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ABOUT THIS MANUAL
CHAPTER 1
ABOUT THIS MANUAL

The IA-32 Intel® Architecture Software Developer’s Manual, Volume 1: Basic Architecture
(Order Number 245470) is part of a three-volume set that describes the architecture and
programming environment of all IA-32 Intel® Architecture processors. The other two volumes
in this set are:

• The IA-32 Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set
Reference (Order Number 245471).

• The IA-32 Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide (Order Number 245472).

The IA-32 Intel Architecture Software Developer’s Manual, Volume 1, describes the basic archi-
tecture and programming environment of an IA-32 processor; the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 2, describes the instruction set of the processor and the
opcode structure. These two volumes are aimed at application programmers who are writing
programs to run under existing operating systems or executives. The IA-32 Intel Architecture
Software Developer’s Manual, Volume 3 describes the operating-system support environment
of an IA-32 processor, including memory management, protection, task management, interrupt
and exception handling, and system management mode. It also provides IA-32 processor
compatibility information. This volume is aimed at operating-system and BIOS designers and
programmers.

1.1. IA-32 PROCESSORS COVERED IN THIS MANUAL

This manual includes information pertaining primarily to the most recent IA-32 processors,
which include the Pentium® processors, the P6 family processors, the Pentium 4 processors, the
Intel® Xeon™ processors. The P6 family processors are those IA-32 processors based on the
P6 family micro-architecture, which include the Pentium Pro, Pentium II, and Pentium III
processors. The Pentium 4 and Intel Xeon processors are based on the Intel® NetBurst™ micro-
architecture.
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1.2. OVERVIEW OF THE IA-32 INTEL ARCHITECTURE 
SOFTWARE DEVELOPER’S MANUAL, VOLUME 1: BASIC 
ARCHITECTURE

The contents of this manual are as follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the IA-32 Intel
Architecture Software Developer’s Manual. It also describes the notational conventions in these
manuals and lists related Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — Introduction to the IA-32 Architecture. Introduces the IA-32 architecture and
the families of Intel processors that are based on this architecture. It also gives an overview of
the common features found in these processors and brief history of the IA-32 architecture.

Chapter 3 — Basic Execution Environment. Introduces the models of memory organization
and describes the register set used by applications.

Chapter 4 — Data Types. Describes the data types and addressing modes recognized by the
processor; provides an overview of real numbers and floating-point formats and of floating-
point exceptions.

Chapter 5 — Instruction Set Summary. Lists the all the IA-32 architecture instructions,
divided into technology groups (general-purpose, x87 FPU, MMX™ technology, Streaming
SIMD Extensions (SSE), Streaming SIMD Extensions 2 (SSE2), and system instructions).
Within these groups, the instructions are presented in functionally related groups.

Chapter 6 — Procedure Calls, Interrupts, and Exceptions. Describes the procedure stack
and the mechanisms provided for making procedure calls and for servicing interrupts and
exceptions.

Chapter 7 — Programming With the General-Purpose Instructions. Describes the basic
load and store, program control, arithmetic, and string instructions that operate on basic data
types and on the general-purpose and segment registers; describes the system instructions that
are executed in protected mode.

Chapter 8 — Programming With the x87 Floating Point Unit. Describes the x87 floating-
point unit (FPU), including the floating-point registers and data types; gives an overview of the
floating-point instruction set; and describes the processor’s floating-point exception conditions. 

Chapter 9 — Programming with Intel MMX Technology. Describes the Intel MMX tech-
nology, including MMX registers and data types, and gives an overview of the MMX instruction
set. 

Chapter 10 — Programming with Streaming SIMD Extensions (SSE). Describes the SSE
extensions, including the XMM registers, the MXCSR register, and the packed single-precision
floating-point data types; gives an overview of the SSE instruction set; and gives guidelines for
writing code that accesses the SSE extensions. 
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Chapter 11 — Programming with Streaming SIMD Extensions 2 (SSE2). Describes the
SSE2 extensions, including XMM registers and the packed double-precision floating-point data
types; gives an overview of the SSE2 instruction set; and gives guidelines for writing code that
accesses the SSE2 extensions. This chapter also describes the SIMD floating-point exceptions
that can be generated with SSE and SSE2 instructions, and it gives general guidelines for incor-
porating support for the SSE and SSE2 extensions into operating system and applications code.

Chapter 12 — Input/Output. Describes the processor’s I/O mechanism, including I/O port
addressing, the I/O instructions, and the I/O protection mechanism. 

Chapter 13 — Processor Identification and Feature Determination. Describes how to deter-
mine the CPU type and the features that are available in the processor.

Appendix A — EFLAGS Cross-Reference. Summarizes how the IA-32 instructions affect the
flags in the EFLAGS register.

Appendix B — EFLAGS Condition Codes. Summarizes how the conditional jump, move, and
byte set on condition code instructions use the condition code flags (OF, CF, ZF, SF, and PF) in
the EFLAGS register.

Appendix C — Floating-Point Exceptions Summary. Summarizes the exceptions that can be
raised by the x87 FPU floating-point and the SSE and SSE2 SIMD floating-point instructions.

Appendix D — Guidelines for Writing x87 FPU Exception Handlers. Describes how to
design and write MS-DOS* compatible exception handling facilities for FPU exceptions,
including both software and hardware requirements and assembly-language code examples.
This appendix also describes general techniques for writing robust FPU exception handlers.

Appendix E — Guidelines for Writing SIMD Floating-Point Exception Handlers. Gives
guidelines for writing exception handlers to handle exceptions generated by the SSE and SSE2
SIMD floating-point instructions.

1.3. NOTATIONAL CONVENTIONS

This manual uses specific notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal and binary numbers. A review of this notation makes the
manual easier to read.

1.3.1. Bit and Byte Order

In illustrations of data structures in memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. IA-32 proces-
sors are “little endian” machines; this means the bytes of a word are numbered starting from the
least significant byte. Figure 1-1 illustrates these conventions.
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1.3.2. Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are marked as reserved. When
bits are marked as reserved, it is essential for compatibility with future processors that software
treat these bits as having a future, though unknown, effect. The behavior of reserved bits should
be regarded as not only undefined, but unpredictable. Software should follow these guidelines
in dealing with reserved bits:

• Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

• Do not depend on the states of any reserved bits when storing to memory or to a register.

• Do not depend on the ability to retain information written into any reserved bits.

• When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bits in IA-32
registers. Depending upon the values of reserved register bits will make
software dependent upon the unspecified manner in which the processor
handles these bits. Programs that depend upon reserved values risk incompat-
ibility with future processors.

Figure 1-1.  Bit and Byte Order
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1.3.3. Instruction Operands

When instructions are represented symbolically, a subset of the IA-32 assembly language is
used. In this subset, an instruction has the following format,

label: mnemonic argument1, argument2, argument3

where:

• A label is an identifier which is followed by a colon.

• A mnemonic is a reserved name for a class of instruction opcodes which have the same
function.

• The operands argument1, argument2, and argument3 are optional. There may be from
zero to three operands, depending on the opcode. When present, they take the form of
either literals or identifiers for data items. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination. 

For example:

LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is a label, MOV is the mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is the source operand. Some assembly languages put
the source and destination in reverse order.

1.3.4. Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following
set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where confu-
sion as to the type of number might arise.

1.3.5. Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to
locate the byte or bytes memory. The range of memory that can be addressed is called an
address space.
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The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, a program
can keep its code (instructions) and stack in separate segments. Code addresses would always
refer to the code space, and stack addresses would always refer to the stack space. The following
notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment
pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.

CS:EIP

1.3.6. Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. However, some exceptions, such as break-
points, occur under other conditions. Some types of exceptions may provide error codes. An
error code reports additional information about the error. An example of the notation used to
show an exception and error code is shown below.

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a
type of fault is reported. Under some conditions, exceptions which produce error codes may not
be able to report an accurate code. In this case, the error code is zero, as shown below for a
general-protection exception.

#GP(0)

See Chapter 5, Interrupt and Exception Handling, in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3, for a list of exception mnemonics and their descriptions.

1.4. RELATED LITERATURE

Literature related to IA-32 processors is listed on-line at the following Intel web site: 

http://developer.intel.com/design/processors/ 

Some of the documents listed at this web site can be viewed on-line; others can be ordered on-
line. The literature available is listed by Intel processor and then by the following literature
types: applications notes, data sheets, manuals, papers, and specification updates. The following
literature may be of interest:

• Data Sheet for a particular Intel IA-32 processor.

• Specification Update for a particular Intel IA-32 processor.
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• AP-485, Intel Processor Identification and the CPUID Instruction, Order Number 241618.

• AP-578, Software and Hardware Considerations for FPU Exception Handlers for Intel
Architecture Processors, Order Number 243291.

• Intel® Pentium® 4 and Intel® Xeon™ Processor Optimization Reference Manual, Order
Number 248966.
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CHAPTER 2
INTRODUCTION TO THE IA-32

INTEL ARCHITECTURE

The exponential growth of computing power and personal computer ownership made the
computer one of the most important forces that shaped business and society in the second half
of the twentieth century. Computers are expected to continue to play crucial roles in the growth
of technology, business, and new arenas.

The IA-32 Intel Architecture has been at the forefront of the computer revolution and is today
the preferred computer architecture, as measured by the computers in use and total computing
power available in the world. The two major factors that drive the popularity of IA-32 architec-
ture are: (1) software compatibility (2) and the fact that each generation of IA-32 processors
delivers significantly higher performance. 

This chapter provides a brief historical summary of the IA-32 architecture, from the Intel 8086
processor to the latest version implemented in the Pentium 4 and Intel Xeon processors.

2.1. BRIEF HISTORY OF THE IA-32 ARCHITECTURE

One of the most important achievements of the IA-32 architecture is that object code created for
processors released in 1978 still executes on the latest processors in the IA-32 architecture
family. 

2.1.1. The First Microprocessors

The IA-32 architecture can be traced to Intel 8085 and 8080 microprocessors and to the Intel
4004 microprocessor (the first microprocessor, designed by Intel in 1969). The IA-32 architec-
ture family was preceded by 16-bit processors which include the 8086 and the 8088 processors.

The 8086 has 16-bit registers and a 16-bit external data bus, with 20-bit addressing giving a
1-MByte address space. The 8088 is similar to the 8086 except it has an 8-bit external data bus.
These processors introduced segmentation to the IA-32 architecture. With segmentation, a 16-
bit segment register contains a pointer to a memory segment of up to 64 KBytes. Using four
segment registers at a time, the 8086/8088 processors are able to address up to 256 KBytes
without switching between segments. The 20-bit addresses that can be formed using a segment
register and an additional 16-bit pointer provide a total address range of 1 MByte.
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2.1.2. Introduction of Protected Mode Operation

The Intel 286 processor introduced protected mode operation into the IA-32 architecture.
Protected mode uses the segment register contents as selectors or pointers into descriptor tables.
Descriptors provide 24-bit base addresses, maximum physical memory size of up to 16 MBytes,
support for virtual memory management on a segment swapping basis, and various protection
mechanisms. The protection mechanisms include: segment limit checking, read-only and
execute-only segment options, and up to four privilege levels to protect operating system code
(in several subdivisions, if desired) from application or user programs. In addition, hardware
task switching and local descriptor tables allow the operating system to protect application or
user programs from each other.

2.1.3. Advent of 32-bit Processors

The Intel386 processor was the first 32-bit processor in the IA-32 architecture family. In 1985,
it introduced 32-bit registers for use both to hold operands and for addressing. The lower half of
each 32-bit Intel386 register retains the properties of the 16-bit registers of earlier generations.
This permits complete backward compatibility. The processor also provides a virtual-8086
mode that allows for greater efficiency when executing programs created for the 8086 and 8088
processors. 

The Intel386 processor has a 32-bit address bus and supports up to 4GBytes of physical memory.
Logical address space is provided for each software process. The 32-bit architecture supports
both a segmented-memory model and a flat1 memory model. In the flat memory model, segment
registers point to the same address. All 4GBytes of addressable space within each segment are
accessible. 

Earlier 16-bit instructions were enhanced with new Intel386 32-bit operands and addressing
forms. The processor also introduced paging, with the fixed 4 KByte page size providing a
method for virtual memory management that is superior to using segments for this purpose.

Intel386 processor was the first to include a number of parallel stages. The six stages are: the
bus interface unit (accesses memory and I/O for the other units), the code prefetch unit (receives
object code from the bus unit and puts it into a 16-byte queue), the instruction decode unit
(decodes object code from the prefetch unit into microcode), the execution unit (executes the
microcode instructions), the segment unit (translates logical addresses to linear addresses and
does protection checks), and the paging unit (translates linear addresses to physical addresses,
does page based protection checks, and contains a cache with information for up to 32 most
recently accessed pages).

2.1.4. The Intel486™ Processor

The Intel486™ processor, introduced in 1989, added additional parallel execution capability by
expanding the Intel386 processor’s instruction decode and execution units into five pipelined
stages. Each each stage operates in parallel with the others on up to five instructions in different

1. Requires only one 32-bit address component to access anywhere in the linear address space.
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stages of execution. Each stage can do its work on one instruction in one clock, so the Intel486
processor can execute as rapidly as one instruction per clock cycle. 

An 8-KByte on-chip first-level cache was added to the Intel486 processor to greatly increase the
percent of instructions that could execute at the scalar rate of one per clock. Memory access
instructions are included if the operand is in the first-level cache. 

The Intel486 processor also added an integrated x87 FPU.

Subsequent generations of the Intel486 processor incorporated new power saving and system
management capabilities. These features were initially developed for processors targeted at the
notebook PC market (the Intel386 SL and Intel486 SL processors). They include: System
Management Mode (triggered by a dedicated interrupt pin), the Stop Clock, and Auto Halt
Powerdown.

2.1.5. The Intel® Pentium® Processor

The introduction of the Intel Pentium processor in 1993 added a second execution pipeline to
achieve superscalar performance (two pipelines, known as u and v, together can execute two
instructions per clock). The on-chip first-level cache doubled, with 8 KBytes devoted to code and
another 8 KBytes devoted to data. The data cache uses the MESI protocol to support the more
efficient write-back cache in addition to the write-through cache previously used by the Intel486
processor. Branch prediction with an on-chip branch table was added to increase performance
in looping constructs. 

Extensions were added to make the virtual-8086 mode more efficient and to allow for 4-MByte
as well as 4-KByte pages. The processor registers are still 32 bits, but internal data paths of 128
and 256 bits add speed to internal data transfers. The burstable external data bus was increased
to 64 bits. An Advanced Programmable Interrupt Controller (APIC) was added to support
systems with multiple Pentium processors. New pins and a special mode (dual processing) were
designed in to support glueless two processor systems.

A subsequent stepping of the Pentium family introduced Intel MMX Technology (the Pentium
Processor with MMX technology). Intel MMX technology uses the single-instruction, multiple-
data (SIMD) execution model to perform parallel computations on packed integer data
contained in 64-bit MMX registers. This technology greatly enhanced the performance in
advanced media, image processing, and data compression applications.

2.1.6. The P6 Family of Processors

Intel introduced the P6 family of processors in 1995. This processor family was based on a
superscalar micro-architecture that set new performance standards. One of the goals in the
design of the P6 family micro-architecture was to exceed the performance of the Pentium
processor significantly while using the same 0.6-micrometer, four-layer, metal BICMOS manu-
facturing process. This meant that performance gains could only be achieved through substantial
advances in the micro-architecture.
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The Intel Pentium Pro processor was the first processor based on the P6 micro-architecture.
Subsequent members of the P6 processor family include: the Intel Pentium II, Intel Pentium®

II Xeon™, Intel Celeron®, Intel Pentium III, and Intel Pentium® III Xeon™ processors. 

The Pentium Pro processor is three-way superscalar. By using parallel processing techniques,
the processor is able on average to decode, dispatch, and complete execution of (retire) three
instructions per clock cycle. The processor also introduced the dynamic execution (the micro-
data flow analysis, out-of-order execution, superior branch prediction, and speculative execu-
tion) in a superscalar implementation. Three instruction decode units work in parallel to decode
object code into smaller operations called micro-ops (micro-architecture op-codes). These
micro-ops are fed into an instruction pool and (when interdependencies permit) can be executed
out of order by the five parallel execution units (two integer, two FPU and one memory interface
unit). The Retirement Unit retires completed micro-ops in their original program order, taking
branches into account.

The Pentium Pro processor was further enhanced by its caches. It has the same two on-chip
8 KByte 1st-Level caches as the Pentium processor and an additional 256 KByte 2nd-Level
cache in the same package as the processor. The 256 KByte 2nd-Level cache uses a dedicated
64-bit backside (cache-bus) full clock speed bus. The 1st-Level cache is dual-ported, the 2nd-
Level cache supports up to 4 concurrent accesses. The 64-bit external data bus is transaction-
oriented, meaning that each access is handled as a separate request and response with numerous
requests allowed while awaiting a response. 

The Pentium Pro processor’s expanded 36-bit address bus gives a maximum physical address
space of 64GBytes.

The Intel Pentium II processor added Intel MMX Technology to the P6 family processors along
with new packaging and several hardware enhancements. The processor core is packaged in the
single edge contact cartridge (SECC), enabling ease of design and flexible motherboard archi-
tecture. The 1st-Level data and instruction caches were enlarged to 16 KBytes each, and 2nd-
Level cache sizes of 256 KBytes, 512 KBytes, and 1 MByte are supported. A half-clock speed
backside bus connects the 2nd-Level cache to the processor. Multiple low-power states such as
AutoHALT, Stop-Grant, Sleep, and Deep Sleep are supported to conserve power when idling.

The Pentium II Xeon processor combined premium characteristics of previous generations of
Intel processors. This includes: 4-way, 8-way (and up) scalability and a 2 MByte 2nd-Level
cache running on a full-clock speed backside bus.

The Intel Celeron processor family focused the IA-32 architecture on the desktop or value PC
market segment. It offers an integrated 128 KByte of Level 2 cache and a plastic pin grid array
(P.P.G.A.) form factor to lower system design cost.

The Pentium III processor introduced the Streaming SIMD Extensions (SSE) to the IA-32 archi-
tecture. SSE extensions expand the SIMD execution model introduced with the Intel MMX
technology by providing a new set of 128-bit registers and the ability to perform SIMD opera-
tions on packed single-precision floating-point values.

The Pentium III Xeon processor extended the performance levels of the IA-32 processors with
the enhancement of a full-speed, on-die, and Advanced Transfer Cache.
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2.1.7. The Intel Pentium 4 Processor

In 2000, the Intel Pentium 4 processor introduced the Intel NetBurst micro-architecture. The
Intel NetBurst micro-architecture allows processors to operate at significantly higher clock
speeds and performance levels than previous IA-32 processors. 

The processor has the following features:

• Intel NetBurst micro-architecture (see Section 2.2.3., The Intel NetBurst Micro-Archi-
tecture for a detailed description)

— Rapid Execution Engine

— Hyper Pipelined Technology

— Advanced Dynamic Execution

— Innovative new cache subsystem

• Streaming SIMD Extensions 2 (SSE2)

— Extends the Intel MMX Technology and the SSE extensions with 144 new instruc-
tions; these include support for: 

• 128-bit SIMD integer arithmetic operations

• 128-bit SIMD double precision floating point operations

• Cache and memory management operations

— Enhances and accelerates video, speech, encryption, image and photo processing

• A 400 MHz Intel NetBurst micro-architecture system bus; this includes:

— 3.2 GBytes per second throughput (3 times faster than the Pentium III processor)

— Quad-pumped 100 MHz scalable bus clock achieves 400 MHz effective speed

— Split-transaction, pipelined

— 128-byte lines with 64-byte accesses

• Support for Hyper-Threading Technology (see Section 2.2.4., Hyper-Threading
Technology)

• Compatible with applications and operating systems written to run on Intel IA-32 archi-
tecture processors

2.1.8. The Intel® Xeon™ Processor

The Intel Xeon processor is based on the Intel NetBurst micro-architecture (see Section 2.2.3.,
The Intel NetBurst Micro-Architecture). This family of IA-32 processors is designed for use in
server systems and high-performance workstations. The Intel Xeon processor has the same
advanced features as the Pentium 4 processor (see Section 2.1.7., The Intel Pentium 4
Processor).
2-5



INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE
2.2. MORE ON MAJOR TECHNICAL ADVANCES

The following sections provide more information on major additions to the IA-32 architecture.

