][0]

 MOVQ [EBX-16], MM3 ;store res->y | res->x
 PFADD MM5, MM1 ;v->x*m[0][3]+v->y*m[1][3]+v->z*m[2][3]+

; v->w*m[3][3] | v->x*m[0][2]+v->y*m[1][2]+
; v->z*m[2][2]+v->w*m[3][2]

 MOVQ [EBX-8], MM5 ;store res->w | res->z
 DEC ECX ;numverts--
 JNZ $$XFORM ;until numverts == 0

 FEMMS ;clear MMX state
 }
}

Chapter 10 3DNow!™ and MMX™ Optimizations 189

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Efficient 3D-Clipping Code Computation Using 3DNow!™
Instructions

Clipping is one of the major activities occurring in a 3D
graphics pipeline. In many instances, this activity is split into
two parts, which do not necessarily have to occur consecutively:

■ Computation of the clip code for each vertex, where each
bit of the clip code indicates whether the vertex is outside
the frustum with regard to a specific clip plane.

■ Examination of the clip code for a vertex and clipping if the
clip code is non-zero.

The following example shows how to use 3DNow! instructions to
efficiently implement a clip code computation for a frustum
that is defined by:

■ -w <= x <= w

■ -w <= y <= w

■ -w <= z <= w

3D-Clipping Code
Sample

.DATA

RIGHT EQU 01h
LEFT EQU 02h
ABOVE EQU 04h
BELOW EQU 08h
BEHIND EQU 10h
BEFORE EQU 20h

 ALIGN 8

ABOVE_RIGHT DD RIGHT
 DD ABOVE
BELOW_LEFT DD LEFT
 DD BELOW
BEHIND_BEFORE DD BEFORE
 DD BEHIND

.CODE
190 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
;; Generalized computation of 3D clip code (out code)
;;
;; Register usage: IN MM5 y | x
;; MM6 w | z
;;
;; OUT MM2 clip code (out code)
;;
;; DESTROYS MM0,MM1,MM2,MM3,MM4

PXOR MM0, MM0 ; 0 | 0
MOVQ MM1, MM6 ; w | z
MOVQ MM4, MM5 ; y | x
PUNPCKHDQ MM1, MM1 ; w | w
MOVQ MM3, MM6 ; w | z
MOVQ MM2, MM5 ; y | x
PFSUBR MM3, MM0 ;-w | -z
PFSUBR MM2, MM0 ;-y | -x
PUNPCKLDQ MM3, MM6 ; z | -z
PFCMPGT MM4, MM1 ; y>w?FFFFFFFF:0 | x>w?FFFFFFFF:0
MOVQ MM0, QWORD PTR [ABOVE_RIGHT] ; ABOVE | RIGHT
PFCMPGT MM3, MM1 ; z>w?FFFFFFFF:0 | -z>w>FFFFFFFF:0
PFCMPGT MM2, MM1 ; -y>w?FFFFFFFF:0 | -x>w?FFFFFFFF:0
MOVQ MM1, QWORD PTR [BEHIND_BEFORE] ; BEHIND | BEFORE
PAND MM4, MM0 ; y > w ? ABOVE:0 | x > w ? RIGHT:0
MOVQ MM0, QWORD PTR [BELOW_LEFT] ; BELOW | LEFT
PAND MM3, MM1 ; z > w ? BEHIND:0 | -z > w ? BEFORE:0
PAND MM2, MM0 ; -y > w ? BELOW:0 | -x > w ? LEFT:0
POR MM2, MM4 ; BELOW,ABOVE | LEFT,RIGHT
POR MM2, MM3 ;BELOW,ABOVE,BEHIND | LEFT,RIGHT,BEFORE
MOVQ MM1, MM2 ;BELOW,ABOVE,BEHIND | LEFT,RIGHT,BEFORE
PUNPCKHDQ MM2, MM2 ;BELOW,ABOVE,BEHIND | BELOW,ABOVE,BEHIND
POR MM2, MM1 ;zclip, yclip, xclip = clip code
Chapter 10 3DNow!™ and MMX™ Optimizations 191

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Efficiently Determining Similarity Between RGBA Pixels

The manipulation of 32-bit RGBA pixels commonly occurs in
graphics imaging. Each of the components (red, blue, green,
and Alpha-channel) occupies one byte of the 32-bit pixel. The
order of the components within the pixel can vary between
systems. This optimization guideline shows how to efficiently
determine whether two RGBA pixels are similar (i.e.,
approximately equal) regardless of the actual component
ordering. The example also demonstrates techniques of general
utility:

■ Computing absolute differences using unsigned saturating
arithmetic

■ Performing unsigned comparisons in MMX using unsigned
saturating arithmetic

■ Combining multiple conditions into one condition for
branching

The pixels_similar() function determines whether two RGBA
pixels are similar by computing the absolute difference
between identical components of each pixel. If any absolute
difference is greater than or equal to some cutoff value, TOL,
the pixels are found to be dissimilar and the function returns 0.
If all absolute differences for all components are less than TOL,
the pixels are found to be similar and the function returns 1.
The following algorithm is used in the MMX implementation.

Step 1: Absolute differences can be computed efficiently by
taking advantage of unsigned saturation. Under unsigned
saturation, if the difference between two entities is negative
the result is zero. By performing subtraction on two operands in
both directions, and ORing the results, the absolute difference
is computed.

Example 1:
 sub_unsigned_sat (i,k) = (i > k) ? i-k : 0
 sub_unsigned_sat (k,i) = (i <= k) ? k-i : 0

 (sub_unsigned_sat (i,k) |
 sub_unsigned_sat (k,i))) = (i > k) ? i-k : k-i = abs(i-k)

In this case, the source operands are bytes, so the MMX
instruction PSUBUSB is used to subtract with unsigned
192 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
saturation, then the results are merged using POR. Note that on
the AMD Athlon processor, the above computation should not
be used in algorithms that require the sum of absolute
differences, such as motion vector computations during
MPEG-2 encoding as an extended MMX instruction, PSADBW,
specifically exists for that purpose. For the AMD-K6 processor
family or for blended code, the above computation can be used
as a building block in the computation of sums of absolute
differences.

Step 2: The absolute difference of each component is in the
range 0...255. In order to compare these against the cutoff
value, do not use MMX compare instructions, as these
implement signed comparisons, which would flag any input
above 127 to be less than the (positive) cutoff value. Instead, we
turn again to unsigned saturated arithmetic. In order to test
whether a value is below a cutoff value TOL, (TOL-1) is
subtracted using unsigned saturation. An input less than TOL
results in an output of zero, an input equal to or greater than
TOL results in a non-zero output. Since the operands are byte
size, again use the PSUBUSB instruction.

Step 3: According to the similarity metric chosen, two pixels are
similar if the absolute differences of all components are less
than the cutoff value. In other words, the pixels are similar if all
results of the previous step are zero. This can be tested easily by
concatenating and if the concatenation is equal to zero, all
absolute differences are below the cutoff value and the pixels
are thus similar under the chosen metric. MMX instructions do
not require explicit concatenation, instead, the four byte
operands can simply be viewed as a DWORD operand and
compared against zero using the PCMPEQD instruction.

Note that the implementation of unsigned comparison in step 2
does not produce "clean" masks of all 1s or all 0s like the MMX
compare instructions since this is not needed in the example
code. Where this is required, the output for an unsigned
comparison may be created as follows:
Chapter 10 3DNow!™ and MMX™ Optimizations 193

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Example 2:
 a>b ? -1 : 0 ==> MOVQ MMreg1, [a]
 PSUBUS* MMreg1, [b]
 PCMPGT* MMreg1, [zero]

 a<=b? -1 : 0 ==> MOVQ MMreg1, [a]
 PSUBUS* MMreg1, [b]
 PCMPEQ* MMreg1, [zero]

 a<b ? -1 : 0 ==> MOVQ MMreg1, [b]
 PSUBUS* MMreg1, [a]
 PCMPGT* MMreg1, [zero]

Since MMX defines subtraction with unsigned saturation only
for byte and WORD sized operands, the above code does not
work for comparisons of unsigned DWORD operands.

Example 3:

#include <stdlib.h>
#include <stdio.h>

#define TOL 5

typedef struct {
 unsigned char r, g, b, a;
} PIXEL;

#ifdef C_VERSION
int _stdcall pixels_similar (PIXEL pixel1, PIXEL pixel2)
{
 return ((labs(((int)pixel1.r) - ((int)pixel2.r)) < TOL) &&
 (labs(((int)pixel1.g) - ((int)pixel2.g)) < TOL) &&
 (labs(((int)pixel1.b) - ((int)pixel2.b)) < TOL) &&
 (labs(((int)pixel1.a) - ((int)pixel2.a)) < TOL)) ? 1 : 0;
}
#else /* !C_VERSION */
static unsigned int tolerance = {((TOL-1) << 24) | ((TOL-1) << 16) |
 ((TOL-1) << 8) | ((TOL-1) << 0) };

__declspec (naked) int _stdcall pixels_similar (PIXEL pixel1, PIXEL pixel2)
{
 __asm {
MOVD MM0, [ESP+8] ;a1 ... r1
MOVD MM1, [ESP+4] ;a2 ... r2
MOVQ MM2, MM0 ;a1 ... r1
PSUBUSB MM0, MM1 ;a1>a2?a1-a2:0 ... r1>r2?r1-r2:0
PSUBUSB MM1, MM2 ;a1<=a2?a2-a1:0 ... r1<=r2?0:r2-r1:0
MOVD MM2, [tolerance];TOL-1 TOL-1 TOL-1 TOL-1
POR MM0, MM1 ;da=labs(a1-a2) ... dr=labs(r1-r2)
194 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
PSUBUSB MM0, MM2 ;da<TOL?0:da-TOL+1 ... dr<TOL?0:dr-TOL+1
PXOR MM2, MM2 ;0
PCMPEQD MM0, MM2 ;(da<TOL&&db<TOL&&dg<TOL&&dr<TOL)?0xffffffff:0
MOVD EAX, MM0 ;move to EAX because of calling conventions
EMMS ;clear MMX state
AND EAX, 1 ;(da<TOL&&db<TOL&&dg<TOL&&dr<TOL) ? 1 : 0
RET 8 ;pop two DWORD arguments and return
 }
}
#endif /* C_VERSION */

Use 3DNow!™ PAVGUSB for MPEG-2 Motion Compensation

Use the 3DNow! PAVGUSB instruction for MPEG-2 motion
compensation. The PAVGUSB instruction produces the rounded
averages of the eight unsigned 8-bit integer values in the source
operand (an MMX register or a 64-bit memory location) and the
eight corresponding unsigned 8-bit integer values in the
destination operand (an MMX register). The PAVGUSB
instruction is extremely useful in DVD (MPEG-2) decoding
where motion compensation performs a lot of byte averaging
between and within macroblocks. The PAVGUSB instruction
helps speed up these operations. In addition, PAVGUSB can
free up some registers and make unrolling the averaging loops
possible.

The following code fragment uses original MMX code to
perform averaging between the source macroblock and
destination macroblock:

Example 1 (Avoid):
MOV ESI, DWORD PTR Src_MB
MOV EDI, DWORD PTR Dst_MB
MOV EDX, DWORD PTR SrcStride
MOV EBX, DWORD PTR DstStride
MOVQ MM7, QWORD PTR [ConstFEFE]
MOVQ MM6, QWORD PTR [Const0101]
MOV ECX, 16

L1:
MOVQ MM0, [ESI] ;MM0=QWORD1
MOVQ MM1, [EDI] ;MM1=QWORD3
MOVQ MM2, MM0
MOVQ MM3, MM1
PAND MM2, MM6
PAND MM3, MM6
Chapter 10 3DNow!™ and MMX™ Optimizations 195

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
PAND MM0, MM7 ;MM0 = QWORD1 & 0xfefefefe
PAND MM1, MM7 ;MM1 = QWORD3 & 0xfefefefe
POR MM2, MM3 ;calculate adjustment
PSRLQ MM0, 1 ;MM0 = (QWORD1 & 0xfefefefe)/2
PSRLQ MM1, 1 ;MM1 = (QWORD3 & 0xfefefefe)/2
PAND MM2, MM6
PADDB MM0, MM1 ;MM0 = QWORD1/2 + QWORD3/2 w/o adjustment
PADDB MM0, MM2 ;add lsb adjustment
MOVQ [EDI], MM0
MOVQ MM4, [ESI+8] ;MM4=QWORD2
MOVQ MM5, [EDI+8] ;MM5=QWORD4
MOVQ MM2, MM4
MOVQ MM3, MM5
PAND MM2, MM6
PAND MM3, MM6
PAND MM4, MM7 ;MM0 = QWORD2 & 0xfefefefe
PAND MM5, MM7 ;MM1 = QWORD4 & 0xfefefefe
POR MM2, MM3 ;calculate adjustment
PSRLQ MM4, 1 ;MM0 = (QWORD2 & 0xfefefefe)/2
PSRLQ MM5, 1 ;MM1 = (QWORD4 & 0xfefefefe)/2
PAND MM2, MM6
PADDB MM4, MM5 ;MM0 = QWORD2/2 + QWORD4/2 w/o adjustment
PADDB MM4, MM2 ;add lsb adjustment
MOVQ [EDI+8], MM4

ADD ESI, EDX
ADD EDI, EBX
LOOP L1

The following code fragment uses the 3DNow! PAVGUSB
instruction to perform averaging between the source
macroblock and destination macroblock:

Example 1 (Preferred):
MOV EAX, DWORD PTR Src_MB
MOV EDI, DWORD PTR Dst_MB
MOV EDX, DWORD PTR SrcStride
MOV EBX, DWORD PTR DstStride
MOV ECX, 16

L1:
MOVQ MM0, [EAX] ;MM0=QWORD1
MOVQ MM1, [EAX+8] ;MM1=QWORD2
PAVGUSB MM0, [EDI] ;(QWORD1 + QWORD3)/2 with adjustment
PAVGUSB MM1, [EDI+8];(QWORD2 + QWORD4)/2 with adjustment
ADD EAX, EDX
MOVQ [EDI], MM0
MOVQ [EDI+8], MM1
ADD EDI, EBX
LOOP L1
196 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Efficient Implementation of floor() Using 3DNow!™
Instructions

The function floor() returns the greatest integer less than or
equal to a given floating-point argument x. The integer result is
returned as a floating-point number. In other words, floor()
implements a floating-point-to-integer conversion that rounds
towards negative infinity and then converts the result back to a
floating-point number.

The 3DNow! instruction set supports only one type of floating-
point to integer conversion, namely truncation, i.e., a
conversion that rounds toward zero. For arguments greater than
or equal to zero, rounding towards zero and rounding towards
negative infinity returns identical results. For negative
arguments, rounding towards negative infinity produces results
that are smaller by 1 than results from rounding towards zero,
unless the input is an integer.

The following code efficiently computes floor() based on the
definition that floor(x) <= x. It uses PF2ID and PI2FD to
compute float(trunc(x)). If the result is greater than x, it
conditionally decrements the result by 1, thus computing
floor(x). This computation transfers the input into the integer
domain during the intermediate computation, which leads to
incorrect results due to integer overflow with saturation if
abs(x) > 2^31. This issue is addressed by observing that for
single-precision numbers with absolute value > 2^24, the
number contains only integer bits, and therefore floor(x) = x.
The computation below, therefore, returns x for x > 2^24.

Example:
MABS DQ 7FFFFFFF7FFFFFFFh
TTTF DQ 4B8000004B800000h

;; IN: mm0 = x
;; OUT: mm0 = floor(x)

MOVQ MM3, [MABS] ;mask for absolute value
PF2ID MM1, MM0 ;trunc(x)
MOVQ MM4, [TTTF] ;2^24
PAND MM3, MM0 ;abs(x)
PI2FD MM2, MM1 ;float(trunc(x))
PCMPGTD MM3, MM4 ;abs(x) > 2^24 : 0xffffffff : 0
Chapter 10 3DNow!™ and MMX™ Optimizations 197

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
MOVQ MM4, MM0 ;x
PFCMPGT MM2, MM4 ;float(trunc(x)) > x ? 0xffffffff : 0
PAND MM0, MM3 ;abs(x) > 2^24 ? x : 0
PADDD MM1, MM2 ;float(trunc(x)) > x ? trunc(x)-1 : trunc(x)
PI2FD MM4, MM1 ;floor(x)
PANDN MM3, MM4 ;abs(x) > 2^24 ? 0 : floor(x)
POR MM0, MM3 ;abs(x) > 2^24 ? x : floor(x)

Stream of Packed Unsigned Bytes

The following code is an example of how to process a stream of
packed unsigned bytes (like RGBA information) with faster
3DNow! instructions.

Example 1:
outside loop:
PXOR MM0, MM0

inside loop:
MOVD MM1, [VAR] ; 0 | v[3],v[2],v[1],v[0]
PUNPCKLBW MM1, MM0 ;0,v[3],0,v[2] | 0,v[1],0,v[0]
MOVQ MM2, MM1 ;0,v[3],0,v[2] | 0,v[1],0,v[0]
PUNPCKLWD MM1, MM0 ; 0,0,0,v[1] | 0,0,0,v[0]
PUNPCKHWD MM2, MM0 ; 0,0,0,v[3] | 0,0,0,v[2]
PI2FD MM1, MM1 ; float(v[1]) | float(v[0])
PI2FD MM2, MM2 ; float(v[3]) | float(v[2])
198 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Complex Number Arithmetic

Complex numbers have a “real” part and an “imaginary” part.
Multiplying complex numbers (ex. 3 + 4i) is an integral part of
many algorithms such as Discrete Fourier Transform (DFT) and
complex FIR filters. Complex number multiplication is shown
below:

(src0.real + src0.imag) * (src1.real + src1.imag) = result
result = (result.real + result.imag)
result.real = src0.real*src1.real - src0.imag*src1.imag
result.imag = src0.real*src1.imag + src0.imag*src1.real

Example 1:
(1+2i) * (3+4i) => result.real + result.imag
result.real = 1*3 - 2*4 = -5
result.imag = 1*4i + 2i*3 = 10i
result = -5 +10i

Assuming that complex numbers are represented as two
element vectors [v.real, v.imag], one can see the need for
swapping the elements of src1 to perform the multiplies for
result.imag, and the need for a mixed positive/negative
accumulation to complete the parallel computation of
result.real and result.imag.

PSWAPD performs the swapping of elements for src1 and
PFPNACC performs the mixed positive/negative accumulation
to complete the computation. The code example below
summarizes the computation of a complex number multiply.

Example 2:
;MM0 = s0.imag | s0.real ;reg_hi | reg_lo
;MM1 = s1.imag | s1.real

PSWAPD MM2, MM0 ;M2 = s0.real | s0.imag
PFMUL MM0, MM1 ;M0 = s0.imag*s1.imag | s0.real*s1.real
PFMUL MM1, MM2 ;M1 = s0.real*s1.imag | s0.imag*s1.real
PFPNACC MM0, MM1 ;M0 = res.imag | res.real

PSWAPD supports independent source and result operands and
enables PSWAPD to also perform a copy function. In the above
example, this eliminates the need for a separate “MOVQ MM2,
MM0” instruction.
Chapter 10 3DNow!™ and MMX™ Optimizations 199

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
200 3DNow!™ and MMX™ Optimizations Chapter 10

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
11
General x86 Optimization
Guidelines
This chapter describes general code-optimization techniques
specific to superscalar processors (that is, techniques common
to the AMD-K6® processor, AMD Athlon™ processor, and
Pentium® family processors). In general, all optimization
techniques used for the AMD-K6 processor, Pentium, and
Pentium Pro processors either improve the performance of the
AMD Athlon processor or are not required and have a neutral
effect (usually due to fewer coding restrictions with the
AMD Athlon processor).

Short Forms

Use shorter forms of instructions to increase the effective
number of instructions that can be examined for decoding at
any one time. Use 8-bit displacements and jump offsets where
possible.

Example 1 (Avoid):
CMP REG, 0

Example 2 (Preferred):
TEST REG, REG
Chapter 11 General x86 Optimization Guidelines 201

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Although both of these instructions have an execute latency of
one, fewer opcode bytes need to be examined by the decoders
for the TEST instruction.

Dependencies

Spread out true dependencies to increase the opportunities for
paral le l execut ion . Ant i -dependencies and output
dependencies do not impact performance.

Register Operands

Maintain frequently used values in registers rather than in
memory. This technique avoids the comparatively long latencies
for accessing memory.

Stack Allocation

When allocating space for local variables and/or outgoing
parameters within a procedure, adjust the stack pointer and
use moves rather than pushes. This method of allocation allows
random access to the outgoing parameters so that they can be
set up when they are calculated instead of being held
somewhere else until the procedure call. In addition, this
method reduces ESP dependencies and uses fewer execution
resources.
202 General x86 Optimization Guidelines Chapter 11

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Appendix A

AMD Athlon™ Processor
Microarchitecture
Introduction

When discussing processor design, it is important to understand
the following terms—architecture, microarchitecture, and design
implementation. The term architecture refers to the instruction
set and features of a processor that are visible to software
programs running on the processor. The architecture
determines what software the processor can run. The
architecture of the AMD Athlon processor is the industry-
standard x86 instruction set.

The term microarchitecture refers to the design techniques used
in the processor to reach the target cost, performance, and
funct ional i ty goals . The AMD Athlon processor
microarchitecture is a decoupled decode/execution design
approach. In other words, the decoders essentially operate
independent of the execution units, and the execution core uses
a small number of instructions and simplified circuit design for
fast single-cycle execution and fast operating frequencies.

The term design implementation refers to the actual logic and
circuit designs from which the processor is created according to
the microarchitecture specifications.
Appendix A AMD Athlon™ Processor Microarchitecture 203

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
AMD Athlon™ Processor Microarchitecture

The innovative AMD Athlon processor microarchitecture
approach implements the x86 instruction set by processing
simpler operations (OPs) instead of complex x86 instructions.
These OPs are specially designed to include direct support for
the x86 instructions while observing the high-performance
principles of fixed-length encoding, regularized instruction
fields, and a large register set. Instead of executing complex
x86 instructions, which have lengths from 1 to 15 bytes, the
AMD Athlon processor executes the simpler fixed-length OPs,
while maintaining the instruction coding efficiencies found in
x86 programs. The enhanced microarchitecture used in the
AMD Athlon processor enables higher processor core
performance and promotes straightforward extendibility for
future designs.

Superscalar Processor

The AMD Athlon processor is an aggressive, out-of-order, three-
way superscalar x86 processor. It can fetch, decode, and issue
up to three x86 instructions per cycle with a centralized
instruction control unit (ICU) and two independent instruction
schedulers—an integer scheduler and a floating-point
scheduler. These two schedulers can simultaneously issue up to
nine OPs to the three general-purpose integer execution units
(IEUs), three address-generation units (AGUs), and three
floating-point/3DNow!™/MMX™ execution units. The
AMD Athlon moves integer instructions down the integer
execution pipeline, which consists of the integer scheduler and
the IEUs, as shown in Figure 1 on page 205. Floating-point
instructions are handled by the floating-point execution
pipeline, which consists of the floating-point scheduler and the
x87/3DNow!/MMX execution units.
204 AMD Athlon™ Processor Microarchitecture Appendix A

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Figure 1. AMD Athlon™ Processor Block Diagram

Instruction Cache

The out-of-order execute engine of the AMD Athlon processor
contains a very large 64-Kbyte L1 instruction cache. The L1
instruction cache is organized as a 64-Kbyte, two-way, set-
associative array. Each line in the instruction array is 64 bytes
long. Functions associated with the L1 instruction cache are
instruction loads, instruction prefetching, instruction
predecoding, and branch prediction. Requests that miss in the
L1 instruction cache are fetched from the L2 cache or,
subsequently, from the local memory using the bus interface
unit (BIU).

The instruction cache generates fetches on the naturally
aligned 64 bytes containing the instructions and the next

Load / Store Queue Unit

Instruction Control Unit (72-Entry)

Fetch/Decode
Control 3-Way x86 Instruction Decoders

FPU Register File (88-Entry)

!

Integer Scheduler (18-Entry) FPU Stack Map / Rename

2-Way, 64-KB Instruction Cache
24-Entry L1 TLB/256-Entry L2 TLB

Predecode
Cache

Branch
Prediction Table

Bus
Interface

Unit

FPU Scheduler (36-Entry)

MMX™
3DNow!™

FADD FMUL
MMX

3DNow!
FStore

2-Way, 64-KB Data Cache
32-Entry L1 TLB/256-Entry L2 TLB

IEU2 AGU2IEU1 AGU1IEU0 AGU0

16-Way
L2 Cache
With L2

Tags

200-MHz
Front-Side

Bus
Interface

Unit
Appendix A AMD Athlon™ Processor Microarchitecture 205

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
sequential line of 64 bytes (a prefetch). The principal of
program spatial locality makes data prefetching very effective
and avoids or reduces execution stalls due to the amount of
t ime wasted reading the necessary data. Cache l ine
replacement is based on a least-recently used (LRU)
replacement algorithm.

The L1 instruction cache has an associated two-level translation
look-aside buffer (TLB) structure. The first-level TLB is fully
associative and contains 24 entries (16 that map 4-Kbyte pages
and eight that map 2-Mbyte or 4-Mbyte pages). The second-level
TLB is four-way set associative and contains 256 entries, which
can map 4-Kbyte pages.

Predecode

Predecoding begins as the L1 instruction cache is filled.
Predecode information is generated and stored alongside the
instruction cache. This information is used to help efficiently
identify the boundaries between variable length x86
instructions, to distinguish DirectPath from VectorPath early-
decode instructions, and to locate the opcode byte in each
instruction. In addition, the predecode logic detects code
branches such as CALLs, RETURNs and short unconditional
JMPs. When a branch is detected, predecoding begins at the
target of the branch.

Branch Prediction

The fetch logic accesses the branch prediction table in parallel
with the instruction cache and uses the information stored in
the branch prediction table to predict the direction of branch
instructions.

The AMD Athlon processor employs combinations of a branch
target address buffer (BTB), a global history bimodal counter
(GHBC) table, and a return address stack (RAS) hardware in
order to predict and accelerate branches. Predicted-taken
branches incur only a single-cycle delay to redirect the
instruction fetcher to the target instruction. In the event of a
mispredict, the minimum penalty is ten cycles.

The BTB is a 2048-entry table that caches in each entry the
predicted target address of a branch.
206 AMD Athlon™ Processor Microarchitecture Appendix A

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
In addition, the AMD Athlon processor implements a 12-entry
return address stack to predict return addresses from a near or
far call. As CALLs are fetched, the next EIP is pushed onto the
return stack. Subsequent RETs pop a predicted return address
off the top of the stack.

Early Decoding

The DirectPath and VectorPath decoders perform early-
decoding of instructions into MacroOPs. A MacroOP is a fixed
length instruction which contains one or more OPs. The outputs
of the early decoders keep all (DirectPath or VectorPath)
instructions in program order. Early decoding produces three
MacroOPs per cycle from either path. The outputs of both
decoders are multiplexed together and passed to the next stage
in the pipeline, the instruction control unit.

When the target 16-byte instruction window is obtained from
the instruction cache, the predecode data is examined to
determine which type of basic decode should occur—
DirectPath or VectorPath.