2.2.1. The P6 Family Micro-architecture

The Pentium Pro processor introduced a new micro-architecture for the Intel IA-32 processors,
commonly referred to as P6 processor microarchitecture. The P6 processor micro-architecture
was later enhanced with an on-die, 2nd-Level cache, called Advanced Transfer Cache. 

This micro-architecture is a three-way superscalar, pipelined architecture. Three-way super-
scalar means that using parallel processing techniques, the processor is able on average to
decode, dispatch, and complete execution of (retire) three instructions per clock cycle. 

To handle this level of instruction throughput, the P6 processor family uses a decoupled, 12-
stage superpipeline that supports out-of-order instruction execution. Figure 2-1 shows a concep-
tual view of the P6 processor micro-architecture pipeline with the Advanced Transfer Cache
enhancement. 

Figure 2-1.  The P6 Processor Micro-Architecture with Advanced Transfer 
Cache Enhancement
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To insure a steady supply of instructions and data for the instruction execution pipeline, the P6
processor micro-architecture incorporates two cache levels. The Level 1 cache provides an
8-KByte instruction cache and an 8-KByte data cache, both closely coupled to the pipeline. The
second-level cache provides 256-KByte, 512-KByte, or 1-MByte static RAM that is coupled to
the core processor through a full clock-speed 64-bit cache bus.

The centerpiece of the P6 processor micro-architecture is an out-of-order execution mechanism
called dynamic execution. Dynamic execution incorporates three data-processing concepts:

• Deep branch prediction allows the processor to decode instructions beyond branches to
keep the instruction pipeline full. The P6 processor family implements highly optimized
branch prediction algorithm to predict the direction of the instruction.

• Dynamic data flow analysis requires real-time analysis of the flow of data through the
processor to determine dependencies and to detect opportunities for out-of-order
instruction execution. The out-of-order execution core can monitor many instructions and
execute these instructions in the order that best optimizes the use of the processor’s
multiple execution units, while maintaining the data integrity.

• Speculative execution refers to the processor’s ability to execute instructions that lie
beyond a conditional branch that has not yet been resolved, and ultimately to commit the
results in the order of the original instruction stream. To make speculative execution
possible, the P6 processor micro-architecture decouples the dispatch and execution of
instructions from the commitment of results. The processor’s out-of-order execution core
uses data-flow analysis to execute all available instructions in the instruction pool and
store the results in temporary registers. The retirement unit then linearly searches the
instruction pool for completed instructions that no longer have data dependencies with
other instructions or unresolved branch predictions. When completed instructions are
found, the retirement unit commits the results of these instructions to memory and/or the
IA-32 registers (the processor’s eight general-purpose registers and eight x87 FPU data
registers) in the order they were originally issued and retires the instructions from the
instruction pool.

2.2.2. Streaming SIMD Extensions 2 (SSE2) Technology 

The Intel Pentium 4 processor introduced the SSE2 extensions. SSE2 extensions offer enhance-
ments to the Intel MMX technology and SSE extensions. The enhancements include operations
on new packed data formats and increased SIMD computational performance using 128-bit
registers for integer SIMD operation. A packed double-precision floating-point data type was
introduced along with several packed 128-bit integer data types. These data types allow packed
double-precision and single-precision floating-point and packed integer computations to be
performed in the XMM registers. 

SIMD instructions include floating-point SIMD instructions, integer SIMD instructions,
instructions for conversion between SIMD floating-point data and SIMD integer data, and
instructions for conversion of packed data between XMM registers and MMX registers. The
floating-point SIMD instructions allow computations to be performed on packed double-preci-
sion floating-point values (two double-precision values per XMM register). The computation of
SIMD floating-point instructions, the single-precision and the double-precision floating-point
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formats are compatible with IEEE Standard 754 for Binary Floating-Point Arithmetic. New
integer SIMD instructions provide flexible and higher dynamic range computational power by
supporting arithmetic operations on packed doubleword and quadword data as well as other
operations on packed byte, word, doubleword, quadword and double quadword data.

In addition to new 128-bit SIMD instructions, there are 128-bit enhancements to 68 integer
SIMD instructions. These operated solely on 64-bit MMX registers in the Pentium II and
Pentium III processors. Those 64-bit integer SIMD instructions were enhanced to support oper-
ation on 128-bit XMM registers in the Pentium 4 processor. These enhanced integer SIMD
instructions allow software developers to have maximum flexibility by writing SIMD code with
either XMM registers or MMX registers.

The Intel Pentium 4 processor’s features enable software developers to deliver new levels of
performance in multimedia applications ranging from 3-D graphics, video
decoding/encoding, to speech recognition. The processor’s packed double-precision floating-
point instructions enhance performance for applications that require greater range and preci-
sion, including scientific and engineering applications and advanced 3-D geometry tech-
niques, such as ray tracing.

To speed up processing and improve cache usage, the SSE2 extensions offer several new
instructions that allow application programmers to control the cacheability of data. These
instructions provide the ability to stream data in and out of the registers without disrupting the
caches and the ability to prefetch data before it is actually used.

The new architectural features introduced with the SSE2 extensions do not require new oper-
ating system support. This is because the SSE2 extensions do not introduce new architectural
states, and the FXSAVE/FXRSTOR instructions, which supports the SSE extensions, also
supports SSE2 extensions and are sufficient for saving and restoring the state of the XMM regis-
ters, the MMX registers, and the x87 FPU registers during a context switch. The CPUID instruc-
tion has been enhanced to allow operating system or applications to identify for the existence of
the SSE and SSE2 features.

The SSE2 extensions are accessible in all IA-32 architecture operating modes on the Intel
Pentium 4 and Intel Xeon processors. Both processors maintain IA-32 software compatibility
meaning all existing software continues to run correctly, without modification on the Pentium 4,
Intel Xeon, and future IA-32 processors that incorporate the SSE2 extensions. Also, existing
software continues to run correctly in the presence of applications that make use of the SSE2
instructions.

2.2.3. The Intel NetBurst Micro-Architecture

The Intel NetBurst micro-architecture provides:

• The Rapid Execution Engine

— Arithmetic Logic Units (ALUs) run at twice the processor frequency 

— Basic integer operations executes in 1/2 processor clock tick

— Provides higher throughput and reduced latency of execution
2-8



INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE
• Hyper-Pipelined Technology

— Twenty-stage pipeline to enable industry-leading clock rates for desktop PCs and
servers

— Frequency headroom and scalability to continue leadership into the future

• Advanced Dynamic Execution

— Deep, out-of-order, speculative execution engine.

• Up to 126 instructions in flight

• Up to 48 loads and 24 stores in pipeline

— Enhanced branch prediction capability

• Reduces the misprediction penalty associated with deeper pipelines 

• Advanced branch prediction algorithm

• 4K-entry branch target array

• New cache subsystem

— First level caches

• Advanced Execution Trace Cache stores decoded instructions

• Execution Trace Cache removes decoder latency from main execution loops

• Execution Trace Cache integrates path of program execution flow into a single
line

• Low latency data cache with 2 cycle latency

— Second level cache

• Full-speed, unified 8-way Level 2 on-die Advance Transfer Cache

• Bandwidth and performance increases with processor frequency

• High-performance, quad-pumped bus interface to the Intel NetBurst micro-architecture
system bus

— Supports quad-pumped, scalable bus clock to achieve 4X effective speed

— Capable of delivering up to 3.2 GB of bandwidth per second (Pentium 4 and Intel
Xeon processors)

• Superscalar issue to enable parallelism

• Expanded hardware registers with renaming to avoid register name space limitations

• 128-byte cache line size (two 64-byte sectors)

Figure 2-2 is an overview of the Intel NetBurst micro-architecture. This micro-architecture pipe-
line is made up of three sections: (1) the front end pipeline (2) the out-of-order execution core,
and (3) the retirement unit. 
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2.2.3.1. THE FRONT END PIPELINE

The front end supplies instructions in program order to the out-of-order execution core. It
performs a number of functions:

• Prefetches IA-32 instructions that are likely to be executed

• Fetches instructions that have not already been prefetched

• Decodes IA-32 instructions into micro-operations

• Generates microcode for complex instructions and special-purpose code

• Delivers decoded instructions from the execution trace cache

• Predicts branches using highly advanced algorithm

The pipeline is designed to address common problems in high-speed, pipelined microproces-
sors. Two of these problems contribute to major sources of delays:

• Time to decode instructions fetched from the target

• Wasted decode bandwidth due to branches or branch target in the middle of cache lines

The operation of the pipeline’s trace cache addresses these issues. Instructions are constantly
being fetched and decoded by the translation engine (part of the fetch/decode logic) and built

Figure 2-2.  The Intel NetBurst Micro-Architecture
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into sequences of µops called traces. At any time, multiple traces (representing prefetched
branches) are being stored in the trace cache. The trace cache is searched for the instruction that
follows the active branch. If the instruction also appears as the first instruction in a pre-fetched
branch, the fetch and decode of instructions from the memory hierarchy ceases and the pre-
fetched branch becomes the new source of instructions (see Figure 2-2).

The trace cache and the translation engine have cooperating branch prediction hardware. Branch
targets are predicted based on their linear addresses using branch target buffers (BTBs) and
fetched as soon as possible.

2.2.3.2. OUT-OF-ORDER EXECUTION CORE

The out-of-order execution core’s ability to execute instructions out of order is a key factor in
enabling parallelism. This feature enables the processor to reorder instructions so that if one µop
is delayed, other µops may proceed around it. The processor employs several buffers to smooth
the flow of µops.

The core is designed to facilitate parallel execution. It can dispatch up to six µops per cycle (this
exceeds trace cache and retirement µop bandwidth). Most pipelines can start executing a new
µop every cycle, so several instructions can be in flight at a time for each pipeline. A number of
arithmetic logical unit (ALU) instructions can start at two per cycle; many floating-point instruc-
tions can start once every two cycles. 

Note that µops can begin execution, out of order, as soon as their data inputs are ready and
resources are available. 

2.2.3.3. RETIREMENT UNIT

The retirement unit receives the results of the executed µops from the out-of-order execution
core and processes the results so that the architectural state updates according to the original
program order. Instructions retire in program order. IA-32 exceptions always occur in program
order. This means that exceptions do not occur speculatively; they must occur in correct order
so that there can be an appropriate restart after an exception. 

When a µop completes and writes its result, it is retired. Up to three µops may be retired per
cycle. The Reorder Buffer (ROB) is the unit in the processor which buffers completed µops,
updates the architectural state in order, and manages the ordering of exceptions. The retirement
section also keeps track of branches and sends updated branch target information to the BTB.
The BTB then purges pre-fetched traces that are no longer needed.

2.2.4. Hyper-Threading Technology

Hyper-Threading (HT) Technology was developed to improve the performance of IA-32 proces-
sors when executing multi-threaded operating system and application code or single-threaded
applications under multi-tasking environments. The technology enables a single physical
processor to execute two or more separate code streams (threads) concurrently.
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Architecturally, an IA-32 processor that supports HT Technology consists of two or more logical
processors, each of which has its own IA-32 architectural state. Each logical processor consists
of the IA-32 data registers, segment registers, control registers, debug registers and most of the
MSRs. Each also has its own advanced programmable interrupt controller (APIC). 

Figure 2-3 shows a comparison of an IA-32 processor with HT Technology (implemented with
two logical processors) and a traditional dual processor system. 

Unlike a traditional MP system configuration that uses two or more separate physical IA-32
processors, the logical processors in an IA-32 processor with HT Technology share the core
resources of the physical processor. This includes the execution engine and the system bus inter-
face. After power up and initialization, each logical processor can be independently directed to
execute a specified thread, interrupted, or halted.

HT Technology leverages the process and thread-level parallelism found in contemporary oper-
ating systems and high-performance applications by providing two or more logical processors
on a single chip. This configuration allows two or more threads2 to be executed simultaneously
on each a physical processor. Each logical processor executes instructions from an application
thread using the resources in the processor core. The core executes these threads concurrently,
using out-of-order instruction scheduling to maximize the use of execution units during each
clock cycle.

Figure 2-3.  Comparison of an IA-32 Processor with Hyper-Threading Technology and a 
Traditional Dual Processor System

2. In the remainder of this document, the term “thread” will be used as a general term for the terms “pro-
cess” and “thread.”
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2.2.4.1. NOTES ON IMPLEMENTATION

Hyper-Threading (HT) Technology was introduced into the IA-32 architecture in the Intel Xeon
processor MP and in later steppings of the Intel Xeon processor. It is also supported by the Intel
Pentium 4 processor at 3.06 GHz or higher. All HT Technology configurations require a chipset
and BIOS that utilize the technology, and an operating system that includes optimizations for
HT technology. See www.intel.com/info/hyperthreading for more information.

At the firmware (BIOS) level, the basic procedures to initialize the logical processors in a
processor supporting HT Technology are the same as those for a traditional DP or MP platform3.
The same mechanisms that are described in the Multiprocessor Specification Version 1.4 to
power-up and initialize physical processors in an MP system apply to the logical processors in
a HT Technology-enabled processor. An operating system designed to run on a traditional DP
or MP platform uses the CPUID instruction to detect the presence of an IA-32 processor with
Hyper-Threading Technology and the number of logical processors it provides.

Although existing operating system and application code should run correctly on a processor
that supports HT Technology, some code modifications are recommended to get the optimum
benefit. These modifications are discussed in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3, in the section titled “Required Operating System Support” in Chapter 7,
Multiple Processor Management.

2.3. MOORE’S LAW AND IA-32 PROCESSOR GENERATIONS

In the mid-1960s, Intel cofounder and Chairman Emeritus Gordon Moore had this observation:
“the number of transistors that would be incorporated on a silicon die would double every 18
months for the next several years.” Over the past three and half decades, this prediction known
as “Moore's Law has continued to hold true.

The computing power and the complexity (or roughly, the number of transistors per processor)
of Intel architecture processors has grown in close relation to Moore's law. By taking advantage
of new process technology and new micro-architecture designs, each new generation of IA-32
processors has demonstrated frequency-scaling headroom and new performance levels over the
previous generation processors.

The key features of the Intel Pentium 4 processor, Intel Xeon processor, Intel Xeon processor
MP, Pentium III and Pentium III Xeon processors with advanced transfer cache are shown in
Table 2-1. Older generation IA-32 processors, which do not employ on-die Level 2 cache, are
shown in Table 2-2. 

3. Some relatively simple enhancements to the MP initialization algorithm are needed.
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Table 2-1.  Key Features of Most Recent IA-32 Processors

Intel 
Processor

Date 
Intro-
duced

Micro-
Architecture

Clock 
Frequency 

at Intro-
duction

Transis-
tors Per 

Die
Register 
Sizes1

NOTES

1. The register size and external data bus size are given in bits.

System 
Bus 

Band-
width

Max. 
Extern. 
Addr. 
Space

On-Die 
Caches2

2. First level cache is denoted using the abbreviation L1, 2nd level cache is denoted as L2.

Pentium III 
and 
Pentium III 
Xeon 
Processors3

3. Intel Pentium III and Pentium III Xeon processors, with advanced transfer cache and built on 0.18 micron
process technology, were introduced in October 1999.

4. Hyper-Threading Technology is implemented with two logical processors.

1999 P6 700 MHz 28 M GP: 32 
FPU: 80 
MMX: 64
XMM: 128

Up to 
1.06 
GB/s

64 GB 3-KB L1;
256-KB L2

Pentium 4 
Processor

2000 Intel NetBurst 
Micro-
architecture

1.50 GHz 42 M GP: 32 
FPU: 80 
MMX: 64
XMM: 128

3.2 
GB/s

64 GB 12K µop 
Execution 
Trace 
Cache;
8KB L1;
256-KB L2

Intel Xeon 
Processor

2001 Intel NetBurst 
Micro-
architecture

1.70 GHz 42 M GP: 32 
FPU: 80 
MMX: 64
XMM: 128

3.2 
GB/s

64 GB 12K µop 
Trace 
Cache;
8-KB L1;
256-KB L2

Intel Xeon 
Processor

2002 Intel NetBurst 
Micro-
architecture; 
Hyper-
Threading 
Technology4

2.20 GHz 55 M GP: 32 
FPU: 80 
MMX: 64
XMM: 128

3.2 
GB/s

64 GB 12K µop 
Trace 
Cache;
8-KB L1;
512-KB L2

Intel Xeon 
Processor 
MP

2002 Intel NetBurst 
Micro-
architecture; 
Hyper-
Threading 
Technology

1.60 GHz 108 M GP: 32 
FPU: 80 
MMX: 64
XMM: 128

3.2 
GB/s

64 GB 12K µop 
Trace 
Cache;
8-KB L1;
256-KB L2;
1-MB L3

Intel 
Pentium 4
Processor

2002 Intel NetBurst 
Micro-
architecture; 
Hyper-
Threading 
Technology

3.06 GHz GP: 32 
FPU: 80 
MMX: 64
XMM: 128

3.2 
GB/s

64 GB 12K µop 
Execution 
Trace 
Cache;
8KB L1;
256-KB L2
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NOTES:

1. The register size and external data bus size are given in bits. Note also that each 32-bit general-purpose
(GP) registers can be addressed as an 8- or a 16-bit data registers in all of the processors.

2. Internal data paths that are 2 to 4 times wider than the external data bus for each processor.

Table 2-2.  Key Features of Previous Generations of IA-32 Processors 

Intel Processor

Date 
Intro-
duced

Max. Clock 
Frequency 

at Intro-
duction

Transis
-tors 

per Die
Register 
Sizes1

Ext. 
Data 
Bus 
Size2

Max. 
Extern. 
Addr. 
Space Caches 

8086 1978 8 MHz 29 K 16 GP 16 1 MB None

Intel 286 1982 12.5 MHz 134 K 16 GP 16 16 MB Note 3

Intel386 DX Processor 1985 20 MHz 275 K 32 GP 32 4 GB Note 3

Intel486 DX Processor 1989 25 MHz 1.2 M 32 GP
80 FPU

32 4 GB L1: 8KB

Pentium Processor 1993 60 MHz 3.1 M 32 GP
80 FPU

64 4 GB L1:16KB

Pentium Pro Processor 1995 200 MHz 5.5 M 32 GP
80 FPU

64 64 GB L1: 16KB
L2: 256KB 
or 512KB 

Pentium II Processor 1997 266 MHz 7 M 32 GP
80 FPU
64 MMX

64 64 GB L1: 32KB
L2: 256KB 
or 512KB

Pentium III Processor 1999 500 MHz 8.2 M 32 GP
80 FPU
64 MMX

128 
XMM

64 64 GB L1: 32KB
L2: 512KB
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CHAPTER 3
BASIC EXECUTION ENVIRONMENT

This chapter describes the basic execution environment of an IA-32 processor as seen by
assembly-language programmers. It describes how the processor executes instructions and how
it stores and manipulates data. The parts of the execution environment described here include
memory (the address space), the general-purpose data registers, the segment registers, the
EFLAGS register, and the instruction pointer register.

3.1. MODES OF OPERATION

The IA-32 architecture supports three operating modes: protected mode, real-address mode, and
system management mode. The operating mode determines which instructions and architectural
features are accessible:

• Protected mode. This mode is the native state of the processor. In this mode all instruc-
tions and architectural features are available, providing the highest performance and
capability. This is the recommended mode for all new applications and operating systems.
Among the capabilities of protected mode is the ability to directly execute “real-address
mode” 8086 software in a protected, multi-tasking environment. This feature is called
virtual-8086 mode, although it is not actually a processor mode. Virtual-8086 mode is
actually a protected mode attribute that can be enabled for any task. 

• Real-address mode. This mode implements the programming environment of the Intel
8086 processor with a few extensions (such as the ability to switch to protected or system
management mode). The processor is placed in real-address mode following power-up or a
reset.

• System management mode (SSM). This mode provides an operating system or executive
with a transparent mechanism for implementing platform-specific functions such as power
management and system security. The processor enters SMM when the external SMM
interrupt pin (SMI#) is activated or an SMI is received from the advanced programmable
interrupt controller (APIC). In SMM, the processor switches to a separate address space
while saving the basic context of the currently running program or task. SMM-specific
code may then be executed transparently. Upon returning from SMM, the processor is
placed back into its state prior to the system management interrupt. SSM was introduced
with the Intel386™ SL and Intel486™ SL processors and became a standard IA-32 feature
with the Pentium processor family. 

The basic execution environment is the same for each of these operating modes, as is described
in the remaining sections of this chapter.
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3.2. OVERVIEW OF THE BASIC EXECUTION ENVIRONMENT

Any program or task running on an IA-32 processor is given a set of resources for executing
instructions and for storing code, data, and state information. These resources (described briefly
in the following paragraphs and shown in Figure 3-1) make up the basic execution environment
for an IA-32 processor. This basic execution environment is used jointly by the application
programs and the operating-system or executive running on the processor.

• Address Space. Any task or program running on an IA-32 processor can address a linear
address space of up to 4 GBytes (232 bytes) and a physical address space of up to
64 GBytes (236 bytes). (See Section 3.3.3., “Extended Physical Addressing” for more
information about addressing an address space greater than 4 GBytes.)

• Basic program execution registers. The eight general-purpose registers, the six segment
registers, the EFLAGS register, and the EIP (instruction pointer) register comprise a basic
execution environment in which to execute a set of general-purpose instructions. These
instructions perform basic integer arithmetic on byte, word, and doubleword integers,
handle program flow control, operate on bit and byte strings, and address memory. (See
Section 3.4., “Basic Program Execution Registers”, for more information about these
registers.)

• x87 FPU registers. The eight x87 FPU data registers, the x87 FPU control register, the
status register, the x87 FPU instruction pointer register, the x87 FPU operand (data) pointer
register, the x87 FPU tag register, and the x87 FPU opcode register provide an execution
environment for operating on single-precision, double-precision, and double extended-
precision floating-point values, word-, doubleword, and quadword integers, and binary
coded decimal (BCD) values. (See Section 8.1., “x87 FPU Execution Environment”, for
more information about these registers.)

• MMX™ registers. The eight MMX registers support execution of single-instruction,
multiple-data (SIMD) operations on 64-bit packed byte, word, and doubleword integers.
(See Section 9.2., “the MMX Technology Programming Environment”, for more
information about these registers.)

• XMM registers. The eight XMM data registers and the MXCSR register support
execution of SIMD operations on 128-bit packed single-precision and double-precision
floating-point values and on 128-bit packed byte, word, doubleword, and quadword
integers. (See Section 10.2., “SSE Programming Environment”, for more information
about these registers.)

• Stack. To support procedure or subroutine calls and the passing of parameters between
procedures or subroutines, a stack and stack management resources are included in the
execution environment. The stack (not shown in Figure 3-1) is located in memory. (See
Section 6.2., “Stack”, for more information about the stack structure.)

In addition to the resources provided in the basic execution environment, the IA-32 architecture
provides the following system resources. These resources are part of the IA-32 architecture’s
system-level architecture. They provide extensive support for operating-system and system-
development software. Except for the I/O ports, the system resources are described in detail in
the IA-32 Intel Architecture Software Developer’s Manual, Volume 3: System Programming
Guide.
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Figure 3-1.  IA-32 Basic Execution Environment
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• I/O Ports. The IA-32 architecture supports a transfers of data to and from input/output
(I/O) ports (see Chapter 12, Input/Output, in this volume).

• Control registers. The five control registers (CR0 through CR4) determine the operating
mode of the processor and the characteristics of the currently executing task (see the
section titled “Control Registers” in Chapter 2 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3).

• Memory management registers. The GDTR, IDTR, task register, and LDTR specify the
locations of data structures used in protected mode memory management (see the section
titled “Memory-Management Registers” in Chapter 2 of the IA-32 Intel Architecture
Software Developer’s Manual, Volume 3).

• Debug registers. The debug registers (DR0 through DR7) control and allow monitoring of
the processor’s debugging operations (see the section titled “Debug Registers” in Chapter
15 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3).

• Memory type range registers (MTRRs). The MTRRs are used to assign memory types to
regions of memory (see the section titled “Memory Type Range Registers [MTRRs]” in
Chapter 10 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3).

• Machine specific registers (MSRs). The processor provides a variety of machine specific
registers that are used to control and report on processor performance. Virtually all MSRs
handle system related functions and are not accessible to an application program. One
exception to this rule is the time-stamp counter. The MSRs are described Appendix B,
Model-Specific Registers (MSRs) of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3).

• Machine check registers. The machine check registers consist of a set of control, status,
and error-reporting MSRs that are used to detect and report on hardware (machine) errors
(see the section titled “Machine-Check MSRs” in Chapter 14 of the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 3).

• Performance monitoring counters. The performance monitoring counters allow
processor performance events to be monitored (see the section titled “Performance
Monitoring Overview” in Chapter 15 of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3).

The remainder of this chapter describes the organization of memory and the address space, the
basic program execution registers, and addressing modes. Refer to the following chapters in this
volume for descriptions of the other program execution resources shown in Figure 3-1:

• x87 FPU registers—See Chapter 8, Programming with the x87 FPU.

• MMX Registers—See Chapter 9, Programming With the Intel MMX Technology.

• XMM registers—See Chapter 10, Programming with the Streaming SiMD Extensions
(SSE) and Chapter 11, Programming With the Streaming SIMD Extensions 2 (SSE2),
respectively.

• Stack implementation and procedure calls—See Chapter 6, Procedure Calls, Interrupts,
and Exceptions.
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3.3. MEMORY ORGANIZATION

The memory that the processor addresses on its bus is called physical memory. Physical
memory is organized as a sequence of 8-bit bytes. Each byte is assigned a unique address, called
a physical address. The physical address space ranges from zero to a maximum of 236 – 1
(64 GBytes).

Virtually any operating system or executive designed to work with an IA-32 processor will use
the processor’s memory management facilities to access memory. These facilities provide
features such as segmentation and paging, which allow memory to be managed efficiently and
reliably. Memory management is described in detail in Chapter 3, Protected-Mode Memory
Management, in the IA-32 Intel Architecture Software Developer’s Manual, Volume 3. The
following paragraphs describe the basic methods of addressing memory when memory manage-
ment is used.

When employing the processor’s memory management facilities, programs do not directly
address physical memory. Instead, they access memory using any of three memory models: flat,
segmented, or real-address mode.

With the flat memory model (see Figure 3-2), memory appears to a program as a single, contin-
uous address space, called a linear address space. Code (a program’s instructions), data, and
the procedure stack are all contained in this address space. The linear address space is byte
addressable, with addresses running contiguously from 0 to 232 − 1. An address for any byte in
the linear address space is called a linear address.

With the segmented memory model, memory appears to a program as a group of independent
address spaces called segments. When using this model, code, data, and stacks are typically
contained in separate segments. To address a byte in a segment, a program must issue a logical
address, which consists of a segment selector and an offset. (A logical address is often referred
to as a far pointer.) The segment selector identifies the segment to be accessed and the offset
identifies a byte in the address space of the segment. The programs running on an IA-32
processor can address up to 16,383 segments of different sizes and types, and each segment can
be as large as 232 bytes.

Internally, all the segments that are defined for a system are mapped into the processor’s linear
address space. To access a memory location, the processor thus translates each logical address
into a linear address. This translation is transparent to the application program.

The primary reason for using segmented memory is to increase the reliability of programs and
systems. For example, placing a program’s stack in a separate segment prevents the stack from
growing into the code or data space and overwriting instructions or data, respectively. Placing
the operating system’s or executive’s code, data, and stack in separate segments also protects
them from the application program and vice versa.

With the flat or the segmented memory model, the linear address space is mapped into the
processor’s physical address space either directly or through paging. When using direct mapping
(paging disabled), each linear address has a one-to-one correspondence with a physical address
(that is, linear addresses are sent out on the processor’s address lines without translation). When
using the IA-32 architecture’s paging mechanism (paging enabled), the linear address space is
divided into pages, which are mapped into virtual memory. 
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The pages of virtual memory are then mapped as needed into physical memory. When an oper-
ating system or executive uses paging, the paging mechanism is transparent to an application
program; that is, all the application program sees is the linear address space.

The real-address mode memory model uses the memory model for the Intel 8086 processor.
This memory model is supported in the IA-32 architecture for compatibility with existing
programs written to run on the Intel 8086 processor. The real-address mode uses a specific
implementation of segmented memory in which the linear address space for the program and the
operating system/executive consists of an array of segments of up to 64 KBytes in size each. The
maximum size of the linear address space in real-address mode is 220 bytes. (See Chapter 16,
8086 Emulation, in the IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for
more information on this memory model.)

Figure 3-2.  Three Memory Management Models
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3.3.1. Modes of Operation vs. Memory Model

When writing code for an IA-32 processor, a programmer needs to know the operating mode the
processor is going to be in when executing the code and the memory model being used. The rela-
tionship between operating modes and memory models is as follows:

• Protected mode. When in protected mode, the processor can use any of the memory
models described in this section. (The real-addressing mode memory model is ordinarily
used only when the processor is in the virtual-8086 mode.) The memory model used
depends on the design of the operating system or executive. When multitasking is imple-
mented, individual tasks can use different memory models.

• Real-address mode. When in real-address mode, the processor only supports the real-
address mode memory model.

• System management mode. When in SMM, the processor switches to a separate address
space, called the system management RAM (SMRAM). The memory model used to
address bytes in this address space is similar to the real-address mode model. (See Chapter
13, System Management Mode (SMM), in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3, for more information on the memory model used in
SMM.)

3.3.2. 32-Bit vs. 16-Bit Address and Operand Sizes

The processor can be configured for 32-bit or 16-bit address and operand sizes. With 32-bit
address and operand sizes, the maximum linear address or segment offset is FFFFFFFFH 
(232-1), and operand sizes are typically 8 bits or 32 bits. With 16-bit address and operand sizes,
the maximum linear address or segment offset is FFFFH (216-1), and operand sizes are typically
8 bits or 16 bits. 

When using 32-bit addressing, a logical address (or far pointer) consists of a 16-bit segment
selector and a 32-bit offset; when using 16-bit addressing, it consists of a 16-bit segment selector
and a 16-bit offset. 

Instruction prefixes allow temporary overrides of the default address and/or operand sizes from
within a program.

When operating in protected mode, the segment descriptor for the currently executing code
segment defines the default address and operand size. A segment descriptor is a system data
structure not normally visible to application code. Assembler directives allow the default
addressing and operand size to be chosen for a program. The assembler and other tools then set
up the segment descriptor for the code segment appropriately.

When operating in real-address mode, the default addressing and operand size is 16 bits. An
address-size override can be used in real-address mode to enable 32-bit addressing; however, the
maximum allowable 32-bit linear address is still 000FFFFFH (220-1).
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3.3.3. Extended Physical Addressing

Beginning with the P6 family processors, the IA-32 architecture supports addressing of up to
64 GBytes (236 bytes) of physical memory. A program or task cannot address locations in this
address space directly. Instead it addresses individual linear address spaces of up to 4 GBytes that
are mapped to the larger 64-GByte physical address space through the processor’s virtual
memory management mechanism. A program can switch between linear address spaces within
this 64-GByte physical address space by changing segment selectors in the segment registers.
The use of extended physical addressing requires the processor to operate in protected mode and
the operating system to provide a virtual memory management system. (See “36-Bit Physical
Addressing Using the PAE Paging Mechanism” in Chapter 3 of the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 3 for more information about this addressing mechanism.)

3.4. BASIC PROGRAM EXECUTION REGISTERS

The processor provides 16 registers basic program execution registers for use in general system
and application programing. As shown in Figure 3-3, these registers can be grouped as follows:

• General-purpose registers. These eight registers are available for storing operands and
pointers.

• Segment registers. These registers hold up to six segment selectors.

• EFLAGS (program status and control) register. The EFLAGS register report on the
status of the program being executed and allows limited (application-program level)
control of the processor. 

• EIP (instruction pointer) register. The EIP register contains a 32-bit pointer to the next
instruction to be executed. 

3.4.1. General-Purpose Registers

The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are
provided for holding the following items:

• Operands for logical and arithmetic operations

• Operands for address calculations

• Memory pointers

Although all of these registers are available for general storage of operands, results, and
pointers, caution should be used when referencing the ESP register. The ESP register holds the
stack pointer and as a general rule should not be used for any other purpose. 

Many instructions assign specific registers to hold operands. For example, string instructions
use the contents of the ECX, ESI, and EDI registers as operands. When using a segmented
memory model, some instructions assume that pointers in certain registers are relative to
specific segments. For instance, some instructions assume that a pointer in the EBX register
points to a memory location in the DS segment. 
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The special uses of general-purpose registers by instructions are described in Chapter 5, Instruc-
tion Set Summary, in this volume and Chapter 3, Instruction Set Reference, in the IA-32 Intel
Architecture Software Developer’s Manual, Volume 2. The following is a summary of these
special uses:

• EAX—Accumulator for operands and results data.

• EBX—Pointer to data in the DS segment.

• ECX—Counter for string and loop operations.

• EDX—I/O pointer.

• ESI—Pointer to data in the segment pointed to by the DS register; source pointer for string
operations.9

• EDI—Pointer to data (or destination) in the segment pointed to by the ES register;
destination pointer for string operations.

Figure 3-3.  General System and Application Programming Registers
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• ESP—Stack pointer (in the SS segment).

• EBP—Pointer to data on the stack (in the SS segment).

As shown in Figure 3-4, the lower 16 bits of the general-purpose registers map directly to the
register set found in the 8086 and Intel 286 processors and can be referenced with the names
AX, BX, CX, DX, BP, SP, SI, and DI. Each of the lower two bytes of the EAX, EBX, ECX, and
EDX registers can be referenced by the names AH, BH, CH, and DH (high bytes) and AL, BL,
CL, and DL (low bytes).

3.4.2. Segment Registers

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment
selector is a special pointer that identifies a segment in memory. To access a particular segment
in memory, the segment selector for that segment must be present in the appropriate segment
register.

When writing application code, programmers generally create segment selectors with assembler
directives and symbols. The assembler and other tools then create the actual segment selector
values associated with these directives and symbols. If writing system code, programmers may
need to create segment selectors directly. (A detailed description of the segment-selector data
structure is given in Chapter 3, Protected-Mode Memory Management, of the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 3.) 

How segment registers are used depends on the type of memory management model that the
operating system or executive is using. When using the flat (unsegmented) memory model, the
segment registers are loaded with segment selectors that point to overlapping segments, each of
which begins at address 0 of the linear address space (as shown in Figure 3-5). These overlap-
ping segments then comprise the linear address space for the program. (Typically, two overlap-
ping segments are defined: one for code and another for data and stacks. The CS segment
register points to the code segment and all the other segment registers point to the data and stack
segment.)

Figure 3-4.  Alternate General-Purpose Register Names
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When using the segmented memory model, each segment register is ordinarily loaded with a
different segment selector so that each segment register points to a different segment within the
linear address space (as shown in Figure 3-6). At any time, a program can thus access up to six
segments in the linear address space. To access a segment not pointed to by one of the segment
registers, a program must first load the segment selector for the segment to be accessed into a
segment register.

Figure 3-5.  Use of Segment Registers for Flat Memory Model

Figure 3-6.  Use of Segment Registers in Segmented Memory Model
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Each of the segment registers is associated with one of three types of storage: code, data, or
stack). For example, the CS register contains the segment selector for the code segment, where
the instructions being executed are stored. The processor fetches instructions from the code
segment, using a logical address that consists of the segment selector in the CS register and the
contents of the EIP register. The EIP register contains the offset within the code segment of the
next instruction to be executed. The CS register cannot be loaded explicitly by an application
program. Instead, it is loaded implicitly by instructions or internal processor operations that
change program control (such as, procedure calls, interrupt handling, or task switching).

The DS, ES, FS, and GS registers point to four data segments. The availability of four data
segments permits efficient and secure access to different types of data structures. For example,
four separate data segments might be created: one for the data structures of the current module,
another for the data exported from a higher-level module, a third for a dynamically created data
structure, and a fourth for data shared with another program. To access additional data segments,
the application program must load segment selectors for these segments into the DS, ES, FS, and
GS registers, as needed.

The SS register contains the segment selector for a stack segment, where the procedure stack is
stored for the program, task, or handler currently being executed. All stack operations use the
SS register to find the stack segment. Unlike the CS register, the SS register can be loaded
explicitly, which permits application programs to set up multiple stacks and switch among them.

See Section 3.3., “Memory Organization”, for an overview of how the segment registers are
used in real-address mode.

The four segment registers CS, DS, SS, and ES are the same as the segment registers found in
the Intel 8086 and Intel 286 processors and the FS and GS registers were introduced into the IA-
32 Architecture with the Intel386™ family of processors.

3.4.3. EFLAGS Register

The 32-bit EFLAGS register contains a group of status flags, a control flag, and a group of
system flags. Figure 3-7 defines the flags within this register. Following initialization of the
processor (either by asserting the RESET pin or the INIT pin), the state of the EFLAGS register
is 00000002H. Bits 1, 3, 5, 15, and 22 through 31 of this register are reserved. Software should
not use or depend on the states of any of these bits.

Some of the flags in the EFLAGS register can be modified directly, using special-purpose
instructions (described in the following sections). There are no instructions that allow the whole
register to be examined or modified directly. However, the following instructions can be used to
move groups of flags to and from the procedure stack or the EAX register: LAHF, SAHF,
PUSHF, PUSHFD, POPF, and POPFD. After the contents of the EFLAGS register have been
transferred to the procedure stack or EAX register, the flags can be examined and modified using
the processor’s bit manipulation instructions (BT, BTS, BTR, and BTC).

When suspending a task (using the processor’s multitasking facilities), the processor automati-
cally saves the state of the EFLAGS register in the task state segment (TSS) for the task being
suspended. When binding itself to a new task, the processor loads the EFLAGS register with
data from the new task’s TSS.
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When a call is made to an interrupt or exception handler procedure, the processor automatically
saves the state of the EFLAGS registers on the procedure stack. When an interrupt or exception
is handled with a task switch, the state of the EFLAGS register is saved in the TSS for the task
being suspended.

As the IA-32 Architecture has evolved, flags have been added to the EFLAGS register, but the
function and placement of existing flags have remained the same from one family of the IA-32
processors to the next. As a result, code that accesses or modifies these flags for one family of
IA-32 processors works as expected when run on later families of processors.

Figure 3-7.  EFLAGS Register
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3.4.3.1. STATUS FLAGS

The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results of arith-
metic instructions, such as the ADD, SUB, MUL, and DIV instructions. The functions of the
status flags are as follows:

CF (bit 0) Carry flag. Set if an arithmetic operation generates a carry or a borrow out
of the most-significant bit of the result; cleared otherwise. This flag indi-
cates an overflow condition for unsigned-integer arithmetic. It is also used
in multiple-precision arithmetic.

PF (bit 2) Parity flag. Set if the least-significant byte of the result contains an even
number of 1 bits; cleared otherwise.

AF (bit 4) Adjust flag. Set if an arithmetic operation generates a carry or a borrow
out of bit 3 of the result; cleared otherwise. This flag is used in binary-
coded decimal (BCD) arithmetic.

ZF (bit 6) Zero flag. Set if the result is zero; cleared otherwise.

SF (bit 7) Sign flag. Set equal to the most-significant bit of the result, which is the
sign bit of a signed integer. (0 indicates a positive value and 1 indicates a
negative value.)

OF (bit 11) Overflow flag. Set if the integer result is too large a positive number or
too small a negative number (excluding the sign-bit) to fit in the destina-
tion operand; cleared otherwise. This flag indicates an overflow condition
for signed-integer (two’s complement) arithmetic.

Of these status flags, only the CF flag can be modified directly, using the STC, CLC, and CMC
instructions. Also the bit instructions (BT, BTS, BTR, and BTC) copy a specified bit into the CF
flag.

The status flags allow a single arithmetic operation to produce results for three different data
types: unsigned integers, signed integers, and BCD integers. If the result of an arithmetic oper-
ation is treated as an unsigned integer, the CF flag indicates an out-of-range condition (carry or
a borrow); if treated as a signed integer (two’s complement number), the OF flag indicates a
carry or borrow; and if treated as a BCD digit, the AF flag indicates a carry or borrow. The SF
flag indicates the sign of a signed integer. The ZF flag indicates either a signed- or an unsigned-
integer zero.

When performing multiple-precision arithmetic on integers, the CF flag is used in conjunction
with the add with carry (ADC) and subtract with borrow (SBB) instructions to propagate a carry
or borrow from one computation to the next. 

The condition instructions Jcc (jump on condition code cc), SETcc (byte set on condition code
cc), LOOPcc, and CMOVcc (conditional move) use one or more of the status flags as condition
codes and test them for branch, set-byte, or end-loop conditions.
3-14



BASIC EXECUTION ENVIRONMENT
3.4.3.2. DF FLAG

The direction flag (DF, located in bit 10 of the EFLAGS register) controls the string instructions
(MOVS, CMPS, SCAS, LODS, and STOS). Setting the DF flag causes the string instructions to
auto-decrement (that is, to process strings from high addresses to low addresses). Clearing the
DF flag causes the string instructions to auto-increment (process strings from low addresses
to high addresses).