DirectPath Decoder DirectPath instructions can be decoded directly into a
MacroOP, and subsequently into one or two OPs in the final
issue stage. A DirectPath instruction is limited to those x86
instructions that can be further decoded into one or two OPs.
The length of the x86 instruction does not determine DirectPath
instructions. A maximum of three DirectPath x86 instructions
can occupy a given aligned 8-byte block. 16-bytes are fetched at
a time. Therefore, up to six DirectPath x86 instructions can be
passed into the DirectPath decode pipeline.

VectorPath Decoder Uncommon x86 instructions requiring two or more MacroOPs
proceed down the VectorPath pipeline. The sequence of
MacroOPs is produced by an on-chip ROM known as the MROM.
The VectorPath decoder can produce up to three MacroOPs per
cycle. Decoding a VectorPath instruction may prevent the
simultaneous decode of a DirectPath instruction.
Appendix A AMD Athlon™ Processor Microarchitecture 207

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Instruction Control Unit

The instruction control unit (ICU) is the control center for the
AMD Athlon processor. The ICU controls the following
resources—the centralized in-flight reorder buffer, the integer
scheduler, and the floating-point scheduler. In turn, the ICU is
responsible for the following functions—MacroOP dispatch,
MacroOP retirement, register and flag dependency resolution
and renaming, execution resource management, interrupts,
exceptions, and branch mispredictions.

The ICU takes the three MacroOPs per cycle from the early
decoders and places them in a centralized, fixed-issue reorder
buffer. This buffer is organized into 24 lines of three MacroOPs
each. The reorder buffer allows the ICU to track and monitor up
to 72 in-flight MacroOPs (whether integer or floating-point) for
maximum instruction throughput. The ICU can simultaneously
dispatch multiple MacroOPs from the reorder buffer to both the
integer and floating-point schedulers for final decode, issue,
and execution as OPs. In addition, the ICU handles exceptions
and manages the retirement of MacroOPs.

Data Cache

The L1 data cache contains two 64-bit ports. It is a write-
allocate and writeback cache that uses an LRU replacement
policy. The data cache and instruction cache are both two-way
set-associative and 64-Kbytes in size. It is divided into 8 banks
where each bank is 8 bytes wide. In addition, this cache
supports the MOESI (Modified, Owner, Exclusive, Shared, and
Invalid) cache coherency protocol and data parity.

The L1 data cache has an associated two-level TLB structure.
The first-level TLB is fully associative and contains 32 entries
(24 that map 4-Kbyte pages and eight that map 2-Mbyte or
4-Mbyte pages). The second-level TLB is four-way set
associative and contains 256 entries, which can map 4-Kbyte
pages.
208 AMD Athlon™ Processor Microarchitecture Appendix A

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Integer Scheduler

The integer scheduler is based on a three-wide queuing system
(also known as a reservation station) that feeds three integer
execution positions or pipes. The reservation stations are six
entries deep, for a total queuing system of 18 integer
MacroOPs.Each reservation station divides the MacroOPs into
integer and address generation OPs, as required.

Integer Execution Unit

The integer execution pipeline consists of three identical
pipes—0, 1, and 2. Each integer pipe consists of an integer
execution unit (IEU) and an address generation unit (AGU).
The integer execution pipeline is organized to match the three
MacroOP dispatch pipes in the ICU as shown in Figure 2 on
page 209. MacroOPs are broken down into OPs in the
schedulers. OPs issue when their operands are available either
from the register file or result buses.

OPs are executed when their operands are available. OPs from
a single MacroOP can execute out-of-order. In addition, a
particular integer pipe can be executing two OPs from different
MacroOPs (one in the IEU and one in the AGU) at the same
time.

Figure 2. Integer Execution Pipeline

IE U 1IE U 1

In s tru c t io n C o n tro l U n it a n d R e g is te r F ile s

In te g e r M u lt ip ly (IM U L)In te g e r M u lt ip ly (IM U L)

IE U 0IE U 0 A G U 0A G U 0 A G U 1A G U 1 IE U 2IE U 2 A G U 2A G U 2

M a c ro O P s M a c ro O P s

P ip e lin eP ip e lin e
S ta g eS ta g e

In te g e r S c h e d u le r
(1 8 -e n try) 77

88
Appendix A AMD Athlon™ Processor Microarchitecture 209

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Each of the three IEUs are general purpose in that each
performs logic functions, arithmetic functions, conditional
functions, divide step functions, status flag multiplexing, and
branch resolutions. The AGUs calculate the logical addresses
for loads, stores, and LEAs. A load and store unit reads and
writes data to and from the L1 data cache. The integer
scheduler sends a completion status to the ICU when the
outstanding OPs for a given MacroOP are executed.

All integer operations can be handled within any of the three
IEUs with the exception of multiplies. Multiplies are handled
by a pipelined multiplier that is attached to the pipeline at pipe
0. See Figure 2 on page 209. Multiplies always issue to integer
pipe 0, and the issue logic creates results bus bubbles for the
multiplier in integer pipes 0 and 1 by preventing non-multiply
OPs from issuing at the appropriate time.

Floating-Point Scheduler

The AMD Athlon processor floating-point logic is a high-
performance, fully-pipelined, superscalar, out-of-order
execution unit. It is capable of accepting three MacroOPs of any
mixture of x87 floating-point, 3DNow! or MMX operations per
cycle.

The floating-point scheduler handles register renaming and has
a dedicated 36-entry scheduler buffer organized as 12 lines of
three MacroOPs each. It also performs OP issue, and out-of-
order execution. The floating-point scheduler communicates
with the ICU to retire a MacroOP, to manage comparison
results from the FCOMI instruction, and to back out results
from a branch misprediction.
210 AMD Athlon™ Processor Microarchitecture Appendix A

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Floating-Point Execution Unit

The floating-point execution unit (FPU) is implemented as a
coprocessor that has its own out-of-order control in addition to
the data path. The FPU handles all register operations for x87
instructions, all 3DNow! operations, and all MMX operations.
The FPU consists of a stack renaming unit, a register renaming
unit, a scheduler, a register file, and three parallel execution
units. Figure 3 shows a block diagram of the dataflow through
the FPU.

Figure 3. Floating-Point Unit Block Diagram

As shown in Figure 3, the floating-point logic uses three
separate execution positions or pipes for superscalar x87,
3DNow! and MMX operations. The first of the three pipes is
generally known as the adder pipe (FADD), and it contains
3DNow! add, MMX ALU/shifter, and floating-point add
execution units. The second pipe is known as the multiplier
(FMUL). It contains a 3DNow!/MMX multiplier/reciprocal unit,
an MMX ALU and a floating-point multiplier/divider/square
root unit. The third pipe is known as the floating-point
load/store (FSTORE), which handles floating-point constant
loads (FLDZ, FLDPI, etc.), stores, FILDs, as well as many OP
primitives used in VectorPath sequences.

Instruction Control UnitInstruction Control Unit

FADD
• MMX™ ALU
• 3DNow!™

FADD
• MMX™ ALU
• 3DNow!™

FSTOREFSTORE
FMUL

• MMX ALU
• MMX Mul
• 3DNow!

FMUL
• MMX ALU
• MMX Mul
• 3DNow!

Stack MapStack Map

Register RenameRegister Rename

Scheduler (36-entry)Scheduler (36-entry)

FPU Register File (88-entry)FPU Register File (88-entry)

PipelinePipeline
StageStage

77

88

1111

99
1010

1212
toto
1515
Appendix A AMD Athlon™ Processor Microarchitecture 211

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Load-Store Unit (LSU)

The load-store unit (LSU) manages data load and store accesses
to the L1 data cache and, if required, to the L2 cache or system
memory. The 44-entry LSU provides a data interface for both
the integer scheduler and the floating-point scheduler. It
consists of two queues—a 12-entry queue for L1 cache load and
store accesses and a 32-entry queue for L2 cache or system
memory load and store accesses. The 12-entry queue can
request a maximum of two L1 cache loads and two L1 cache
(32-bit) stores per cycle. The 32-entry queue effectively holds
requests that missed in the L1 cache probe by the 12-entry
queue. Finally, the LSU ensures that the architectural load and
store ordering rules are preserved (a requirement for x86
architecture compatibility).

Figure 4. Load/Store Unit

 Data Cache
2-way,

64Kbytes
LSU

44-Entry

Result Buses
from
Core

Operand
Buses

Store Data
to BIU
212 AMD Athlon™ Processor Microarchitecture Appendix A

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
L2 Cache

The AMD Athlon processor Models 1 and 2 contain a very
flexible onboard L2 controller. It uses an independent bus to
access up to 8 Mbytes of industry-standard SRAMs. There are
full on-chip tags for a 512-Kbyte cache, while larger sizes use a
partial tag system. In addition, there is a two-level data TLB
structure. The first-level TLB is fully associative and contains 32
entries (24 that map 4-Kbyte pages and eight that map 2-Mbyte
or 4-Mbyte pages). The second-level TLB is four-way set
associative and contains 256 entries, which can map 4-Kbyte
pages.

Newer Athlon processor models (such as Models 3 and 4)
contain an integrated L2 Cache. This full-speed on-die L2 cache
features an exclusive cache architecture as opposed to the
inclusive cache architecture utilized by previous-generation x86
processors. This L2 cache contains only victim or copy-back
cache blocks that are to be written back to the memory
subsystem as a result of a conflict miss. These terms, victim or
copy-back, refer to cache blocks that were previously held in the
L1 cache but had to be overwritten (evicted) to make room for
newer data. The AMD Athlon processor victim buffer contains
data evicted from the L1 cache. It features up to eight 64-byte
entries, where each entry corresponds to a 64-byte cache line.
The new AMD Athlon processor 16-way set associative cache is
eight times more associative than previous AMD Athlon
processors which feature a 2-way set associative cache.
Increasing the set associativity increases the hit rate by
reducing data conflicts. This translates into more possible
locations in which important data can reside without having to
throw away other often-used data in the L2 cache.

Write Combining

See Appendix C, “Implementation of Write Combining,” for
detailed information about write combining.
Appendix A AMD Athlon™ Processor Microarchitecture 213

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
AMD Athlon™ System Bus

The AMD Athlon system bus is a high-speed bus that consists of
a pair of unidirectional 13-bit address and control channels and
a bidirectional 64-bit data bus. The AMD Athlon system bus
supports low-voltage swing, multiprocessing, clock forwarding,
and fast data transfers. The clock forwarding technique is used
to deliver data on both edges of the reference clock, therefore
doubling the transfer speed. A four-entry 64-byte write buffer is
integrated into the BIU. The write buffer improves bus
utilization by combining multiple writes into a single large
write cycle. By using the AMD Athlon system bus, the
AMD Athlon processor can transfer data on the 64-bit data bus
at 200 MHz, which yields an effective throughput of 1.6 Gbytes
per second.
214 AMD Athlon™ Processor Microarchitecture Appendix A

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Appendix B

Pipeline and Execution Unit
Resources Overview
The AMD Athlon™ processor contains two independent
execution pipelines—one for integer operations and one for
floating-point operations. The integer pipeline manages x86
integer operations and the floating-point pipeline manages all
x87, 3DNow!™ and MMX™ instructions. This appendix
describes the operation and functionality of these pipelines.

Fetch and Decode Pipeline Stages

Figure 5 and Figure 6 on page 216 show the AMD Athlon
processor instruction fetch and decoding pipeline stages. The
pipeline consists of one cycle for instruction fetches and four
cycles of instruction alignment and decoding. The three ports in
stage 5 provide a maximum bandwidth of three MacroOPs per
cycle for dispatching to the instruction control unit (ICU).
Appendix B Pipeline and Execution Unit Resources Overview 215

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Figure 5. Fetch/Scan/Align/Decode Pipeline Hardware

The most common x86 instructions flow through the DirectPath
pipeline stages and are decoded by hardware. The less common
instructions, which require microcode assistance, flow through
the VectorPath. Although the DirectPath decodes the common
x86 instructions, it also contains VectorPath instruction data,
which allows it to maintain dispatch order at the end of cycle 5.

Figure 6. Fetch/Scan/Align/Decode Pipeline Stages

Decode

Decode

Decode

Decode

Decode

Decode

Decode

Decode

Decode

Quadword Queue

Instruction
Cache

Entry-Point
Decode

MROM

+

Cycle 1:
FETCH

Cycle 2:
SCAN

Cycle 3:
MECTL/
ALIGN1

Cycle 4:
MEROM/
ALIGN2

Cycle 5:
EDEC/
MEDEC

Cycle 6:
IDEC

VectorPath

DirectPath

3
MacroOPs

SCANFETCH

ALIGN1 ALIGN2 EDEC

IDEC

1 2 3 4 5 6

MECTL MEROM MESEQ

DirectPath

VectorPath
216 Pipeline and Execution Unit Resources Overview Appendix B

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Cycle 1: FETCH The FETCH pipeline stage calculates the address of the next
x86 instruction window to fetch from the processor caches or
system memory.

Cycle 2: SCAN SCAN determines the start and end pointers of instructions.
SCAN can send up to six aligned instructions (DirectPath and
VectorPath) to ALIGN1 and only one VectorPath instruction to
the microcode engine (MENG) per cycle.

Cycle 3 (DirectPath):
ALIGN1

Because each 8-byte buffer (quadword queue) can contain up to
three instructions, ALIGN1 can buffer up to a maximum of nine
instructions, or 24 instruction bytes. ALIGN1 tries to send three
instructions from an 8-byte buffer to ALIGN2 per cycle.

Cycle 3 (VectorPath):
MECTL

For VectorPath instructions, the microcode engine control
(MECTL) stage of the pipeline generates the microcode entry
points.

Cycle 4 (DirectPath):
ALIGN2

ALIGN2 prioritizes prefix bytes, determines the opcode,
ModR/M, and SIB bytes for each instruction and sends the
accumulated prefix information to EDEC.

Cycle 4 (VectorPath):
MEROM

In the microcode engine ROM (MEROM) pipeline stage, the
entry-point generated in the previous cycle, MECTL, is used to
index into the MROM to obtain the microcode lines necessary
to decode the instruction sent by SCAN.

Cycle 5 (DirectPath):
EDEC

The early decode (EDEC) stage decodes information from the
DirectPath stage (ALIGN2) and VectorPath stage (MEROM)
into MacroOPs. In addition, EDEC determines register
pointers, flag updates, immediate values, displacements, and
other information. EDEC then selects either MacroOPs from
the DirectPath or MacroOPs from the VectorPath to send to the
instruction decoder (IDEC) stage.

Cycle 5 (VectorPath):
MEDEC/MESEQ

The microcode engine decode (MEDEC) stage converts x86
instructions into MacroOPs. The microcode engine sequencer
(MESEQ) performs the sequence controls (redirects and
exceptions) for the MENG.

Cycle 6:
IDEC/Rename

At the instruction decoder (IDEC)/rename stage, integer and
floating-point MacroOPs diverge in the pipeline. Integer
MacroOPs are scheduled for execution in the next cycle.
Floating-point MacroOPs have their floating-point stack
operands mapped to registers. Both integer and floating-point
MacroOPs are placed into the ICU.
Appendix B Pipeline and Execution Unit Resources Overview 217

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Integer Pipeline Stages

The integer execution pipeline consists of four or more stages
for scheduling and execution and, if necessary, accessing data
in the processor caches or system memory. There are three
integer pipes associated with the three IEUs.

Figure 7. Integer Execution Pipeline

Figure 7 and Figure 8 show the integer execution resources and
the pipeline stages, which are described in the following
sections.

Figure 8. Integer Pipeline Stages

IEU0 AGU0 IEU1 AGU1 IEU2 AGU2

Integer Multiply (IMUL)

Integer Scheduler
(18-entry)

Instruction Control Unit and Register Files

MacroOPs MacroOPs

Pipeline
Stage:

7

8

EXECSCHED ADDGEN DCACC RESP

7 8 9 10 11
218 Pipeline and Execution Unit Resources Overview Appendix B

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Cycle 7: SCHED In the scheduler (SCHED) pipeline stage, the scheduler buffers
can contain MacroOPs that are waiting for integer operands
from the ICU or the IEU result bus. When all operands are
received, SCHED schedules the MacroOP for execution and
issues the OPs to the next stage, EXEC.

Cycle 8: EXEC In the execution (EXEC) pipeline stage, the OP and its
associated operands are processed by an integer pipe (either
the IEU or the AGU). If addresses must be calculated to access
data necessary to complete the operation, the OP proceeds to
the next stages, ADDGEN and DCACC.

Cycle 9: ADDGEN In the address generation (ADDGEN) pipeline stage, the load
or store OP calculates a linear address, which is sent to the data
cache TLBs and caches.

Cycle 10: DCACC In the data cache access (DCACC) pipeline stage, the address
generated in the previous pipeline stage is used to access the
data cache arrays and TLBs. Any OP waiting in the scheduler
for this data snarfs this data and proceeds to the EXEC stage
(assuming all other operands were available).

Cycle 11: RESP In the response (RESP) pipeline stage, the data cache returns
hit/miss status and data for the request from DCACC.
Appendix B Pipeline and Execution Unit Resources Overview 219

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Floating-Point Pipeline Stages

The floating-point unit (FPU) is implemented as a coprocessor
that has its own out-of-order control in addition to the data
path. The FPU handles all register operations for x87
instructions, all 3DNow! operations, and all MMX operations.
The FPU consists of a stack renaming unit, a register renaming
unit, a scheduler, a register file, and three parallel execution
units. Figure 9 shows a block diagram of the dataflow through
the FPU.

Figure 9. Floating-Point Unit Block Diagram

The floating-point pipeline stages 7–15 are shown in Figure 10
and described in the following sections. Note that the floating-
point pipe and integer pipe separates at cycle 7.

Figure 10. Floating-Point Pipeline Stages

Instruction Control UnitInstruction Control Unit

FADD
• MMX™ ALU
• 3DNow!™

FADD
• MMX™ ALU
• 3DNow!™

FSTOREFSTORE
FMUL

• MMX ALU
• MMX Mul
• 3DNow!

FMUL
• MMX ALU
• MMX Mul
• 3DNow!

Stack MapStack Map

Register RenameRegister Rename

Scheduler (36-entry)Scheduler (36-entry)

FPU Register File (88-entry)FPU Register File (88-entry)

PipelinePipeline
StageStage

77

88

1111

99
1010

1212
toto
1515

REGRENSTKREN SCHEDW SCHED FREG FEXE1 FEXE4

7 8 9 10 11 12 15
220 Pipeline and Execution Unit Resources Overview Appendix B

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Cycle 7: STKREN The stack rename (STKREN) pipeline stage in cycle 7 receives
up to three MacroOPs from IDEC and maps stack-relative
register tags to virtual register tags.

Cycle 8: REGREN The register renaming (REGREN) pipeline stage in cycle 8 is
responsible for register renaming. In this stage, virtual register
tags are mapped into physical register tags. Likewise, each
destination is assigned a new physical register. The MacroOPs
are then sent to the 36-entry FPU scheduler.

Cycle 9: SCHEDW The scheduler write (SCHEDW) pipeline stage in cycle 9 can
receive up to three MacroOPs per cycle.

Cycle 10: SCHED The schedule (SCHED) pipeline stage in cycle 10 schedules up
to three MacroOPs per cycle from the 36-entry FPU scheduler
to the FREG pipeline stage to read register operands.
MacroOPs are sent when their operands and/or tags are
obtained.

Cycle 11: FREG The register file read (FREG) pipeline stage reads the floating-
point register file for any register source operands of
MacroOPs. The register file read is done before the MacroOPs
are sent to the floating-point execution pipelines.

Cycles 12–15:
Floating-Point
Execution (FEXEC1–4)

The FPU has three logical pipes—FADD, FMUL, and FSTORE.
Each pipe may have several associated execution units. MMX
execution is in both the FADD and FMUL pipes, with the
exception of MMX instructions involving multiplies, which are
limited to the FMUL pipe. The FMUL pipe has special support
for long latency operations.

DirectPath/VectorPath operations are dispatched to the FPU
during cycle 6, but are not acted upon until they receive
validation from the ICU in cycle 7.
Appendix B Pipeline and Execution Unit Resources Overview 221

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Execution Unit Resources

Terminology

The execution units operate with two types of register values—
operands and results. There are three operand types and two
result types, which are described in this section.

Operands The three types of operands are as follows:

■ Address register operands—Used for address calculations of
load and store instructions

■ Data register operands—Used for register instructions

■ Store data register operands—Used for memory stores

Results The two types of results are as follows:

■ Data register results—Produced by load or register instruc-
tions

■ Address register results—Produced by LEA or PUSH instruc-
tions

Examples The following examples illustrate the operand and result
definitions:

ADD EAX, EBX

The ADD instruction has two data register operands (EAX
and EBX) and one data register result (EAX).

MOV EBX, [ESP+4*ECX+8] ;Load

The Load instruction has two address register operands
(ESP and ECX as base and index registers, respectively)
and a data register result (EBX).

MOV [ESP+4*ECX+8], EAX ;Store

The Store instruction has a data register operand (EAX)
and two address register operands (ESP and ECX as base
and index registers, respectively).

LEA ESI, [ESP+4*ECX+8]

The LEA instruction has address register operands (ESP
and ECX as base and index registers, respectively), and an
address register result (ESI).
222 Pipeline and Execution Unit Resources Overview Appendix B

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Integer Pipeline Operations

Table 2 shows the category or type of operations handled by the
integer pipeline. Table 3 shows examples of the decode type.

As shown in Table 2, the MOV instruction early decodes in the
DirectPath decoder and requires two OPs—an address
generation operation for the indirect address and a data load
from memory into a register. The ADD instruction early
decodes in the DirectPath decoder and requires a single OP
that can be executed in one of the three IEUs. The CMP
instruction early decodes in the VectorPath and requires three
OPs—an address generation operation for the indirect address,
a data load from memory, and a compare to CX using an IEU.
The final JZ instruction is a simple operation that early decodes
in the DirectPath decoder and requires a single OP. Not shown
is a load-op-store instruction, which translates into only one
MacroOP (one AGU OP, one IEU OP, and one L/S OP).

Table 2. Integer Pipeline Operation Types

Category Execution Unit

Integer Memory Load or Store Operations L/S

Address Generation Operations AGU

Integer Execution Unit Operations IEU

Integer Multiply Operations IMUL

Table 3. Integer Decode Types

x86 Instruction Decode Type OPs

MOV CX, [SP+4] DirectPath AGU, L/S

ADD AX, BX DirectPath IEU

CMP CX, [AX] VectorPath AGU, L/S, IEU

JZ Addr DirectPath IEU
Appendix B Pipeline and Execution Unit Resources Overview 223

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Floating-Point Pipeline Operations

Table 4 shows the category or type of operations handled by the
floating-point execution units. Table 5 shows examples of the
decode types.

As shown in Table 4, the FADD register-to-register instruction
generates a single MacroOP targeted for the floating-point
scheduler. FSIN is considered a VectorPath instruction because
it is a complex instruction with long execution times, as
compared to the more common floating-point instructions. The
MMX PFACC instruction is DirectPath decodeable and
generates a single MacroOP targeted for the arithmetic
operation execution pipeline in the floating-point logic. Just
like PFACC, a single MacroOP is early decoded for the 3DNow!
PFRSQRT instruction, but it is targeted for the multiply
operation execution pipeline.

Table 4. Floating-Point Pipeline Operation Types

Category Execution Unit

FPU/3DNow!/MMX Load/store or Miscella-
neous Operations FSTORE

FPU/3DNow!/MMX Multiply Operation FMUL

FPU/3DNow!/MMX Arithmetic Operation FADD

Table 5. Floating-Point Decode Types

x86 Instruction Decode Type OPs

FADD ST, ST(i) DirectPath FADD

FSIN VectorPath various

PFACC DirectPath FADD

PFRSQRT DirectPath FMUL
224 Pipeline and Execution Unit Resources Overview Appendix B

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Load/Store Pipeline Operations

The AMD Athlon processor decodes any instruction that
references memory into primitive load/store operations. For
example, consider the following code sample:

MOV AX, [EBX] ;1 load MacroOP
PUSH EAX ;1 store MacroOP
POP EAX ;1 load MacroOP
ADD [EAX], EBX ;1 load/store and 1 IEU Mac-
roOPs
FSTP [EAX] ;1 store MacroOP
MOVQ [EAX], MM0 ;1 store MacroOP

As shown in Table 6, the load/store unit (LSU) consists of a
three-stage data cache lookup.

Loads and stores are first dispatched in order into a 12-entry
deep reservation queue called LS1. LS1 holds loads and stores
that are waiting to enter the cache subsystem. Loads and stores
are allocated into LS1 entries at dispatch time in program
order, and are required by LS1 to probe the data cache in
program order. The AGUs can calculate addresses out of
program order, therefore, LS1 acts as an address reorder buffer.

When a load or store is scanned out of the LS1 queue (stage 1),
it is deallocated from the LS1 queue and inserted into the data
cache probe pipeline (stage 2 and stage 3). Up to two memory
operations can be scheduled (scanned out of LS1) to access the
data cache per cycle. The LSU can handle the following:

■ Two 64-bit loads per cycle or

■ One 64-bit load and one 64-bit store per cycle or

■ Two 32-bit stores per cycle

Table 6. Load/Store Unit Stages

Stage 1 (Cycle 8) Stage 2 (Cycle 9) Stage 3 (Cycle 10)

Address Calculation / LS1
Scan

Transport Address to Data
Cache

Data Cache Access / LS2
Data Forward
Appendix B Pipeline and Execution Unit Resources Overview 225

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Code Sample Analysis
The samples in Table 7 on page 227 and Table 8 on page 228
show the execution behavior of several series of instructions as
a function of decode constraints, dependencies, and execution
resource constraints.

The sample tables show the x86 instructions, the decode pipe in
the integer execution pipeline, the decode type, the clock
counts, and a description of the events occurring within the
processor. The decode pipe gives the specific IEU used (see
Figure 7 on page 218). The decode type specifies either
VectorPath (VP) or DirectPath (DP).

The following nomenclature is used to describe the current
location of a particular operation:

■ D—Dispatch stage (Allocate in ICU, reservation stations,
load-store (LS1) queue)

■ I—Issue stage (Schedule operation for AGU or FU execu-
tion)

■ E—Integer Execution Unit (IEU number corresponds to
decode pipe)

■ &—Address Generation Unit (AGU number corresponds to
decode pipe)

■ M—Multiplier Execution

■ S—Load/Store pipe stage 1 (Schedule operation for
load/store pipe)

■ A—Load/Store pipe stage 2 (1st stage of data cache/LS2
buffer access)

■ $—Load/Store pipe stage 3 (2nd stage of data cache/LS2
buffer access)

Note: Instructions execute more efficiently (that is, without
delays) when scheduled apart by suitable distances based on
dependencies. In general, the samples in this section show
poorly scheduled code in order to illustrate the resultant
effects.
226 Pipeline and Execution Unit Resources Overview Appendix B

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Table 7. Sample 1—Integer Register Operations

Instruction
 Number

Decode
Pipe

Decode
Type

Clocks

Instruction 1 2 3 4 5 6 7 8

1 IMUL EAX, ECX 0 VP D I M M M M

2 INC ESI 0 DP D I E

3 MOV EDI, 0x07F4 1 DP D I E

4 ADD EDI, EBX 2 DP D I E

5 SHL EAX, 8 0 DP D I E

6 OR EAX, 0x0F 1 DP D I E

7 INC EBX 2 DP D I E

8 ADD ESI, EDX 0 DP D I E

Comments for Each Instruction Number

1. The IMUL is a VectorPath instruction. It cannot be decoded or paired with other operations and,
therefore, dispatches alone in pipe 0. The multiply latency is four cycles.