The STD and CLD instructions set and clear the DF flag, respectively.

3.4.4. System Flags and IOPL Field

The system flags and IOPL field in the EFLAGS register control operating-system or executive
operations. They should not be modified by application programs. The functions of the
system flags are as follows:

IF (bit 9) Interrupt enable flag. Controls the response of the processor to
maskable interrupt requests. Set to respond to maskable interrupts;
cleared to inhibit maskable interrupts.

TF (bit 8) Trap flag. Set to enable single-step mode for debugging; clear to
disable single-step mode.

IOPL (bits 12 and 13) I/O privilege level field. Indicates the I/O privilege level of the
currently running program or task. The current privilege level (CPL)
of the currently running program or task must be less than or equal to
the I/O privilege level to access the I/O address space. This field can
only be modified by the POPF and IRET instructions when operating
at a CPL of 0.

NT (bit 14) Nested task flag. Controls the chaining of interrupted and called
tasks. Set when the current task is linked to the previously executed
task; cleared when the current task is not linked to another task.

RF (bit 16) Resume flag. Controls the processor’s response to debug exceptions.

VM (bit 17) Virtual-8086 mode flag. Set to enable virtual-8086 mode; clear to
return to protected mode without virtual-8086 mode semantics.

AC (bit 18) Alignment check flag. Set this flag and the AM bit in the CR0
register to enable alignment checking of memory references; clear
the AC flag and/or the AM bit to disable alignment checking.

VIF (bit 19) Virtual interrupt flag. Virtual image of the IF flag. Used in
conjunction with the VIP flag. (To use this flag and the VIP flag the
virtual mode extensions are enabled by setting the VME flag in
control register CR4.)

VIP (bit 20) Virtual interrupt pending flag. Set to indicate that an interrupt is
pending; clear when no interrupt is pending. (Software sets and
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clears this flag; the processor only reads it.) Used in conjunction with
the VIF flag.

ID (bit 21) Identification flag. The ability of a program to set or clear this flag
indicates support for the CPUID instruction.

See Chapter 3, Protected-Mode Memory Management, in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3, for a detail description of these flags. 

3.5. INSTRUCTION POINTER

The instruction pointer (EIP) register contains the offset in the current code segment for the next
instruction to be executed. It is advanced from one instruction boundary to the next in straight-
line code or it is moved ahead or backwards by a number of instructions when executing JMP,
Jcc, CALL, RET, and IRET instructions. 

The EIP register cannot be accessed directly by software; it is controlled implicitly by control-
transfer instructions (such as JMP, Jcc, CALL, and RET), interrupts, and exceptions. The only
way to read the EIP register is to execute a CALL instruction and then read the value of the
return instruction pointer from the procedure stack. The EIP register can be loaded indirectly by
modifying the value of a return instruction pointer on the procedure stack and executing a return
instruction (RET or IRET). See Section 6.2.4.2., “Return Instruction Pointer”.

All IA-32 processors prefetch instructions. Because of instruction prefetching, an instruction
address read from the bus during an instruction load does not match the value in the EIP register.
Even though different processor generations use different prefetching mechanisms, the function
of EIP register to direct program flow remains fully compatible with all software written to run
on IA-32 processors.

3.6. OPERAND-SIZE AND ADDRESS-SIZE ATTRIBUTES

When the processor is executing in protected mode, every code segment has a default operand-
size attribute and address-size attribute. These attributes are selected with the D (default size)
flag in the segment descriptor for the code segment (see Chapter 3, Protected-Mode Memory
Management, in the IA-32 Intel Architecture Software Developer’s Manual, Volume 3). When
the D flag is set, the 32-bit operand-size and address-size attributes are selected; when the flag
is clear, the 16-bit size attributes are selected. When the processor is executing in real-address
mode, virtual-8086 mode, or SMM, the default operand-size and address-size attributes are
always 16 bits.

The operand-size attribute selects the sizes of operands that instructions operate on. When the
16-bit operand-size attribute is in force, operands can generally be either 8 bits or 16 bits, and
when the 32-bit operand-size attribute is in force, operands can generally be 8 bits or 32 bits.

The address-size attribute selects the sizes of addresses used to address memory: 16 bits or
32 bits. When the 16-bit address-size attribute is in force, segment offsets and displacements are
16 bits. This restriction limits the size of a segment that can be addressed to 64 KBytes. When
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the 32-bit address-size attribute is in force, segment offsets and displacements are 32 bits,
allowing segments of up to 4 GBytes to be addressed.

The default operand-size attribute and/or address-size attribute can be overridden for a partic-
ular instruction by adding an operand-size and/or address-size prefix to an instruction (see
“Instruction Prefixes” in Chapter 2 of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3). The effect of this prefix applies only to the instruction it is attached to.

Table 3-1 shows effective operand size and address size (when executing in protected mode)
depending on the settings of the D flag and the operand-size and address-size prefixes.

NOTES:

Y Yes, this instruction prefix is present.

N No, this instruction prefix is not present.

3.7. OPERAND ADDRESSING

IA-32 machine-instructions act on zero or more operands. Some operands are specified explic-
itly in an instruction and others are implicit to an instruction. The data for a source operand can
be located in any of the following places:

• The instruction itself (an immediate operand).

• A register.

• A memory location.

• An I/O port.

When an instruction returns data to a destination operand, it can be returned to any of the
following places:

• A register.

• A memory location.

• An I/O port.

Table 3-1.  Effective Operand- and Address-Size Attributes

D Flag in Code Segment 
Descriptor 0 0 0 0 1 1 1 1 

Operand-Size Prefix 66H N N Y Y N N Y Y 

Address-Size Prefix 67H N Y N Y N Y N Y 

Effective Operand Size 16 16 32 32 32 32 16 16 

Effective Address Size 16 32 16 32 32 16 32 16
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3.7.1. Immediate Operands

Some instructions use data encoded in the instruction itself as a source operand. These operands
are called immediate operands (or simply immediates). For example, the following ADD
instruction adds an immediate value of 14 to the contents of the EAX register:

ADD EAX, 14

All the arithmetic instructions (except the DIV and IDIV instructions) allow the source operand
to be an immediate value. The maximum value allowed for an immediate operand varies among
instructions, but can never be greater than the maximum value of an unsigned doubleword
integer (232).

3.7.2. Register Operands

Source and destination operands can be any of the following registers, depending on the instruc-
tion being executed:

• The 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP).

• The 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, or BP).

• The 8-bit general-purpose registers (AH, BH, CH, DH, AL, BL, CL, or DL).

• The segment registers (CS, DS, SS, ES, FS, and GS).

• The EFLAGS register.

• The x87 FPU registers (ST0 through ST7, status word, control word, tag word, data
operand pointer, and instruction pointer).

• The MMX registers (MM0 through MM7).

• The XMM registers (XMM0 through XXM7) and the MXCSR register.

• The control registers (CR0, CR2, CR3, CR4) and system table pointer registers (GDTR,
LDTR, IDTR, task register).

• The debug registers (DR0, DR1, DR2, DR3, DR6, DR7).

• The MSR registers.

Some instructions (such as the DIV and MUL instructions) use quadword operands contained
in a pair of 32-bit registers. Register pairs are represented with a colon separating them. For
example, in the register pair EDX:EAX, EDX contains the high order bits and EAX contains the
low order bits of a quadword operand. 

Several instructions (such as the PUSHFD and POPFD instructions) are provided to load and
store the contents of the EFLAGS register or to set or clear individual flags in this register. Other
instructions (such as the Jcc instructions) use the state of the status flags in the EFLAGS register
as condition codes for branching or other decision making operations.

The processor contains a selection of system registers that are used to control memory manage-
ment, interrupt and exception handling, task management, processor management, and debug-
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ging activities. Some of these system registers are accessible by an application program, the
operating system, or the executive through a set of system instructions. When accessing a
system register with a system instruction, the register is generally an implied operand of the
instruction.

3.7.3. Memory Operands

Source and destination operands in memory are referenced by means of a segment selector and
an offset (see Figure 3-8). The segment selector specifies the segment containing the operand
and the offset (the number of bytes from the beginning of the segment to the first byte of the
operand) specifies the linear or effective address of the operand.

3.7.3.1. SPECIFYING A SEGMENT SELECTOR

The segment selector can be specified either implicitly or explicitly. The most common method
of specifying a segment selector is to load it in a segment register and then allow the processor
to select the register implicitly, depending on the type of operation being performed. The
processor automatically chooses a segment according to the rules given in Table 3-2. 

When storing data in or loading data from memory, the DS segment default can be overridden
to allow other segments to be accessed. Within an assembler, the segment override is generally
handled with a colon “:” operator. For example, the following MOV instruction moves a value
from register EAX into the segment pointed to by the ES register. The offset into the segment is
contained in the EBX register:

MOV ES:[EBX], EAX;

Figure 3-8.  Memory Operand Address

Table 3-2.  Default Segment Selection Rules

Type of 
Reference

Register
Used

Segment
Used Default Selection Rule

Instructions CS Code Segment All instruction fetches.

Stack SS Stack Segment All stack pushes and pops.
Any memory reference which uses the ESP or EBP 
register as a base register.

Local Data DS Data Segment All data references, except when relative to stack or 
string destination.

Destination 
Strings

ES Data Segment 
pointed to with 
the ES register

Destination of string instructions.

Offset (or Linear Address)

015
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310
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(At the machine level, a segment override is specified with a segment-override prefix, which is
a byte placed at the beginning of an instruction.) The following default segment selections
cannot be overridden:

• Instruction fetches must be made from the code segment.

• Destination strings in string instructions must be stored in the data segment pointed to by
the ES register.

• Push and pop operations must always reference the SS segment.

Some instructions require a segment selector to be specified explicitly. In these cases, the 16-bit
segment selector can be located in a memory location or in a 16-bit register. For example, the
following MOV instruction moves a segment selector located in register BX into segment
register DS:

MOV DS, BX

Segment selectors can also be specified explicitly as part of a 48-bit far pointer in memory. Here,
the first doubleword in memory contains the offset and the next word contains the segment
selector.

3.7.3.2. SPECIFYING AN OFFSET

The offset part of a memory address can be specified either directly as an static value (called a
displacement) or through an address computation made up of one or more of the following
components:

• Displacement—An 8-, 16-, or 32-bit value.

• Base—The value in a general-purpose register.

• Index—The value in a general-purpose register.

• Scale factor—A value of 2, 4, or 8 that is multiplied by the index value.

The offset which results from adding these components is called an effective address. Each of
these components can have either a positive or negative (2s complement) value, with the excep-
tion of the scaling factor. Figure 3-9 shows all the possible ways that these components can be
combined to create an effective address in the selected segment.
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The uses of general-purpose registers as base or index components are restricted in the following
manner:

• The ESP register cannot be used as an index register.

• When the ESP or EBP register is used as the base, the SS segment is the default segment.
In all other cases, the DS segment is the default segment.

The base, index, and displacement components can be used in any combination, and any of these
components can be null. A scale factor may be used only when an index also is used. Each
possible combination is useful for data structures commonly used by programmers in high-level
languages and assembly language. The following addressing modes suggest uses for common
combinations of address components.

Displacement

A displacement alone represents a direct (uncomputed) offset to the operand. Because the
displacement is encoded in the instruction, this form of an address is sometimes called an abso-
lute or static address. It is commonly used to access a statically allocated scalar operand.

Base

A base alone represents an indirect offset to the operand. Since the value in the base register can
change, it can be used for dynamic storage of variables and data structures.

Base + Displacement

A base register and a displacement can be used together for two distinct purposes:

• As an index into an array when the element size is not 2, 4, or 8 bytes—The displacement
component encodes the static offset to the beginning of the array. The base register holds
the results of a calculation to determine the offset to a specific element within the array.

• To access a field of a record—The base register holds the address of the beginning of the
record, while the displacement is an static offset to the field.

Figure 3-9.  Offset (or Effective Address) Computation
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An important special case of this combination is access to parameters in a procedure activation
record. A procedure activation record is the stack frame created when a procedure is entered.
Here, the EBP register is the best choice for the base register, because it automatically selects
the stack segment. This is a compact encoding for this common function.

(Index ∗ Scale) + Displacement

This address mode offers an efficient way to index into a static array when the element size is 2,
4, or 8 bytes. The displacement locates the beginning of the array, the index register holds the
subscript of the desired array element, and the processor automatically converts the subscript
into an index by applying the scaling factor.

Base + Index + Displacement

Using two registers together supports either a two-dimensional array (the displacement holds the
address of the beginning of the array) or one of several instances of an array of records (the
displacement is an offset to a field within the record).

Base + (Index ∗ Scale) + Displacement

Using all the addressing components together allows efficient indexing of a two-dimensional
array when the elements of the array are 2, 4, or 8 bytes in size.

3.7.3.3. ASSEMBLER AND COMPILER ADDRESSING MODES

At the machine-code level, the selected combination of displacement, base register, index
register, and scale factor is encoded in an instruction. All assemblers permit a programmer to
use any of the allowable combinations of these addressing components to address operands.
High-level language compilers will select an appropriate combination of these components
based on the language construct a programmer defines.

3.7.4. I/O Port Addressing

The processor supports an I/O address space that contains up to 65,536 8-bit I/O ports. Ports that
are 16-bit and 32-bit may also be defined in the I/O address space. An I/O port can be addressed
with either an immediate operand or a value in the DX register. See Chapter 12, Input/Output,
for more information about I/O port addressing.
3-22



4

Data Types





CHAPTER 4
DATA TYPES

This chapter introduces IA-32 architecture defined data types. A section at the end of this
chapter describes the real-number and floating-point concepts used in the x87 FPU and the SSE
and SSE2 extensions. 

4.1. FUNDAMENTAL DATA TYPES

The fundamental data types of the IA-32 architecture are bytes, words, doublewords, quad-
words, and double quadwords (see Figure 4-1). A byte is eight bits, a word is 2 bytes (16 bits),
a doubleword is 4 bytes (32 bits), a quadword is 8 bytes (64 bits), and a double quadword is
16 bytes (128 bits). A subset of the IA-32 architecture instructions operates on these funda-
mental data types without any additional operand typing.

The quadword data type was introduced into the IA-32 architecture in the Intel486 processor;
the double quadword data type was introduced in the Pentium III processor with the SSE exten-
sions.

Figure 4-2 shows the byte order of each of the fundamental data types when referenced as oper-
ands in memory. The low byte (bits 0 through 7) of each data type occupies the lowest address
in memory and that address is also the address of the operand.

Figure 4-1.  Fundamental Data Types
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4.1.1. Alignment of Words, Doublewords, Quadwords, and 
Double Quadwords

Words, doublewords, and quadwords do not need to be aligned in memory on natural bound-
aries. (The natural boundaries for words, double words, and quadwords are even-numbered
addresses, addresses evenly divisible by four, and addresses evenly divisible by eight, respec-
tively.) However, to improve the performance of programs, data structures (especially stacks)
should be aligned on natural boundaries whenever possible. The reason for this is that the
processor requires two memory accesses to make an unaligned memory access; whereas,
aligned accesses require only one memory access. A word or doubleword operand that crosses
a 4-byte boundary or a quadword operand that crosses an 8-byte boundary is considered
unaligned and requires two separate memory bus cycles to access it.

Some instructions that operate on double quadwords require memory operands to be aligned on
a natural boundary. These instructions generate a general-protection exception (#GP) if an
unaligned operand is specified. A natural boundary for a double quadword is any address evenly
divisible by 16. Other instructions that operate on double quadwords permit unaligned access
(without generating a general-protection exception), however, additional memory bus cycles are
required to access unaligned data from memory.

Figure 4-2.  Bytes, Words, Doublewords, Quadwords, and Double Quadwords in Memory
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4.2. NUMERIC DATA TYPES

Although bytes, words, and doublewords are the fundamental data types of the IA-32 architec-
ture, some instructions support additional interpretations of these data types to allow operations
to be performed on numeric data types (signed and unsigned integers, and floating-point
numbers). See Figure 4-3. 

Figure 4-3.  Numeric Data Types
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4.2.1. Integers

The IA-32 architecture defines two typed of integers: unsigned and signed. Unsigned integers
are ordinary binary values ranging from 0 to the maximum positive number that can be encoded
in the selected operand size. Signed integers are two’s complement binary values that can be
used to represent both positive and negative integer values.

Some integer instructions (such as the ADD, SUB, PADDB, and PSUBB instructions) operate
on either unsigned or signed integer operands. Other integer instructions (such as IMUL, MUL,
IDIV, DIV, FIADD, and FISUB) operate on only one integer type.

The following sections describe the encodings and ranges of the two types of integers.

4.2.1.1. UNSIGNED INTEGERS

Unsigned integers are unsigned binary numbers contained in a byte, word, doubleword, and
quadword. Their values range from 0 to 255 for an unsigned byte integer, from 0 to 65,535 for an
unsigned word integer, from 0 to 232 – 1 for an unsigned doubleword integer, and from 0 to 264 –
1 for an unsigned quadword integer. Unsigned integers are sometimes referred to as ordinals.

4.2.1.2. SIGNED INTEGERS

Signed integers are signed binary numbers held in a byte, word, doubleword, or quadword. All
operations on signed integers assume a two's complement representation. The sign bit is located
in bit 7 in a byte integer, bit 15 in a word integer, bit 31 in a doubleword integer, and bit 63 in a
quadword integer (see the signed integer encodings in Table 4-1).

Table 4-1.  Signed Integer Encodings
Class Two’s Complement Encoding

Sign

Positive Largest 0 11..11

. .

. .

Smallest 0 00..01

Zero 0 00..00

Negative Smallest 1 11..11

. .

. .

Largest 1 00..00

Integer indefinite 1 00..00

Signed Byte Integer:
Signed Word Integer:
Signed Doubleword Integer:
Signed Quadword Integer:

← 7 bits →
← 15 bits →
← 31 Bits →
← 63 Bits →
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The sign bit is set for negative integers and cleared for positive integers and zero. Integer values
range from –128 to +127 for a byte integer, from –32,768 to +32,767 for a word integer, from –
231 to +231 – 1 for a doubleword integer, and from –263 to +263 – 1 for a quadword integer.

When storing integer values in memory, word integers are stored in 2 consecutive bytes; double-
word integers are stored in 4 consecutive bytes; and quadword integers are stored in 8 consecu-
tive bytes.

The integer indefinite is a special value that is sometimes returned by the x87 FPU when oper-
ating on integer values (see Section 8.2.1., “Indefinites”).

4.2.2. Floating-Point Data Types

The IA-32 architecture defines and operates on three floating-point data types: single-precision
floating-point, double-precision floating-point, and double-extended precision floating-point
(see Figure 4-3). The data formats for these data types correspond directly to formats specified
in the IEEE Standard 754 for Binary Floating-Point Arithmetic. Table 4-2 gives the length,
precision, and approximate normalized range that can be represented of each of these data types.
Denormal values are also supported in each of these types.

NOTE

Section 4.8., “Real Numbers and Floating-Point Formats” gives an overview
of the IEEE Standard 754 floating-point formats and defines the terms integer
bit, QNaN, SNaN, and denormal value.

Table 4-3 shows the floating-point encodings for zeros, denormalized finite numbers, normal-
ized finite numbers, infinites, and NaNs for each of the three floating-point data types. It also
gives the format for the QNaN floating-point indefinite value. (See Section 4.8.3.7., “QNaN
Floating-Point Indefinite” for a discussion of the use of the QNaN floating-point indefinite
value.)

For the single-precision and double-precision formats, only the fraction part of the significand
is encoded. The integer is assumed to be 1 for all numbers except 0 and denormalized finite
numbers. For the double extended-precision format, the integer is contained in bit 63, and the
most-significant fraction bit is bit 62. Here, the integer is explicitly set to 1 for normalized
numbers, infinities, and NaNs, and to 0 for zero and denormalized numbers.

Table 4-2.  Length, Precision, and Range of Floating-Point Data Types

Data Type Length Precision
(Bits)

Approximate Normalized Range

Binary Decimal

Single Precision 32 24 2–126 to 2127 1.18 × 10–38 to 3.40 × 1038

Double Precision 64 53 2–1022 to 21023 2.23 × 10–308 to 1.79 × 10308

Double Extended Precision 80 64 2–16382 to 216383 3.37 × 10–4932 to 1.18 × 104932
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NOTES:

1. Integer bit is implied and not stored for single-precision and double-precision formats.

2. The fraction for SNaN encodings must be non-zero with the most-significant bit 0.

The exponent of each floating-point data type is encoded in biased format (see Section 4.8.2.2.,
“Biased Exponent”). The biasing constant is 127 for the single-precision format, 1023 for the
double-precision format, and 16,383 for the double extended-precision format.