2. The simple INC operation is paired with instructions 3 and 4. The INC executes in IEU0 in cycle 4.

3. The MOV executes in IEU1 in cycle 4.

4. The ADD operation depends on instruction 3. It executes in IEU2 in cycle 5.

5. The SHL operation depends on the multiply result (instruction 1). The MacroOP waits in a reservation
station and is eventually scheduled to execute in cycle 7 after the multiply result is available.

6. This operation executes in cycle 8 in IEU1.

7. This simple operation has a resource contention for execution in IEU2 in cycle 5. Therefore, the operation
does not execute until cycle 6.

8. The ADD operation executes immediately in IEU0 after dispatching.
Appendix B Pipeline and Execution Unit Resources Overview 227

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002

2

n

e

n

e
,

.

Table 8. Sample 2—Integer Register and Memory Load Operations

Instruc
 Num

Decode
Pipe

Decode
Type

Clocks

Instruction 1 2 3 4 5 6 7 8 9 10 11 1

1 DEC EDX 0 DP D I E

2 MOV EDI, [ECX] 1 DP D I &/S A $

3 SUB EAX, [EDX+20] 2 DP D I &/S A $/I E

4 SAR EAX, 5 0 DP D I E

5 ADD ECX, [EDI+4] 1 DP D I &/S A $

6 AND EBX, 0x1F 2 DP D I E

7 MOV ESI, [0x0F100] 0 DP D I & S A $

8 OR ECX, [ESI+EAX*4+8] 1 DP D I &/S A $ E

Comments for Each Instruction Number

1. The ALU operation executes in IEU0.

2. The load operation generates the address in AGU1 and is simultaneously scheduled for the load/store pipe in cycle 3. I
cycles 4 and 5, the load completes the data cache access.

3. The load-execute instruction accesses the data cache in tandem with instruction 2. After the load portion completes, th
subtraction is executed in cycle 6 in IEU2.

4. The shift operation executes in IEU0 (cycle 7) after instruction 3 completes.

5. This operation is stalled on its address calculation waiting for instruction 2 to update EDI. The address is calculated i
cycle 6. In cycle 7/8, the cache access completes.

6. This simple operation executes quickly in IEU2

7. The address for the load is calculated in cycle 5 in AGU0. However, the load is not scheduled to access the data cach
until cycle 6. The load is blocked for scheduling to access the data cache for one cycle by instruction 5. In cycles 7 and 8
instruction 7 accesses the data cache concurrently with instruction 5.

8. The load execute instruction accesses the data cache in cycles 10/11 and executes the ‘OR’ operation in IEU1 in cycle 12
228 Pipeline and Execution Unit Resources Overview Appendix B

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Appendix C

Implementation of Write
Combining
Introduction

This appendix describes the memory write-combining feature
as implemented in the AMD Athlon™ processor family. The
AMD Athlon processor supports the memory type and range
register (MTRR) and the page attribute table (PAT) extensions,
which allow software to define ranges of memory as either
writeback (WB), write-protected (WP), writethrough (WT),
uncacheable (UC), or write-combining (WC).

Defining the memory type for a range of memory as WC or WT
allows the processor to conditionally combine data from
multiple write cycles that are addressed within this range into a
merge buffer. Merging multiple write cycles into a single write
cycle reduces processor bus utilization and processor stalls,
thereby increasing the overall system performance.

To understand the information presented in this appendix, the
reader should possess a knowledge of K86™ processors, the x86
architecture, and programming requirements.
Appendix C Implementation of Write Combining 229

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Write-Combining Definitions and Abbreviations

This appendix uses the following definitions and abbreviations:

■ UC—Uncacheable memory type

■ WC—Write-combining memory type

■ WT—Writethrough memory type

■ WP—Write-protected memory type

■ WB—Writeback memory type

■ One Byte—8 bits

■ One Word—16 bits

■ Longword—32 bits (same as a x86 doubleword)

■ Quadword—64 bits or 2 longwords

■ Octaword—128 bits or 2 quadwords

■ Cache Block—64 bytes or 4 octawords or 8 quadwords

What is Write Combining?

Write combining is the merging of multiple memory write
cycles that target locations within the address range of a write
buffer. The AMD Athlon processor combines multiple memory-
write cycles to a 64-byte buffer whenever the memory address is
within a WC or WT memory type region. The processor
continues to combine writes to this buffer without writing the
data to the system, as long as certain rules apply (see Table 9 on
page 232 for more information).

Programming Details

The steps required for programming write combining on the
AMD Athlon processor are as follows:

1. Verify the presence of an AMD Athlon processor by using
the CPUID instruction to check for the instruction family
code and vendor identification of the processor. Standard
function 0 on AMD processors returns a vendor identifica-
tion string of “AuthenticAMD” in registers EBX, EDX, and
ECX. Standard function 1 returns the processor signature in
230 Implementation of Write Combining Appendix C

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
register EAX, where EAX[11–8] contains the instruction
family code. For the AMD Athlon processor, the instruction
family code is six.

2. In addition, the presence of the MTRRs is indicated by bit
12 and the presence of the PAT extension is indicated by bit
16 of the extended features bits returned in the EDX regis-
ter by CPUID function 8000_0001h. See the AMD Processor
Recognition Application Note, order no. 20734 for more
details on the CPUID instruction.

3. Write combining is controlled by the MTRRs and PAT.
Write combining should be enabled for the appropriate
memory ranges. The AMD Athlon processor MTRRs and
PAT are compatible with the Pentium® II.

Write-Combining Operations

In order to improve system performance, the AMD Athlon
processor aggressively combines multiple memory-write cycles
of any data size that address locations within a 64-byte write
buffer that is aligned to a cache-line boundary. The data sizes
can be bytes, words, longwords, or quadwords.

WC memory type writes can be combined in any order up to a
full 64-byte sized write buffer.

WT memory type writes can only be combined up to a fully
aligned quadword in the 64-byte buffer, and must be combined
contiguously in ascending order. Combining may be opened at
any byte boundary in a quadword, but is closed by a write that is
either not “contiguous and ascending” or fills byte 7.

All other memory types for stores that go through the write
buffer (UC and WP) cannot be combined.

Combining is able to continue until interrupted by one of the
conditions listed in Table 9 on page 232. When combining is
interrupted, one or more bus commands are issued to the
system for that write buffer, as described by Table 10 on
page 233.
Appendix C Implementation of Write Combining 231

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Table 9. Write Combining Completion Events

Event Comment

Non-WB write outside of
current buffer

The first non-WB write to a different cache block address
closes combining for previous writes. WB writes do not affect
write combining. Only one line-sized buffer can be open for
write combining at a time. Once a buffer is closed for write

combining, it cannot be reopened for write combining.

I/O Read or Write
Any IN/INS or OUT/OUTS instruction closes combining. The

implied memory type for all IN/OUT instructions is UC,
which cannot be combined.

Serializing instructions

Any serializing instruction closes combining. These instruc-
tions include: MOVCRx, MOVDRx, WRMSR, INVD, INVLPG,
WBINVD, LGDT, LLDT, LIDT, LTR, CPUID, IRET, RSM, INIT,

HALT.

Flushing instructions Any flush instruction causes the WC to complete.

Locks
Any instruction or processor operation that requires a cache
or bus lock closes write combining before starting the lock.

Writes within a lock can be combined.

Uncacheable Read
A UC read closes write combining. A WC read closes combin-
ing only if a cache block address match occurs between the

WC read and a write in the write buffer.

Different memory type
Any WT write while write-combining for WC memory or any
WC write while write combining for WT memory closes write

combining.

Buffer full Write combining is closed if all 64 bytes of the write buffer
are valid.

WT time-out
If 16 processor clocks have passed since the most recent
write for WT write combining, write combining is closed.

There is no time-out for WC write combining.

WT write fills byte 7

Write combining is closed if a write fills the most significant
byte of a quadword, which includes writes that are mis-
aligned across a quadword boundary. In the misaligned

case, combining is closed by the LS part of the misaligned
write and combining is opened by the MS part of the mis-

aligned store.

WT Nonsequential

If a subsequent WT write is not in ascending sequential
order, the write combining completes. WC writes have no
addressing constraints within the 64-byte line being com-

bined.

TLB AD bit set
Write combining is closed whenever a TLB reload sets the

accessed (A) or dirty (D) bits of a Pde or Pte.
232 Implementation of Write Combining Appendix C

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Sending Write-Buffer Data to the System

Once write combining is closed for a 64-byte write buffer, the
contents of the write buffer are eligible to be sent to the system
as one or more AMD Athlon system bus commands. Table 10
lists the rules for determining what system commands are
issued for a write buffer, as a function of the alignment of the
valid buffer data.

Table 10. AMD Athlon™ System Bus Command Generation Rules

1. If all eight quadwords are either full (8 bytes valid) or empty (0 bytes valid), a
Write-Quadword system command is issued, with an 8-byte mask representing
which of the eight quadwords are valid. If this case is true, do not proceed to the
next rule.

2. If all longwords are either full (4 bytes valid) or empty (0 bytes valid), a Write-Long-
word system command is issued for each 32-byte buffer half that contains at least
one valid longword. The mask for each Write-Longword system command indicates
which longwords are valid in that 32-byte write buffer half. If this case is true, do
not proceed to the next rule.

3. Sequence through all eight quadwords of the write buffer, from quadword 0 to
quadword 7. Skip over a quadword if no bytes are valid. Issue a Write-Quad system
command if all bytes are valid, asserting one mask bit. Issue a Write-Longword sys-
tem command if the quadword contains one aligned longword, asserting one mask
bit. Otherwise, issue a Write-Byte system command if there is at least one valid
byte, asserting a mask bit for each valid byte.
Appendix C Implementation of Write Combining 233

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
234 Implementation of Write Combining Appendix C

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Appendix D

Performance-Monitoring
Counters
This chapter describes how to use the AMD Athlon™ processor
performance monitoring counters.

Overview

The AMD Athlon processor provides four 48-bit performance
counters, which allows four types of events to be monitored
simultaneously. These counters can either count events or
measure duration. When counting events, a counter is
incremented each time a specified event takes place or a
specified number of events takes place. When measuring
duration, a counter counts the number of processor clocks that
occur while a specified condition is true. The counters can
count events or measure durations that occur at any privilege
level. Table 11 on page 238 lists the events that can be counted
with the performance monitoring counters.

The performance counters are not guaranteed to be fully
accurate and should be used as a relative measure of
performance to assist in application tuning. Unlisted event
numbers are reserved and their results undefined.
Appendix D Performance-Monitoring Counters 235

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Performance Counter Usage

The performance monitoring counters are supported by eight
MSRs—PerfEvtSel[3:0] are the performance event select
MSRs, and PerfCtr[3:0] are the performance counter MSRs.
These registers can be read from and written to using the
RDMSR and WRMSR instructions, respectively.

The PerfEvtSel[3:0] registers are located at MSR locations
C001_0000h to C001_0003h. The PerfCtr[3:0] registers are
located at MSR locations C001_0004h to C0001_0007h and are
64-byte registers.

The PerfEvtSel[3:0] registers can be accessed using the
RDMSR/WRMSR instructions only when operating at privilege
level 0. The PerfCtr[3:0] MSRs can be read from any privilege
level using the RDPMC (read performance-monitoring
counters) instruction, if the PCE flag in CR4 is set.

PerfEvtSel[3:0] MSRs (MSR Addresses C001_0000h–C001_0003h)

The PerfEvtSel[3:0] MSRs, shown in Figure 11, control the
operation of the performance-monitoring counters, with one
register used to set up each counter. These MSRs specify the
events to be counted, how they should be counted, and the
privilege levels at which counting should take place. The
functions of the flags and fields within these MSRs are as are
described in the following sections.
236 Performance-Monitoring Counters Appendix D

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Figure 11. PerfEvtSel[3:0] Registers

Event Select Field
(Bits 0–7)

These bits are used to select the event to be monitored. See
Table 11 on page 238 for a list of event masks and their 8-bit
codes.

Unit Mask Field
(Bits 8–15)

These bits are used to further qualify the event selected in the
event select field. For example, for some cache events, the mask
is used as a MESI-protocol qualifier of cache states. See
Table 11 on page 238 for a list of unit masks and their 8-bit
codes.

USR (User Mode) Flag
(Bit 16)

Events are counted only when the processor is operating at
privilege levels 1, 2 or 3. This flag can be used in conjunction
with the OS flag.

OS (Operating System
Mode) Flag (Bit 17)

Events are counted only when the processor is operating at
privilege level 0. This flag can be used in conjunction with the
USR flag.

E (Edge Detect) Flag
(Bit 18)

When this flag is set, edge detection of events is enabled. The
processor counts the number of negated-to-asserted transitions
of any condition that can be expressed by the other fields. The
mechanism is limited in that it does not permit back-to-back
assertions to be distinguished. This mechanism allows software
to measure not only the fraction of time spent in a particular
state, but also the average length of time spent in such a state
(for example, the time spent waiting for an interrupt to be
serviced).

9 8 7 6 5 4 3 2 1 010111213141516171819202131 30 29 28 27 26 25 24 23 22

O
S

I
N
T

U
S
R

Reserved

P
C

EE
N

I
N
V

Unit Mask Event MaskCounter Mask

SymbolDescriptionBit
USRUser Mode16
OSOperating System Mode17
E Edge Detect18
PCPin Control19
INTAPIC Interrupt Enable20
ENEnable Counter22
INVInvert Mask23
Appendix D Performance-Monitoring Counters 237

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
PC (Pin Control) Flag
(Bit 19)

When this flag is set, the processor toggles the PMi pins when
the counter overflows. When this flag is clear, the processor
toggles the PMi pins and increments the counter when
performance monitoring events occur. The toggling of a pin is
defined as assertion of the pin for one bus clock followed by
negation.

INT (APIC Interrupt
Enable) Flag (Bit 20)

When this flag is set, the processor generates an interrupt
through its local APIC on counter overflow.

EN (Enable Counter)
Flag (Bit 22)

This flag enables/disables the PerfEvtSeln MSR. When set,
performance counting is enabled for this counter. When clear,
this counter is disabled.

INV (Invert) Flag
(Bit 23)

By inverting the Counter Mask Field, this flag inverts the result
of the counter comparison, allowing both greater than and less
than comparisons.

Counter Mask Field
(Bits 31–24)

For events which can have multiple occurrences within one
clock, this field is used to set a threshold. If the field is non-zero,
the counter increments each time the number of events is
greater than or equal to the counter mask. Otherwise if this
field is zero, then the counter increments by the total number of
events.

Table 11. Performance-Monitoring Counters

Event
Number

Source
Unit Notes / Unit Mask (bits 15–8) Event Description

40h DC Data cache accesses

41h DC Data cache misses

42h DC

xxx1_xxxxb = Modified (M)

xxxx_1xxxb = Owner (O)

xxxx_x1xxb = Exclusive (E)

xxxx_xx1xb = Shared (S)

xxxx_xxx1b = Invalid (I)

Data cache refills from L2

43h DC

xxx1_xxxxb = Modified (M)

xxxx_1xxxb = Owner (O)

xxxx_x1xxb = Exclusive (E)

xxxx_xx1xb = Shared (S)

xxxx_xxx1b = Invalid (I)

Data cache refills from system
238 Performance-Monitoring Counters Appendix D

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
44h DC

xxx1_xxxxb = Modified (M)

xxxx_1xxxb = Owner (O)

xxxx_x1xxb = Exclusive (E)

xxxx_xx1xb = Shared (S)

xxxx_xxx1b = Invalid (I)

Data cache writebacks

45h DC L1 DTLB misses and L2 DTLB hits

46h DC L1 and L2 DTLB misses

47h DC Misaligned data references

80h PC Instruction cache fetches

81h PC Instruction cache misses

84h PC L1 ITLB misses (and L2 ITLB hits)

85h PC (L1 and) L2 ITLB misses

C0h FR Retired instructions (includes excep-
tions, interrupts, resyncs)

C1h FR Retired Ops

C2h FR
Retired branches (conditional, uncondi-
tional, exceptions, interrupts)

C3h FR Retired branches mispredicted

C4h FR Retired taken branches

C5h FR Retired taken branches mispredicted

C6h FR Retired far control transfers

C7h FR Retired resync branches (only non-con-
trol transfer branches counted)

CDh FR Interrupts masked cycles (IF=0)

CEh FR Interrupts masked while pending cycles
(INTR while IF=0)

CFh FR Number of taken hardware interrupts

Table 11. Performance-Monitoring Counters (Continued)

Event
Number

Source
Unit Notes / Unit Mask (bits 15–8) Event Description
Appendix D Performance-Monitoring Counters 239

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
PerfCtr[3:0] MSRs (MSR Addresses C001_0004h–C001_0007h)

The PerfCtr registers are model-specific registers that can be
read using a special read performance-monitoring counter
instruction, RDPMC. RDPMC loads the contents of the
PerfCtrn register specified by the ECX register (which contains
the MSR number for the performance counter), into the EDX
register and the EAX register. The high-32 bits are loaded into
EDX, and the low-32 bits are loaded into EAX. RDPMC can be
executed only at CPL=0, unless system software enables use of
the instruction at all privilege levels. RDPMC can be enabled
for use at all privilege levels by setting CR4.PCE (the
performance-monitor counter-enable bit) to 1. When CR4.PCE
ia 0, attempts to execute RDPMC result in a general-protection
exception (#GP) if CPL is higher than 0.

The performance counters can also be read and written by
system software running at CPL=0 using the RDMSR and
WRMSR instructions, respectively. Writing the performance
counters can be useful if software wants to count a specific
number of events, and then trigger an interrupt when that
count is reached. An interrupt can be triggered when a
performance counter overflows. Software should use the
WRMSR instruction to load the count as a two’s-complement
negative number into the performance counter. This causes the
counter to overflow after counting the appropriate number of
times.

The performance counters are not guaranteed to produce
identical measurements each time they are used to measure a
particular instruction sequence, and they should not be used to
take measurements of very-small instruction-sequences. The
RDPMC instruction is not serializing, and it can be executed
out-of-order with respect to other instructions around it. Even
when bound by ser ial iz ing instruct ions , the system
environment at the time the instruction is executed can cause
events to be counted before the counter value is loaded into
EDX:EAX.
240 Performance-Monitoring Counters Appendix D

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Using Performance
Counters

Performance counts are started and stopped in a PerfCtr
register by setting the corresponding PerfEvtSeln.EN bit to 1.
Counting is stopped by clearing PerfEvtSeln.EN to 0. Software
must initialize the remaining PerfEvtSel fields with the
appropriate setup information prior to or at the same time EN
is set. Counting begins when the WRMSR instruction that sets
PerfEvtSeln.EN to 1 completes execution. Likewise, counting
stops when the WRMSR instruction that clears PerfEvtSeln.EN
to 0 completes execution.

Counter Overflow Some processor implementations support an interrupt-on-
overflow capability that allows an interrupt to occur when one
of the PerfCtr registers overflows. The source and type of
interrupt is implementation dependent. Some implementations
cause a debug interrupt to occur, while others make use of the
local APIC to specify the interrupt vector and trigger the
interrupt when an overflow occurs. Software controls the
triggering of an interrupt by setting or clearing the
PerfEvtSeln.INT bit.

If system software makes use of the interrupt-on-overflow
capability, an interrupt handler must be provided that can
record information relevant to the counter overflow. Prior to
returning from the interrupt handler, the performance counter
can be re-initialized to its previous state so that another
interrupt occurs when the appropriate number of events are
counted.
Appendix D Performance-Monitoring Counters 241

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
242 Performance-Monitoring Counters Appendix D

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Appendix E

Programming the MTRR and
PAT
Introduction

The AMD Athlon™ processor includes a set of memory type
and range registers (MTRRs) to control cacheability and access
to specified memory regions. The processor also includes the
Page Address Table for defining attributes of pages. This
chapter documents the use and capabilities of this feature.

The purpose of the MTRRs is to provide system software with
the ability to manage the memory mapping of the hardware.
Both the BIOS software and operating systems utilize this
capability. The AMD Athlon processor’s implementation is
compatible with the Pentium® II. Prior to the MTRR
mechanism, chipsets usually provided this capability.

Memory Type Range Register (MTRR) Mechanism

The memory type and range registers allow the processor to
determine cacheability of various memory locations prior to
bus access and to optimize access to the memory system. The
AMD Athlon processor implements the MTRR programming
model in a manner compatible with Pentium II.
Appendix E Programming the MTRR and PAT 243

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
There are two types of address ranges: fixed and variable (see
Figure 12 on page 245). For each address range, there is a
memory type. For each 4K, 16K or 64K segment within the first
1 Mbyte of memory, there is one fixed address MTRR. The fixed
address ranges all exist in the first 1 Mbyte. There are eight
variable address ranges above 1 Mbytes. Each is programmed to
a specific memory starting address, size and alignment. If a
variable range overlaps the lower 1 MByte and the fixed
MTRRs are enabled, then the fixed-memory type dominates.

The address regions have the following priority with respect to
each other:

1. Fixed address ranges

2. Variable address ranges

3. Default memory type (UC at reset)
244 Programming the MTRR and PAT Appendix E

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Figure 12. MTRR Mapping of Physical Memory

0

FFFFFFFFh

512 Kbytes

256 Kbytes

256 Kbytes

8 Fixed Ranges
(64 Kbytes each)

64 Fixed Ranges
(4 Kbytes each)
16 Fixed Ranges
(16 Kbytes each) 80000h

C0000h

100000h

0-8 Variable Ranges
(212 to 232)

SMM TSeg
Appendix E Programming the MTRR and PAT 245

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Memory Types Five standard memory types are defined by the AMD Athlon
processor: writethrough (WT), writeback (WB), write-protect
(WP), write-combining (WC), and uncacheable (UC). These are
described in Table 12.

MTRR Capability
Register Format

The MTRR capability register is a read-only register that
defines the specific MTRR capability of the processor and is
defined as follows.

Figure 13. MTRR Capability Register Format

For the AMD Athlon processor, the MTRR capability register
should contain 0508h (write-combining, fixed MTRRs
supported, and eight variable MTRRs defined).

Table 12. Memory Type Encodings

Type Number Type Name Type Description

00h UC—Uncacheable Uncacheable for reads or writes. Cannot be combined. Must be non-spec-
ulative for reads or writes.

01h WC—Write-Combining Uncacheable for reads or writes. Can be combined. Can be speculative for
reads. Writes can never be speculative.

04h WT—Writethrough Reads allocate on a miss, but only to the S-state. Writes do not allocate on
a miss and, for a hit, writes update the cached entry and main memory.

05h WP—Write-Protect WP is functionally the same as the WT memory type, except stores do not
actually modify cached data and do not cause an exception.

06h WB—Writeback

Reads will allocate on a miss, and will allocate to:
Sstate if returned with a ReadDataShared command.
Mstate if returned with a ReadDataDirty command.

Writes allocate to the M state, if the read allows the line to be marked E.

8 7 063

F
I
X

91011

W
C VCNT

Symbol Description Bits
WC Write Combining Memory Type 10
FIX Fixed Range Registers 8
VCNT No. of Variable Range Registers 7–0

Reserved
246 Programming the MTRR and PAT Appendix E

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
MTRR Default Type Register Format. The MTRR default type register
is defined as follows.

Figure 14. MTRR Default Type Register Format

E MTRRs are enabled when set. All MTRRs (both fixed and
variable range) are disabled when clear, and all of
physical memory is mapped as uncacheable memory
(reset state = 0).

FE Fixed-range MTRRs are enabled when set. All MTRRs
are disabled when clear. When the fixed-range MTRRs
are enabled and an overlap occurs with a variable-range
MTRR, the fixed-range MTRR takes priority (reset state
= 0).

Type Defines the default memory type (reset state = 0). See
Table 13 for more details.

8 7 3 2 1 063 91011

F
E Type

Symbol Description Bits
E MTRRs Enabled 11
FE Fixed Range Enabled 10
Type Default Memory Type 7–0

Reserved

E

Appendix E Programming the MTRR and PAT 247

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Note that if two or more variable memory ranges match then
the interactions are defined as follows:

1. If the memory types are identical, then that memory type is
used.

2. If one or more of the memory types is UC, the UC memory
type is used.

3. If one or more of the memory types is WT and the only other
matching memory type is WB then the WT memory type is
used.

4. Otherwise, if the combination of memory types is not listed
above then the behavior of the processor is undefined.

MTRR Overlapping The Intel documentation (P6/PII) states that the mapping of
large pages into regions that are mapped with differing memory
types can result in undefined behavior. However, testing shows
that these processors decompose these large pages into 4-Kbyte
pages.

When a large page (2 Mbytes/4 Mbytes) mapping covers a
region that contains more than one memory type (as mapped by
the MTRRs), the AMD Athlon processor does not suppress the
caching of that large page mapping and only caches the
mapping for just that 4-Kbyte piece in the 4-Kbyte TLB.
Therefore, the AMD Athlon processor does not decompose
large pages under these conditions. The fixed range MTRRs are

Table 13. Standard MTRR Types and Properties

Memory Type Encoding in
MTRR

Internally
Cacheable

Writeback
Cacheable

Allows
Speculative

Reads
Memory Ordering Model

Uncacheable (UC) 0 No No No Strong ordering

Write Combining (WC) 1 No No Yes Weak ordering

Reserved 2 - - - -

Reserved 3 - - - -

Writethrough (WT) 4 Yes No Yes Speculative ordering

Write Protected (WP) 5
Yes, reads

No, Writes
No Yes Speculative ordering

Writeback (WB) 6 Yes Yes Yes Speculative ordering

Reserved 7-255 - - - -
248 Programming the MTRR and PAT Appendix E

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
not affected by this issue, only the variable range (and MTRR
DefType) registers are affected.

Page Attribute Table (PAT)

The Page Attribute Table (PAT) is an extension of the page
table entry format, which allows the specification of memory
types to regions of physical memory based on the linear
address. The PAT provides the same functionality as MTRRs
with the flexibility of the page tables. It provides the operating
systems and applications to determine the desired memory
type for optimal performance. PAT support is detected in the
feature flags (bit 16) of the CPUID instruction.

MSR Access The PAT is located in a 64-bit MSR at location 277h. It is
illustrated in Figure 15. Each of the eight PAn fields can
contain the memory type encodings as described in Table 12 on
page 246. An attempt to write an undefined memory type
encoding into the PAT will generate a GP fault.

Figure 15. Page Attribute Table (MSR 277h)

2 031

PA0

Reserved

10 818 1626 24

PA1PA2PA3

34 3263

PA4

42 4050 4858 56

PA5PA6PA7
Appendix E Programming the MTRR and PAT 249

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Accessing the PAT A 3-bit index consisting of the PATi, PCD, and PWT bits of the
page table entry, is used to select one of the seven PAT register
fields to acquire the memory type for the desired page (PATi is
defined as bit 7 for 4-Kbyte PTEs and bit 12 for PDEs which
map to 2-Mbyte or 4-Mbyte pages). The memory type from the
PAT is used instead of the PCD and PWT for the effective
memory type.

A 2-bit index consisting of PCD and PWT bits of the page table
entry is used to select one of four PAT register fields when PAE
(page address extensions) is enabled, or when the PDE doesn’t
describe a large page. In the latter case, the PATi bit for a PTE
(bit 7) corresponds to the page size bit in a PDE. Therefore, the
OS should only use PA0-3 when setting the memory type for a
page table that is also used as a page directory. See Table 14.

MTRRs and PAT The processor contains MTRRs as described earlier which
provide a limited way of assigning memory types to specific
regions. However, the page tables allow memory types to be
assigned to the pages used for linear to physical translation.