When storing floating-point values in memory, single-precision values are stored in 4 consecu-
tive bytes in memory; double-precision values are stored in 8 consecutive bytes; and double
extended-precision values are stored in 10 consecutive bytes.

Table 4-3.  Floating-Point Number and NaN Encodings

Class Sign Biased Exponent Significand

Integer1 Fraction

Positive +∞ 0 11..11 1 00..00

+Normals 0
.
.
0

11..10
    .
    .

00..01

1
.
.
1

11..11
    .
    .

00..00

+Denormals 0
.
.
0

00..00
    .
    .

00..00

0
.
.
0

11.11
    .
    .

00..01

+Zero 0 00..00 0 00..00

Negative −Zero 1 00..00 0 00..00

−Denormals 1
.
.
1

00..00
    .
    .

00..00

0
.
.
0

00..01
    .
    .

11..11

−Normals 1
.
.
1

00..01
    .
    .

11..10

1
.
.
1

00..00
    .
    .

11..11

−∞ 1 11..11 1 00..00

NaNs SNaN X 11..11 1 0X..XX2

QNaN X 11..11 1 1X..XX

QNaN 
Floating-Point 
Indefinite

1 11..11 1 10..00

Single-Precision:
Double-Precision:
Double Extended-Precision:

← 8 Bits →
← 11 Bits →
← 15 Bits →

← 23 Bits →
← 52 Bits →
← 63 Bits →
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The single-precision and double-precision floating-point data types are operated on by x87 FPU,
SSE, and SSE2 instructions. The double-extended-precision floating-point format is only oper-
ated on by the x87 FPU. See Section 11.6.8., “Compatibility of SIMD and x87 FPU Floating-
Point Data Types” for a discussion of the compatibility of single-precision and double-precision
floating-point data types between the x87 FPU and the SSE and SSE2 extensions.

4.3. POINTER DATA TYPES

Pointers are addresses of locations in memory (see Figure 4-4). The IA-32 architecture defines
two types of pointers: a near pointer (32 bits) and a far pointer (48 bits). A near pointer is a
32-bit offset (also called an effective address) within a segment. Near pointers are used for all
memory references in a flat memory model or for references in a segmented model where the
identity of the segment being accessed is implied. A far pointer is a 48-bit logical address,
consisting of a 16-bit segment selector and a 32-bit offset. Far pointers are used for memory
references in a segmented memory model where the identity of a segment being accessed must
be specified explicitly.

4.4. BIT FIELD DATA TYPE

A bit field (see Figure 4-5) is a contiguous sequence of bits. It can begin at any bit position of
any byte in memory and can contain up to 32 bits.

Figure 4-4.  Pointer Data Types

Figure 4-5.  Bit Field Data Type
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4.5. STRING DATA TYPES

Strings are continuous sequences of bits, bytes, words, or doublewords. A bit string can begin
at any bit position of any byte and can contain up to 232 – 1 bits. A byte string can contain bytes,
words, or doublewords and can range from zero to 232 – 1 bytes (4GBytes).

4.6. PACKED SIMD DATA TYPES

IA-32 architecture defines and operates on a set of 64-bit and 128-bit packed data type for use
in SIMD operations. These data types consist of fundamental data types (packed bytes, words,
doublewords, and quadwords) and numeric interpretations of fundamental types for use in
packed integer and packed floating-point operations.

4.6.1. 64-Bit SIMD Packed Data Types

The 64-bit packed SIMD data types were introduced into the IA-32 architecture in the Intel
MMX technology. They are operated on primarily in the 64-bit MMX registers. The funda-
mental 64-bit packed data types are packed bytes, packed words, and packed doublewords (see
Figure 4-6). When performing numeric SIMD operations on these data types in MMX registers,
these data types are interpreted as containing byte, word, or doubleword integer values.

Figure 4-6.  64-Bit Packed SIMD Data Types
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4-9

4.6.2. 128-Bit Packed SIMD Data Types

The 128-bit packed SIMD data types were introduced into the IA-32 architecture in the SSE
extensions and extended with the SSE2 extensions. They are operated on primarily in the 128-bit
XMM registers and memory. The fundamental 128-bit packed data types are packed bytes,
packed words, packed doublewords, and packed quadwords (see Figure 4-7). When performing
SIMD operations on these fundamental data types in XMM registers, these data types are inter-
preted as containing packed or scalar single-precision floating-point or double-precision
floating-point values, or as containing packed byte, word, doubleword, or quadword integer
values.

Figure 4-7.  128-Bit Packed SIMD Data Types
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4.7. BCD AND PACKED BCD INTEGERS

Binary-coded decimal integers (BCD integers) are unsigned 4-bit integers with valid values
ranging from 0 to 9. IA-32 architecture defines operations on BCD integers located in one or
more general-purpose registers or in one or more x87 FPU registers (see Figure 4-8).

When operating BCD integers in general-purpose registers, the BCD values can be unpacked
(one BCD digit per byte) or packed (two BCD digits per byte). The value of an unpacked BCD
integer is the binary value of the low half-byte (bits 0 through 3). The high half-byte (bits 4
through 7) can be any value during addition and subtraction, but must be zero during multipli-
cation and division. Packed BCD integers allow two BCD digits to be contained in one byte.
Here, the digit in the high half-byte is more significant than the digit in the low half-byte.

When operating on BCD integers in x87 FPU data registers, the BCD values are packed in an
80-bit format and referred to as decimal integers. Decimal integers are stored in a 10-byte,
packed BCD format. In this format, the first 9 bytes hold 18 BCD digits, 2 digits per byte. The
least-significant digit is contained in the lower half-byte of byte 0 and the most-significant digit
is contained in the upper half-byte of byte 9. The most significant bit of byte 10 contains the sign
bit (0 = positive and 1 = negative). (Bits 0 through 6 of byte 10 are don’t care bits.) Negative
decimal integers are not stored in two's complement form; they are distinguished from positive
decimal integers only by the sign bit. The range of decimal integers that can be encoded in this
format is –1018 + 1 to 1018 – 1.

The decimal integer format exists in memory only. When a decimal integer is loaded in an x87
FPU data register, it is automatically converted to the double-extended-precision floating-point
format. All decimal integers are exactly representable in double extended-precision format.

Decimal integers are stored in a 10-byte, packed BCD format. Table 4-2 gives the precision and
range of this data type and Figure 4-8 shows the format. In this format, the first 9 bytes hold 18
BCD digits, 2 digits per byte. The least-significant digit is contained in the lower half-byte of
byte 0 and the most-significant digit is contained in the upper half-byte of byte 9. The most
significant bit of byte 10 contains the sign bit (0 = positive and 1 = negative). 

Figure 4-8.  BCD Data Types
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(Bits 0 through 6 of byte 10 are don’t care bits.) Negative decimal integers are not stored in two's
complement form; they are distinguished from positive decimal integers only by the sign bit.

Table 4-4 gives the possible encodings of value in the decimal integer data type.

The decimal integer format exists in memory only. When a decimal integer is loaded in a data
register in the x87 FPU, it is automatically converted to the double extended-precision format.
All decimal integers are exactly representable in double extended-precision format.

The packed BCD integer indefinite encoding (FFFFC000000000000000H) is stored by the
FBSTP instruction in response to a masked floating-point invalid-operation exception.
Attempting to load this value with the FBLD instruction produces an undefined result.

4.8. REAL NUMBERS AND FLOATING-POINT FORMATS

This section describes how real numbers are represented in floating-point format in the x87 FPU
and the SSE and SSE2 floating-point instructions. It also introduces terms such as normalized
numbers, denormalized numbers, biased exponents, signed zeros, and NaNs. Readers who are
already familiar with floating-point processing techniques and the IEEE Standard 754 for
Binary Floating-Point Arithmetic may wish to skip this section.

Table 4-4.  Packed Decimal Integer Encodings

Magnitude

Class Sign digit digit digit digit ... digit

Positive
 Largest 0 0000000 1001 1001 1001 1001 ... 1001

. . .

. . .

 Smallest 0 0000000 0000 0000 0000 0000 ... 0001

 Zero 0 0000000 0000 0000 0000 0000 ... 0000

Negative
 Zero 1 0000000 0000 0000 0000 0000 ... 0000

 Smallest 1 0000000 0000 0000 0000 0000 ... 0001

. . .

. . .

 Largest 1 0000000 1001 1001 1001 1001 ... 1001

Packed 
BCD 
Integer 
Indefinite

1 1111111 1111 1111 1100 0000 ... 0000

← 1 byte → ← 9 bytes →
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4.8.1. Real Number System

As shown in Figure 4-9, the real-number system comprises the continuum of real numbers from
minus infinity (−∞) to plus infinity (+∞).

Because the size and number of registers that any computer can have is limited, only a subset of
the real-number continuum can be used in real-number (floating-point) calculations. As shown
at the bottom of Figure 4-9, the subset of real numbers that the IA-32 architecture supports repre-
sents an approximation of the real number system. The range and precision of this real-number
subset is determined by the IEEE Standard 754 floating-point formats. 

4.8.2. Floating-Point Format

To increase the speed and efficiency of real-number computations, computers and microproces-
sors typically represent real numbers in a binary floating-point format. In this format, a real
number has three parts: a sign, a significand, and an exponent (see Figure 4-10).

The sign is a binary value that indicates whether the number is positive (0) or negative (1).
The significand has two parts: a 1-bit binary integer (also referred to as the J-bit) and a binary
fraction. The integer-bit is often not represented, but instead is an implied value. The exponent
is a binary integer that represents the base-2 power that the significand is multiplied by.

Table 4-5 shows how the real number 178.125 (in ordinary decimal format) is stored in IEEE
Standard 754 floating-point format. The table lists a progression of real number notations that
leads to the single-precision, 32-bit floating-point format. In this format, the significand is
normalized (see Section 4.8.2.1., “Normalized Numbers”) and the exponent is biased (see
Section 4.8.2.2., “Biased Exponent”). For the single-precision floating-point format, the biasing
constant is +127.
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Figure 4-9.  Binary Real Number System

Figure 4-10.  Binary Floating-Point Format
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4.8.2.1. NORMALIZED NUMBERS

In most cases, floating-point numbers are encoded in normalized form. This means that except
for zero, the significand is always made up of an integer of 1 and the following fraction:

1.fff...ff

For values less than 1, leading zeros are eliminated. (For each leading zero eliminated, the expo-
nent is decremented by one.)

Representing numbers in normalized form maximizes the number of significant digits that can
be accommodated in a significand of a given width. To summarize, a normalized real number
consists of a normalized significand that represents a real number between 1 and 2 and an expo-
nent that specifies the number’s binary point.

4.8.2.2. BIASED EXPONENT

In the IA-32 architecture, the exponents of floating-point numbers are encoded in a biased form.
This means that a constant is added to the actual exponent so that the biased exponent is always
a positive number. The value of the biasing constant depends on the number of bits available for
representing exponents in the floating-point format being used. The biasing constant is chosen
so that the smallest normalized number can be reciprocated without overflow.

(See Section 4.2.2., “Floating-Point Data Types” for a list of the biasing constants that the IA-32
architecture uses for the various sizes of floating-point data-types.)

4.8.3. Real Number and Non-number Encodings

A variety of real numbers and special values can be encoded in the IEEE Standard 754 floating-
point format. These numbers and values are generally divided into the following classes:

• Signed zeros.

• Denormalized finite numbers.

Table 4-5.  Real and Floating-Point Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1.78125E102

Scientific Binary 1.0110010001E2111

Scientific Binary
(Biased Exponent)

 1.0110010001E210000110

IEEE Single-Precision Format Sign Biased Exponent Normalized Significand

0 10000110   01100100010000000000000
          1. (Implied)
4-14



DATA TYPES
• Normalized finite numbers.

• Signed infinities.

• NaNs.

• Indefinite numbers.

(The term NaN stands for “Not a Number.”)

Figure 4-11 shows how the encodings for these numbers and non-numbers fit into the real
number continuum. The encodings shown here are for the IEEE single-precision floating-point
format. The term “S” indicates the sign bit, “E” the biased exponent, and “Sig” the significand.
The exponent values are given in decimal. The integer bit is shown for the significands, even
though the integer bit is implied in single-precision floating-point format.

An IA-32 processor can operate on and/or return any of these values, depending on the type of
computation being performed. The following sections describe these number and non-number
classes.

Figure 4-11.  Real Numbers and NaNs

1 0
S E Sig1

−0

1 0 −Denormalized
Finite

NaN

1 1...254 −Normalized
Finite

1 255 −∞

255 SNaN

255 QNaN

NOTES:

3. Sign bit ignored.
2. Fraction must be non-zero.

0 0
S E Sig1

0 0

NaN

0 1...254

0 255

X3 255 1.0XX...2

255 1.1XX...

+0

+Denormalized
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+Normalized
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+∞

SNaN

QNaN X3

X3

X3

Real Number and NaN Encodings For 32-Bit Floating-Point Format

−Denormalized Finite

−Normalized Finite −0−∞ +∞
+Denormalized Finite

+Normalized Finite+0

0.XXX...2

0.000...

1.000...

1.XXX...

1.000...

0.000...

0.XXX...2

1.XXX...

1.0XX...2

1.1XX...

1. Integer bit of fraction implied for
single-precision floating-point format.
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4.8.3.1. SIGNED ZEROS

Zero can be represented as a +0 or a −0 depending on the sign bit. Both encodings are equal in
value. The sign of a zero result depends on the operation being performed and the rounding
mode being used. Signed zeros have been provided to aid in implementing interval arithmetic.
The sign of a zero may indicate the direction from which underflow occurred, or it may indicate
the sign of an ∞ that has been reciprocated.

4.8.3.2. NORMALIZED AND DENORMALIZED FINITE NUMBERS

Non-zero, finite numbers are divided into two classes: normalized and denormalized. The
normalized finite numbers comprise all the non-zero finite values that can be encoded in a
normalized real number format between zero and ∞. In the single-precision floating-point
format shown in Figure 4-11, this group of numbers includes all the numbers with biased expo-
nents ranging from 1 to 25410 (unbiased, the exponent range is from −12610 to +12710).

When floating-point numbers become very close to zero, the normalized-number format can no
longer be used to represent the numbers. This is because the range of the exponent is not large
enough to compensate for shifting the binary point to the right to eliminate leading zeros.

When the biased exponent is zero, smaller numbers can only be represented by making the
integer bit (and perhaps other leading bits) of the significand zero. The numbers in this range are
called denormalized (or tiny) numbers. The use of leading zeros with denormalized numbers
allows smaller numbers to be represented. However, this denormalization causes a loss of preci-
sion (the number of significant bits in the fraction is reduced by the leading zeros).

When performing normalized floating-point computations, an IA-32 processor normally oper-
ates on normalized numbers and produces normalized numbers as results. Denormalized
numbers represent an underflow condition (where, the exact conditions are specified in Section
4.9.1.5., “Numeric Underflow Exception (#U)”).

A denormalized number is computed through a technique called gradual underflow. Table 4-6
gives an example of gradual underflow in the denormalization process. Here the single-precision
format is being used, so the minimum exponent (unbiased) is −12610. The true result in this
example requires an exponent of −12910 in order to have a normalized number.   Since  −12910

is beyond the allowable exponent range, the result is denormalized by inserting leading zeros
until the minimum exponent of −12610 is reached.

NOTE:

* Expressed as an unbiased, decimal number.

Table 4-6.  Denormalization Process

Operation Sign Exponent* Significand

True Result 0 −129 1.01011100000...00

Denormalize 0 −128 0.10101110000...00

Denormalize 0 −127 0.01010111000...00

Denormalize 0 −126 0.00101011100...00

Denormal Result 0 −126 0.00101011100...00
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In the extreme case, all the significant bits are shifted out to the right by leading zeros, creating
a zero result.

The IA-32 architecture deals with denormal values in the following ways:

• It avoids creating denormals by normalizing numbers whenever possible.

• It provides the floating-point underflow exception to permit programmers to detect cases
when denormals are created.

• It provides the floating-point denormal-operand exception to permit procedures or
programs to detect when denormals are being used as source operands for computations.

4.8.3.3. SIGNED INFINITIES

The two infinities, +∞ and −∞, represent the maximum positive and negative real numbers,
respectively, that can be represented in the floating-point format. Infinity is always represented
by a significand of 1.00...00 (the integer bit may be implied) and the maximum biased exponent
allowed in the specified format (for example, 25510 for the single-precision format).

The signs of infinities are observed, and comparisons are possible. Infinities are always inter-
preted in the affine sense; that is, –∞ is less than any finite number and +∞ is greater than any
finite number. Arithmetic on infinities is always exact. Exceptions are generated only when the
use of an infinity as a source operand constitutes an invalid operation.

Whereas denormalized numbers may represent an underflow condition, the two ∞ numbers may
represent the result of an overflow condition. Here, the normalized result of a computation has
a biased exponent greater than the largest allowable exponent for the selected result format.

4.8.3.4. NANS

Since NaNs are non-numbers, they are not part of the real number line. In Figure 4-11, the
encoding space for NaNs in the floating-point formats is shown above the ends of the real
number line. This space includes any value with the maximum allowable biased exponent and
a non-zero fraction. (The sign bit is ignored for NaNs.)

The IA-32 architecture defines two classes of NaNs: quiet NaNs (QNaNs) and signaling NaNs
(SNaNs). A QNaN is a NaN with the most significant fraction bit set; an SNaN is a NaN with
the most significant fraction bit clear. QNaNs are allowed to propagate through most arithmetic
operations without signaling an exception. SNaNs generally signal an floating-point invalid-
operation exception whenever they appear as operands in arithmetic operations.

SNaNs are typically used to trap or invoke an exception handler. They must be inserted by soft-
ware; that is, the processor never generates an SNaN as a result of a floating-point operation.
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4.8.3.5. OPERATING ON SNANS AND QNANS

When a floating-point operation is performed on an SNaN and/or a QNaN, the result of the oper-
ation is either a QNaN delivered to the destination operand or the generation of a floating-point
invalid operating exception, depending on the following rules:

• If one of the source operands is an SNaN and the floating-point invalid-operating
exception is not masked (see Section 4.9.1.1., “Invalid Operation Exception (#I)”), the a
floating-point invalid-operation exception is signaled and no result is stored in the
destination operand.

• If either or both of the source operands are NaNs and floating-point invalid-operation
exception is masked, the result is as shown in Table 4-7. When an SNaN is converted to a
QNaN, the conversion is handled by setting the most-significant fraction bit of the SNaN
to 1. Also, when one of the source operands is an SNaN, the floating-point invalid-
operation exception flag it set. Note that for some combinations of source operands, the
result is different for the x87 FPU operations and for the SSE or SSE2 operations.

Note:

† For SSE and SSE2 instructions, the first operand is generally a source operand that becomes the desti-
nation operand.

• When neither of the source operands is a NaN, but the operation generates a floating-point
invalid-operation exception (see Tables 8-10 and 11-1), the result is commonly an SNaN
source operand converted to a QNaN or the QNaN floating-point indefinite value.

Any exceptions to the behavior described in Table 4-7 are described in Section 8.5.1.2., “Invalid
Arithmetic Operand Exception (#IA)” and Section 11.5.2.1., “Invalid Operation Exception
(#I)”.

Table 4-7.  Rules for Handling NaNs

Source Operands Result†

SNaN and QNaN. x87 FPU—QNaN source operand.

SSE or SSE2—First operand (if this operand is an 
SNaN, it is converted to a QNaN)

Two SNaNs. x87 FPU—SNaN source operand with the larger 
significand, converted into a QNaN.

SSE or SSE2—First operand converted to a QNaN.

Two QNaNs. x87 FPU—QNaN source operand with the larger
significand.

SSE or SSE2—First operand.

SNaN and a floating-point value. SNaN source operand, converted into a QNaN.

QNaN and a floating-point value. QNaN source operand.

SNaN (for instructions that take only one 
operand)

SNaN source operand, converted into a QNaN.

QNaN (for instructions that take only one 
operand)

QNaN source operand.
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4.8.3.6. USING SNANS AND QNANS IN APPLICATIONS

Except for the rules given at the beginning of Section 4.8.3.4., “NaNs” for encoding SNaNs and
QNaNs, software is free to use the bits in the significand of a NaN for any purpose. Both SNaNs
and QNaNs can be encoded to carry and store data, such as diagnostic information.

By unmasking the invalid operation exception, the programmer can use signaling NaNs to trap
to the exception handler. The generality of this approach and the large number of NaN values
that are available provide the sophisticated programmer with a tool that can be applied to a
variety of special situations.

For example, a compiler can use signaling NaNs as references to uninitialized (real) array
elements. The compiler can preinitialize each array element with a signaling NaN whose signif-
icand contained the index (relative position) of the element. Then, if an application program
attempts to access an element that it had not initialized, it can use the NaN placed there by the
compiler. If the invalid operation exception is unmasked, an interrupt will occur, and the excep-
tion handler will be invoked. The exception handler can determine which element has been
accessed, since the operand address field of the exception pointer will point to the NaN, and the
NaN will contain the index number of the array element.

Quiet NaNs are often used to speed up debugging. In its early testing phase, a program often
contains multiple errors. An exception handler can be written to save diagnostic information in
memory whenever it was invoked. After storing the diagnostic data, it can supply a quiet NaN
as the result of the erroneous instruction, and that NaN can point to its associated diagnostic area
in memory. The program will then continue, creating a different NaN for each error. When the
program ends, the NaN results can be used to access the diagnostic data saved at the time the
errors occurred. Many errors can thus be diagnosed and corrected in one test run.

In embedded applications which use computed results in further computations, an undetected
QNaN can invalidate all subsequent results. Such applications should therefore periodically
check for QNaNs and provide a recovery mechanism to be used if a QNaN result is detected. 

4.8.3.7. QNAN FLOATING-POINT INDEFINITE

For the floating-point data type encodings (single-precision, double-precision, and double-
extended-precision), one unique encoding (a QNaN) is reserved for representing the special
value QNaN floating-point indefinite. The x87 FPU and the SSE and SSE2 extensions return
these indefinite values as responses to some masked floating-point exceptions. Table 4-3 shows
the encoding used for the QNaN floating-point indefinite.

4.8.4. Rounding

When performing floating-point operations, the processor produces an infinitely precise
floating-point result in the destination format (single-precision, double-precision, or double
extended-precision floating-point) whenever possible. However, because only a subset of the
numbers in the real number continue can be represented in IEEE Standard 754 floating-point
formats, it is often the case that an infinitely precise result cannot be encoded exactly in the
format of the destination operand.
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For example, the following value (a) has a 24-bit fraction. The least-significant bit of this frac-
tion (the underlined bit) cannot be encoded exactly in the single-precision format (which has
only a 23-bit fraction):

(a) 1.0001 0000 1000 0011 1001 0111E2 101

To round this result (a), the processor first selects two representable fractions b and c that most
closely bracket a in value (b < a < c).

(b) 1.0001 0000 1000 0011 1001 011E2 101

(c) 1.0001 0000 1000 0011 1001 100E2 101

The processor then sets the result to b or to c according to the selected rounding mode. Rounding
introduces an error in a result that is less than one unit in the last place (the least significant bit
position of the floating-point value) to which the result is rounded.

The IEEE Standard 754 defines four rounding modes (see Table 4-8): round to nearest, round
up, round down, and round toward zero. The default rounding mode for the IA-32 architecture
is round to nearest. This mode provides the most accurate and statistically unbiased estimate of
the true result and is suitable for most applications. 

The round up and round down modes are termed directed rounding and can be used to imple-
ment interval arithmetic. Interval arithmetic is used to determine upper and lower bounds for the
true result of a multistep computation, when the intermediate results of the computation are
subject to rounding. 

The round toward zero mode (sometimes called the “chop” mode) is commonly used when
performing integer arithmetic with the x87 FPU.

The rounded result is called the inexact result. When the processor produces an inexact result,
the floating-point precision (inexact) flag (PE) is set (see Section 4.9.1.6., “Inexact-Result
(Precision) Exception (#P)”).

The rounding modes have no effect on comparison operations, operations that produce exact
results, or operations that produce NaN results.

Table 4-8.  Rounding Modes and Encoding of Rounding Control (RC) Field

Rounding 
Mode

RC Field 
Setting Description

Round to 
nearest (even)

00B Rounded result is the closest to the infinitely precise result. If two values 
are equally close, the result is the even value (that is, the one with the 
least-significant bit of zero). Default

Round down 
(toward −∞)

01B Rounded result is closest to but no greater than the infinitely precise 
result.

Round up 
(toward +∞)

10B Rounded result is closest to but no less than the infinitely precise result.

Round toward 
zero (Truncate)

11B Rounded result is closest to but no greater in absolute value than the 
infinitely precise result.
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4.8.4.1. ROUNDING CONTROL (RC) FIELDS

In the IA-32 architecture, the rounding mode is controlled by a 2-bit rounding-control (RC) field
(Table 4-8 shows the encoding of this field). The RC field is implemented in two different loca-
tions: 

• x87 FPU control register (bits 10 and 11).

• The MXCSR register (bits 13 and 14).

Although these two RC fields perform the same function, they control rounding for different
execution environments within the processor. The RC field in the x87 FPU control register
controls rounding for computations performed with the x87 FPU instructions; the RC field in
the MXCSR register controls rounding for SIMD floating-point computations performed with
the SSE and SSE2 instructions.

4.8.4.2. TRUNCATION WITH SSE AND SSE2 CONVERSION INSTRUCTIONS

The following SSE and SSE2 instructions automatically truncate the results of conversions from
floating-point values to integers when the result it inexact: CVTTPD2DQ, CVTTPS2DQ,
CVTTPD2PI, CVTTPS2PI, CVTTSD2SI, CVTTSS2SI. Here, truncation means the round
toward zero mode described in Table 4-8.

4.9. OVERVIEW OF FLOATING-POINT EXCEPTIONS

The following section provides an overview of floating-point exceptions and their handling in
the IA-32 architecture. For information specific to the x87 FPU and to the SSE and SSE2 exten-
sions, refer to the following sections:

• Section 8.4., “x87 FPU Floating-Point Exception Handling”.

• Section 11.5., “SSE and SSE2 Exceptions”.

When operating on floating-point operands, the IA-32 architecture recognizes and detects six
classes of exception conditions:

• Invalid operation (#I)

• Divide-by-zero (#Z)

• Denormalized operand (#D)

• Numeric overflow (#O)

• Numeric underflow (#U)

• Inexact result (precision) (#P)

The nomenclature of “#” symbol followed by one or two letters (for example, #P) is used in this
manual to indicate exception conditions. It is merely a short-hand form and is not related to
assembler mnemonics.
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NOTE

All of the exceptions listed above except the denormal-operand exception
(#D) are defined in IEEE Standard 754.

The invalid-operation, divide-by-zero and denormal-operand exceptions are pre-computation
exceptions (that is, they are detected before any arithmetic operation occurs). The numeric-
underflow, numeric-overflow and precision exceptions are post-computation exceptions.

Each of the six exception classes has a corresponding flag bit (IE, ZE, OE, UE, DE, or PE) and
mask bit (IM, ZM, OM, UM, DM, or PM). When one or more floating-point exception condi-
tions are detected, the processor sets the appropriate flag bits, then takes one of two possible
courses of action, depending on the settings of the corresponding mask bits:

• Mask bit set. Handles the exception automatically, producing a predefined (and often times
usable) result, while allowing program execution to continue undisturbed.

• Mask bit clear. Invokes a software exception handler to handle the exception.

The masked (default) responses to exceptions have been chosen to deliver a reasonable result
for each exception condition and are generally satisfactory for most floating-point applications.
By masking or unmasking specific floating-point exceptions, programmers can delegate respon-
sibility for most exceptions to the processor and reserve the most severe exception conditions
for software exception handlers. 

Because the exception flags are “sticky,” they provide a cumulative record of the exceptions that
have occurred since they were last cleared. A programmer can thus mask all exceptions, run a
calculation, and then inspect the exception flags to see if any exceptions were detected during
the calculation.

In the IA-32 architecture, floating-point exception flag and mask bits are implemented in two
different locations: 

• x87 FPU status word and control word. The flag bits are located at bits 0 through 5 of the
x87 FPU status word and the mask bits are located at bits 0 through 5 of the x87 FPU
control word (see Figures 8-4 and 8-6).

• MXCSR register. The flag bits are located at bits 0 through 5 of the MXCSR register and
the mask bits are located at bits 7 through 12 of the register (see Figure 10-3).

Although these two sets of flag and mask bits perform the same function, they report on and
control exceptions for different execution environments within the processor. The flag and mask
bits in the x87 FPU status and control words control exception reporting and masking for
computations performed with the x87 FPU instructions; the companion bits in the MXCSR
register control exception reporting and masking for SIMD floating-point computations
performed with the SSE and SSE2 instructions.

Note that when exceptions are masked, the processor may detect multiple exceptions in a single
instruction, because it continues executing the instruction after performing its masked response.
For example, the processor can detect a denormalized operand, perform its masked response to
this exception, and then detect numeric underflow.
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See Section 4.9.2., “Floating-Point Exception Priority” for a description of the rules for excep-
tion precedence when more than one floating-point exception condition is detected for an
instruction.

4.9.1. Floating-Point Exception Conditions

The following sections describe the various conditions that cause a floating-point exception to
be generated and the masked response of the processor when these conditions are detected.
Chapter 3, Instruction Set Reference, in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2, lists the floating-point exceptions that can be signaled for each floating-point
instruction.

4.9.1.1. INVALID OPERATION EXCEPTION (#I)

The processor reports an invalid operation exception in response to one or more an invalid arith-
metic operands. If the invalid operation exception is masked, the processor sets the IE flag and
returns an indefinite value or a QNaN. This value overwrites the destination register specified
by the instruction. If the invalid operation exception is not masked, the IE flag is set, a software
exception handler is invoked, and the operands remain unaltered.

See Section 4.8.3.6., “Using SNaNs and QNaNs in Applications” information about the result
returned when an exception is caused by an SNaN.

The processor can detect a variety of invalid arithmetic operations that can be coded in a
program. These operations generally indicate a programming error, such as dividing ∞ by ∞. See
the following sections for information regarding the invalid-operation exception when detected
while executing x87 FPU or SSE and SSE2 instructions:

• x87 FPU. Section 8.5.1., “Invalid Operation Exception”.

• SIMD floating-point exceptions. Section 11.5.2.1., “Invalid Operation Exception (#I)”

4.9.1.2. DENORMAL OPERAND EXCEPTION (#D)

The processor reports the denormal-operand exception if an arithmetic instruction attempts to
operate on a denormal operand (see Section 4.8.3.2., “Normalized and Denormalized Finite
Numbers”). When the exception is masked, the processor sets the DE flag and proceeds with the
instruction. Operating on denormal numbers will produce results at least as good as, and often
better than, what can be obtained when denormal numbers are flushed to zero. Programmers can
mask this exception so that a computation may proceed, then analyze any loss of accuracy when
the final result is delivered.

When a denormal-operand exception is not masked, the DE flag is set, a software exception
handler is invoked, and the operands remain unaltered. When denormal operands have reduced
significance due to loss of low-order bits, it may be advisable to not operate on them. Precluding
denormal operands from computations can be accomplished by an exception handler that
responds to unmasked denormal-operand exceptions.
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See the following sections for information regarding the denormal-operand exception when
detected while executing x87 FPU or SSE and SSE2 instructions:

• x87 FPU. Section 8.5.2., “Denormal Operand Exception (#D)”.

• SIMD floating-point exceptions. Section 11.5.2.2., “Denormal Operand Exception (#D)”

4.9.1.3. DIVIDE-BY-ZERO EXCEPTION (#Z)

The processor reports the floating-point divide-by-zero exception whenever an instruction
attempts to divide a finite non-zero operand by 0. The masked response for the divide-by-zero
exception is to set the ZE flag and return an infinity signed with the exclusive OR of the sign of
the operands. If the divide-by-zero exception is not masked, the ZE flag is set, a software excep-
tion handler is invoked, and the operands remain unaltered.

See the following sections for information regarding the divide-by-zero exception when
detected while executing x87 FPU or SSE and SSE2 instructions:

• x87 FPU. Section 8.5.3., “Divide-By-Zero Exception (#Z)”.

• SIMD floating-point exceptions. Section 11.5.2.3., “Divide-By-Zero Exception (#Z)”.

4.9.1.4. NUMERIC OVERFLOW EXCEPTION (#O)

The processor reports a floating-point numeric overflow exception whenever the rounded result
of an instruction exceeds the largest allowable finite value that will fit into the destination
operand. Table 4-9 shows the threshold range for numeric overflow for each of the floating-point
formats; overflow occurs when a rounded result falls at or outside this threshold range.

When a numeric-overflow exception occurs and the exception is masked, the processor sets the
OE flag and returns one of the values shown in Table 4-10, according to the current rounding
mode (see Section 4.8.4., “Rounding”).

When numeric overflow occurs and the numeric-overflow exception is not masked, the OE flag
is set, a software exception handler is invoked, and the source and destination operands either
remain unchanged or a biased result is stored in the destination operand (depending whether the
overflow exception was generated during an SSE or SSE2 floating-point operation or an x87
FPU operation).

Table 4-9.  Numeric Overflow Thresholds

Floating-Point Format Overflow Thresholds

Single Precision | x | ≥ 1.0 ∗ 2128

Double Precision | x | ≥ 1.0 ∗ 21024

Double Extended Precision | x | ≥ 1.0 ∗ 216384
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.

See the following sections for information regarding the numeric overflow exception when
detected while executing x87 FPU instructions or while executing SSE or SSE2 instructions:

• x87 FPU. Section 8.5.4., “Numeric Overflow Exception (#O)”.

• SIMD floating-point exceptions. Section 11.5.2.4., “Numeric Overflow Exception (#O)”

4.9.1.5. NUMERIC UNDERFLOW EXCEPTION (#U)

The processor detects a floating-point numeric underflow condition whenever the rounded
result of an instruction is tiny, that is, less than the smallest possible normalized, finite value that
will fit into the destination operand. Table 4-11 shows the threshold range for numeric underflow
for each of the floating-point formats (assuming normalized results); underflow occurs when a
rounded result falls strictly within the threshold range. The ability to detect and handle under-
flow is provided to prevent a vary small result from propagating through a computation and
causing another exception (such as overflow during division) to be generated at a later time.

How the processor handles an underflow condition, depends on two related conditions:

• Creation of a tiny result.

• Creation of an inexact result; that is, a result that cannot be represented exactly in the
destination format.

Table 4-10.  Masked Responses to Numeric Overflow

Rounding Mode Sign of True Result Result

To nearest + +∞

– –∞

Toward –∞ + Largest finite positive number

– –∞

Toward +∞ + +∞

– Largest finite negative number

Toward zero + Largest finite positive number

– Largest finite negative number

Table 4-11.  Numeric Underflow (Normalized) Thresholds

Floating-Point Format Underflow Thresholds

Single Precision | x | < 1.0 ∗ 2−126

Double Precision | x | < 1.0 ∗ 2−1022

Double Extended Precision | x | < 1.0 ∗ 2−16382
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Which of these events causes an underflow exception to be reported and how the processor
responds to the exception condition depends on whether the underflow exception is masked:

• Underflow exception masked. The underflow exception is reported (the UE flag is set)
only when the result is both tiny and inexact. The processor returns a denormalized result
to the destination operand, regardless of inexactness.

• Underflow exception not masked. The underflow exception is reported when the result is
tiny, regardless of inexactness. The processor leaves the source and destination operands
unaltered or stores a biased result in the designating operand (depending whether the
underflow exception was generated during an SSE or SSE2 floating-point operation or an
x87 FPU operation) and invokes a software exception handler.

See the following sections for information regarding the numeric underflow exception when
detected while executing x87 FPU instructions or while executing SSE or SSE2 instructions:

• x87 FPU. Section 8.5.5., “Numeric Underflow Exception (#U)”.

• SIMD floating-point exceptions. Section 11.5.2.5., “Numeric Underflow Exception (#U)”.

4.9.1.6. INEXACT-RESULT (PRECISION) EXCEPTION (#P)

The inexact-result exception (also called the precision exception) occurs if the result of an oper-
ation is not exactly representable in the destination format. For example, the fraction 1/3 cannot
be precisely represented in binary floating-point form. This exception occurs frequently and
indicates that some (normally acceptable) accuracy will be lost due to rounding. The exception
is supported for applications that need to perform exact arithmetic only. Because the rounded
result is generally satisfactory for most applications, this exception is commonly masked.

If the inexact-result exception is masked when an inexact-result condition occurs and a numeric
overflow or underflow condition has not occurred, the processor sets the PE flag and stores the
rounded result in the destination operand. The current rounding mode determines the method
used to round the result (see Section 4.8.4., “Rounding”).

If the inexact-result exception is not masked when an inexact result occurs and numeric over-
flow or underflow has not occurred, the PE flag is set, the rounded result is stored in the desti-
nation operand, and a software exception handler is invoked.

If an inexact result occurs in conjunction with numeric overflow or underflow, one of the
following operations is carried out:

• If an inexact result occurs along with masked overflow or underflow, the OE or UE flag
and the PE flag are set and the result is stored as described for the overflow or underflow
exceptions (see Section 4.9.1.4., “Numeric Overflow Exception (#O)” or Section 4.9.1.5.,
“Numeric Underflow Exception (#U)”). If the inexact result exception is unmasked, the
processor also invokes a software exception handler.

• If an inexact result occurs along with unmasked overflow or underflow and the destination
operand is a register, the OE or UE flag and the PE flag are set, the result is stored as
described for the overflow or underflow exceptions, and a software exception handler is
invoked.
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If an unmasked numeric overflow or underflow exception occurs and the destination operand is
a memory location (which can happen only for a floating-point store), the inexact-result condi-
tion is not reported and the C1 flag is cleared.

See the following sections for information regarding the inexact-result exception when detected
while executing x87 FPU or SSE and SSE2 instructions:

• x87 FPU. Section 8.5.6., “Inexact-Result (Precision) Exception (#P)”.

• SIMD floating-point exceptions. 

4.9.2. Floating-Point Exception Priority

The processor handles exceptions according to a predetermined precedence. When an instruc-
tion generates two or more exception conditions, the exception precedence sometimes results in
the higher-priority exception being handled and the lower-priority exceptions being ignored. For
example, dividing an SNaN by zero can potentially signal an invalid-operation exception (due
to the SNaN operand) and a divide-by-zero exception. Here, if both exceptions are masked, the
processor handles the higher-priority exception only (the invalid-operation exception), returning
a QNaN to the destination. Alternately, a denormal-operand or inexact-result exception can
accompany a numeric underflow or overflow exception, with both exceptions being handled.

The precedence for floating-point exceptions is as follows:

1. Invalid-operation exception, subdivided as follows:

a. Stack underflow (occurs with x87 FPU only).

b. Stack overflow (occurs with x87 FPU only).

c. Operand of unsupported format (occurs with x87 FPU only when using the double
extended-precision floating-point format).

d. SNaN operand.

2. QNaN operand. Though this is not an exception, the handling of a QNaN operand has
precedence over lower-priority exceptions. For example, a QNaN divided by zero results
in a QNaN, not a zero-divide exception.

3. Any other invalid-operation exception not mentioned above or a divide-by-zero exception.

4. Denormal-operand exception. If masked, then instruction execution continues, and a
lower-priority exception can occur as well.

5. Numeric overflow and underflow exceptions, possibly in conjunction with the inexact-
result exception.

6. Inexact-result exception.

Invalid operation, zero divide, and denormal operand exceptions are detected before a floating-
point operation begins, whereas overflow, underflow, and precision exceptions are not detected
until a true result has been computed. When an unmasked pre-operation exception is detected,
the destination operand has not yet been updated, and appears as if the offending instruction has
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not been executed. When an unmasked post-operation exception is detected, the destination
operand may be updated with a result, depending on the nature of the exception (except for SSE
and SSE2 instructions, which do not update their destination operands in these cases).

4.9.3. Typical Actions of a Floating-Point Exception Handler

After the floating-point exception handler is invoked, the processor handles the exception in the
same manner that it handles non-floating-point exceptions. (The floating-point exception
handler is normally part of the operating system or executive software, and it usually invokes
also a user-registered floating-point exception handle.) A typical action of the exception handler
is to store state information in memory. Other typical exception handler actions include:

• Examining the stored state information to determine the nature of the error.

• Taking actions to correct the condition that caused the error.

• Clearing the exception flags.

• Returning to the interrupted program and resuming normal execution.

In lieu of writing recovery procedures, the exception handler can do the following:

• Increment in software an exception counter for later display or printing.