The memory type as defined by PAT and MTRRs are combined
to determine the effective memory type as listed in Table 15
and Table 16. Shaded areas indicate reserved settings.

Table 14. PATi 3-Bit Encodings

PATi PCD PWT PAT Entry

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7
250 Programming the MTRR and PAT Appendix E

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Table 15. Effective Memory Type Based on PAT and MTRRs

PAT Memory Type MTRR Memory Type Effective Memory Type

UC- WB, WT, WP, WC UC-Page

 UC UC-MTRR

WC x WC

WT WB, WT WT

UC UC

WC CD

WP CD

WP WB, WP WP

UC UC-MTRR

WC, WT CD

WB WB WB

UC UC

WC WC

WT WT

WP WP
Notes:

1. UC-MTRR indicates that the UC attribute came from the MTRRs and that the processor caches
should not be probed for performance reasons.

2. UC-Page indicates that the UC attribute came from the page tables and that the processor
caches must be probed due to page aliasing.

3. All reserved combinations default to CD.
Appendix E Programming the MTRR and PAT 251

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Table 16. Final Output Memory Types

Input Memory Type Output Memory Type

Note

Rd
M

em

W
rM

em

Ef
fe

ct
iv

e.
 M

Ty
pe

fo
rc

eC
D5

AMD-751™

Rd
M

em

W
rM

em

M
em

Ty
pe

● ● UC - ● ● UC 1

● ● CD - ● ● CD 1

● ● WC - ● ● WC 1

● ● WT - ● ● WT 1

● ● WP - ● ● WP 1

● ● WB - ● ● WB

● ● - ● ● ● CD 1, 2

● UC - ● UC

● CD - ● CD

● WC - ● WC

● WT - ● CD 3

● WP - ● WP 1

● WB - ● CD 3

● - ● ● CD 2

● UC - ● UC

● CD - ● CD

● WC - ● WC

● WT - ● CD 6

● WP - ● CD 6

● WB - ● CD 6

● - ● ● CD 2

● ● UC - ● UC
252 Programming the MTRR and PAT Appendix E

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
● ● CD - ● ● CD

● ● WC - ● ● WC

● ● WT - ● ● WT

● ● WP - ● ● WP

● ● WB - ● ● WT 4

● ● - ● ● ● CD 2

Notes:
1. WP is not functional for RdMem/WrMem.
2. ForceCD must cause the MTRR memory type to be ignored in order to avoid x’s.
3. D-I should always be WP because the BIOS will only program RdMem-WrIO for WP.

CD is forced to preserve the write-protect intent.
4. Since cached IO lines cannot be copied back to IO, the processor forces WB to WT to

prevent cached IO from going dirty.
5. ForceCD. The memory type is forced CD due to (1) CR0[CD]=1, (2) memory type is for

the ITLB and the I-Cache is disabled or for the DTLB and the D-Cache is disabled, (3)
when clean victims must be written back and RdIO and WrIO and WT, WB, or WP, or
(4) access to Local APIC space.

6. The processor does not support this memory type.

Table 16. Final Output Memory Types (Continued)

Input Memory Type Output Memory Type

Note

Rd
M

em

W
rM

em

Ef
fe

ct
iv

e.
 M

Ty
pe

fo
rc

eC
D

5

AMD-751™

Rd
M

em

W
rM

em

M
em

Ty
pe
Appendix E Programming the MTRR and PAT 253

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
MTRR Fixed-Range
Register Format

Table 17 lists the memory segments defined in each of the
MTRR fixed-range registers. (See also Table 13 on page 248).

Table 17. MTRR Fixed Range Register Format

Address Range (in hexadecimal)
Register

63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

70000-
7FFFF

60000-
6FFFF

50000-
5FFFF

40000-
4FFFF

30000-
3FFFF

20000-
2FFFF

10000-
1FFFF

00000-
0FFFF MTRR_fix64K_00000

9C000-
9FFFF

98000-
9BFFF

94000-
97FFF

90000-
93FFF

8C000-
8FFFF

88000-
8BFFF

84000-
87FFF

80000-
83FFF MTRR_fix16K_80000

BC000-
BFFFF

B8000-
BBFFF

B4000-
B7FFF

B0000-
B3FFF

AC000-
AFFFF

A8000-
ABFFF

A4000-
A7FFF

A0000-
A3FFF MTRR_fix16K_A0000

C7000-
C7FFF

C6000-
C6FFF

C5000-
C5FFF

C4000-
C4FFF

C3000-
C3FFF

C2000-
C2FFF

C1000-
C1FFF

C0000-
C0FFF MTRR_fix4K_C0000

CF000-
CFFFF

CE000-
CEFFF

CD000-
CDFFF

CC000-
CCFFF

CB000-
CBFFF

CA000-
CAFFF

C9000-
C9FFF

C8000-
C8FFF

MTRR_fix4K_C8000

D7000-
D7FFF

D6000-
D6FFF

D5000-
D5FFF

D4000-
D4FFF

D3000-
D3FFF

D2000-
D2FFF

D1000-
D1FFF

D0000-
D0FFF

MTRR_fix4K_D0000

DF000-
DFFFF

DE000-
DEFFF

DD000-
DDFFF

DC000-
DCFFF

DB000-
DBFFF

DA000-
DAFFF

D9000-
D9FFF

D8000-
D8FFF

MTRR_fix4K_D8000

E7000-
E7FFF

E6000-
E6FFF

E5000-
E5FFF

E4000-
E4FFF

E3000-
E3FFF

E2000-
E2FFF

E1000-
E1FFF

E0000-
E0FFF

MTRR_fix4K_E0000

EF000-
EFFFF

EE000-
EEFFF

ED000-
EDFFF

EC000-
ECFFF

EB000-
EBFFF

EA000-
EAFFF

E9000-
E9FFF

E8000-
E8FFF

MTRR_fix4K_E8000

F7000-
F7FFF

F6000-
F6FFF

F5000-
F5FFF

F4000-
F4FFF

F3000-
F3FFF

F2000-
F2FFF

F1000-
F1FFF

F0000-
F0FFF

MTRR_fix4K_F0000

FF000-
FFFFF

FE000-
FEFFF

FD000-
FDFFF

FC000-
FCFFF

FB000-
FBFFF

FA000-
FAFFF

F9000-
F9FFF

F8000-
F8FFF

MTRR_fix4K_F8000
254 Programming the MTRR and PAT Appendix E

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Variable-Range
MTRRs

A variable MTRR can be programmed to start at address
0000_0000h because the fixed MTRRs always override the
variable ones. However, it is recommended not to create an
overlap.

The upper two variable MTRRs should not be used by the BIOS
and are reserved for operating system use.

Variable-Range MTRR
Register Format

The variable address range is power of 2 sized and aligned. The
range of supported sizes is from 212 to 236 in powers of 2. The
AMD Athlon processor does not implement A[35:32].

Figure 16. MTRRphysBasen Register Format
Note: A software attempt to write to reserved bits will generate a

general protection exception.

Physical Specifies a 24-bit value which is extended by 12
Base bits to form the base address of the region defined

in the register pair.

Type Table 13 on page 248.

7 063

Reserved

Type

8

Symbol Description Bits
Physical Base Base address in Register Pair 35–12
Type See MTRR Types and Properties 7–0

1135 1236

Physical Base
Appendix E Programming the MTRR and PAT 255

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Figure 17. MTRRphysMaskn Register Format
Note: A software attempt to write to reserved bits will generate a

general protection exception.

Physical Specifies a 24-bit mask to determine the range of
Mask the region defined in the register pair.

V Enables the register pair when set (V = 0 at reset).

Mask values can represent discontinuous ranges (when the
mask defines a lower significant bit as zero and a higher
significant bit as one). In a discontinuous range, the memory
area not mapped by the mask value is set to the default type.
Discontinuous ranges should not be used.

The range that is mapped by the variable-range MTRR register
pair must meet the following range size and alignment rule:

■ Each defined memory range must have a size equal to 2n (11
< n < 36).

■ The base address for the address pair must be aligned to a
similar 2n boundary.

An example of a variable MTRR pair is as follows:

To map the address range from 8 Mbytes (0080_0000h) to
16 Mbytes (00FF_FFFFh) as writeback memory, the base
register should be loaded with 80_0006h, and the mask
should be loaded with FFF8_00800h.

063

Reserved

10

Symbol Description Bits
Physical Mask 24-Bit Mask 35–12
V Variable Range Register Pair Enabled 11

(V = 0 at reset)

1135 1236

Physical Mask V
256 Programming the MTRR and PAT Appendix E

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
MTRR MSR Format This table defines the model-specific registers related to the
memory type range register implementation. All MTRRs are
defined to be 64 bits.

Table 18. MTRR-Related Model-Specific Register (MSR) Map

Register Address Register Name Description

0FEh MTRRcap See “MTRR Capability Register Format” on page 246.

200h MTRR Base0 See “MTRRphysBasen Register Format” on page 255.

201h MTRR Mask0 See “MTRRphysMaskn Register Format” on page 256.

202h MTRR Base1

203h MTRR Mask1

204h MTRR Base2

205h MTRR Mask2

206h MTRR Base3

207h MTRR Mask3

208h MTRR Base4

209h MTRR Mask4

20Ah MTRR Base5

20Bh MTRR Mask5

20Ch MTRR Base6

20Dh MTRR Mask6

20Eh MTRR Base7

20Fh MTRR Mask7

250h MTRRFIX64k_00000

See “MTRR Fixed-Range Register Format” on page 254.

258h MTRRFIX16k_80000

259h MTRRFIX16k_A0000

268h MTRRFIX4k_C0000

269h MTRRFIX4k_C8000

26Ah MTRRFIX4k_D0000

26Bh MTRRFIX4k_D8000

26Ch MTRRFIX4k_E0000

26Dh MTRRFIX4k_E8000

26Eh MTRRFIX4k_F0000

26Fh MTRRFIX4k_F8000

2FFh MTRRdefType See “MTRR Default Type Register Format” on page 247.
Appendix E Programming the MTRR and PAT 257

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
258 Programming the MTRR and PAT Appendix E

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Appendix F

Instruction Dispatch and
Execution Resources/Timing
This chapter describes the MacroOPs generated by each
decoded instruction, along with the relative static execution
latencies of these groups of operations. Tables 19 through 25
starting on page 261 define the following instructions: integer,
MMX, MMX extensions, floating-point, 3DNow!, and 3DNow!
extensions, and new instructions available with 3DNow!
Professional.

The first column in these tables indicates the instruction
mnemonic and operand types with the following notations:

■ reg8—byte integer register defined by instruction byte(s) or
bits 5, 4, and 3 of the modR/M byte

■ mreg8—byte integer register defined by bits 2, 1, and 0 of
the modR/M byte

■ reg16/32—word and doubleword integer register defined by
instruction byte(s) or bits 5, 4, and 3 of the modR/M byte

■ mreg16/32—word and doubleword integer register defined
by bits 2, 1, and 0 of the modR/M byte

■ mem8—byte memory location

■ mem16/32—word or doubleword memory location

■ mem32/48—doubleword or 6-byte memory location

■ mem48—48-bit integer value in memory

■ mem64—64-bit value in memory

■ mem128—128-bit value in memory
Appendix F Instruction Dispatch and Execution Resources/Timing 259

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
■ imm8/16/32—8-bit, 16-bit or 32-bit immediate value

■ disp8—8-bit displacement value

■ disp16/32—16-bit or 32-bit displacement value

■ disp32/48—32-bit or 48-bit displacement value

■ eXX—register width depending on the operand size

■ mem32real—32-bit floating-point value in memory

■ mem64real—64-bit floating-point value in memory

■ mem80real—80-bit floating-point value in memory

■ mmreg—MMX/3DNow! register

■ mmreg1—MMX/3DNow! register defined by bits 5, 4, and 3
of the modR/M byte

■ mmreg2—MMX/3DNow! register defined by bits 2, 1, and 0
of the modR/M byte

■ xmmreg—XMM register

■ xmmreg1—XMM register defined by bits 5, 4, and 3 of the
modR/M byte

■ xmmreg2—XMM register defined by bits 2, 1, and 0 of the
modR/M byte

The second and third columns list all applicable encoding
opcode bytes.

The fourth column lists the modR/M byte used by the
instruction. The modR/M byte defines the instruction as
register or memory form. If mod bits 7 and 6 are documented as
mm (memory form), mm can only be 10b, 01b, or 00b.

The fifth column lists the type of instruction decode—
DirectPath or VectorPath (see “DirectPath Decoder” and
“VectorPath Decoder” under “Early Decoding” on page 207 for
more information). The AMD Athlon processor enhanced
decode logic can process three instructions per clock.

The FPU, MMX, and 3DNow! instruction tables have an
additional column that lists the possible FPU execution
pipelines available for use by any particular DirectPath
decoded operation. Typically, VectorPath instructions require
more than one execution pipe resource.
260 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
The sixth column lists the static execution latency. The static
execution latency is defined as the number of clocks it takes to
execute an instruction, or, more directly, the time it takes to
execute the serially-dependent sequence of OPs that comprise
each instruction. It is assumed that the instruction is an L1 hit
that has already been fetched, decoded, and the operations
loaded into the scheduler. It is the best case scenario which
assumes no other instructions executing in the processor. The
following format is used to describe the static execution
latency:

x—singular clock count

x–y—possible latency range from x to y clocks

x/y—x equals the 16-bit timing and y equals the 32-bit timing
y: latency from address register operand(s)

~—clock count is not available

Table 19. Integer Instructions

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

AAA 37h VectorPath 6

AAD imm8 D5h VectorPath 6

AAM imm8 D4h VectorPath 16

AAS 3Fh VectorPath 6

ADC mreg8, reg8 10h 11-xxx-xxx DirectPath 1

ADC mem8, reg8 10h mm-xxx-xxx DirectPath 4

ADC mreg16/32, reg16/32 11h 11-xxx-xxx DirectPath 1

ADC mem16/32, reg16/32 11h mm-xxx-xxx DirectPath 4
Notes:

1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
Appendix F Instruction Dispatch and Execution Resources/Timing 261

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
ADC reg8, mreg8 12h 11-xxx-xxx DirectPath 1

ADC reg8, mem8 12h mm-xxx-xxx DirectPath 4

ADC reg16/32, mreg16/32 13h 11-xxx-xxx DirectPath 1

ADC reg16/32, mem16/32 13h mm-xxx-xxx DirectPath 4

ADC AL, imm8 14h DirectPath 1

ADC EAX, imm16/32 15h DirectPath 1

ADC mreg8, imm8 80h 11-010-xxx DirectPath 1

ADC mem8, imm8 80h mm-010-xxx DirectPath 4

ADC mreg16/32, imm16/32 81h 11-010-xxx DirectPath 1

ADC mem16/32, imm16/32 81h mm-010-xxx DirectPath 4

ADC mreg16/32, imm8 (sign extended) 83h 11-010-xxx DirectPath 1

ADC mem16/32, imm8 (sign extended) 83h mm-010-xxx DirectPath 4

ADD mreg8, reg8 00h 11-xxx-xxx DirectPath 1

ADD mem8, reg8 00h mm-xxx-xxx DirectPath 4

ADD mreg16/32, reg16/32 01h 11-xxx-xxx DirectPath 1

ADD mem16/32, reg16/32 01h mm-xxx-xxx DirectPath 4

ADD reg8, mreg8 02h 11-xxx-xxx DirectPath 1

ADD reg8, mem8 02h mm-xxx-xxx DirectPath 4

ADD reg16/32, mreg16/32 03h 11-xxx-xxx DirectPath 1

ADD reg16/32, mem16/32 03h mm-xxx-xxx DirectPath 4

ADD AL, imm8 04h DirectPath 1

ADD EAX, imm16/32 05h DirectPath 1

ADD mreg8, imm8 80h 11-000-xxx DirectPath 1

ADD mem8, imm8 80h mm-000-xxx DirectPath 4

ADD mreg16/32, imm16/32 81h 11-000-xxx DirectPath 1

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
262 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
ADD mem16/32, imm16/32 81h mm-000-xxx DirectPath 4

ADD mreg16/32, imm8 (sign extended) 83h 11-000-xxx DirectPath 1

ADD mem16/32, imm8 (sign extended) 83h mm-000-xxx DirectPath 4

AND mreg8, reg8 20h 11-xxx-xxx DirectPath 1

AND mem8, reg8 20h mm-xxx-xxx DirectPath 4

AND mreg16/32, reg16/32 21h 11-xxx-xxx DirectPath 1

AND mem16/32, reg16/32 21h mm-xxx-xxx DirectPath 4

AND reg8, mreg8 22h 11-xxx-xxx DirectPath 1

AND reg8, mem8 22h mm-xxx-xxx DirectPath 4

AND reg16/32, mreg16/32 23h 11-xxx-xxx DirectPath 1

AND reg16/32, mem16/32 23h mm-xxx-xxx DirectPath 4

AND AL, imm8 24h DirectPath 1

AND EAX, imm16/32 25h DirectPath 1

AND mreg8, imm8 80h 11-100-xxx DirectPath 1

AND mem8, imm8 80h mm-100-xxx DirectPath 4

AND mreg16/32, imm16/32 81h 11-100-xxx DirectPath 1

AND mem16/32, imm16/32 81h mm-100-xxx DirectPath 4

AND mreg16/32, imm8 (sign extended) 83h 11-100-xxx DirectPath 1

AND mem16/32, imm8 (sign extended) 83h mm-100-xxx DirectPath 4

ARPL mreg16, reg16 63h 11-xxx-xxx VectorPath 15

ARPL mem16, reg16 63h mm-xxx-xxx VectorPath 19

BOUND reg16/32, mem16/32:mem16/32 62h mm-xxx-xxx VectorPath 6

BSF reg16/32, mreg16/32 0Fh BCh 11-xxx-xxx VectorPath 8

BSF reg16/32, mem16/32 0Fh BCh mm-xxx-xxx VectorPath 12/11

BSR reg16/32, mreg16/32 0Fh BDh 11-xxx-xxx VectorPath 10

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
Appendix F Instruction Dispatch and Execution Resources/Timing 263

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
BSR reg16/32, mem16/32 0Fh BDh mm-xxx-xxx VectorPath 14/13

BSWAP EAX 0Fh C8h DirectPath 1

BSWAP ECX 0Fh C9h DirectPath 1

BSWAP EDX 0Fh CAh DirectPath 1

BSWAP EBX 0Fh CBh DirectPath 1

BSWAP ESP 0Fh CCh DirectPath 1

BSWAP EBP 0Fh CDh DirectPath 1

BSWAP ESI 0Fh CEh DirectPath 1

BSWAP EDI 0Fh CFh DirectPath 1

BT mreg16/32, reg16/32 0Fh A3h 11-xxx-xxx DirectPath 1

BT mem16/32, reg16/32 0Fh A3h mm-xxx-xxx VectorPath 8

BT mreg16/32, imm8 0Fh BAh 11-100-xxx DirectPath 1

BT mem16/32, imm8 0Fh BAh mm-100-xxx DirectPath 4

BTC mreg16/32, reg16/32 0Fh BBh 11-xxx-xxx VectorPath 2

BTC mem16/32, reg16/32 0Fh BBh mm-xxx-xxx VectorPath 9

BTC mreg16/32, imm8 0Fh BAh 11-111-xxx VectorPath 2

BTC mem16/32, imm8 0Fh BAh mm-111-xxx VectorPath 6

BTR mreg16/32, reg16/32 0Fh B3h 11-xxx-xxx VectorPath 2

BTR mem16/32, reg16/32 0Fh B3h mm-xxx-xxx VectorPath 9

BTR mreg16/32, imm8 0Fh BAh 11-110-xxx VectorPath 2

BTR mem16/32, imm8 0Fh BAh mm-110-xxx VectorPath 6

BTS mreg16/32, reg16/32 0Fh ABh 11-xxx-xxx VectorPath 2

BTS mem16/32, reg16/32 0Fh ABh mm-xxx-xxx VectorPath 9

BTS mreg16/32, imm8 0Fh BAh 11-101-xxx VectorPath 2

BTS mem16/32, imm8 0Fh BAh mm-101-xxx VectorPath 6

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
264 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
CALL full pointer 9Ah VectorPath 18

CALL near imm16/32 E8h VectorPath 3 2

CALL near mreg32 (indirect) FFh 11-010-xxx VectorPath 4

CALL near mem32 (indirect) FFh mm-010-xxx VectorPath 4

CALL mem16:16/32 FFh 11-011-xxx VectorPath 19

CBW/CWDE 98h DirectPath 1

CLC F8h DirectPath 1

CLD FCh VectorPath 1

CLI FAh VectorPath 4

CLTS 0Fh 06h VectorPath 10

CMC F5h DirectPath 1

CMOVA/CMOVNBE reg16/32, reg16/32 0Fh 47h 11-xxx-xxx DirectPath 1

CMOVA/CMOVNBE reg16/32, mem16/32 0Fh 47h mm-xxx-xxx DirectPath 4

CMOVAE/CMOVNB/CMOVNC reg16/32, mem16/32 0Fh 43h 11-xxx-xxx DirectPath 1

CMOVAE/CMOVNB/CMOVNC mem16/32,
mem16/32

0Fh 43h mm-xxx-xxx DirectPath 4

CMOVB/CMOVC/CMOVNAE reg16/32, reg16/32 0Fh 42h 11-xxx-xxx DirectPath 1

CMOVB/CMOVC/CMOVNAE mem16/32, reg16/32 0Fh 42h mm-xxx-xxx DirectPath 4

CMOVBE/CMOVNA reg16/32, reg16/32 0Fh 46h 11-xxx-xxx DirectPath 1

CMOVBE/CMOVNA reg16/32, mem16/32 0Fh 46h mm-xxx-xxx DirectPath 4

CMOVE/CMOVZ reg16/32, reg16/32 0Fh 44h 11-xxx-xxx DirectPath 1

CMOVE/CMOVZ reg16/32, mem16/32 0Fh 44h mm-xxx-xxx DirectPath 4

CMOVG/CMOVNLE reg16/32, reg16/32 0Fh 4Fh 11-xxx-xxx DirectPath 1

CMOVG/CMOVNLE reg16/32, mem16/32 0Fh 4Fh mm-xxx-xxx DirectPath 4

CMOVGE/CMOVNL reg16/32, reg16/32 0Fh 4Dh 11-xxx-xxx DirectPath 1

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
Appendix F Instruction Dispatch and Execution Resources/Timing 265

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
CMOVGE/CMOVNL reg16/32, mem16/32 0Fh 4Dh mm-xxx-xxx DirectPath 4

CMOVL/CMOVNGE reg16/32, reg16/32 0Fh 4Ch 11-xxx-xxx DirectPath 1

CMOVL/CMOVNGE reg16/32, mem16/32 0Fh 4Ch mm-xxx-xxx DirectPath 4

CMOVLE/CMOVNG reg16/32, reg16/32 0Fh 4Eh 11-xxx-xxx DirectPath 1

CMOVLE/CMOVNG reg16/32, mem16/32 0Fh 4Eh mm-xxx-xxx DirectPath 4

CMOVNE/CMOVNZ reg16/32, reg16/32 0Fh 45h 11-xxx-xxx DirectPath 1

CMOVNE/CMOVNZ reg16/32, mem16/32 0Fh 45h mm-xxx-xxx DirectPath 4

CMOVNO reg16/32, reg16/32 0Fh 41h 11-xxx-xxx DirectPath 1

CMOVNO reg16/32, mem16/32 0Fh 41h mm-xxx-xxx DirectPath 4

CMOVNP/CMOVPO reg16/32, reg16/32 0Fh 4Bh 11-xxx-xxx DirectPath 1

CMOVNP/CMOVPO reg16/32, mem16/32 0Fh 4Bh mm-xxx-xxx DirectPath 4

CMOVNS reg16/32, reg16/32 0Fh 49h 11-xxx-xxx DirectPath 1

CMOVNS reg16/32, mem16/32 0Fh 49h mm-xxx-xxx DirectPath 4

CMOVO reg16/32, reg16/32 0Fh 40h 11-xxx-xxx DirectPath 1

CMOVO reg16/32, mem16/32 0Fh 40h mm-xxx-xxx DirectPath 4

CMOVP/CMOVPE reg16/32, reg16/32 0Fh 4Ah 11-xxx-xxx DirectPath 1

CMOVP/CMOVPE reg16/32, mem16/32 0Fh 4Ah mm-xxx-xxx DirectPath 4

CMOVS reg16/32, reg16/32 0Fh 48h 11-xxx-xxx DirectPath 1

CMOVS reg16/32, mem16/32 0Fh 48h mm-xxx-xxx DirectPath 4

CMP mreg8, reg8 38h 11-xxx-xxx DirectPath 1

CMP mem8, reg8 38h mm-xxx-xxx DirectPath 4

CMP mreg16/32, reg16/32 39h 11-xxx-xxx DirectPath 1

CMP mem16/32, reg16/32 39h mm-xxx-xxx DirectPath 4

CMP reg8, mreg8 3Ah 11-xxx-xxx DirectPath 1

CMP reg8, mem8 3Ah mm-xxx-xxx DirectPath 4

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
266 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
CMP reg16/32, mreg16/32 3Bh 11-xxx-xxx DirectPath 1

CMP reg16/32, mem16/32 3Bh mm-xxx-xxx DirectPath 4

CMP AL, imm8 3Ch DirectPath 1

CMP EAX, imm16/32 3Dh DirectPath 1

CMP mreg8, imm8 80h 11-111-xxx DirectPath 1

CMP mem8, imm8 80h mm-111-xxx DirectPath 4

CMP mreg16/32, imm16/32 81h 11-111-xxx DirectPath 1

CMP mem16/32, imm16/32 81h mm-111-xxx DirectPath 4

CMP mreg16/32, imm8 (sign extended) 83h 11-111-xxx DirectPath 1

CMP mem16/32, imm8 (sign extended) 83h mm-111-xxx DirectPath 4

CMPSB mem8,mem8 A6h VectorPath 6 8

CMPSW mem16, mem32 A7h VectorPath 6 8

CMPSD mem32, mem32 A7h VectorPath 6 8

CMPXCHG mreg8, reg8 0Fh B0h 11-xxx-xxx VectorPath 3

CMPXCHG mem8, reg8 0Fh B0h mm-xxx-xxx VectorPath 6

CMPXCHG mreg16/32, reg16/32 0Fh B1h 11-xxx-xxx VectorPath 3

CMPXCHG mem16/32, reg16/32 0Fh B1h mm-xxx-xxx VectorPath 6

CMPXCHG8B mem64 0Fh C7h mm-xxx-xxx VectorPath 39

CPUID 0Fh A2h VectorPath 42

CWD/CDQ 99h DirectPath 1

DAA 27h VectorPath 8

DAS 2Fh VectorPath 8

DEC EAX 48h DirectPath 1

DEC ECX 49h DirectPath 1

DEC EDX 4Ah DirectPath 1

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
Appendix F Instruction Dispatch and Execution Resources/Timing 267