• Print or display diagnostic information (such as the state information).

• Halt further program execution.
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CHAPTER 5
INSTRUCTION SET SUMMARY

This chapter provides an abridged overview of the all the IA-32 instructions, divided into the
following major groups:

• General purpose.

• x87 FPU.

• x87 FPU and SIMD state management.

• Intel MMX technology.

• SSE extensions.

• SSE2 extensions.

• System.

Table 5-1 lists the instruction groups and IA-32 processors that support each group. Within these
major groups, the instructions are divided into additional functional subgroups.

The following sections list instructions in each major group and subgroup. Given for each
instruction is its mnemonic and descriptive names. When two or more mnemonics are given (for
example, CMOVA/CMOVNBE), they represent different mnemonics for the same instruction
opcode. Assemblers support redundant mnemonics for some instructions to make it easier to
read code listings. For instance, CMOVA (Conditional move if above) and CMOVNBE (Condi-
tional move is not below or equal) represent the same condition.

Table 5-1.  Instruction Groups and IA-32 Processors

Instruction Set 
Architecture IA-32 Processor Support

General Purpose All IA-32 processors

 x87 FPU Intel486, Pentium, Pentium with MMX Technology, Celeron, Pentium 
Pro, Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, 
Pentium 4, Intel Xeon processors

x87 FPU and SIMD State 
Management

Pentium II, Pentium II Xeon, Pentium III, Pentium III Xeon, Pentium 4, 
Intel Xeon processors

MMX Technology Pentium with MMX Technology, Celeron, Pentium II, Pentium II Xeon, 
Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors

SSE Extensions Pentium III, Pentium III Xeon, Pentium 4, Intel Xeon processors

SSE2 Extensions Pentium 4, Intel Xeon processors

System All IA-32 processors
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5.1. GENERAL-PURPOSE INSTRUCTIONS

The general-purpose instructions preform basic data movement, arithmetic, logic, program flow,
and string operations that programmers commonly use to write application and system software
to run on IA-32 processors. They operate on data contained in memory, in the general-purpose
registers (EAX, EBX, ECX, EDX, EDI, ESI, EBP, and ESP) and in the EFLAGS register. They
also operate on address information contained in memory, the general-purpose registers, and the
segment registers (CS, DS, SS, ES, FS, and GS). This group of instructions includes the
following subgroups: data transfer, binary integer arithmetic, decimal arithmetic, logic opera-
tions, shift and rotate, bit and byte operations, program control, string, flag control, segment
register operations, and miscellaneous.

5.1.1. Data Transfer Instructions

The data transfer instructions move data between memory and the general-purpose and segment
registers. They also perform specific operations such as conditional moves, stack access, and
data conversion.

MOV Move data between general-purpose registers; move data between
memory and general-purpose or segment registers; move immediates
to general-purpose registers

CMOVE/CMOVZ Conditional move if equal/Conditional move if zero

CMOVNE/CMOVNZ Conditional move if not equal/Conditional move if not zero

CMOVA/CMOVNBE Conditional move if above/Conditional move if not below 
or equal

CMOVAE/CMOVNB Conditional move if above or equal/Conditional move if 
not below

CMOVB/CMOVNAE Conditional move if below/Conditional move if not above 
or equal

CMOVBE/CMOVNA Conditional move if below or equal/Conditional move if 
not above

CMOVG/CMOVNLE Conditional move if greater/Conditional move if not less 
or equal

CMOVGE/CMOVNL Conditional move if greater or equal/Conditional move if 
not less

CMOVL/CMOVNGE Conditional move if less/Conditional move if not greater 
or equal

CMOVLE/CMOVNG Conditional move if less or equal/Conditional move if
not greater

CMOVC Conditional move if carry
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CMOVNC Conditional move if not carry

CMOVO Conditional move if overflow

CMOVNO Conditional move if not overflow

CMOVS Conditional move if sign (negative)

CMOVNS Conditional move if not sign (non-negative)

CMOVP/CMOVPE Conditional move if parity/Conditional move if parity even

CMOVNP/CMOVPO Conditional move if not parity/Conditional move if parity odd

XCHG Exchange

BSWAP Byte swap

XADD Exchange and add

CMPXCHG Compare and exchange

CMPXCHG8B Compare and exchange 8 bytes

PUSH Push onto stack

POP Pop off of stack

PUSHA/PUSHAD Push general-purpose registers onto stack

POPA/POPAD Pop general-purpose registers from stack

IN Read from a port

OUT Write to a port

CWD/CDQ Convert word to doubleword/Convert doubleword to quadword

CBW/CWDE Convert byte to word/Convert word to doubleword in EAX register

MOVSX Move and sign extend

MOVZX Move and zero extend

5.1.2. Binary Arithmetic Instructions

The binary arithmetic instructions perform basic binary integer computations on byte, word, and
doubleword integers located in memory and/or the general purpose registers.

ADD Integer add

ADC Add with carry

SUB Subtract

SBB Subtract with borrow

IMUL Signed multiply
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MUL Unsigned multiply

IDIV Signed divide

DIV Unsigned divide

INC Increment

DEC Decrement

NEG Negate

CMP Compare

5.1.3. Decimal Arithmetic

The decimal arithmetic instructions perform decimal arithmetic on binary coded decimal (BCD)
data.

DAA Decimal adjust after addition

DAS Decimal adjust after subtraction

AAA ASCII adjust after addition

AAS ASCII adjust after subtraction

AAM ASCII adjust after multiplication

AAD ASCII adjust before division

5.1.4. Logical Instructions

The logical instructions perform basic AND, OR, XOR, and NOT logical operations on byte,
word, and doubleword values.

AND Perform bitwise logical AND

OR Perform bitwise logical OR

XOR Perform bitwise logical exclusive OR

NOT Perform bitwise logical NOT

5.1.5. Shift and Rotate Instructions

The shift and rotate instructions shift and rotate the bits in word and doubleword operands.

SAR Shift arithmetic right

SHR Shift logical right

SAL/SHL Shift arithmetic left/Shift logical left
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SHRD Shift right double

SHLD Shift left double

ROR Rotate right

ROL Rotate left

RCR Rotate through carry right

RCL Rotate through carry left

5.1.6. Bit and Byte Instructions

The bit and instructions test and modify individual bits in the bits in word and doubleword oper-
ands. The byte instructions set the value of a byte operand to indicate the status of flags in the
EFLAGS register.

BT Bit test

BTS Bit test and set

BTR Bit test and reset

BTC Bit test and complement

BSF Bit scan forward

BSR Bit scan reverse

SETE/SETZ Set byte if equal/Set byte if zero

SETNE/SETNZ Set byte if not equal/Set byte if not zero

SETA/SETNBE Set byte if above/Set byte if not below or equal

SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte
if not carry

SETB/SETNAE/SETC Set byte if below/Set byte if not above or equal/Set byte 
if carry

SETBE/SETNA Set byte if below or equal/Set byte if not above

SETG/SETNLE Set byte if greater/Set byte if not less or equal 

SETGE/SETNL Set byte if greater or equal/Set byte if not less

SETL/SETNGE Set byte if less/Set byte if not greater or equal

SETLE/SETNG Set byte if less or equal/Set byte if not greater

SETS Set byte if sign (negative)

SETNS Set byte if not sign (non-negative)

SETO Set byte if overflow
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SETNO Set byte if not overflow

SETPE/SETP Set byte if parity even/Set byte if parity

SETPO/SETNP Set byte if parity odd/Set byte if not parity

TEST Logical compare

5.1.7. Control Transfer Instructions

The control transfer instructions provide jump, conditional jump, loop, and call and return oper-
ations to control program flow.

JMP Jump 

JE/JZ Jump if equal/Jump if zero

JNE/JNZ Jump if not equal/Jump if not zero

JA/JNBE Jump if above/Jump if not below or equal

JAE/JNB Jump if above or equal/Jump if not below

JB/JNAE Jump if below/Jump if not above or equal

JBE/JNA Jump if below or equal/Jump if not above

JG/JNLE Jump if greater/Jump if not less or equal

JGE/JNL Jump if greater or equal/Jump if not less

JL/JNGE Jump if less/Jump if not greater or equal

JLE/JNG Jump if less or equal/Jump if not greater

JC Jump if carry

JNC Jump if not carry

JO Jump if overflow

JNO Jump if not overflow

JS Jump if sign (negative)

JNS Jump if not sign (non-negative)

JPO/JNP Jump if parity odd/Jump if not parity

JPE/JP Jump if parity even/Jump if parity

JCXZ/JECXZ Jump register CX zero/Jump register ECX zero

LOOP Loop with ECX counter

LOOPZ/LOOPE Loop with ECX and zero/Loop with ECX and equal

LOOPNZ/LOOPNE Loop with ECX and not zero/Loop with ECX and not equal
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CALL Call procedure

RET Return

IRET Return from interrupt

INT Software interrupt

INTO Interrupt on overflow

BOUND Detect value out of range

ENTER High-level procedure entry

LEAVE High-level procedure exit

5.1.8. String Instructions

The string instructions operate on strings of bytes, allowing them to be moved to and from
memory.

MOVS/MOVSB Move string/Move byte string

MOVS/MOVSW Move string/Move word string

MOVS/MOVSD Move string/Move doubleword string

CMPS/CMPSB Compare string/Compare byte string

CMPS/CMPSW Compare string/Compare word string

CMPS/CMPSD Compare string/Compare doubleword string

SCAS/SCASB Scan string/Scan byte string

SCAS/SCASW Scan string/Scan word string

SCAS/SCASD Scan string/Scan doubleword string

LODS/LODSB Load string/Load byte string

LODS/LODSW Load string/Load word string

LODS/LODSD Load string/Load doubleword string

STOS/STOSB Store string/Store byte string

STOS/STOSW Store string/Store word string

STOS/STOSD Store string/Store doubleword string

REP Repeat while ECX not zero

REPE/REPZ Repeat while equal/Repeat while zero

REPNE/REPNZ Repeat while not equal/Repeat while not zero

INS/INSB Input string from port/Input byte string from port
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INS/INSW Input string from port/Input word string from port

INS/INSD Input string from port/Input doubleword string from port

OUTS/OUTSB Output string to port/Output byte string to port

OUTS/OUTSW Output string to port/Output word string to port

OUTS/OUTSD Output string to port/Output doubleword string to port

5.1.9. Flag Control Instructions

The flag control instructions operate on the flags in the EFLAGS register.

STC Set carry flag

CLC Clear the carry flag

CMC Complement the carry flag

CLD Clear the direction flag

STD Set direction flag

LAHF Load flags into AH register

SAHF Store AH register into flags

PUSHF/PUSHFD Push EFLAGS onto stack

POPF/POPFD Pop EFLAGS from stack

STI Set interrupt flag

CLI Clear the interrupt flag

5.1.10. Segment Register Instructions

The segment register instructions allow far pointers (segment addresses) to be loaded into the
segment registers.

LDS Load far pointer using DS

LES Load far pointer using ES

LFS Load far pointer using FS

LGS Load far pointer using GS

LSS Load far pointer using SS
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5.1.11. Miscellaneous Instructions

The miscellaneous instructions provide such functions as loading an effective address,
executing a “no-operation,” and retrieving processor identification information.

LEA Load effective address

NOP No operation

UD2 Undefined instruction

XLAT/XLATB Table lookup translation

CPUID Processor Identification

5.2. X87 FPU INSTRUCTIONS

The x87 FPU instructions are executed by the processor’s x87 FPU. These instructions operate
on floating-point, integer, and binary-coded decimal (BCD) operands.

5.2.1. Data Transfer

The data transfer instructions move floating-point, integer, and BCD values between memory
and the x87 FPU registers. They also perform conditional move operations on floating-point
operands.

FLD Load floating-point value

FST Store floating-point value

FSTP Store floating-point value and pop

FILD Load integer

FIST Store integer

FISTP Store integer and pop

FBLD Load BCD

FBSTP Store BCD and pop

FXCH Exchange registers

FCMOVE Floating-point conditional move if equal

FCMOVNE Floating-point conditional move if not equal

FCMOVB Floating-point conditional move if below

FCMOVBE Floating-point conditional move if below or equal

FCMOVNB Floating-point conditional move if not below

FCMOVNBE Floating-point conditional move if not below or equal
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FCMOVU Floating-point conditional move if unordered

FCMOVNU Floating-point conditional move if not unordered

5.2.2. Basic Arithmetic

The basic arithmetic instructions perform basic arithmetic operations on floating-point and
integer operands.

FADD Add floating-point

FADDP Add floating-point and pop

FIADD Add integer

FSUB Subtract floating-point

FSUBP Subtract floating-point and pop

FISUB Subtract integer

FSUBR Subtract floating-point reverse

FSUBRP Subtract floating-point reverse and pop

FISUBR Subtract integer reverse

FMUL Multiply floating-point

FMULP Multiply floating-point and pop

FIMUL Multiply integer

FDIV Divide floating-point

FDIVP Divide floating-point and pop

FIDIV Divide integer

FDIVR Divide floating-point reverse

FDIVRP Divide floating-point reverse and pop

FIDIVR Divide integer reverse

FPREM Partial remainder

FPREM1 IEEE Partial remainder

FABS Absolute value

FCHS Change sign

FRNDINT Round to integer

FSCALE Scale by power of two

FSQRT Square root

FXTRACT Extract exponent and significand
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5.2.3. Comparison

The compare instructions examine or compare floating-point or integer operands.

FCOM Compare floating-point

FCOMP Compare floating-point and pop

FCOMPP Compare floating-point and pop twice

FUCOM Unordered compare floating-point

FUCOMP Unordered compare floating-point and pop

FUCOMPP Unordered compare floating-point and pop twice

FICOM Compare integer

FICOMP Compare integer and pop

FCOMI Compare floating-point and set EFLAGS

FUCOMI Unordered compare floating-point and set EFLAGS

FCOMIP Compare floating-point, set EFLAGS, and pop

FUCOMIP Unordered compare floating-point, set EFLAGS, and pop

FTST Test floating-point (compare with 0.0)

FXAM Examine floating-point

5.2.4. Transcendental

The transcendental instructions perform basic trigonometric and logarithmic operations on
floating-point operands.

FSIN Sine

FCOS Cosine

FSINCOS Sine and cosine

FPTAN Partial tangent

FPATAN Partial arctangent

F2XM1 2x − 1

FYL2X y∗log2x

FYL2XP1 y∗log2(x+1)
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5.2.5. Load Constants

The load constants instructions load common constants, such as π, into the x87 floating-point
registers.

FLD1 Load +1.0

FLDZ Load +0.0

FLDPI Load π

FLDL2E Load log2e

FLDLN2 Load loge2

FLDL2T Load log210

FLDLG2 Load log102

5.2.6. x87 FPU Control

The x87 FPU control instructions operate on the x87 FPU register stack and save and restore the
x87 FPU state.

FINCSTP Increment FPU register stack pointer

FDECSTP Decrement FPU register stack pointer

FFREE Free floating-point register

FINIT Initialize FPU after checking error conditions

FNINIT Initialize FPU without checking error conditions

FCLEX Clear floating-point exception flags after checking for error 
conditions

FNCLEX Clear floating-point exception flags without checking for error 
conditions

FSTCW Store FPU control word after checking error conditions

FNSTCW Store FPU control word without checking error conditions

FLDCW Load FPU control word

FSTENV Store FPU environment after checking error conditions

FNSTENV Store FPU environment without checking error conditions

FLDENV Load FPU environment

FSAVE Save FPU state after checking error conditions

FNSAVE Save FPU state without checking error conditions

FRSTOR Restore FPU state
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FSTSW Store FPU status word after checking error conditions

FNSTSW Store FPU status word without checking error conditions

WAIT/FWAIT Wait for FPU

FNOP FPU no operation

5.3. X87 FPU AND SIMD STATE MANAGEMENT

Two state management instructions were introduced into the IA-32 architecture with the
Pentium II processor family:

FXSAVE Save x87 FPU and SIMD state

FXRSTOR Restore x87 FPU and SIMD state

Initially, these instructions operated only on the x87 FPU (and MMX) registers to perform a fast
save and restore, respectively, of the x87 FPU and MMX state. With the introduction of SSE
extensions in the Pentium III processor family, these instructions were expanded to also save and
restore the state of the XMM and MXCSR registers. (See Section 10.5., “FXSAVE and
FXRSTOR Instructions” for additional information about these instructions.)

5.4. SIMD INSTRUCTIONS

Beginning with the Pentium II and Pentium with Intel MMX technology processor families,
three extensions were been introduced into the IA-32 architecture to permit IA-32 processors to
perform single-instruction multiple-data (SIMD) operations. These extensions include the
MMX technology, SSE extensions, and SSE2 extensions. Each of these extensions provides a
group of instructions that perform SIMD operations on packed integer and/or packed floating-
point data elements contained in the 64-bit MMX or the 128-bit XMM registers. Figure 5-1
shows a summary of the various SIMD extensions (MMX technology, SSE, and SSE2), the data
types they operated on, and how the data types are packed into MMX and XMM registers.

The Intel MMX Technology was introduced in the Pentium II and Pentium with MMX Tech-
nology processor families. The MMX instructions perform SIMD operations on packed byte,
word, or doubleword integers located in the MMX registers. These instructions are useful in
applications that operate on integer arrays and streams of integer data that lend themselves to
SIMD processing. These applications include photographic image processing, multimedia, and
communications.

The SSE extensions were introduced in the Pentium III processor family. The SSE instructions
operate on packed single-precision floating-point values contained in the XMM registers and on
packed integers contained in the MMX registers. The SSE SIMD integer instructions are an
extension of the MMX technology instruction set. Several additional SSE instructions provide
state management, cache control, and memory ordering operations. The SSE instructions are
targeted at applications that operate on arrays of single-precision floating-point data elements,
including 3-D geometry, 3-D rendering, and video encoding and decoding applications.
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Figure 5-1.  SIMD Extensions, Register Layouts, and Data Types
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The SSE2 extensions were introduced in the Pentium 4 and Intel Xeon processors. The SSE2
instructions operate on packed double-precision floating-point values contained in the XMM
registers and on packed integers contained in the MMX and the XMM registers. The SSE2 SIMD
integer instructions extend IA-32 SIMD operations in two ways: (1) they add new 128-bit SIMD
integer operations and (2) they extend all the 64-bit SIMD integer operations introduced in the
MMX technology and SSE to operate on data contained in the 128-bit XMM registers. The SSE2
instructions also provide several new cache control and memory ordering operations. The SSE2
instructions are intended for applications that operate on arrays of double-precision floating-
point data elements, such as 3-D graphics and scientific data processing applications. The ability
to operate on packed integers in 128-bit registers also enhances the performance of multimedia
and communications applications.

Used together, the MMX Technology, SSE extensions, and SSE2 extensions provide a rich set
of SIMD operations that can be performed on both integer and floating-point data arrays and on
streaming integer and floating-point data. When these operations are used effectively, they can
greatly increase the performance of applications running on the IA-32 processors.

The following sections summarize SIMD instructions introduced in the three SIMD extensions
to the IA-32 architecture: MMX instructions, SSE instructions, and SSE2 instructions.

5.5. MMX INSTRUCTIONS

The MMX instructions are SIMD instructions that were introduced into the IA-32 architecture
in the Pentium with MMX Technology and Pentium II processors. These instructions operate on
packed byte, word, doubleword, or quadword integer operands contained in memory, in MMX
registers, and/or in general-purpose registers (see Chapter 9, Programming With the Intel MMX
Technology).

The MMX instructions can only be executed on IA-32 processors that support the MMX tech-
nology. Support for these instructions can be detected with the CPUID instruction (see the
description of the CPUID instruction in Chapter 3, Instruction Set Reference, of the IA-32 Intel
Architecture Software Developer’s Manual, Volume 2).

Additional SIMD instructions that operate on packed integer data located in MMX registers
were introduced with the SSE and SSE2 extensions.

5.5.1. Data Transfer Instructions

The data transfer instructions move doubleword and quadword operands between MMX regis-
ters and between MMX registers and memory.

MOVD Move doubleword.

MOVQ Move quadword.
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5.5.2. Conversion Instructions

The conversion instructions pack and unpack bytes, words, and doublewords.

PACKSSWB Pack words into bytes with signed saturation.

PACKSSDW Pack doublewords into words with signed saturation.

PACKUSWB Pack words into bytes with unsigned saturation.

PUNPCKHBW Unpack high-order bytes.

PUNPCKHWD Unpack high-order words.

PUNPCKHDQ Unpack high-order doublewords.