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
DEC EBX 4Bh DirectPath 1

DEC ESP 4Ch DirectPath 1

DEC EBP 4Dh DirectPath 1

DEC ESI 4Eh DirectPath 1

DEC EDI 4Fh DirectPath 1

DEC mreg8 FEh 11-001-xxx DirectPath 1

DEC mem8 FEh mm-001-xxx DirectPath 4

DEC mreg16/32 FFh 11-001-xxx DirectPath 1

DEC mem16/32 FFh mm-001-xxx DirectPath 4

DIV mreg8 F6h 11-110-xxx VectorPath 17

DIV AL, mem8 F6h mm-110-xxx VectorPath 17

DIV mreg16/32 F7h 11-110-xxx VectorPath 24/40

DIV EAX, mem16/32 F7h mm-110-xxx VectorPath 24/40

ENTER C8h VectorPath 13/17/19/22 6

IDIV mreg8 F6h 11-111-xxx VectorPath 19

IDIV mem8 F6h mm-111-xxx VectorPath 20

IDIV mreg16/32 F7h 11-111-xxx VectorPath 26/42

IDIV EAX, mem16/32 F7h mm-111-xxx VectorPath 27/43

IMUL reg16/32, imm16/32 69h 11-xxx-xxx VectorPath 4/5

IMUL reg16/32, mreg16/32, imm16/32 69h 11-xxx-xxx VectorPath 4/5

IMUL reg16/32, mem16/32, imm16/32 69h mm-xxx-xxx VectorPath 7/8

IMUL reg16/32, imm8 (sign extended) 6Bh 11-xxx-xxx VectorPath 5

IMUL reg16/32, mreg16/32, imm8 (signed) 6Bh 11-xxx-xxx VectorPath 4/5

IMUL reg16/32, mem16/32, imm8 (signed) 6Bh mm-xxx-xxx VectorPath 18

IMUL mreg8 F6h 11-101-xxx VectorPath 5

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
268 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
IMUL AX, AL, mem8 F6h mm-101-xxx VectorPath 8

IMUL mreg16/32 F7h 11-101-xxx VectorPath 5/6 4

IMUL EDX:EAX, EAX, mem16/32 F7h mm-101-xxx VectorPath 8/9 4

IMUL reg16/32, mreg16/32 0Fh AFh 11-xxx-xxx VectorPath 3/4

IMUL reg16/32, mem16/32 0Fh AFh mm-xxx-xxx VectorPath 6/7

IN AL, imm8 E4h VectorPath ~

IN AX, imm8 E5h VectorPath ~

IN EAX, imm8 E5h VectorPath ~

IN AL, DX ECh VectorPath ~

IN AX, DX EDh VectorPath ~

IN EAX, DX EDh VectorPath ~

INC EAX 40h DirectPath 1

INC ECX 41h DirectPath 1

INC EDX 42h DirectPath 1

INC EBX 43h DirectPath 1

INC ESP 44h DirectPath 1

INC EBP 45h DirectPath 1

INC ESI 46h DirectPath 1

INC EDI 47h DirectPath 1

INC mreg8 FEh 11-000-xxx DirectPath 1

INC mem8 FEh mm-000-xxx DirectPath 4

INC mreg16/32 FFh 11-000-xxx DirectPath 1

INC mem16/32 FFh mm-000-xxx DirectPath 4

INVD 0Fh 08h VectorPath ~

INVLPG 0Fh 01h mm-111-xxx VectorPath 106

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
Appendix F Instruction Dispatch and Execution Resources/Timing 269

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
JO short disp8 70h DirectPath 1 1

JNO short disp8 71h DirectPath 1 1

JB/JNAE/JC short disp8 72h DirectPath 1 1

JNB/JAE/JNC short disp8 73h DirectPath 1 1

JZ/JE short disp8 74h DirectPath 1 1

JNZ/JNE short disp8 75h DirectPath 1 1

JBE/JNA short disp8 76h DirectPath 1 1

JNBE/JA short disp8 77h DirectPath 1 1

JS short disp8 78h DirectPath 1 1

JNS short disp8 79h DirectPath 1 1

JP/JPE short disp8 7Ah DirectPath 1 1

JNP/JPO short disp8 7Bh DirectPath 1 1

JL/JNGE short disp8 7Ch DirectPath 1 1

JNL/JGE short disp8 7Dh DirectPath 1 1

JLE/JNG short disp8 7Eh DirectPath 1 1

JNLE/JG short disp8 7Fh DirectPath 1 1

JCXZ/JEC short disp8 E3h VectorPath 2 1

JO near disp16/32 0Fh 80h DirectPath 1 1

JNO near disp16/32 0Fh 81h DirectPath 1 1

JB/JNAE near disp16/32 0Fh 82h DirectPath 1 1

JNB/JAE near disp16/32 0Fh 83h DirectPath 1 1

JZ/JE near disp16/32 0Fh 84h DirectPath 1 1

JNZ/JNE near disp16/32 0Fh 85h DirectPath 1 1

JBE/JNA near disp16/32 0Fh 86h DirectPath 1 1

JNBE/JA near disp16/32 0Fh 87h DirectPath 1 1

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
270 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
JS near disp16/32 0Fh 88h DirectPath 1 1

JNS near disp16/32 0Fh 89h DirectPath 1 1

JP/JPE near disp16/32 0Fh 8Ah DirectPath 1 1

JNP/JPO near disp16/32 0Fh 8Bh DirectPath 1 1

JL/JNGE near disp16/32 0Fh 8Ch DirectPath 1 1

JNL/JGE near disp16/32 0Fh 8Dh DirectPath 1 1

JLE/JNG near disp16/32 0Fh 8Eh DirectPath 1 1

JNLE/JG near disp16/32 0Fh 8Fh DirectPath 1 1

JMP near disp16/32 (direct) E9h DirectPath 1

JMP far disp32/48 (direct) EAh VectorPath 16

JMP disp8 (short) EBh DirectPath 1

JMP far mem32 (indirect) EFh mm-101-xxx VectorPath 18

JMP far mreg32 (indirect) FFh mm-101-xxx VectorPath 18

JMP near mreg16/32 (indirect) FFh 11-100-xxx DirectPath 1

JMP near mem16/32 (indirect) FFh mm-100-xxx DirectPath 4

LAHF 9Fh VectorPath 3

LAR reg16/32, mreg16/32 0Fh 02h 11-xxx-xxx VectorPath 23

LAR reg16/32, mem16/32 0Fh 02h mm-xxx-xxx VectorPath 25

LDS reg16/32, mem32/48 C5h mm-xxx-xxx VectorPath 14

LEA reg16, mem16/32 8Dh mm-xxx-xxx VectorPath 3 5

LEA reg32, mem16/32 8Dh mm-xxx-xxx DirectPath 2 5

LEAVE C9h VectorPath 3

LES reg16/32, mem32/48 C4h mm-xxx-xxx VectorPath 14

LFS reg16/32, mem32/48 0Fh B4h VectorPath 14

LGDT mem48 0Fh 01h mm-010-xxx VectorPath 35

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
Appendix F Instruction Dispatch and Execution Resources/Timing 271

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
LGS reg16/32, mem32/48 0Fh B5h VectorPath 14

LIDT mem48 0Fh 01h mm-011-xxx VectorPath 35

LLDT mreg16 0Fh 00h 11-010-xxx VectorPath 30

LLDT mem16 0Fh 00h mm-010-xxx VectorPath 31

LMSW mreg16 0Fh 01h 11-100-xxx VectorPath 11

LMSW mem16 0Fh 01h mm-100-xxx VectorPath 12

LODSB AL, mem8 ACh VectorPath 5 8

LODSW AX, mem16 ADh VectorPath 5 8

LODSD EAX, mem32 ADh VectorPath 4 8

LOOP disp8 E2h VectorPath 8

LOOPE/LOOPZ disp8 E1h VectorPath 8

LOOPNE/LOOPNZ disp8 E0h VectorPath 8

LSL reg16/32, mreg16/32 0Fh 03h 11-xxx-xxx VectorPath 22

LSL reg16/32, mem16/32 0Fh 03h mm-xxx-xxx VectorPath 24

LSS reg16/32, mem32/48 0Fh B2h mm-xxx-xxx VectorPath 15

LTR mreg16 0Fh 00h 11-011-xxx VectorPath 91

LTR mem16 0Fh 00h mm-011-xxx VectorPath 94

MOV mreg8, reg8 88h 11-xxx-xxx DirectPath 1

MOV mem8, reg8 88h mm-xxx-xxx DirectPath 3

MOV mreg16/32, reg16/32 89h 11-xxx-xxx DirectPath 1

MOV mem16/32, reg16/32 89h mm-xxx-xxx DirectPath 3

MOV reg8, mreg8 8Ah 11-xxx-xxx DirectPath 1

MOV reg8, mem8 8Ah mm-xxx-xxx DirectPath 3

MOV reg16/32, mreg16/32 8Bh 11-xxx-xxx DirectPath 1

MOV reg16/32, mem16/32 8Bh mm-xxx-xxx DirectPath 3

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
272 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
MOV mreg16, segment reg 8Ch 11-xxx-xxx VectorPath 4

MOV mem16, segment reg 8Ch mm-xxx-xxx VectorPath 4

MOV segment reg, mreg16 8Eh 11-xxx-xxx VectorPath 10

MOV segment reg, mem16 8Eh mm-xxx-xxx VectorPath 12

MOV AL, mem8 A0h DirectPath 3

MOV EAX, mem16/32 A1h DirectPath 3

MOV mem8, AL A2h DirectPath 3

MOV mem16/32, EAX A3h DirectPath 3

MOV AL, imm8 B0h DirectPath 1

MOV CL, imm8 B1h DirectPath 1

MOV DL, imm8 B2h DirectPath 1

MOV BL, imm8 B3h DirectPath 1

MOV AH, imm8 B4h DirectPath 1

MOV CH, imm8 B5h DirectPath 1

MOV DH, imm8 B6h DirectPath 1

MOV BH, imm8 B7h DirectPath 1

MOV EAX, imm16/32 B8h DirectPath 1

MOV ECX, imm16/32 B9h DirectPath 1

MOV EDX, imm16/32 BAh DirectPath 1

MOV EBX, imm16/32 BBh DirectPath 1

MOV ESP, imm16/32 BCh DirectPath 1

MOV EBP, imm16/32 BDh DirectPath 1

MOV ESI, imm16/32 BEh DirectPath 1

MOV EDI, imm16/32 BFh DirectPath 1

MOV mreg8, imm8 C6h 11-000-xxx DirectPath 1

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
Appendix F Instruction Dispatch and Execution Resources/Timing 273

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
MOV mem8, imm8 C6h mm-000-xxx DirectPath 3

MOV mreg16/32, imm16/32 C7h 11-000-xxx DirectPath 1

MOV mem16/32, imm16/32 C7h mm-000-xxx DirectPath 3

MOVSB mem8,mem8 A4h VectorPath 5 8

MOVSD mem16, mem16 A5h VectorPath 5 8

MOVSW mem32, mem32 A5h VectorPath 5 8

MOVSX reg16/32, mreg8 0Fh BEh 11-xxx-xxx DirectPath 1

MOVSX reg16/32, mem8 0Fh BEh mm-xxx-xxx DirectPath 4

MOVSX reg32, mreg16 0Fh BFh 11-xxx-xxx DirectPath 1

MOVSX reg32, mem16 0Fh BFh mm-xxx-xxx DirectPath 4

MOVZX reg16/32, mreg8 0Fh B6h 11-xxx-xxx DirectPath 1

MOVZX reg16/32, mem8 0Fh B6h mm-xxx-xxx DirectPath 4

MOVZX reg32, mreg16 0Fh B7h 11-xxx-xxx DirectPath 1

MOVZX reg32, mem16 0Fh B7h mm-xxx-xxx DirectPath 4

MUL mreg8 F6h 11-100-xxx VectorPath 5

MUL AL, mem8 F6h mm-100-xx VectorPath 8

MUL mreg16 F7h 11-100-xxx VectorPath 5

MUL AX, mem16 F7h mm-100-xxx VectorPath 8

MUL mreg32 F7h 11-100-xxx VectorPath 6

MUL EAX, mem32 F7h mm-100-xx VectorPath 9

NEG mreg8 F6h 11-011-xxx DirectPath 1

NEG mem8 F6h mm-011-xx DirectPath 4

NEG mreg16/32 F7h 11-011-xxx DirectPath 1

NEG mem16/32 F7h mm-011-xx DirectPath 4

NOP (XCHG EAX, EAX) 90h DirectPath 0 7

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
274 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
NOT mreg8 F6h 11-010-xxx DirectPath 1

NOT mem8 F6h mm-010-xx DirectPath 4

NOT mreg16/32 F7h 11-010-xxx DirectPath 1

NOT mem16/32 F7h mm-010-xx DirectPath 4

OR mreg8, reg8 08h 11-xxx-xxx DirectPath 1

OR mem8, reg8 08h mm-xxx-xxx DirectPath 4

OR mreg16/32, reg16/32 09h 11-xxx-xxx DirectPath 1

OR mem16/32, reg16/32 09h mm-xxx-xxx DirectPath 4

OR reg8, mreg8 0Ah 11-xxx-xxx DirectPath 1

OR reg8, mem8 0Ah mm-xxx-xxx DirectPath 4

OR reg16/32, mreg16/32 0Bh 11-xxx-xxx DirectPath 1

OR reg16/32, mem16/32 0Bh mm-xxx-xxx DirectPath 4

OR AL, imm8 0Ch DirectPath 1

OR EAX, imm16/32 0Dh DirectPath 1

OR mreg8, imm8 80h 11-001-xxx DirectPath 1

OR mem8, imm8 80h mm-001-xxx DirectPath 4

OR mreg16/32, imm16/32 81h 11-001-xxx DirectPath 1

OR mem16/32, imm16/32 81h mm-001-xxx DirectPath 4

OR mreg16/32, imm8 (sign extended) 83h 11-001-xxx DirectPath 1

OR mem16/32, imm8 (sign extended) 83h mm-001-xxx DirectPath 4

OUT imm8, AL E6h VectorPath ~

OUT imm8, AX E7h VectorPath ~

OUT imm8, EAX E7h VectorPath ~

OUT DX, AL EEh VectorPath ~

OUT DX, AX EFh VectorPath ~

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
Appendix F Instruction Dispatch and Execution Resources/Timing 275

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
OUT DX, EAX EFh VectorPath ~

POP ES 07h VectorPath 11

POP SS 17h VectorPath 11

POP DS 1Fh VectorPath 11

POP FS 0Fh A1h VectorPath 11

POP GS 0Fh A9h VectorPath 11

POP EAX 58h VectorPath 4

POP ECX 59h VectorPath 4

POP EDX 5Ah VectorPath 4

POP EBX 5Bh VectorPath 4

POP ESP 5Ch VectorPath 4

POP EBP 5Dh VectorPath 4

POP ESI 5Eh VectorPath 4

POP EDI 5Fh VectorPath 4

POP mreg 16/32 8Fh 11-000-xxx VectorPath 4

POP mem 16/32 8Fh mm-000-xxx VectorPath 3

POPA/POPAD 61h VectorPath 7/6

POPF/POPFD 9Dh VectorPath 15

PUSH ES 06h VectorPath 3 2

PUSH CS 0Eh VectorPath 3

PUSH FS 0Fh A0h VectorPath 3

PUSH GS 0Fh A8h VectorPath 3

PUSH SS 16h VectorPath 3

PUSH DS 1Eh VectorPath 3 2

PUSH EAX 50h DirectPath 3 2

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
276 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
PUSH ECX 51h DirectPath 3 2

PUSH EDX 52h DirectPath 3 2

PUSH EBX 53h DirectPath 3 2

PUSH ESP 54h DirectPath 3 2

PUSH EBP 55h DirectPath 3 2

PUSH ESI 56h DirectPath 3 2

PUSH EDI 57h DirectPath 3 2

PUSH imm8 6Ah DirectPath 3 2

PUSH imm16/32 68h DirectPath 3 2

PUSH mreg16/32 FFh 11-110-xxx VectorPath 3

PUSH mem16/32 FFh mm-110-xxx VectorPath 3 2

PUSHA/PUSHAD 60h VectorPath 6

PUSHF/PUSHFD 9Ch VectorPath 4

RCL mreg8, imm8 C0h 11-010-xxx DirectPath 5

RCL mem8, imm8 C0h mm-010-xxx VectorPath 6

RCL mreg16/32, imm8 C1h 11-010-xxx DirectPath 5

RCL mem16/32, imm8 C1h mm-010-xxx VectorPath 6

RCL mreg8, 1 D0h 11-010-xxx DirectPath 1

RCL mem8, 1 D0h mm-010-xxx DirectPath 4

RCL mreg16/32, 1 D1h 11-010-xxx DirectPath 1

RCL mem16/32, 1 D1h mm-010-xxx DirectPath 4

RCL mreg8, CL D2h 11-010-xxx DirectPath 5

RCL mem8, CL D2h mm-010-xxx VectorPath 6

RCL mreg16/32, CL D3h 11-010-xxx DirectPath 5

RCL mem16/32, CL D3h mm-010-xxx VectorPath 6

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
Appendix F Instruction Dispatch and Execution Resources/Timing 277

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
RCR mreg8, imm8 C0h 11-011-xxx DirectPath 5

RCR mem8, imm8 C0h mm-011-xxx VectorPath 6

RCR mreg16/32, imm8 C1h 11-011-xxx DirectPath 5

RCR mem16/32, imm8 C1h mm-011-xxx VectorPath 6

RCR mreg8, 1 D0h 11-011-xxx DirectPath 1

RCR mem8, 1 D0h mm-011-xxx DirectPath 4

RCR mreg16/32, 1 D1h 11-011-xxx DirectPath 1

RCR mem16/32, 1 D1h mm-011-xxx DirectPath 4

RCR mreg8, CL D2h 11-011-xxx DirectPath 5

RCR mem8, CL D2h mm-011-xxx VectorPath 6

RCR mreg16/32, CL D3h 11-011-xxx DirectPath 5

RCR mem16/32, CL D3h mm-011-xxx VectorPath 6

RDMSR 0Fh 32h VectorPath ~

RDPMC 0Fh 33h VectorPath ~

RDTSC 0Fh 31h VectorPath 11

RET near imm16 C2h VectorPath 5

RET near C3h VectorPath 5

RET far imm16 CAh VectorPath 16

RET far CBh VectorPath 16

ROL mreg8, imm8 C0h 11-000-xxx DirectPath 1 3

ROL mem8, imm8 C0h mm-000-xxx DirectPath 4 3

ROL mreg16/32, imm8 C1h 11-000-xxx DirectPath 1 3

ROL mem16/32, imm8 C1h mm-000-xxx DirectPath 4 3

ROL mreg8, 1 D0h 11-000-xxx DirectPath 1

ROL mem8, 1 D0h mm-000-xxx DirectPath 4

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
278 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
ROL mreg16/32, 1 D1h 11-000-xxx DirectPath 1

ROL mem16/32, 1 D1h mm-000-xxx DirectPath 4

ROL mreg8, CL D2h 11-000-xxx DirectPath 1 3

ROL mem8, CL D2h mm-000-xxx DirectPath 4 3

ROL mreg16/32, CL D3h 11-000-xxx DirectPath 1 3

ROL mem16/32, CL D3h mm-000-xxx DirectPath 4 3

ROR mreg8, imm8 C0h 11-001-xxx DirectPath 1 3

ROR mem8, imm8 C0h mm-001-xxx DirectPath 4 3

ROR mreg16/32, imm8 C1h 11-001-xxx DirectPath 1 3

ROR mem16/32, imm8 C1h mm-001-xxx DirectPath 4 3

ROR mreg8, 1 D0h 11-001-xxx DirectPath 1

ROR mem8, 1 D0h mm-001-xxx DirectPath 4

ROR mreg16/32, 1 D1h 11-001-xxx DirectPath 1

ROR mem16/32, 1 D1h mm-001-xxx DirectPath 4

ROR mreg8, CL D2h 11-001-xxx DirectPath 1 3

ROR mem8, CL D2h mm-001-xxx DirectPath 4 3

ROR mreg16/32, CL D3h 11-001-xxx DirectPath 1 3

ROR mem16/32, CL D3h mm-001-xxx DirectPath 4 3

SAHF 9Eh VectorPath 2

SAR mreg8, imm8 C0h 11-111-xxx DirectPath 1 3

SAR mem8, imm8 C0h mm-111-xxx DirectPath 4 3

SAR mreg16/32, imm8 C1h 11-111-xxx DirectPath 1 3

SAR mem16/32, imm8 C1h mm-111-xxx DirectPath 4 3

SAR mreg8, 1 D0h 11-111-xxx DirectPath 1

SAR mem8, 1 D0h mm-111-xxx DirectPath 4

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
Appendix F Instruction Dispatch and Execution Resources/Timing 279

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
SAR mreg16/32, 1 D1h 11-111-xxx DirectPath 1

SAR mem16/32, 1 D1h mm-111-xxx DirectPath 4

SAR mreg8, CL D2h 11-111-xxx DirectPath 1 3

SAR mem8, CL D2h mm-111-xxx DirectPath 4 3

SAR mreg16/32, CL D3h 11-111-xxx DirectPath 1 3

SAR mem16/32, CL D3h mm-111-xxx DirectPath 4 3

SBB mreg8, reg8 18h 11-xxx-xxx DirectPath 1

SBB mem8, reg8 18h mm-xxx-xxx DirectPath 4

SBB mreg16/32, reg16/32 19h 11-xxx-xxx DirectPath 1

SBB mem16/32, reg16/32 19h mm-xxx-xxx DirectPath 4

SBB reg8, mreg8 1Ah 11-xxx-xxx DirectPath 1

SBB reg8, mem8 1Ah mm-xxx-xxx DirectPath 4

SBB reg16/32, mreg16/32 1Bh 11-xxx-xxx DirectPath 1

SBB reg16/32, mem16/32 1Bh mm-xxx-xxx DirectPath 4

SBB AL, imm8 1Ch DirectPath 1

SBB EAX, imm16/32 1Dh DirectPath 1

SBB mreg8, imm8 80h 11-011-xxx DirectPath 1

SBB mem8, imm8 80h mm-011-xxx DirectPath 4

SBB mreg16/32, imm16/32 81h 11-011-xxx DirectPath 1

SBB mem16/32, imm16/32 81h mm-011-xxx DirectPath 4

SBB mreg16/32, imm8 (sign extended) 83h 11-011-xxx DirectPath 1

SBB mem16/32, imm8 (sign extended) 83h mm-011-xxx DirectPath 4

SCASB AL, mem8 AEh VectorPath 4 8

SCASW AX, mem16 AFh VectorPath 4 8

SCASD EAX, mem32 AFh VectorPath 4 8

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
280 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
SETO mreg8 0Fh 90h 11-xxx-xxx DirectPath 1

SETO mem8 0Fh 90h mm-xxx-xxx DirectPath 3

SETNO mreg8 0Fh 91h 11-xxx-xxx DirectPath 1

SETNO mem8 0Fh 91h mm-xxx-xxx DirectPath 3

SETB/SETC/SETNAE mreg8 0Fh 92h 11-xxx-xxx DirectPath 1

SETB/SETC/SETNAE mem8 0Fh 92h mm-xxx-xxx DirectPath 3

SETAE/SETNB/SETNC mreg8 0Fh 93h 11-xxx-xxx DirectPath 1

SETAE/SETNB/SETNC mem8 0Fh 93h mm-xxx-xxx DirectPath 3

SETE/SETZ mreg8 0Fh 94h 11-xxx-xxx DirectPath 1

SETE/SETZ mem8 0Fh 94h mm-xxx-xxx DirectPath 3

SETNE/SETNZ mreg8 0Fh 95h 11-xxx-xxx DirectPath 1

SETNE/SETNZ mem8 0Fh 95h mm-xxx-xxx DirectPath 3

SETBE/SETNA mreg8 0Fh 96h 11-xxx-xxx DirectPath 1

SETBE/SETNA mem8 0Fh 96h mm-xxx-xxx DirectPath 3

SETA/SETNBE mreg8 0Fh 97h 11-xxx-xxx DirectPath 1

SETA/SETNBE mem8 0Fh 97h mm-xxx-xxx DirectPath 3

SETS mreg8 0Fh 98h 11-xxx-xxx DirectPath 1

SETS mem8 0Fh 98h mm-xxx-xxx DirectPath 3

SETNS mreg8 0Fh 99h 11-xxx-xxx DirectPath 1

SETNS mem8 0Fh 99h mm-xxx-xxx DirectPath 3

SETP/SETPE mreg8 0Fh 9Ah 11-xxx-xxx DirectPath 1

SETP/SETPE mem8 0Fh 9Ah mm-xxx-xxx DirectPath 3

SETNP/SETPO mreg8 0Fh 9Bh 11-xxx-xxx DirectPath 1

SETNP/SETPO mem8 0Fh 9Bh mm-xxx-xxx DirectPath 3

SETL/SETNGE mreg8 0Fh 9Ch 11-xxx-xxx DirectPath 1

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
Appendix F Instruction Dispatch and Execution Resources/Timing 281

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
SETL/SETNGE mem8 0Fh 9Ch mm-xxx-xxx DirectPath 3

SETGE/SETNL mreg8 0Fh 9Dh 11-xxx-xxx DirectPath 1

SETGE/SETNL mem8 0Fh 9Dh mm-xxx-xxx DirectPath 3

SETLE/SETNG mreg8 0Fh 9Eh 11-xxx-xxx DirectPath 1

SETLE/SETNG mem8 0Fh 9Eh mm-xxx-xxx DirectPath 3

SETG/SETNLE mreg8 0Fh 9Fh 11-xxx-xxx DirectPath 1

SETG/SETNLE mem8 0Fh 9Fh mm-xxx-xxx DirectPath 3

SGDT mem48 0Fh 01h mm-000-xxx VectorPath 17

SIDT mem48 0Fh 01h mm-001-xxx VectorPath 17

SHL/SAL mreg8, imm8 C0h 11-100-xxx DirectPath 1 3

SHL/SAL mem8, imm8 C0h mm-100-xxx DirectPath 4 3

SHL/SAL mreg16/32, imm8 C1h 11-100-xxx DirectPath 1 3

SHL/SAL mem16/32, imm8 C1h mm-100-xxx DirectPath 4 3

SHL/SAL mreg8, 1 D0h 11-100-xxx DirectPath 1

SHL/SAL mem8, 1 D0h mm-100-xxx DirectPath 4

SHL/SAL mreg16/32, 1 D1h 11-100-xxx DirectPath 1

SHL/SAL mem16/32, 1 D1h mm-100-xxx DirectPath 4

SHL/SAL mreg8, CL D2h 11-100-xxx DirectPath 1 3

SHL/SAL mem8, CL D2h mm-100-xxx DirectPath 4 3

SHL/SAL mreg16/32, CL D3h 11-100-xxx DirectPath 1 3

SHL/SAL mem16/32, CL D3h mm-100-xxx DirectPath 4 3

SHR mreg8, imm8 C0h 11-101-xxx DirectPath 1 3

SHR mem8, imm8 C0h mm-101-xxx DirectPath 4 3

SHR mreg16/32, imm8 C1h 11-101-xxx DirectPath 1 3

SHR mem16/32, imm8 C1h mm-101-xxx DirectPath 4 3

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
282 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
SHR mreg8, 1 D0h 11-101-xxx DirectPath 1

SHR mem8, 1 D0h mm-101-xxx DirectPath 4

SHR mreg16/32, 1 D1h 11-101-xxx DirectPath 1

SHR mem16/32, 1 D1h mm-101-xxx DirectPath 4

SHR mreg8, CL D2h 11-101-xxx DirectPath 1 3

SHR mem8, CL D2h mm-101-xxx DirectPath 4 3

SHR mreg16/32, CL D3h 11-101-xxx DirectPath 1 3

SHR mem16/32, CL D3h mm-101-xxx DirectPath 4 3

SHLD mreg16/32, reg16/32, imm8 0Fh A4h 11-xxx-xxx VectorPath 6 3

SHLD mem16/32, reg16/32, imm8 0Fh A4h mm-xxx-xxx VectorPath 6 3

SHLD mreg16/32, reg16/32, CL 0Fh A5h 11-xxx-xxx VectorPath 6 3

SHLD mem16/32, reg16/32, CL 0Fh A5h mm-xxx-xxx VectorPath 6 3

SHRD mreg16/32, reg16/32, imm8 0Fh ACh 11-xxx-xxx VectorPath 6 3

SHRD mem16/32, reg16/32, imm8 0Fh ACh mm-xxx-xxx VectorPath 8 3

SHRD mreg16/32, reg16/32, CL 0Fh ADh 11-xxx-xxx VectorPath 6 3

SHRD mem16/32, reg16/32, CL 0Fh ADh mm-xxx-xxx VectorPath 8 3

SLDT mreg16 0Fh 00h 11-000-xxx VectorPath 5

SLDT mem16 0Fh 00h mm-000-xxx VectorPath 5

SMSW mreg16 0Fh 01h 11-100-xxx VectorPath 4

SMSW mem16 0Fh 01h mm-100-xxx VectorPath 3

STC F9h DirectPath 1

STD FDh VectorPath 2

STI FBh VectorPath 4

STOSB mem8, AL AAh VectorPath 4 8

STOSW mem16, AX ABh VectorPath 4 8

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
Appendix F Instruction Dispatch and Execution Resources/Timing 283

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
STOSD mem32, EAX ABh VectorPath 4 8

STR mreg16 0Fh 00h 11-001-xxx VectorPath 5

STR mem16 0Fh 00h mm-001-xxx VectorPath 5

SUB mreg8, reg8 28h 11-xxx-xxx DirectPath 1

SUB mem8, reg8 28h mm-xxx-xxx DirectPath 4

SUB mreg16/32, reg16/32 29h 11-xxx-xxx DirectPath 1

SUB mem16/32, reg16/32 29h mm-xxx-xxx DirectPath 4

SUB reg8, mreg8 2Ah 11-xxx-xxx DirectPath 1

SUB reg8, mem8 2Ah mm-xxx-xxx DirectPath 4

SUB reg16/32, mreg16/32 2Bh 11-xxx-xxx DirectPath 1

SUB reg16/32, mem16/32 2Bh mm-xxx-xxx DirectPath 4

SUB AL, imm8 2Ch DirectPath 1

SUB EAX, imm16/32 2Dh DirectPath 1

SUB mreg8, imm8 80h 11-101-xxx DirectPath 1

SUB mem8, imm8 80h mm-101-xxx DirectPath 4

SUB mreg16/32, imm16/32 81h 11-101-xxx DirectPath 1

SUB mem16/32, imm16/32 81h mm-101-xxx DirectPath 4

SUB mreg16/32, imm8 (sign extended) 83h 11-101-xxx DirectPath 1

SUB mem16/32, imm8 (sign extended) 83h mm-101-xxx DirectPath 4

SYSCALL 0Fh 05h VectorPath ~

SYSENTER 0Fh 34h VectorPath ~

SYSEXIT 0Fh 35h VectorPath ~

SYSRET 0Fh 07h VectorPath ~

TEST mreg8, reg8 84h 11-xxx-xxx DirectPath 1

TEST mem8, reg8 84h mm-xxx-xxx DirectPath 4

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
284 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
TEST mreg16/32, reg16/32 85h 11-xxx-xxx DirectPath 1

TEST mem16/32, reg16/32 85h mm-xxx-xxx DirectPath 4

TEST AL, imm8 A8h DirectPath 1

TEST EAX, imm16/32 A9h DirectPath 1

TEST mreg8, imm8 F6h 11-000-xxx DirectPath 1

TEST mem8, imm8 F6h mm-000-xxx DirectPath 4

TEST mreg16/32, imm16/32 F7h 11-000-xxx DirectPath 1

TEST mem16/32, imm16/32 F7h mm-000-xxx DirectPath 4

VERR mreg16 0Fh 00h 11-100-xxx VectorPath 11

VERR mem16 0Fh 00h mm-100-xxx VectorPath 12

VERW mreg16 0Fh 00h 11-101-xxx VectorPath 11

VERW mem16 0Fh 00h mm-101-xxx VectorPath 12

WAIT 9Bh DirectPath 0 7

WBINVD 0Fh 09h VectorPath ~

WRMSR 0Fh 30h VectorPath ~

XADD mreg8, reg8 0Fh C0h 11-100-xxx VectorPath 2

XADD mem8, reg8 0Fh C0h mm-100-xxx VectorPath 5

XADD mreg16/32, reg16/32 0Fh C1h 11-101-xxx VectorPath 2

XADD mem16/32, reg16/32 0Fh C1h mm-101-xxx VectorPath 5

XCHG reg8, mreg8 86h 11-xxx-xxx VectorPath 2

XCHG reg8, mem8 86h mm-xxx-xxx VectorPath 23

XCHG reg16/32, mreg16/32 87h 11-xxx-xxx VectorPath 2

XCHG reg16/32, mem16/32 87h mm-xxx-xxx VectorPath 23

XCHG EAX, EAX (NOP) 90h DirectPath 0 7

XCHG EAX, ECX 91h VectorPath 2

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
Appendix F Instruction Dispatch and Execution Resources/Timing 285

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
XCHG EAX, EDX 92h VectorPath 2

XCHG EAX, EBX 93h VectorPath 2

XCHG EAX, ESP 94h VectorPath 2

XCHG EAX, EBP 95h VectorPath 2

XCHG EAX, ESI 96h VectorPath 2

XCHG EAX, EDI 97h VectorPath 2

XLAT D7h VectorPath 5

XOR mreg8, reg8 30h 11-xxx-xxx DirectPath 1

XOR mem8, reg8 30h mm-xxx-xxx DirectPath 4

XOR mreg16/32, reg16/32 31h 11-xxx-xxx DirectPath 1

XOR mem16/32, reg16/32 31h mm-xxx-xxx DirectPath 4

XOR reg8, mreg8 32h 11-xxx-xxx DirectPath 1

XOR reg8, mem8 32h mm-xxx-xxx DirectPath 4

XOR reg16/32, mreg16/32 33h 11-xxx-xxx DirectPath 1

XOR reg16/32, mem16/32 33h mm-xxx-xxx DirectPath 4

XOR AL, imm8 34h DirectPath 1

XOR EAX, imm16/32 35h DirectPath 1

XOR mreg8, imm8 80h 11-110-xxx DirectPath 1

XOR mem8, imm8 80h mm-110-xxx DirectPath 4

XOR mreg16/32, imm16/32 81h 11-110-xxx DirectPath 1

XOR mem16/32, imm16/32 81h mm-110-xxx DirectPath 4

XOR mreg16/32, imm8 (sign extended) 83h 11-110-xxx DirectPath 1

XOR mem16/32, imm8 (sign extended) 83h mm-110-xxx DirectPath 4

Table 19. Integer Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

Execute
Latency Note

Notes:
1. Static timing assumes a predicted branch.
2. Store operation also updates ESP—the new register value is available one clock earlier than the specified latency.
3. The clock count, regardless of the number of shifts or rotates as determined by CL or imm8.
4. There is a lower latency for low half of products, and a higher latency for high half of product and/or setting of flags.
5. The execution latency of the LEA instruction is dependent on the width of the destination operand. For more information on the

use of this instruction, see “Use 32-Bit LEA Rather than 16-Bit LEA Instruction” on page 54.
6. Execution latencies for nesting levels 0/1/2/3. A general rule for latency is 20+(3*n) for n ≥ 2.
7. These instructions have an effective latency of that which is listed. They map to internal NOPs that can be executed at a rate of

three per cycle and do not occupy execution resources.
8. The latency of repeated string instructions can be found in “Latency of Repeated String Instructions” on page 123.
286 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Table 20. MMX™ Instructions

Instruction Mnemonic Prefix
Byte(s)

First
Byte

ModR/M
Byte

Decode
Type FPU Pipe(s) Execute

Latency Notes

EMMS 0Fh 77h DirectPath FADD/FMUL/FSTORE 2 3

MOVD mmreg, reg32 0Fh 6Eh 11-xxx-xxx VectorPath - 3 1, 4

MOVD mmreg, mem32 0Fh 6Eh mm-xxx-xxx DirectPath FADD/FMUL/FSTORE 2 2, 3

MOVD reg32, mmreg 0Fh 7Eh 11-xxx-xxx VectorPath - 5 1, 4

MOVD mem32, mmreg 0Fh 7Eh mm-xxx-xxx DirectPath FSTORE 2

MOVQ mmreg1, mmreg2 0Fh 6Fh 11-xxx-xxx DirectPath FADD/FMUL 2

MOVQ mmreg, mem64 0Fh 6Fh mm-xxx-xxx DirectPath FADD/FMUL/FSTORE 2 2, 3

MOVQ mmreg2, mmreg1 0Fh 7Fh 11-xxx-xxx DirectPath FADD/FMUL 2

MOVQ mem64, mmreg 0Fh 7Fh mm-xxx-xxx DirectPath FSTORE 2

PACKSSDW mmreg1, mmreg2 0Fh 6Bh 11-xxx-xxx DirectPath FADD/FMUL 2

PACKSSDW mmreg, mem64 0Fh 6Bh mm-xxx-xxx DirectPath FADD/FMUL 2 2

PACKSSWB mmreg1, mmreg2 0Fh 63h 11-xxx-xxx DirectPath FADD/FMUL 2

PACKSSWB mmreg, mem64 0Fh 63h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PACKUSWB mmreg1, mmreg2 0Fh 67h 11-xxx-xxx DirectPath FADD/FMUL 2

PACKUSWB mmreg, mem64 0Fh 67h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PADDB mmreg1, mmreg2 0Fh FCh 11-xxx-xxx DirectPath FADD/FMUL 2

PADDB mmreg, mem64 0Fh FCh mm-xxx-xxx DirectPath FADD/FMUL 2 2

PADDD mmreg1, mmreg2 0Fh FEh 11-xxx-xxx DirectPath FADD/FMUL 2

PADDD mmreg, mem64 0Fh FEh mm-xxx-xxx DirectPath FADD/FMUL 2 2

PADDSB mmreg1, mmreg2 0Fh ECh 11-xxx-xxx DirectPath FADD/FMUL 2

PADDSB mmreg, mem64 0Fh ECh mm-xxx-xxx DirectPath FADD/FMUL 2 2

PADDSW mmreg1, mmreg2 0Fh EDh 11-xxx-xxx DirectPath FADD/FMUL 2

PADDSW mmreg, mem64 0Fh EDh mm-xxx-xxx DirectPath FADD/FMUL 2 2

PADDUSB mmreg1, mmreg2 0Fh DCh 11-xxx-xxx DirectPath FADD/FMUL 2

PADDUSB mmreg, mem64 0Fh DCh mm-xxx-xxx DirectPath FADD/FMUL 2 2

PADDUSW mmreg1, mmreg2 0Fh DDh 11-xxx-xxx DirectPath FADD/FMUL 2

PADDUSW mmreg, mem64 0Fh DDh mm-xxx-xxx DirectPath FADD/FMUL 2 2
Notes:

1. Bits 2, 1, and 0 of the modR/M byte select the integer register.
2. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the

Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

3. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a latency
of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use any of the
three execution resources.

4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal pipeline conditions.
Appendix F Instruction Dispatch and Execution Resources/Timing 287

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
PADDW mmreg1, mmreg2 0Fh FDh 11-xxx-xxx DirectPath FADD/FMUL 2

PADDW mmreg, mem64 0Fh FDh mm-xxx-xxx DirectPath FADD/FMUL 2 2

PAND mmreg1, mmreg2 0Fh DBh 11-xxx-xxx DirectPath FADD/FMUL 2

PAND mmreg, mem64 0Fh DBh mm-xxx-xxx DirectPath FADD/FMUL 2

PANDN mmreg1, mmreg2 0Fh DFh 11-xxx-xxx DirectPath FADD/FMUL 2

PANDN mmreg, mem64 0Fh DFh mm-xxx-xxx DirectPath FADD/FMUL 2 2

PCMPEQB mmreg1, mmreg2 0Fh 74h 11-xxx-xxx DirectPath FADD/FMUL 2

PCMPEQB mmreg, mem64 0Fh 74h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PCMPEQD mmreg1, mmreg2 0Fh 76h 11-xxx-xxx DirectPath FADD/FMUL 2

PCMPEQD mmreg, mem64 0Fh 76h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PCMPEQW mmreg1, mmreg2 0Fh 75h 11-xxx-xxx DirectPath FADD/FMUL 2

PCMPEQW mmreg, mem64 0Fh 75h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PCMPGTB mmreg1, mmreg2 0Fh 64h 11-xxx-xxx DirectPath FADD/FMUL 2

PCMPGTB mmreg, mem64 0Fh 64h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PCMPGTD mmreg1, mmreg2 0Fh 66h 11-xxx-xxx DirectPath FADD/FMUL 2

PCMPGTD mmreg, mem64 0Fh 66h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PCMPGTW mmreg1, mmreg2 0Fh 65h 11-xxx-xxx DirectPath FADD/FMUL 2

PCMPGTW mmreg, mem64 0Fh 65h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PMADDWD mmreg1, mmreg2 0Fh F5h 11-xxx-xxx DirectPath FMUL 3

PMADDWD mmreg, mem64 0Fh F5h mm-xxx-xxx DirectPath FMUL 3 2

PMULHW mmreg1, mmreg2 0Fh E5h 11-xxx-xxx DirectPath FMUL 3

PMULHW mmreg, mem64 0Fh E5h mm-xxx-xxx DirectPath FMUL 3 2

PMULLW mmreg1, mmreg2 0Fh D5h 11-xxx-xxx DirectPath FMUL 3

PMULLW mmreg, mem64 0Fh D5h mm-xxx-xxx DirectPath FMUL 3 2

POR mmreg1, mmreg2 0Fh EBh 11-xxx-xxx DirectPath FADD/FMUL 2

POR mmreg, mem64 0Fh EBh mm-xxx-xxx DirectPath FADD/FMUL 2 2

PSLLD mmreg1, mmreg2 0Fh F2h 11-xxx-xxx DirectPath FADD/FMUL 2

Table 20. MMX™ Instructions (Continued)

Instruction Mnemonic Prefix
Byte(s)

First
Byte

ModR/M
Byte

Decode
Type FPU Pipe(s) Execute

Latency Notes

Notes:
1. Bits 2, 1, and 0 of the modR/M byte select the integer register.
2. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the

Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

3. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a latency
of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use any of the
three execution resources.

4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal pipeline conditions.
288 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
PSLLD mmreg, mem64 0Fh F2h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PSLLD mmreg, imm8 0Fh 72h 11-110-xxx DirectPath FADD/FMUL 2

PSLLQ mmreg1, mmreg2 0Fh F3h 11-xxx-xxx DirectPath FADD/FMUL 2

PSLLQ mmreg, mem64 0Fh F3h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PSLLQ mmreg, imm8 0Fh 73h 11-110-xxx DirectPath FADD/FMUL 2

PSLLW mmreg1, mmreg2 0Fh F1h 11-xxx-xxx DirectPath FADD/FMUL 2

PSLLW mmreg, mem64 0Fh F1h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PSLLW mmreg, imm8 0Fh 71h 11-110-xxx DirectPath FADD/FMUL 2

PSRAW mmreg1, mmreg2 0Fh E1h 11-xxx-xxx DirectPath FADD/FMUL 2

PSRAW mmreg, mem64 0Fh E1h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PSRAW mmreg, imm8 0Fh 71h 11-100-xxx DirectPath FADD/FMUL 2

PSRAD mmreg1, mmreg2 0Fh E2h 11-xxx-xxx DirectPath FADD/FMUL 2

PSRAD mmreg, mem64 0Fh E2h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PSRAD mmreg, imm8 0Fh 72h 11-100-xxx DirectPath FADD/FMUL 2

PSRLD mmreg1, mmreg2 0Fh D2h 11-xxx-xxx DirectPath FADD/FMUL 2

PSRLD mmreg, mem64 0Fh D2h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PSRLD mmreg, imm8 0Fh 72h 11-010-xxx DirectPath FADD/FMUL 2

PSRLQ mmreg1, mmreg2 0Fh D3h 11-xxx-xxx DirectPath FADD/FMUL 2

PSRLQ mmreg, mem64 0Fh D3h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PSRLQ mmreg, imm8 0Fh 73h 11-010-xxx DirectPath FADD/FMUL 2

PSRLW mmreg1, mmreg2 0Fh D1h 11-xxx-xxx DirectPath FADD/FMUL 2

PSRLW mmreg, mem64 0Fh D1h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PSRLW mmreg, imm8 0Fh 71h 11-010-xxx DirectPath FADD/FMUL 2

PSUBB mmreg1, mmreg2 0Fh F8h 11-xxx-xxx DirectPath FADD/FMUL 2

PSUBB mmreg, mem64 0Fh F8h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PSUBD mmreg1, mmreg2 0Fh FAh 11-xxx-xxx DirectPath FADD/FMUL 2

PSUBD mmreg, mem64 0Fh FAh mm-xxx-xxx DirectPath FADD/FMUL 2 2

Table 20. MMX™ Instructions (Continued)

Instruction Mnemonic Prefix
Byte(s)

First
Byte

ModR/M
Byte

Decode
Type FPU Pipe(s) Execute

Latency Notes

Notes:
1. Bits 2, 1, and 0 of the modR/M byte select the integer register.
2. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the

Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

3. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a latency
of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use any of the
three execution resources.

4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal pipeline conditions.
Appendix F Instruction Dispatch and Execution Resources/Timing 289

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
PSUBSB mmreg1, mmreg2 0Fh E8h 11-xxx-xxx DirectPath FADD/FMUL 2

PSUBSB mmreg, mem64 0Fh E8h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PSUBSW mmreg1, mmreg2 0Fh E9h 11-xxx-xxx DirectPath FADD/FMUL 2

PSUBSW mmreg, mem64 0Fh E9h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PSUBUSB mmreg1, mmreg2 0Fh D8h 11-xxx-xxx DirectPath FADD/FMUL 2

PSUBUSB mmreg, mem64 0Fh D8h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PSUBUSW mmreg1, mmreg2 0Fh D9h 11-xxx-xxx DirectPath FADD/FMUL 2

PSUBUSW mmreg, mem64 0Fh D9h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PSUBW mmreg1, mmreg2 0Fh F9h 11-xxx-xxx DirectPath FADD/FMUL 2

PSUBW mmreg, mem64 0Fh F9h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PUNPCKHBW mmreg1, mmreg2 0Fh 68h 11-xxx-xxx DirectPath FADD/FMUL 2

PUNPCKHBW mmreg, mem64 0Fh 68h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PUNPCKHDQ mmreg1, mmreg2 0Fh 6Ah 11-xxx-xxx DirectPath FADD/FMUL 2

PUNPCKHDQ mmreg, mem64 0Fh 6Ah mm-xxx-xxx DirectPath FADD/FMUL 2 2

PUNPCKHWD mmreg1, mmreg2 0Fh 69h 11-xxx-xxx DirectPath FADD/FMUL 2

PUNPCKHWD mmreg, mem64 0Fh 69h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PUNPCKLBW mmreg1, mmreg2 0Fh 60h 11-xxx-xxx DirectPath FADD/FMUL 2

PUNPCKLBW mmreg, mem32 0Fh 60h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PUNPCKLDQ mmreg1, mmreg2 0Fh 62h 11-xxx-xxx DirectPath FADD/FMUL 2

PUNPCKLDQ mmreg, mem32 0Fh 62h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PUNPCKLWD mmreg1, mmreg2 0Fh 61h 11-xxx-xxx DirectPath FADD/FMUL 2

PUNPCKLWD mmreg, mem32 0Fh 61h mm-xxx-xxx DirectPath FADD/FMUL 2 2

PXOR mmreg1, mmreg2 0Fh EFh 11-xxx-xxx DirectPath FADD/FMUL 2

PXOR mmreg, mem64 0Fh EFh mm-xxx-xxx DirectPath FADD/FMUL 2 2

Table 20. MMX™ Instructions (Continued)

Instruction Mnemonic Prefix
Byte(s)

First
Byte

ModR/M
Byte

Decode
Type FPU Pipe(s) Execute

Latency Notes

Notes:
1. Bits 2, 1, and 0 of the modR/M byte select the integer register.
2. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the

Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

3. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a latency
of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use any of the
three execution resources.

4. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal pipeline conditions.
290 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide

es

d
Table 21. MMX™ Extensions

Instruction Mnemonic Prefix
Byte(s)

First
Byte

ModR/M
Byte

Decode
Type

FPU
Pipe(s)

Execute
Latency Not

MASKMOVQ mmreg1, mmreg2 0Fh F7h VectorPath FADD/FMUL/FSTORE 24

MOVNTQ mem64, mmreg 0Fh E7h DirectPath FSTORE 3

PAVGB mmreg1, mmreg2 0Fh E0h 11-xxx-xxx DirectPath FADD/FMUL 2

PAVGB mmreg, mem64 0Fh E0h mm-xxx-xxx DirectPath FADD/FMUL 2

PAVGW mmreg1, mmreg2 0Fh E3h 11-xxx-xxx DirectPath FADD/FMUL 2

PAVGW mmreg, mem64 0Fh E3h mm-xxx-xxx DirectPath FADD/FMUL 2

PEXTRW reg32, mmreg, imm8 0Fh C5h VectorPath - 7 3

PINSRW mmreg, reg32, imm8 0Fh C4h VectorPath - 5 3

PINSRW mmreg, mem16, imm8 0Fh C4h VectorPath - 5 3

PMAXSW mmreg1, mmreg2 0Fh EEh 11-xxx-xxx DirectPath FADD/FMUL 2

PMAXSW mmreg, mem64 0Fh EEh mm-xxx-xxx DirectPath FADD/FMUL 2

PMAXUB mmreg1, mmreg2 0Fh DEh 11-xxx-xxx DirectPath FADD/FMUL 2

PMAXUB mmreg, mem64 0Fh DEh mm-xxx-xxx DirectPath FADD/FMUL 2

PMINSW mmreg1, mmreg2 0Fh EAh 11-xxx-xxx DirectPath FADD/FMUL 2

PMINSW mmreg, mem64 0Fh EAh mm-xxx-xxx DirectPath FADD/FMUL 2

PMINUB mmreg1, mmreg2 0Fh DAh 11-xxx-xxx DirectPath FADD/FMUL 2

PMINUB mmreg, mem64 0Fh DAh mm-xxx-xxx DirectPath FADD/FMUL 2

PMOVMSKB reg32, mmreg 0Fh D7h VectorPath - 6 3

PMULHUW mmreg1, mmreg2 0Fh E4h 11-xxx-xxx DirectPath FMUL 3

PMULHUW mmreg, mem64 0Fh E4h mm-xxx-xxx DirectPath FMUL 3

PSADBW mmreg1, mmreg2 0Fh F6h 11-xxx-xxx DirectPath FADD 3

PSADBW mmreg, mem64 0Fh F6h mm-xxx-xxx DirectPath FADD 3

PSHUFW mmreg1, mmreg2, imm8 0Fh 70h DirectPath FADD/FMUL 2

PSHUFW mmreg, mem64, imm8 0Fh 70h DirectPath FADD/FMUL 2

PREFETCHNTA mem8 0Fh 18h mm-000-xxx DirectPath - ~ 1

PREFETCHT0 mem8 0Fh 18h mm-001-xxx DirectPath - ~ 1

PREFETCHT1 mem8 0Fh 18h mm-010-xxx DirectPath - ~ 1

PREFETCHT2 mem8 0Fh 18h mm-011-xxx DirectPath - ~ 1

SFENCE 0Fh AEh VectorPath - 2/8 2
Notes:

1. For the PREFETCHNTA/T0/T1/T2 instructions, the mem8 value refers to an address in the 64-byte line that will be prefetched.
2. The 8-clock latency is only visible to younger stores that need to do an external write. The 2-clock latency is visible to the other stores an

instructions.
3. The latency listed is the absolute minimum, while average latencies may be higher and are a function of internal pipeline conditions.
Appendix F Instruction Dispatch and Execution Resources/Timing 291

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Table 22. Floating-Point Instructions

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

FPU
Pipe(s)

Execute
Latency Note

F2XM1 D9h 11-110-000 VectorPath - 64

FABS D9h 11-100-001 DirectPath FMUL 2

FADD ST, ST(i) D8h 11-000-xxx DirectPath FADD 4 1

FADD [mem32real] D8h mm-000-xxx DirectPath FADD 4 4

FADD ST(i), ST DCh 11-000-xxx DirectPath FADD 4 1

FADD [mem64real] DCh mm-000-xxx DirectPath FADD 4 4

FADDP ST(i), ST DEh 11-000-xxx DirectPath FADD 4 1

FBLD [mem80] DFh mm-100-xxx VectorPath - 91

FBSTP [mem80] DFh mm-110-xxx VectorPath - 198

FCHS D9h 11-100-000 DirectPath FMUL 2

FCLEX DBh 11-100-010 VectorPath - 23

FCMOVB ST(0), ST(i) DAh 11-000-xxx VectorPath - 7 7

FCMOVE ST(0), ST(i) DAh 11-001-xxx VectorPath - 7 7

FCMOVBE ST(0), ST(i) DAh 11-010-xxx VectorPath - 7 7

FCMOVU ST(0), ST(i) DAh 11-011-xxx VectorPath - 7 7

FCMOVNB ST(0), ST(i) DBh 11-000-xxx VectorPath - 7 7

FCMOVNE ST(0), ST(i) DBh 11-001-xxx VectorPath - 7 7

FCMOVNBE ST(0), ST(i) DBh 11-010-xxx VectorPath - 7 7

FCMOVNU ST(0), ST(i) DBh 11-011-xxx VectorPath - 7 7

FCOM ST(i) D8h 11-010-xxx DirectPath FADD 2 1

FCOMP ST(i) D8h 11-011-xxx DirectPath FADD 2 1

FCOM [mem32real] D8h mm-010-xxx DirectPath FADD 2 4
Notes:

1. The last three bits of the modR/M byte select the stack entry ST(i).
2. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a

latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use
any of the three execution resources.

3. A VectorPath decoded operation that uses one execution pipe (one ROP).
4. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the

Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

5. Three latency numbers refer to precision control settings of single precision, double precision, and extended precision, respectively.
6. There is additional latency associated with this instruction. “e” is the difference between the exponents of divisor and dividend. If “s”

is the number of normalization shifts performed on the result, then n = (s+1)/2 where (0 <= n <= 32).
7. The latency provided for this operation is the best-case latency. See “Minimize Floating-Point-to-Integer Conversions” on page 154

for more information.
8. The first number is for when no error condition is present. The second number is for when there is an error condition.
292 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
FCOM [mem64real] DCh mm-010-xxx DirectPath FADD 2 4

FCOMI ST, ST(i) DBh 11-110-xxx VectorPath FADD 3 3

FCOMIP ST, ST(i) DFh 11-110-xxx VectorPath FADD 3 3

FCOMP [mem32real] D8h mm-011-xxx DirectPath FADD 2 4

FCOMP [mem64real] DCh mm-011-xxx DirectPath FADD 2 4

FCOMPP DEh 11-011-001 DirectPath FADD 2

FCOS D9h 11-111-111 VectorPath - 97-196

FDECSTP D9h 11-110-110 DirectPath FADD/FMUL/FSTORE 2

FDIV ST, ST(i) D8h 11-110-xxx DirectPath FMUL 16/20/24 1, 5

FDIV ST(i), ST DCh 11-111-xxx DirectPath FMUL 16/20/24 1, 5

FDIV [mem32real] D8h mm-110-xxx DirectPath FMUL 16/20/24 4, 5

FDIV [mem64real] DCh mm-110-xxx DirectPath FMUL 16/20/24 4, 5

FDIVP ST(i), ST DEh 11-111-xxx DirectPath FMUL 16/20/24 1, 5

FDIVR ST, ST(i) D8h 11-110-xxx DirectPath FMUL 16/20/24 1, 5

FDIVR ST(i), ST DCh 11-111-xxx DirectPath FMUL 16/20/24 1, 5

FDIVR [mem32real] D8h mm-111-xxx DirectPath FMUL 16/20/24 4, 5

FDIVR [mem64real] DCh mm-111-xxx DirectPath FMUL 16/20/24 4, 5

FDIVRP ST(i), ST DEh 11-110-xxx DirectPath FMUL 16/20/24 1, 5

FFREE ST(i) DDh 11-000-xxx DirectPath FADD/FMUL/FSTORE 2 1, 2

FFREEP ST(i) DFh 11-000-xxx DirectPath FADD/FMUL/FSTORE 2 1, 2

FIADD [mem32int] DAh mm-000-xxx VectorPath - 9 4

FIADD [mem16int] DEh mm-000-xxx VectorPath - 9 4

FICOM [mem32int] DAh mm-010-xxx VectorPath - 9 4

Table 22. Floating-Point Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

FPU
Pipe(s)

Execute
Latency Note

Notes:
1. The last three bits of the modR/M byte select the stack entry ST(i).
2. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a

latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use
any of the three execution resources.

3. A VectorPath decoded operation that uses one execution pipe (one ROP).
4. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the

Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

5. Three latency numbers refer to precision control settings of single precision, double precision, and extended precision, respectively.
6. There is additional latency associated with this instruction. “e” is the difference between the exponents of divisor and dividend. If “s”

is the number of normalization shifts performed on the result, then n = (s+1)/2 where (0 <= n <= 32).
7. The latency provided for this operation is the best-case latency. See “Minimize Floating-Point-to-Integer Conversions” on page 154

for more information.
8. The first number is for when no error condition is present. The second number is for when there is an error condition.
Appendix F Instruction Dispatch and Execution Resources/Timing 293

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
FICOM [mem16int] DEh mm-010-xxx VectorPath - 9 4

FICOMP [mem32int] DAh mm-011-xxx VectorPath - 9 4

FICOMP [mem16int] DEh mm-011-xxx VectorPath - 9 4

FIDIV [mem32int] DAh mm-110-xxx VectorPath - 21/25/29 4, 5

FIDIV [mem16int] DEh mm-110-xxx VectorPath - 21/25/29 4, 5

FIDIVR [mem32int] DAh mm-111-xxx VectorPath - 21/25/29 4, 5

FIDIVR [mem16int] DEh mm-111-xxx VectorPath - 21/25/29 4, 5

FILD [mem16int] DFh mm-000-xxx DirectPath FSTORE 4 4

FILD [mem32int] DBh mm-000-xxx DirectPath FSTORE 4 4

FILD [mem64int] DFh mm-101-xxx DirectPath FSTORE 4 4

FIMUL [mem32int] DAh mm-001-xxx VectorPath - 9 4

FIMUL [mem16int] DEh mm-001-xxx VectorPath - 9 4

FINCSTP D9h 11-110-111 DirectPath FADD/FMUL/FSTORE 2 2

FINIT DBh 11-100-011 VectorPath - 91

FIST [mem16int] DFh mm-010-xxx DirectPath FSTORE 4 4

FIST [mem32int] DBh mm-010-xxx DirectPath FSTORE 4 4

FISTP [mem16int] DFh mm-011-xxx DirectPath FSTORE 4 4

FISTP [mem32int] DBh mm-011-xxx DirectPath FSTORE 4 4

FISTP [mem64int] DFh mm-111-xxx DirectPath FSTORE 4 4

FISUB [mem32int] DAh mm-100-xxx VectorPath - 9 4

FISUB [mem16int] DEh mm-100-xxx VectorPath - 9 4

FISUBR [mem32int] DAh mm-101-xxx VectorPath - 9 4

FISUBR [mem16int] DEh mm-101-xxx VectorPath - 9 4

Table 22. Floating-Point Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

FPU
Pipe(s)

Execute
Latency Note

Notes:
1. The last three bits of the modR/M byte select the stack entry ST(i).
2. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a

latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use
any of the three execution resources.

3. A VectorPath decoded operation that uses one execution pipe (one ROP).
4. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the

Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

5. Three latency numbers refer to precision control settings of single precision, double precision, and extended precision, respectively.
6. There is additional latency associated with this instruction. “e” is the difference between the exponents of divisor and dividend. If “s”

is the number of normalization shifts performed on the result, then n = (s+1)/2 where (0 <= n <= 32).
7. The latency provided for this operation is the best-case latency. See “Minimize Floating-Point-to-Integer Conversions” on page 154

for more information.
8. The first number is for when no error condition is present. The second number is for when there is an error condition.
294 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
FLD ST(i) D9h 11-000-xxx DirectPath FADD/FMUL 2 1

FLD [mem32real] D9h mm-000-xxx DirectPath FADD/FMUL/FSTORE 2 4

FLD [mem64real] DDh mm-000-xxx DirectPath FADD/FMUL/FSTORE 2 4

FLD [mem80real] DBh mm-101-xxx VectorPath - 10 4

FLD1 D9h 11-101-000 DirectPath FSTORE 4

FLDCW [mem16] D9h mm-101-xxx VectorPath - 11

FLDENV [mem14byte] D9h mm-100-xxx VectorPath - 129

FLDENV [mem28byte] D9h mm-100-xxx VectorPath - 129

FLDL2E D9h 11-101-010 DirectPath FSTORE 4

FLDL2T D9h 11-101-001 DirectPath FSTORE 4

FLDLG2 D9h 11-101-100 DirectPath FSTORE 4

FLDLN2 D9h 11-101-101 DirectPath FSTORE 4

FLDPI D9h 11-101-011 DirectPath FSTORE 4

FLDZ D9h 11-101-110 DirectPath FSTORE 4

FMUL ST, ST(i) D8h 11-001-xxx DirectPath FMUL 4 1

FMUL ST(i), ST DCh 11-001-xxx DirectPath FMUL 4 1

FMUL [mem32real] D8h mm-001-xxx DirectPath FMUL 4 4

FMUL [mem64real] DCh mm-001-xxx DirectPath FMUL 4 4

FMULP ST(i), ST DEh 11-001-xxx DirectPath FMUL 4 1

FNOP D9h 11-010-000 DirectPath FADD/FMUL/FSTORE 2 2

FPTAN D9h 11-110-010 VectorPath - 107-216

FPATAN D9h 11-110-011 VectorPath - 158-175

FPREM D9h 11-111-000 DirectPath FMUL 9+e+n 6

Table 22. Floating-Point Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

FPU
Pipe(s)

Execute
Latency Note

Notes:
1. The last three bits of the modR/M byte select the stack entry ST(i).
2. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a

latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use
any of the three execution resources.

3. A VectorPath decoded operation that uses one execution pipe (one ROP).
4. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the

Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

5. Three latency numbers refer to precision control settings of single precision, double precision, and extended precision, respectively.
6. There is additional latency associated with this instruction. “e” is the difference between the exponents of divisor and dividend. If “s”

is the number of normalization shifts performed on the result, then n = (s+1)/2 where (0 <= n <= 32).
7. The latency provided for this operation is the best-case latency. See “Minimize Floating-Point-to-Integer Conversions” on page 154

for more information.
8. The first number is for when no error condition is present. The second number is for when there is an error condition.
Appendix F Instruction Dispatch and Execution Resources/Timing 295

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
FPREM1 D9h 11-110-101 DirectPath FMUL 9+e+n 6

FRNDINT D9h 11-111-100 VectorPath - 10

FRSTOR [mem94byte] DDh mm-100-xxx VectorPath - 138

FRSTOR [mem108byte] DDh mm-100-xxx VectorPath - 138

FSAVE [mem94byte] DDh mm-110-xxx VectorPath - 159

FSAVE [mem108byte] DDh mm-110-xxx VectorPath - 159

FSCALE D9h 11-111-101 VectorPath - 8

FSIN D9h 11-111-110 VectorPath - 96-192

FSINCOS D9h 11-111-011 VectorPath - 107-211

FSQRT D9h 11-111-010 DirectPath FMUL 19/27/35 5

FST [mem32real] D9h mm-010-xxx DirectPath FSTORE 2 4

FST [mem64real] DDh mm-010-xxx DirectPath FSTORE 2 4

FST ST(i) DDh 11-010xxx DirectPath FADD/FMUL 2

FSTCW [mem16] D9h mm-111-xxx VectorPath - 4

FSTENV [mem14byte] D9h mm-110-xxx VectorPath - 89

FSTENV [mem28byte] D9h mm-110-xxx VectorPath - 89

FSTP [mem32real] D9h mm-011-xxx DirectPath FADD/FMUL 4 4

FSTP [mem64real] DDh mm-011-xxx DirectPath FADD/FMUL 4 4

FSTP [mem80real] D9h mm-111-xxx VectorPath - 8 4

FSTP ST(i) DDh 11-011-xxx DirectPath FADD/FMUL 2

FSTSW AX DFh 11-100-000 VectorPath - 12

FSTSW [mem16] DDh mm-111-xxx VectorPath FSTORE 8 3

FSUB [mem32real] D8h mm-100-xxx DirectPath FADD 4 4

Table 22. Floating-Point Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

FPU
Pipe(s)

Execute
Latency Note

Notes:
1. The last three bits of the modR/M byte select the stack entry ST(i).
2. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a

latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use
any of the three execution resources.

3. A VectorPath decoded operation that uses one execution pipe (one ROP).
4. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the

Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

5. Three latency numbers refer to precision control settings of single precision, double precision, and extended precision, respectively.
6. There is additional latency associated with this instruction. “e” is the difference between the exponents of divisor and dividend. If “s”

is the number of normalization shifts performed on the result, then n = (s+1)/2 where (0 <= n <= 32).
7. The latency provided for this operation is the best-case latency. See “Minimize Floating-Point-to-Integer Conversions” on page 154

for more information.
8. The first number is for when no error condition is present. The second number is for when there is an error condition.
296 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
FSUB [mem64real] DCh mm-100-xxx DirectPath FADD 4 4

FSUB ST, ST(i) D8h 11-100-xxx DirectPath FADD 4 1

FSUB ST(i), ST DCh 11-101-xxx DirectPath FADD 4 1

FSUBP ST(i), ST DEh 11-101-xxx DirectPath FADD 4 1

FSUBR [mem32real] D8h mm-101-xxx DirectPath FADD 4 4

FSUBR [mem64real] DCh mm-101-xxx DirectPath FADD 4 4

FSUBR ST, ST(i) D8h 11-100-xxx DirectPath FADD 4 1

FSUBR ST(i), ST DCh 11-101-xxx DirectPath FADD 4 1

FSUBRP ST(i), ST DEh 11-100-xxx DirectPath FADD 4 1

FTST D9h 11-100-100 DirectPath FADD 2

FUCOM DDh 11-100-xxx DirectPath FADD 2

FUCOMI ST, ST(i) DBh 11-101-xxx VectorPath FADD 3 3

FUCOMIP ST, ST(i) DFh 11-101-xxx VectorPath FADD 3 3

FUCOMP DDh 11-101-xxx DirectPath FADD 2

FUCOMPP DAh 11-101-001 DirectPath FADD 2

FWAIT 9Bh DirectPath - 0

FXAM D9h 11-100-101 VectorPath - 3

FXCH D9h 11-001-xxx DirectPath FADD/FMUL/FSTORE 2 2

FXRSTOR [mem512byte] 0Fh AEh mm-001-xxx VectorPath - 68/108 8

FXSAVE [mem512byte] 0Fh AEh mm-000-xxx VectorPath - 31/79 8

FXTRACT D9h 11-110-100 VectorPath - 7

FYL2X D9h 11-110-001 VectorPath - 116-126

FYL2XP1 D9h 11-111-001 VectorPath - 126

Table 22. Floating-Point Instructions (Continued)

Instruction Mnemonic First
Byte

Second
Byte

ModR/M
Byte

Decode
Type

FPU
Pipe(s)

Execute
Latency Note

Notes:
1. The last three bits of the modR/M byte select the stack entry ST(i).
2. These instructions have an effective latency of that which is listed. However, these instructions generate an internal NOP with a

latency of two cycles but no related dependencies. These internal NOPs can be executed at a rate of three per cycle and can use
any of the three execution resources.

3. A VectorPath decoded operation that uses one execution pipe (one ROP).
4. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the

Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

5. Three latency numbers refer to precision control settings of single precision, double precision, and extended precision, respectively.
6. There is additional latency associated with this instruction. “e” is the difference between the exponents of divisor and dividend. If “s”

is the number of normalization shifts performed on the result, then n = (s+1)/2 where (0 <= n <= 32).
7. The latency provided for this operation is the best-case latency. See “Minimize Floating-Point-to-Integer Conversions” on page 154

for more information.
8. The first number is for when no error condition is present. The second number is for when there is an error condition.
Appendix F Instruction Dispatch and Execution Resources/Timing 297

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Table 23. 3DNow!™ Instructions

Instruction Mnemonic Prefix
Byte(s) imm8 ModR/M

Byte
Decode

Type
FPU

Pipe(s)
Execute
Latency Note

FEMMS 0Fh 0Eh DirectPath FADD/FMUL/FSTORE 2 2

PAVGUSB mmreg1, mmreg2 0Fh, 0Fh BFh 11-xxx-xxx DirectPath FADD/FMUL 2

PAVGUSB mmreg, mem64 0Fh, 0Fh BFh mm-xxx-xxx DirectPath FADD/FMUL 2 3

PF2ID mmreg1, mmreg2 0Fh, 0Fh 1Dh 11-xxx-xxx DirectPath FADD 4

PF2ID mmreg, mem64 0Fh, 0Fh 1Dh mm-xxx-xxx DirectPath FADD 4 3

PFACC mmreg1, mmreg2 0Fh, 0Fh AEh 11-xxx-xxx DirectPath FADD 4

PFACC mmreg, mem64 0Fh, 0Fh AEh mm-xxx-xxx DirectPath FADD 4 3

PFADD mmreg1, mmreg2 0Fh, 0Fh 9Eh 11-xxx-xxx DirectPath FADD 4

PFADD mmreg, mem64 0Fh, 0Fh 9Eh mm-xxx-xxx DirectPath FADD 4 3

PFCMPEQ mmreg1, mmreg2 0Fh, 0Fh B0h 11-xxx-xxx DirectPath FADD 4

PFCMPEQ mmreg, mem64 0Fh, 0Fh B0h mm-xxx-xxx DirectPath FADD 4 3

PFCMPGE mmreg1, mmreg2 0Fh, 0Fh 90h 11-xxx-xxx DirectPath FADD 4

PFCMPGE mmreg, mem64 0Fh, 0Fh 90h mm-xxx-xxx DirectPath FADD 4 3

PFCMPGT mmreg1, mmreg2 0Fh, 0Fh A0h 11-xxx-xxx DirectPath FADD 4

PFCMPGT mmreg, mem64 0Fh, 0Fh A0h mm-xxx-xxx DirectPath FADD 4 3

PFMAX mmreg1, mmreg2 0Fh, 0Fh A4h 11-xxx-xxx DirectPath FADD 4

PFMAX mmreg, mem64 0Fh, 0Fh A4h mm-xxx-xxx DirectPath FADD 4 3

PFMIN mmreg1, mmreg2 0Fh, 0Fh 94h 11-xxx-xxx DirectPath FADD 4

PFMIN mmreg, mem64 0Fh, 0Fh 94h mm-xxx-xxx DirectPath FADD 4 3

PFMUL mmreg1, mmreg2 0Fh, 0Fh B4h 11-xxx-xxx DirectPath FMUL 4

PFMUL mmreg, mem64 0Fh, 0Fh B4h mm-xxx-xxx DirectPath FMUL 4 3

PFRCP mmreg1, mmreg2 0Fh, 0Fh 96h 11-xxx-xxx DirectPath FMUL 3

PFRCP mmreg, mem64 0Fh, 0Fh 96h mm-xxx-xxx DirectPath FMUL 3 3

PFRCPIT1 mmreg1, mmreg2 0Fh, 0Fh A6h 11-xxx-xxx DirectPath FMUL 4

PFRCPIT1 mmreg, mem64 0Fh, 0Fh A6h mm-xxx-xxx DirectPath FMUL 4 3

PFRCPIT2 mmreg1, mmreg2 0Fh, 0Fh B6h 11-xxx-xxx DirectPath FMUL 4

PFRCPIT2 mmreg, mem64 0Fh, 0Fh B6h mm-xxx-xxx DirectPath FMUL 4 3
Notes:

1. For the PREFETCH and PREFETCHW instructions, the mem8 value refers to an address in the 64-byte line that will be prefetched.
2. The byte listed in the column titled ‘imm8’ is actually the Opcode Byte.
3. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the

Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

4. This instruction has an effective latency of that which is listed. However, it generates an internal NOP with a latency of two cycles but
no related dependencies. These internal NOP(s) can be executed at a rate of three per cycle and can use any of the three execution
resources
298 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
PFRSQIT1 mmreg1, mmreg2 0Fh, 0Fh A7h 11-xxx-xxx DirectPath FMUL 4

PFRSQIT1 mmreg, mem64 0Fh, 0Fh A7h mm-xxx-xxx DirectPath FMUL 4 3

PFRSQRT mmreg1, mmreg2 0Fh, 0Fh 97h 11-xxx-xxx DirectPath FMUL 3

PFRSQRT mmreg, mem64 0Fh, 0Fh 97h mm-xxx-xxx DirectPath FMUL 3 3

PFSUB mmreg1, mmreg2 0Fh, 0Fh 9Ah 11-xxx-xxx DirectPath FADD 4

PFSUB mmreg, mem64 0Fh, 0Fh 9Ah mm-xxx-xxx DirectPath FADD 4 3

PFSUBR mmreg1, mmreg2 0Fh, 0Fh AAh 11-xxx-xxx DirectPath FADD 4

PFSUBR mmreg, mem64 0Fh, 0Fh AAh mm-xxx-xxx DirectPath FADD 4 3

PI2FD mmreg1, mmreg2 0Fh, 0Fh 0Dh 11-xxx-xxx DirectPath FADD 4

PI2FD mmreg, mem64 0Fh, 0Fh 0Dh mm-xxx-xxx DirectPath FADD 4 3

PMULHRW mmreg1, mmreg2 0Fh, 0Fh B7h 11-xxx-xxx DirectPath FMUL 3

PMULHRW mmreg1, mem64 0Fh, 0Fh B7h mm-xxx-xxx DirectPath FMUL 3 3

PREFETCH mem8 0Fh 0Dh mm-000-xxx DirectPath - ~ 1, 2

PREFETCHW mem8 0Fh 0Dh mm-001-xxx DirectPath - ~ 1, 2

Table 23. 3DNow!™ Instructions (Continued)

Instruction Mnemonic Prefix
Byte(s) imm8 ModR/M

Byte
Decode

Type
FPU

Pipe(s)
Execute
Latency Note

Notes:
1. For the PREFETCH and PREFETCHW instructions, the mem8 value refers to an address in the 64-byte line that will be prefetched.
2. The byte listed in the column titled ‘imm8’ is actually the Opcode Byte.
3. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the

Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.

4. This instruction has an effective latency of that which is listed. However, it generates an internal NOP with a latency of two cycles but
no related dependencies. These internal NOP(s) can be executed at a rate of three per cycle and can use any of the three execution
resources
Appendix F Instruction Dispatch and Execution Resources/Timing 299

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
Table 24. 3DNow!™ Extensions

Instruction Mnemonic Prefix
Byte(s) imm8 ModR/M

Byte
Decode

Type
FPU

Pipe(s)
Execute
Latency Note

PF2IW mmreg1, mmreg2 0Fh, 0Fh 1Ch 11-xxx-xxx DirectPath FADD 4

PF2IW mmreg, mem64 0Fh, 0Fh 1Ch mm-xxx-xxx DirectPath FADD 4 1

PFNACC mmreg1, mmreg2 0Fh, 0Fh 8Ah 11-xxx-xxx DirectPath FADD 4

PFNACC mmreg, mem64 0Fh, 0Fh 8Ah mm-xxx-xxx DirectPath FADD 4 1

PFPNACC mmreg1, mmreg2 0Fh, 0Fh 8Eh 11-xxx-xxx DirectPath FADD 4

PFPNACC mmreg, mem64 0Fh, 0Fh 8Eh mm-xxx-xxx DirectPath FADD 4 1

PI2FW mmreg1, mmreg2 0Fh, 0Fh 0Ch 11-xxx-xxx DirectPath FADD 4

PI2FW mmreg, mem64 0Fh, 0Fh 0Ch mm-xxx-xxx DirectPath FADD 4 1

PSWAPD mmreg1, mmreg2 0Fh, 0Fh BBh 11-xxx-xxx DirectPath FADD/FMUL 2

PSWAPD mmreg, mem64 0Fh, 0Fh BBh mm-xxx-xxx DirectPath FADD/FMUL 2 1
Note:

1. The cycle count listed is purely for execution and does not take into account the time required by the instruction to access the
Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed back by at least
two additional cycles.
300 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Table 25. Instructions Introduced with 3DNow!™ Professional

Instruction Mnemonic Prefix
Byte

First
Byte

2nd
Byte

ModR/M
Byte

Decode
Type

FPU
Pipe Latency Note

ADDPS xmmreg1, xmmreg2 0F 58 11-xxx-xxx VectorPath FADD 5 1

ADDPS xmmreg, mem128 0F 58 mm-xxx-xxx VectorPath FADD 5 1,4

ADDSS xmmreg1, xmmreg2 F3 0F 58 11-xxx-xxx DirectPath FADD 4

ADDSS xmmreg, mem128 F3 0F 58 mm-xxx-xxx DirectPath FADD 4 4

ANDNPS xmmreg1, xmmreg2 0F 55 11-xxx-xxx VectorPath FMUL 3 1

ANDNPS xmmreg, mem128 0F 55 mm-xxx-xxx VectorPath FMUL 3 1,4

ANDPS xmmreg1, xmmreg2 0F 54 11-xxx-xxx VectorPath FMUL 3 1

ANDPS xmmreg, mem128 0F 54 mm-xxx-xxx VectorPath FMUL 3 1,4

CMPPS xmmreg1, xmmreg2, imm8 0F C2 11-xxx-xxx VectorPath FADD 3 1

CMPPS xmmreg, mem128, imm8 0F C2 mm-xxx-xxx VectorPath FADD 3 1,4

CMPSS xmmreg1, xmmreg2, imm8 F3 0F C2 11-xxx-xxx DirectPath FADD 2

CMPSS xmmreg, mem32, imm8 F3 0F C2 mm-xxx-xxx DirectPath FADD 2 4

COMISS xmmreg1, xmmreg2 0F 2F 11-xxx-xxx VectorPath 3

COMISS xmmreg, mem32 0F 2F mm-xxx-xxx VectorPath 3 4

CVTPI2PS xmmreg, mmreg 0F 2A 11-xxx-xxx DirectPath 4

CVTPI2PS xmmreg, mem64 0F 2A mm-xxx-xxx DirectPath 4 4

CVTPS2PI mmreg, xmmreg 0F 2D 11-xxx-xxx DirectPath 4

CVTPS2PI mmreg, mem128 0F 2D mm-xxx-xxx DirectPath 4 4

CVTSI2SS xmmreg, reg32 F3 0F 2A 11-xxx-xxx VectorPath ~

CVTSI2SS xmmreg, mem32 F3 0F 2A mm-xxx-xxx VectorPath ~ 4

CVTSS2SI reg32, xmmreg F3 0F 2D 11-xxx-xxx VectorPath 7/11

CVTSS2SI reg32, mem32 F3 0F 2D mm-xxx-xxx VectorPath 7/11 4

CVTTPS2PI mmreg, xmmreg 0F 2C 11-xxx-xxx DirectPath 4

CVTTPS2PI mmreg, mem128 0F 2C mm-xxx-xxx DirectPath 4 4

CVTTSS2SI reg32, xmmreg F3 0F 2C 11-xxx-xxx VectorPath 7/11

CVTTSS2SI reg32, mem32 F3 0F 2C mm-xxx-xxx VectorPath 7/11 4

DIVPS xmmreg1, xmmreg2 0F 5E 11-xxx-xxx VectorPath FMUL 29/16

DIVPS xmmreg, mem128 0F 5E mm-xxx-xxx VectorPath FMUL 29/16 4

DIVSS xmmreg1, xmmreg2 F3 0F 5E 11-xxx-xxx DirectPath FMUL 16

DIVSS xmmreg, mem32 F3 0F 5E mm-xxx-xxx DirectPath FMUL 16 4

LDMXCSR mem32 0F AE mm-010-xxx VectorPath

MAXPS xmmreg1, xmmreg2 0F 5F 11-xxx-xxx VectorPath FADD 37 1

MAXPS xmmreg, mem128 0F 5F mm-xxx-xxx VectorPath FADD 3 1,4
Appendix F Instruction Dispatch and Execution Resources/Timing 301

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
MAXSS xmmreg1, xmmreg2 F3 0F 5F 11-xxx-xxx DirectPath FADD 2

MAXSS xmmreg, mem32 F3 0F 5F mm-xxx-xxx DirectPath FADD 2 4

MINPS xmmreg1, xmmreg2 0F 5D 11-xxx-xxx VectorPath FADD 3 1

MINPS xmmreg, mem128 0F 5D mm-xxx-xxx VectorPath FADD 3 1,4

MINSS xmmreg1, xmmreg2 F3 0F 5D 11-xxx-xxx DirectPath FADD 2

MINSS xmmreg, mem32 F3 0F 5D mm-xxx-xxx DirectPath FADD 2 4

MOVAPS xmmreg1, xmmreg2 0F 28 11-xxx-xxx VectorPath 2

MOVAPS xmmreg, mem128 0F 28 mm-xxx-xxx VectorPath 2 4

MOVAPS xmmreg1, xmmreg2 0F 29 11-xxx-xxx VectorPath 2

MOVAPS mem128, xmmreg 0F 29 mm-xxx-xxx VectorPath 3 1,4

MOVHLPS xmmreg1, xmmreg2 0F 12 11-xxx-xxx DirectPath 2

MOVHPS xmmreg, mem64 0F 16 mm-xxx-xxx DirectPath 2 4

MOVHPS mem64, xmmreg 0F 17 mm-xxx-xxx DirectPath 2 4

MOVLHPS xmmreg1, xmmreg2 0F 16 11-xxx-xxx DirectPath 2

MOVLPS xmmreg, mem64 0F 12 mm-xxx-xxx DirectPath 2 4

MOVLPS mem64, xmmreg 0F 13 mm-xxx-xxx DirectPath 2 4

MOVMSKPS reg32, xmmreg 0F 50 11-xxx-xxx VectorPath 7/11

MOVNTPS mem128, xmmreg 0F 2B mm-xxx-xxx VectorPath 5 1,4

MOVSS xmmreg1, xmmreg2 F3 0F 10 11-xxx-xxx VectorPath 2

MOVSS xmmreg, mem32 F3 0F 10 mm-xxx-xxx VectorPath 2 4

MOVSS xmmreg1, xmmreg2 F3 0F 11 11-xxx-xxx DirectPath 2

MOVSS mem32, xmmreg F3 0F 11 mm-xxx-xxx DirectPath 2 4

MOVUPS xmmreg1, xmmreg2 0F 10 11-xxx-xxx VectorPath 2

MOVUPS xmmreg, mem128 0F 10 mm-xxx-xxx VectorPath ~5 4

MOVUPS xmmreg1, xmmreg2 0F 11 11-xxx-xxx VectorPath 2

MOVUPS mem128, xmmreg 0F 11 mm-xxx-xxx VectorPath ~5 4

MULPS xmmreg1, xmmreg2 0F 59 11-xxx-xxx VectorPath FMUL 5 1

MULPS xmmreg, mem128 0F 59 mm-xxx-xxx VectorPath FMUL 5 1,4

MULSS xmmreg1, xmmreg2 F3 0F 59 11-xxx-xxx DirectPath FMUL 4

MULSS xmmreg, mem32 F3 0F 59 mm-xxx-xxx DirectPath FMUL 4 4

ORPS xmmreg1, xmmreg2 0F 56 11-xxx-xxx VectorPath FMUL 3 1

ORPS xmmreg, mem128 0F 56 mm-xxx-xxx VectorPath FMUL 3 1,4

RCPPS xmmreg1, xmmreg2 0F 53 11-xxx-xxx VectorPath FMUL 4 1

RCPPS xmmreg, mem128 0F 53 mm-xxx-xxx VectorPath FMUL 4 1,4

RCPSS xmmreg1, xmmreg2 F3 0F 53 11-xxx-xxx DirectPath FMUL 3

Table 25. Instructions Introduced with 3DNow!™ Professional (Continued)
302 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
RCPSS xmmreg, mem32 F3 0F 53 mm-xxx-xxx DirectPath FMUL 3 4

RSQRTPS xmmreg1, xmmreg2 0F 52 11-xxx-xxx VectorPath FMUL 4 1

RSQRTPS xmmreg, mem128 0F 52 mm-xxx-xxx VectorPath FMUL 4 1,4

RSQRTSS xmmreg1, xmmreg2 F3 0F 52 11-xxx-xxx DirectPath FMUL 3

RSQRTSS xmmreg, mem32 F3 0F 52 mm-xxx-xxx DirectPath FMUL 3 4

SHUFPS xmmreg1, xmmreg2, imm8 0F C6 11-xxx-xxx VectorPath FMUL ~4 1

SHUFPS xmmreg, mem128, imm8 0F C6 mm-xxx-xxx VectorPath FMUL 3/1 2,4

SQRTPS xmmreg1, xmmreg2 0F 51 11-xxx-xxx VectorPath FMUL 35/19 2

SQRTPS xmmreg, mem128 0F 51 mm-xxx-xxx VectorPath FMUL 35/19 2,4

SQRTSS xmmreg1, xmmreg2 F3 0F 51 11-xxx-xxx DirectPath FMUL 19

SQRTSS xmmreg, mem32 F3 0F 51 mm-xxx-xxx DirectPath FMUL 19 4

STMXCSR mem32 0F AE mm-011-xxx VectorPath

SUBPS xmmreg1, xmmreg2 0F 5C 11-xxx-xxx VectorPath FADD 5 1

SUBPS xmmreg, mem128 0F 5C mm-xxx-xxx VectorPath FADD 5 1,4

SUBSS xmmreg1, xmmreg2 F3 0F 5C 11-xxx-xxx DirectPath FADD 4

SUBSS xmmreg, mem32 F3 0F 5C mm-xxx-xxx DirectPath FADD 4 4

UCOMISS xmmreg1, xmmreg2 0F 2E 11-xxx-xxx VectorPath 3

UCOMISS xmmreg, mem32 0F 2E mm-xxx-xxx VectorPath 3 4

UNPCKHPS xmmreg1, xmmreg2 0F 15 11-xxx-xxx VectorPath FMUL 3 1

UNPCKHPS xmmreg, mem128 0F 15 mm-xxx-xxx VectorPath FMUL 3/4 1,4

UNPCKLPS xmmreg1, xmmreg2 0F 14 11-xxx-xxx VectorPath FMUL 3 3

UNPCKLPS xmmreg, mem128 0F 14 mm-xxx-xxx VectorPath FMUL 3/4 3,4

XORPS xmmreg1, xmmreg2 0F 57 11-xxx-xxx VectorPath FMUL 3 1

XORPS xmmreg, mem128 0F 57 mm-xxx-xxx VectorPath FMUL 3 1,4
Notes:

1. The low half of the result is available 1 cycle earlier than listed.
2. The second latency value indicates when the low half of the result becomes available.
3. The high half of the result is available 1 cycle earlier than listed.
4 The cycle count listed is purely for execution and does not take into account the time required by the instruction to access

the Load/Store Unit. It is recommended that operations dependent on the result of this particular operation be pushed
back by at least two additional cycles.

Table 25. Instructions Introduced with 3DNow!™ Professional (Continued)
Appendix F Instruction Dispatch and Execution Resources/Timing 303

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
304 Instruction Dispatch and Execution Resources/Timing Appendix F

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
Index

Numerics
3D Clipping. .190
3DNow!™ and MMX™ Intra-Operand Swapping . .169
3DNow!™ Instructions. .13, 161

A
Address Generation Interlocks110
AMD Athlon™ Processor

Branch-Free Code .94
Code Padding. .59
Compute Upper Half of Unsigned Products 168
Family. .3
Microarchitecture .4, 203–204

AMD Athlon™ System Bus .214
Command Generation Rules 233

B
Binary-to-ASCII Decimal Conversion.139
Blended Code, AMD-K6 and AMD Athlon Processors

3DNow! and MMX Intra-Operand Swapping169
Block Copies and Block Fills 174
Branch Examples. .94
Code Padding. .59
Compute Upper Half of Unsigned Products 168

Branch Target Buffer (BTB) 104, 206
Branches

Align Branch Targets .54
Based on Comparisons Between Floats.42
Compound Branch Conditions27
Dependent on Random Data14, 93
Prediction. .206
Replace with Computation in 3DNow! Code98

C
C Language. .17, 27

Array-Style Over Pointer-Style Code.20
C Code to 3DNow! Code Examples100–103
Structure Component Considerations.36, 91

Cache. .4
64-Byte Cache Line .15, 85
Cache and Memory Optimizations 63

CALL and RETURN Instructions.96
Code Padding Using Neutral Code Fillers.58
Code Sample Analysis .226
Complex Number Arithmetic199
Const Type Qualifier .29
Constant Control Code, Multiple30

D
Data Cache . 208
Decoding. 49, 207
Dependencies. 202
DirectPath

Decoder . 207
DirectPath Over VectorPath Instructions. 10, 50

Displacements, 8-Bit Sign-Extended 58
Division. 115–118, 144

Fast . 162
Replace Divides with Multiplies, Integer . . . 44, 115
Using 3DNow! Instructions 162–163

Dynamic Memory Allocation Consideration. 33

E
Execution Unit Resources . 222
Extended-Precision Data . 154

F
Far Control Transfer Instructions 104
FEMMS Instruction . 162
Fetch and Decode Pipeline Stages. 215
FFREEP Macro . 152
Floating-Point

Compare Instructions . 153
Divides and Square Roots . 38
Execution Unit . 211
Optimizations . 151
Pipeline Operations . 224
Pipeline Stages . 220
Scheduler. 210
Signed Words to Floating-Point 170
To Integer Conversions. 40, 154
Variables and Expressions are Type Float 17

Floor() Function. 197
FRNDINT Instruction . 154
FSINCOS Instruction. 159
FXCH Instruction . 153

G
Group I—Essential Optimizations 7–8
Group II—Secondary Optimizations 7, 10

I
If Statement . 32
Immediates, 8-Bit Sign-Extended. 57
Index 305

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
IMUL Instruction .120
Inline Functions .109–110, 125
Inline REP String with Low Counts124
Instruction

Cache .205
Control Unit. .208
Decoding .49
Short Encodings .54
Short Forms .201

Integer. .115
Arithmetic, 64-Bit .125
Division .44
Execution Unit .209
Operand, Consider Sign .18
Pipeline Operations .223
Pipeline Stages .218
Scheduler .209
Use 32-Bit Data Types for Integer Code17

L
L2 Cache Controller. .213
LEA Instruction .54, 57
LEAVE Instruction. .56
Load/Store. 24, 212, 225
Load-Execute Instructions 10–11, 50

Floating-Point Instructions 11, 51
Integer Instructions .50

Local Functions .32
Local Variables. 37, 44, 92
LOOP Instruction. .104
Loops

Deriving Loop Control For Partially Unrolled . . .108
Generic Loop Hoisting .30
Minimize Pointer Arithmetic112
Partial Loop Unrolling .106
REP String with Low Variable Counts125
Unroll Small Loops .22
Unrolling Loops. .106

M
Memory

Dynamic Memory Allocation33
Pushing Memory Data .114
Size and Alignment Issues8, 63

Memory Type Range Register (MTRR)243
Capability Register Format246
Default Type Register Format247
Fixed-Range Register Format254
MSR Format. .257
MTRRs and PAT .250
Overlapping .248
Variable-Range MTRR Register Format.255

Memory Types .246
MMX™ Instructions. .161

64-Bit Population Count . 184
Block Copies and Block Fills 174
Integer Absolute Value Computation. 186
Integer-Only Work . 123
MOVQ. 125
PAND to Find Absolute Value in 3DNow! Code. . 186
PANDN. 99
PCMP Instead of 3DNow! PFCMP 173
PCMPEQD . 186
PMADDWD Instruction . 167
PMULHUW . 167
PREFETCHNTA/T0/T1/T2 . 80
PUNPCKL* and PUNPCKH* 171
PXOR . 172, 185

MOVZX and MOVSX. 111
MSR Access . 249
Multiplication

By Constant . 120
Matrix. 187
Multiplies over Divides, Floating Point 151

Muxing Constructs. 98

N
Newton-Raphson Reciprocal 164
Newton-Raphson Reciprocal Square Root 166

O
Operands. 222

Largest Possible Operand Size, Repeated String 124
Optimization Star . 8

P
Page Attribute Table (PAT) 243, 249–250
Parallelism . 33
PAVGUSB for MPEG-2 Motion Compensation 195
PerfCtr MSR. 240
PerfEvtSel MSR. 236
Performance-Monitoring Counters 235, 241
PF2ID Instruction . 40
PFCMP Instruction . 173
PFMUL Instruction . 172
PI2FW Instruction . 170
Pipeline and Execution Unit Resources 215
Pointers

Dereferenced Arguments. 44
Use Array-Style Code Instead 20

Population Count Function. 136, 184
Predecode. 206
Prefetch

Determing Distance . 83
Multiple . 81

PREFETCH and PREFETCHW Instructions 9, 79–80,
306 Index

22007K February 2002 AMD Athlon™ Processor x86 Code Optimization Guide
82, 85
Prototypes. .29
PSWAPD .169
PSWAPD Instruction .169, 199

R
Read-Modify-Write Instructions.52
Recursive Functions .96
Register Operands .202
Register Reads and Writes, Partial55
REP Prefix .124
RGBA Pixels .192

S
Scalar Code Translated into 3DNow! Code100
Scheduling .105
SHLD Instruction. .57
SHR Instruction .57
Signed Words to Floating-Point Conversion 170
Square Root

Fast (15-Bit Precision). .165
Fast (24-Bit Precision). .165
Reciprocal Approximation (Newton-Raphson) . .166

Stack
Alignment Considerations .90
Allocation .202

Store-to-Load Forwarding 23–24, 87–88, 90
Stream of Packed Unsigned Bytes198
String Instructions .123–124
Structure (Struct).36–37, 91–92
Subexpressions, Explicitly Extract Common 35
Superscalar Processor .204
Switch Statement .28, 32

T
TBYTE Variables .91
Trigonometric Instructions .157

U
Unit-Stride Access .79, 84

V
VectorPath Decoder. .207

W
Write Combining 12, 85, 213, 229–231, 233

X
x86 Optimization Guidelines 201
XOR Instruction. 125
Index 307

AMD Athlon™ Processor x86 Code Optimization Guide 22007K February 2002
308 Index

	List of Figures
	List of Tables
	Revision History
	Chapter 1: Introduction
	About This Document
	AMD Athlon™ Processor Family
	AMD Athlon™ Processor Microarchitecture Summary

	Chapter 2: Top Optimizations
	Group I—Essential Optimizations
	Group II—Secondary Optimizations
	Optimization Star
	Group I Optimizations—Essential Optimizations
	Memory-Size and Alignment Issues
	Avoid Memory-Size Mismatches
	Align Data Where Possible

	Use the 3DNow!™ Prefetching Instructions
	Select DirectPath Over VectorPath Instructions

	Group II Optimizations—Secondary Optimizations
	Load-Execute Instruction Usage
	Use Load-Execute Instructions
	Use Load-Execute Floating-Point Instructions with Floating-Point Operands
	Avoid Load-Execute Floating-Point Instructions with Integer Operands

	Take Advantage of Write Combining
	Optimizing Main Memory Performance for Large Arrays
	Reading Large Arrays and Streams
	Writing Large Arrays to Memory

	Use 3DNow!™ Instructions
	Recognize 3DNow! Professional Instructions
	Avoid Branches Dependent on Random Data
	Avoid Placing Code and Data in the Same 64-Byte Cache Line

	Chapter 3: C Source-Level Optimizations
	Ensure Floating-Point Variables and Expressions are of Type Float
	Use 32-Bit Data Types for Integer Code
	Consider the Sign of Integer Operands
	Use unsigned types for:
	Use signed types for:

	Use Array-Style Instead of Pointer-Style Code
	Example 1 (Avoid):
	Example 1 (Preferred):
	Reality Check

	Completely Unroll Small Loops
	Avoid Unnecessary Store-to-Load Dependencies
	Always Match the Size of Stores and Loads
	Consider Expression Order in Compound Branch Conditions
	Switch Statement Usage
	Optimize Switch Statements

	Use Prototypes for All Functions
	Use Const Type Qualifier
	Generic Loop Hoisting
	Generalization for Multiple Constant Control Code

	Declare Local Functions as Static
	Dynamic Memory Allocation Consideration
	Introduce Explicit Parallelism into Code
	Explicitly Extract Common Subexpressions
	C Language Structure Component Considerations
	Sort by Base Type Size
	Pad by Multiple of Largest Base Type Size

	Sort Local Variables According to Base Type Size
	Accelerating Floating-Point Divides and Square Roots
	Fast Floating-Point-to-Integer Conversion
	Speeding Up Branches Based on Comparisons Between Floats
	Branches Dependent on Integer Comparisions are Fast

	Avoid Unnecessary Integer Division
	Example 1 (Avoid):
	Example 1 (Preferred):

	Copy Frequently Dereferenced Pointer Arguments to Local Variables
	Use Block Prefetch Optimizations

	Chapter 4: Instruction Decoding Optimizations
	Overview
	Select DirectPath Over VectorPath Instructions
	Load-Execute Instruction Usage
	Use Load-Execute Integer Instructions
	Use Load-Execute Floating-Point Instructions with Floating-Point Operands
	Avoid Load-Execute Floating-Point Instructions with Integer Operands

	Use Read-Modify-Write Instructions Where Appropriate
	Align Branch Targets in Program Hot Spots
	Use 32-Bit LEA Rather than 16-Bit LEA Instruction
	Use Short Instruction Encodings
	Avoid Partial-Register Reads and Writes
	Use LEAVE Instruction for Function Epilogue Code
	Replace Certain SHLD Instructions with Alternative Code
	Use 8-Bit Sign-Extended Immediates
	Use 8-Bit Sign-Extended Displacements
	Code Padding Using Neutral Code Fillers
	Recommendations for AMD K6® Family and AMD Athlon™ Processor Blended Code

	Chapter 5: Cache and Memory Optimizations
	Memory Size and Alignment Issues
	Avoid Memory-Size Mismatches
	Example (preferred if stores are close to the load):

	Align Data Where Possible

	Optimizing Main Memory Performance for Large Arrays
	Memory Copy Optimization
	Memory Copy: Step 1
	Memory Copy: Step 2
	Memory Copy: Step 3
	Memory Copy: Step 4
	Memory Copy: Step 5
	Memory Copy: Step 6
	Memory Copy: Step 7
	Memory Copy: Step 8
	Memory Copy: Step 9 (final)

	Array Addition
	Baseline Code
	Optimized Code

	Summary

	Use the PREFETCH 3DNow!™ Instruction
	Prefetching versus Preloading
	Unit-Stride Access
	Hardware Prefetch
	PREFETCH/W versus PREFETCHNTA/T0/T1 /T2
	PREFETCHW Usage
	Multiple Prefetches
	Determining Prefetch Distance
	Formula
	Definitions
	Exception to Unit Stride
	Data Stride per Loop Iteration
	Prefetch at Least 64 Bytes Away from Surrounding Stores

	Take Advantage of Write Combining
	Avoid Placing Code and Data in the Same 64-Byte Cache Line
	Multiprocessor Considerations
	Store-to-Load Forwarding Restrictions
	Store-to-Load Forwarding Pitfalls—True Dependencies
	Narrow-to-Wide Store-Buffer Data Forwarding Restriction
	Wide-to-Narrow Store-Buffer Data Forwarding Restriction
	Misaligned Store- Buffer Data Forwarding Restriction
	High-Byte Store- Buffer Data Forwarding Restriction
	One Supported Store- to-Load Forwarding Case

	Summary of Store-to-Load Forwarding Pitfalls to Avoid

	Stack Alignment Considerations
	Extend to 32 Bits Before Pushing onto Stack

	Align TBYTE Variables on Quadword Aligned Addresses
	C Language Structure Component Considerations
	Sort Variables According to Base Type Size

	Chapter 6: Branch Optimizations
	Avoid Branches Dependent on Random Data
	AMD Athlon™ Processor Specific Code
	Example 1 — Signed integer ABS function (X = labs(X)):
	Example 2 — Unsigned integer min function (z = x < y ? x : y):

	Blended AMD K6® and AMD Athlon™ Processor Code

	Always Pair CALL and RETURN
	Recursive Functions
	Replace Branches with Computation in 3DNow!™ Code
	Muxing Constructs
	Sample Code Translated into 3DNow!™ Code
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	Avoid the Loop Instruction
	Avoid Far Control Transfer Instructions

	Chapter 7: Scheduling Optimizations
	Schedule Instructions According to their Latency
	Unrolling Loops
	Complete Loop Unrolling
	Partial Loop Unrolling
	Deriving Loop Control For Partially Unrolled Loops

	Use Function Inlining
	Overview
	Always Inline Functions if Called from One Site
	Always Inline Functions with Fewer than 25 Machine Instructions

	Avoid Address Generation Interlocks
	Use MOVZX and MOVSX
	Minimize Pointer Arithmetic in Loops
	Push Memory Data Carefully

	Chapter 8: Integer Optimizations
	Replace Divides with Multiplies
	Multiplication by Reciprocal (Division) Utility
	Signed Division Utility
	Unsigned Division Utility

	Unsigned Division by Multiplication of Constant
	Algorithm: Divisors Where 1 <= d < 231, Odd d
	Determination of a, m, s
	Algorithm: Divisors Where 231 <= d < 232
	Simpler Code for Restricted Dividend

	Signed Division by Multiplication of Constant
	Algorithm: Divisors Where 2 <= d < 231
	Determination for a, m, s
	Signed Division by 2
	Signed Division by 2n
	Signed Division by –2
	Signed Division by –(2n)
	Remainder of Signed Division by 2 or –2
	Remainder of Signed Division 2n or –(2n)

	Consider Alternative Code When Multiplying by a Constant
	Use MMX™ Instructions for Integer-Only Work
	Repeated String Instruction Usage
	Latency of Repeated String Instructions
	Guidelines for Repeated String Instructions
	Use the Largest Possible Operand Size
	Ensure DF=0 (UP)
	Align Source and Destination with Operand Size
	Inline REP String with Low Counts
	Use Loop for REP String with Low Variable Counts
	Using MOVQ and MOVNTQ for Block Copy/Fill

	Use XOR Instruction to Clear Integer Registers
	Efficient 64-Bit Integer Arithmetic
	Efficient Implementation of Population Count Function
	Step 1
	Step 2
	Step 3
	Step 4
	MMX Version

	Efficient Binary-to-ASCII Decimal Conversion
	Derivation of Multiplier Used for Integer Division by Constants
	Derivation of Algorithm, Multiplier, and Shift Factor for Unsigned Integer Division
	Example Code

	Derivation of Algorithm, Multiplier, and Shift Factor for Signed Integer Division
	Example Code

	Chapter 9: Floating-Point Optimizations
	Ensure All FPU Data is Aligned
	Use Multiplies Rather than Divides
	Use FFREEP Macro to Pop One Register from the FPU Stack
	Floating-Point Compare Instructions
	Use the FXCH Instruction Rather than FST/FLD Pairs
	Avoid Using Extended-Precision Data
	Minimize Floating-Point-to-Integer Conversions
	Check Argument Range of Trigonometric Instructions Efficiently
	Take Advantage of the FSINCOS Instruction

	Chapter 10: 3DNow!™ and MMX™ Optimizations
	Use 3DNow!™ Instructions
	Use FEMMS Instruction
	Use 3DNow!™ Instructions for Fast Division
	Optimized 14-Bit Precision Divide
	Optimized Full 24-Bit Precision Divide
	Pipelined Pair of 24-Bit Precision Divides
	Newton-Raphson Reciprocal

	Use 3DNow!™ Instructions for Fast Square Root and Reciprocal Square Root
	Optimized 15-Bit Precision Square Root
	Optimized 24-Bit Precision Square Root
	Newton-Raphson Reciprocal Square Root

	Use MMX™ PMADDWD Instruction to Perform Two 32-Bit Multiplies in Parallel
	Use PMULHUW to Compute Upper Half of Unsigned Products
	AMD Athlon™ Processor-Specific Code
	AMD K6® and AMD Athlon™ Processor Blended Code

	3DNow!™ and MMX™ Intra-Operand Swapping
	AMD Athlon™ Processor-Specific Code
	AMD K6® and AMD Athlon™ Processor Blended Code

	Fast Conversion of Signed Words to Floating-Point
	Width of Memory Access Differs Between PUNPCKL* and PUNPCKH*
	Use MMX™ PXOR to Negate 3DNow!™ Data
	Use MMX™ PCMP Instead of 3DNow!™ PFCMP
	Both Numbers Positive
	One Negative, One Positive
	Both Numbers Negative

	Use MMX™ Instructions for Block Copies and Block Fills
	AMD K6® and AMD Athlon™ Processor Blended Code
	Example 1:
	AMD Athlon™ Processor-Specific Code

	Efficient 64-Bit Population Count Using MMX™ Instructions
	Use MMX™ PXOR to Clear All Bits in an MMX Register
	Use MMX™ PCMPEQD to Set All Bits in an MMX Register
	Use MMX™ PAND to Find Floating-Point Absolute Value in 3DNow!™ Code
	Integer Absolute Value Computation Using MMX™ Instructions
	Optimized Matrix Multiplication
	Matrix Multiplication Code Sample

	Efficient 3D-Clipping Code Computation Using 3DNow!™ Instructions
	3D-Clipping Code Sample

	Efficiently Determining Similarity Between RGBA Pixels
	Step 1:
	Step 2:
	Step 3:
	Example 3:

	Use 3DNow!™ PAVGUSB for MPEG�2 Motion Compensation
	Example 1 (Preferred):

	Efficient Implementation of floor() Using 3DNow!™ Instructions
	Stream of Packed Unsigned Bytes
	Complex Number Arithmetic

	Chapter 11: General x86 Optimization Guidelines
	Short Forms
	Dependencies
	Register Operands
	Stack Allocation

	Appendix A: AMD Athlon™ Processor Microarchitecture
	Introduction
	AMD Athlon™ Processor Microarchitecture
	Superscalar Processor
	Instruction Cache
	Predecode
	Branch Prediction
	Early Decoding
	DirectPath Decoder
	VectorPath Decoder

	Instruction Control Unit
	Data Cache
	Integer Scheduler
	Integer Execution Unit
	Floating-Point Scheduler
	Floating-Point Execution Unit
	Load-Store Unit (LSU)
	L2 Cache
	Write Combining
	AMD Athlon™ System Bus

	Appendix B: Pipeline and Execution Unit Resources Overview
	Fetch and Decode Pipeline Stages
	Cycle 1: FETCH
	Cycle 2: SCAN
	Cycle 3 (DirectPath): ALIGN1
	Cycle 3 (VectorPath): MECTL
	Cycle 4 (DirectPath): ALIGN2
	Cycle 4 (VectorPath): MEROM
	Cycle 5 (DirectPath): EDEC
	Cycle 5 (VectorPath): MEDEC/MESEQ
	Cycle 6: IDEC/Rename

	Integer Pipeline Stages
	Cycle 7: SCHED
	Cycle 8: EXEC
	Cycle 9: ADDGEN
	Cycle 10: DCACC
	Cycle 11: RESP

	Floating-Point Pipeline Stages
	Cycle 7: STKREN
	Cycle 8: REGREN
	Cycle 9: SCHEDW
	Cycle 10: SCHED
	Cycle 11: FREG
	Cycles 12–15: Floating-Point Execution (FEXEC1–4)

	Execution Unit Resources
	Terminology
	Operands
	Results
	Examples

	Integer Pipeline Operations
	Floating-Point Pipeline Operations
	Load/Store Pipeline Operations
	Code Sample Analysis

	Appendix C: Implementation of Write Combining
	Introduction
	Write-Combining Definitions and Abbreviations
	What is Write Combining?
	Programming Details
	Write-Combining Operations
	Sending Write-Buffer Data to the System

	Appendix D: Performance-Monitoring Counters
	Overview
	Performance Counter Usage
	PerfEvtSel[3:0] MSRs (MSR Addresses C001_0000h–C001_0003h)
	Event Select Field (Bits 0–7)
	Unit Mask Field (Bits 8–15)
	USR (User Mode) Flag (Bit 16)
	OS (Operating System Mode) Flag (Bit 17)
	E (Edge Detect) Flag (Bit 18)
	PC (Pin Control) Flag (Bit 19)
	INT (APIC Interrupt Enable) Flag (Bit 20)
	EN (Enable Counter) Flag (Bit 22)
	INV (Invert) Flag (Bit 23)
	Counter Mask Field (Bits 31–24)

	PerfCtr[3:0] MSRs (MSR Addresses C001_0004h–C001_0007h)
	Using Performance Counters
	Counter Overflow

	Appendix E: Programming the MTRR and PAT
	Introduction
	Memory Type Range Register (MTRR) Mechanism
	Memory Types
	MTRR Capability Register Format
	MTRR Default Type Register Format

	MTRR Overlapping

	Page Attribute Table (PAT)
	MSR Access
	Accessing the PAT
	MTRRs and PAT
	MTRR Fixed-Range Register Format
	Variable-Range MTRRs
	Variable-Range MTRR Register Format
	MTRR MSR Format

	Appendix F: Instruction Dispatch and Execution Resources/Timing
	Index