PUNPCKLBW Unpack low-order bytes.

PUNPCKLWD Unpack low-order words.

PUNPCKLDQ Unpack low-order doublewords.

5.5.3. Packed Arithmetic Instructions

The packed arithmetic instructions perform packed integer arithmetic on packed byte, word, and
doubleword integers.

PADDB Add packed byte integers.

PADDW Add packed word integers.

PADDD Add packed doubleword integers.

PADDSB Add packed signed byte integers with signed saturation.

PADDSW Add packed signed word integers with signed saturation.

PADDUSB Add packed unsigned byte integers with unsigned saturation.

PADDUSW Add packed unsigned word integers with unsigned saturation.

PSUBB Subtract packed byte integers.

PSUBW Subtract packed word integers.

PSUBD Subtract packed doubleword integers.

PSUBSB Subtract packed signed byte integers with signed saturation.

PSUBSW Subtract packed signed word integers with signed saturation.

PSUBUSB Subtract packed unsigned byte integers with unsigned saturation.

PSUBUSW Subtract packed unsigned word integers with unsigned saturation.

PMULHW Multiply packed signed word integers and store high result.
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PMULLW Multiply packed signed word integers and store low result.

PMADDWD Multiply and add packed word integers.

5.5.4. Comparison Instructions

The compare instructions compare packed bytes, words, or doublewords.

PCMPEQB Compare packed bytes for equal.

PCMPEQW Compare packed words for equal.

PCMPEQD Compare packed doublewords for equal.

PCMPGTB Compare packed signed byte integers for greater than.

PCMPGTW Compare packed signed word integers for greater than.

PCMPGTD Compare packed signed doubleword integers for greater than.

5.5.5. Logical Instructions

The logical instructions perform AND, AND NOT, OR, and XOR operations on quadword oper-
ands.

PAND Bitwise logical AND.

PANDN Bitwise logical AND NOT.

POR Bitwise logical OR.

PXOR Bitwise logical exclusive OR.

5.5.6. Shift and Rotate Instructions

The shift and rotate instructions shift and rotate packed bytes, words, or doublewords, or quad-
words in 64-bit operands.

PSLLW Shift packed words left logical.

PSLLD Shift packed doublewords left logical.

PSLLQ Shift packed quadword left logical.

PSRLW Shift packed words right logical.

PSRLD Shift packed doublewords right logical.

PSRLQ Shift packed quadword right logical.

PSRAW Shift packed words right arithmetic.

PSRAD Shift packed doublewords right arithmetic.
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5.5.7. State Management

The EMMS instruction clears the MMX state from the MMX registers.

EMMS Empty MMX state.

5.6. SSE INSTRUCTIONS

The SSE instructions were introduced into the IA-32 architecture with the Pentium III processor
family and represent an extension of the SIMD execution model introduced with the MMX tech-
nology. These instructions are divided into four groups:

• SIMD single-precision floating-point instructions that operate on the XMM registers.

• MXSCR state management instructions.

• 64-bit SIMD integer instructions that operate on the MMX registers.

• Cacheability control, prefetch, and instruction ordering instructions.

The SSE instructions can only be executed on IA-32 processors that support the SSE extensions.
Support for these instructions can be detected with the CPUID instruction (see the description
of the CPUID instruction in Chapter 3, Instruction Set Reference, of the IA-32 Intel Architecture
Software Developer’s Manual, Volume 2).

5.6.1. SSE SIMD Single-Precision Floating-Point Instructions

The following instructions operate on packed and scalar single-precision floating-point values
located in XMM registers and/or memory. These instructions are divided into the following four
groups:

• Data transfer

• Packed arithmetic

• Comparison

• Logical

• Shuffle and unpack

• Conversion

5.6.1.1. SSE DATA TRANSFER INSTRUCTIONS

The SSE data transfer instructions move packed and scalar single-precision floating-point oper-
ands between XMM registers and between XMM registers and memory.

MOVAPS Move four aligned packed single-precision floating-point values
between XMM registers or between and XMM register and memory.
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MOVUPS Move four unaligned packed single-precision floating-point values
between XMM registers or between and XMM register and memory.

MOVHPS Move two packed single-precision floating-point values to an from
the high quadword of an XMM register and memory.

MOVHLPS Move two packed single-precision floating-point values from the
high quadword of an XMM register to the low quadword of another
XMM register.

MOVLPS Move two packed single-precision floating-point values to an from
the low quadword of an XMM register and memory.

MOVLHPS Move two packed single-precision floating-point values from the
low quadword of an XMM register to the high quadword of another
XMM register.

MOVMSKPS Extract sign mask from four packed single-precision floating-point
values.

MOVSS Move scalar single-precision floating-point value between XMM
registers or between an XMM register and memory.

5.6.1.2. SSE PACKED ARITHMETIC INSTRUCTIONS

The SSE packed arithmetic instructions perform packed and scalar arithmetic operations on
packed and scalar single-precision floating-point operands.

ADDPS Add packed single-precision floating-point values.

ADDSS Add scalar single-precision floating-point values.

SUBPS Subtract packed single-precision floating-point values.

SUBSS Subtract scalar single-precision floating-point values.

MULPS Multiply packed single-precision floating-point values.

MULSS Multiply scalar single-precision floating-point values.

DIVPS Divide packed single-precision floating-point values.

DIVSS Divide scalar single-precision floating-point values.

RCPPS Compute reciprocals of packed single-precision floating-point
values.

RCPSS Compute reciprocal of scalar single-precision floating-point values.

SQRTPS Compute square roots of packed single-precision floating-point
values.

SQRTSS Compute square root of scalar single-precision floating-point values.

RSQRTPS Compute reciprocals of square roots of packed single-precision
floating-point values.
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RSQRTSS Compute reciprocal of square root of scalar single-precision floating-
point values.

MAXPS Return maximum packed single-precision floating-point values.

MAXSS Return maximum scalar single-precision floating-point values.

MINPS Return minimum packed single-precision floating-point values.

MINSS Return minimum scalar single-precision floating-point values.

5.6.1.3. SSE COMPARISON INSTRUCTIONS

The SSE compare instructions compare packed and scalar single-precision floating-point oper-
ands.

CMPPS Compare packed single-precision floating-point values.

CMPSS Compare scalar single-precision floating-point values.

COMISS Perform ordered comparison of scalar single-precision floating-point
values and set flags in EFLAGS register.

UCOMISS Perform unordered comparison of scalar single-precision floating-
point values and set flags in EFLAGS register.

5.6.1.4. SSE LOGICAL INSTRUCTIONS

The SSE logical instructions perform bitwise AND, AND NOT, OR, and XOR operations on
packed single-precision floating-point operands.

ANDPS Perform bitwise logical AND of packed single-precision floating-
point values.

ANDNPS Perform bitwise logical AND NOT of packed single-precision
floating-point values.

ORPS Perform bitwise logical OR of packed single-precision floating-point
values.

XORPS Perform bitwise logical XOR of packed single-precision floating-
point values.

5.6.1.5. SSE SHUFFLE AND UNPACK INSTRUCTIONS

The SSE shuffle and unpack instructions shuffle or interleave single-precision floating-point
values in packed single-precision floating-point operands.

SHUFPS Shuffles values in packed single-precision floating-point operands.

UNPCKHPS Unpacks and interleaves the two high-order values from two single-
precision floating-point operands.
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UNPCKLPS Unpacks and interleaves the two low-order values from two single-
precision floating-point operands.

5.6.1.6. SSE CONVERSION INSTRUCTIONS

The SSE conversion instructions convert packed and individual doubleword integers into
packed and scalar single-precision floating-point values and vice versa.

CVTPI2PS Convert packed doubleword integers to packed single-precision
floating-point values.

CVTSI2SS Convert doubleword integer to scalar single-precision floating-point
value.

CVTPS2PI Convert packed single-precision floating-point values to packed
doubleword integers.

CVTTPS2PI Convert with truncation packed single-precision floating-point
values to packed doubleword integers.

CVTSS2SI Convert scalar single-precision floating-point value to a doubleword
integer.

CVTTSS2SI Convert with truncation scalar single-precision floating-point value
to scalar doubleword integer.

5.6.2. MXCSR State Management Instructions

The MXCSR state management instructions allow saving and restoring the state of the MXCSR
control and status register.

LDMXCSR Load MXCSR register.

STMXCSR Save MXCSR register state.

5.6.3. SSE 64-Bit SIMD Integer Instructions

These SSE 64-bit SIMD integers instructions perform additional operations on packed bytes,
words, or doublewords contained in MMX registers. They represent enhancements to the MMX
instruction set described in Section 5.5., “MMX Instructions”.

PAVGB Compute average of packed unsigned byte integers.

PAVGW Compute average of packed unsigned byte integers.

PEXTRW Extract word.

PINSRW Insert word.

PMAXUB Maximum of packed unsigned byte integers.
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PMAXSW Maximum of packed signed word integers.

PMINUB Minimum of packed unsigned byte integers.

PMINSW Minimum of packed signed word integers.

PMOVMSKB Move Byte Mask.

PMULHUW Multiply packed unsigned integers and store high result.

PSADBW Compute Sum of absolute differences.

PSHUFW Shuffle packed integer word in MMX register.

5.6.4. SSE Cacheability Control, Prefetch, and Instruction 
Ordering Instructions

The cacheability control instructions provide control over the caching of non-temporal data
when storing data from the MMX and XMM registers to memory. The PREFETCh allows data
to be prefetched to a selected cache level. The SFENCE instruction controls instruction ordering
on store operations.

MASKMOVQ Non-temporal store of selected bytes from an MMX register into
memory.

MOVNTQ Non-temporal store of quadword from an MMX register into
memory.

MOVNTPS Non-temporal store of four packed single-precision floating-point
values from an XMM register into memory.

PREFETCHh Load 32 or more of bytes from memory to a selected level of the
processor’s cache hierarchy.

SFENCE Serializes store operations.

5.7. SSE2 INSTRUCTIONS

The SSE2 instructions were introduced into the IA-32 architecture with the Pentium 4 and Intel
Xeon processors. These instructions operate on packed double-precision floating-point operands
and on packed byte, word, doubleword, and quadword operands located in the XMM registers.

The SSE2 instructions can only be executed on IA-32 processors that support the SSE2 exten-
sions. Support for these instructions can be detected with the CPUID instruction (see the
description of the CPUID instruction in Chapter 3, Instruction Set Reference, of the IA-32 Intel
Architecture Software Developer’s Manual, Volume 2).

The SSE2 instructions are divided into four functional groups

• Packed and scalar double-precision floating-point instructions.

• Packed single-precision floating-point conversion instructions.
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• 128-bit SIMD integer instructions.

• Cacheability-control and instruction ordering instructions.

The following sections give an overview of each of the instructions in these groups.

5.7.1. SSE2 Packed and Scalar Double-Precision Floating-Point 
Instructions

The SSE2 packed and scalar double-precision floating-point instructions perform data move-
ment, arithmetic, comparison, conversion, logical, and shuffle operations on double-precision
floating-point operands.

5.7.1.1. SSE2 DATA MOVEMENT INSTRUCTIONS

The SSE2 data movement instructions move double-precision floating-point data between
XMM registers and between XMM registers and memory.

MOVAPD Move two aligned packed double-precision floating-point values
between XMM registers or between and XMM register and memory.

MOVUPD Move two unaligned packed double-precision floating-point values
between XMM registers or between and XMM register and memory.

MOVHPD Move high packed double-precision floating-point value to an from
the high quadword of an XMM register and memory.

MOVLPD Move low packed single-precision floating-point value to an from
the low quadword of an XMM register and memory.

MOVMSKPD Extract sign mask from two packed double-precision floating-point
values.

MOVSD Move scalar double-precision floating-point value between XMM
registers or between an XMM register and memory.

5.7.1.2. SSE2 PACKED ARITHMETIC INSTRUCTIONS

The arithmetic instructions perform addition, subtraction, multiply, divide, square root, and
maximum/minimum operations on packed and scalar double-precision floating-point operands.

ADDPD Add packed double-precision floating-point values.

ADDSD Add scalar double precision floating-point values.

SUBPD Subtract scalar double-precision floating-point values.

SUBSD Subtract scalar double-precision floating-point values.

MULPD Multiply packed double-precision floating-point values.

MULSD Multiply scalar double-precision floating-point values.
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DIVPD Divide packed double-precision floating-point values.

DIVSD Divide scalar double-precision floating-point values.

SQRTPD Compute packed square roots of packed double-precision floating-
point values.

SQRTSD Compute scalar square root of scalar double-precision floating-point
value.

MAXPD Return maximum packed double-precision floating-point values.

MAXSD Return maximum scalar double-precision floating-point value.

MINPD Return minimum packed double-precision floating-point values.

MINSD Return minimum scalar double-precision floating-point value.

5.7.1.3. SSE2 LOGICAL INSTRUCTIONS

The SSE2 logical instructions preform AND, AND NOT, OR, and XOR operations on packed
double-precision floating-point values. 

ANDPD Perform bitwise logical AND of packed double-precision floating-
point values.

ANDNPD Perform bitwise logical AND NOT of packed double-precision
floating-point values.

ORPD Perform bitwise logical OR of packed double-precision floating-
point values.

XORPD Perform bitwise logical XOR of packed double-precision floating-
point values.

5.7.1.4. SSE2 COMPARE INSTRUCTIONS

The SSE2 compare instructions compare packed and scalar double-precision floating-point
values and return the results of the comparison either to the destination operand or to the
EFLAGS register.

CMPPD Compare packed double-precision floating-point values.

CMPSD Compare scalar double-precision floating-point values.

COMISD Perform ordered comparison of scalar double-precision floating-
point values and set flags in EFLAGS register.

UCOMISD Perform unordered comparison of scalar double-precision floating-
point values and set flags in EFLAGS register.
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5.7.1.5. SSE2 SHUFFLE AND UNPACK INSTRUCTIONS

The SSE2 shuffle and unpack instructions shuffle or interleave double-precision floating-point
values in packed double-precision floating-point operands.

SHUFPD Shuffles values in packed double-precision floating-point operands.

UNPCKHPD Unpacks and interleaves the high values from two packed double-
precision floating-point operands.

UNPCKLPD Unpacks and interleaves the low values from two packed double-
precision floating-point operands.

5.7.1.6. SSE2 CONVERSION INSTRUCTIONS

The SSE2 conversion instructions convert packed and individual doubleword integers into
packed and scalar double-precision floating-point values and vice versa. They also convert
between packed and scalar single-precision and double-precision floating-point values.

CVTPD2PI Convert packed double-precision floating-point values to packed
doubleword integers.

CVTTPD2PI Convert with truncation packed double-precision floating-point
values to packed doubleword integers.

CVTPI2PD Convert packed doubleword integers to packed double-precision
floating-point values.

CVTPD2DQ Convert packed double-precision floating-point values to packed
doubleword integers.

CVTTPD2DQ Convert with truncation packed double-precision floating-point
values to packed doubleword integers.

CVTDQ2PD Convert packed doubleword integers to packed double-precision
floating-point values.

CVTPS2PD Convert packed single-precision floating-point values to packed
double-precision floating-point values.

CVTPD2PS Convert packed double-precision floating-point values to packed
single-precision floating-point values.

CVTSS2SD Convert scalar single-precision floating-point values to scalar
double-precision floating-point values.

CVTSD2SS Convert scalar double-precision floating-point values to scalar
single-precision floating-point values.

CVTSD2SI Convert scalar double-precision floating-point values to a double-
word integer.

CVTTSD2SI Convert with truncation scalar double-precision floating-point
values to scalar doubleword integers.
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CVTSI2SD Convert doubleword integer to scalar double-precision floating-point
value.

5.7.2. SSE2 Packed Single-Precision Floating-Point Instructions

The SSE2 packed single-precision floating-point instructions perform conversion operations on
single-precision floating-point and integer operands. These instructions represent enhancements
to the SSE single-precision floating-point instructions.

CVTDQ2PS Convert packed doubleword integers to packed single-precision
floating-point values.

CVTPS2DQ Convert packed single-precision floating-point values to packed
doubleword integers.

CVTTPS2DQ Convert with truncation packed single-precision floating-point
values to packed doubleword integers.

5.7.3. SSE2 128-Bit SIMD Integer Instructions

The SSE2 SIMD integers instructions perform additional operations on packed words, double-
words, and quadwords contained in XMM and MMX registers.

MOVDQA Move aligned double quadword.

MOVDQU Move unaligned double quadword.

MOVQ2DQ Move quadword integer from MMX to XMM registers.

MOVDQ2Q Move quadword integer from XMM to MMX registers.

PMULUDQ Multiply packed unsigned doubleword integers.

PADDQ Add packed quadword integers.

PSUBQ Subtract packed quadword integers.

PSHUFLW Shuffle packed low words.

PSHUFHW Shuffle packed high words.

PSHUFD Shuffle packed doublewords.

PSLLDQ Shift double quadword left logical.

PSRLDQ Shift double quadword right logical.

PUNPCKHQDQ Unpack high quadwords.

PUNPCKLQDQ Unpack low quadwords.
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5.7.4. SSE2 Cacheability Control and Instruction Ordering 
Instructions

The SSE2 cacheability control instructions provide additional operations for caching of non-
temporal data when storing data from XMM registers to memory. The LFENCE and MFENCE
instructions provide additional control of instruction ordering on store operations.

CLFLUSH Flushes and invalidates a memory operand and its associated cache
line from all levels of the processor’s cache hierarchy.

LFENCE Serializes load operations.

MFENCE Serializes load and store operations.

PAUSE Improves the performance of “spin-wait loops.”

MASKMOVDQU Non-temporal store of selected bytes from an XMM register into
memory.

MOVNTPD Non-temporal store of two packed double-precision floating-point
values from an XMM register into memory.

MOVNTDQ Non-temporal store of double quadword from an XMM register into
memory.

MOVNTI Non-temporal store of a doubleword from a general-purpose register
into memory.

5.8. SYSTEM INSTRUCTIONS

The following system instructions are used to control those functions of the processor that are
provided to support for operating systems and executives.

LGDT Load global descriptor table (GDT) register

SGDT Store global descriptor table (GDT) register

LLDT Load local descriptor table (LDT) register

SLDT Store local descriptor table (LDT) register

LTR Load task register

STR Store task register

LIDT Load interrupt descriptor table (IDT) register

SIDT Store interrupt descriptor table (IDT) register

MOV Load and store control registers

LMSW Load machine status word

SMSW Store machine status word
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CLTS Clear the task-switched flag

ARPL Adjust requested privilege level

LAR Load access rights

LSL Load segment limit

VERR Verify segment for reading

VERW Verify segment for writing

MOV Load and store debug registers

INVD Invalidate cache, no writeback

WBINVD Invalidate cache, with writeback

INVLPG Invalidate TLB Entry

LOCK (prefix) Lock Bus

HLT Halt processor

RSM Return from system management mode (SMM)

RDMSR Read model-specific register

WRMSR Write model-specific register

RDPMC Read performance monitoring counters

RDTSC Read time stamp counter

SYSENTER Fast System Call, transfers to a flat protected mode kernel at CPL=0

SYSEXIT Fast System Call, transfers to a flat protected mode kernel at CPL=3
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CHAPTER 6
PROCEDURE CALLS, INTERRUPTS, AND

EXCEPTIONS

This chapter describes the facilities in the IA-32 architecture for executing calls to procedures
or subroutines. It also describes how interrupts and exceptions are handled from the perspective
of an application programmer.

6.1. PROCEDURE CALL TYPES

The processor supports procedure calls in the following two different ways:

• CALL and RET instructions.

• ENTER and LEAVE instructions, in conjunction with the CALL and RET instructions.

Both of these procedure call mechanisms use the procedure stack, commonly referred to simply
as “the stack,” to save the state of the calling procedure, pass parameters to the called procedure,
and store local variables for the currently executing procedure.

The processor’s facilities for handling interrupts and exceptions are similar to those used by the
CALL and RET instructions.

6.2. STACK

The stack (see Figure 6-1) is a contiguous array of memory locations. It is contained in a
segment and identified by the segment selector in the SS register. (When using the flat memory
model, the stack can be located anywhere in the linear address space for the program.) A stack
can be up to 4 gigabytes long, the maximum size of a segment.

Items are placed on the stack using the PUSH instruction and removed from the stack using the
POP instruction. When an item is pushed onto the stack, the processor decrements the ESP
register, then writes the item at the new top of stack. When an item is popped off the stack, the
processor reads the item from the top of stack, then increments the ESP register. In this manner,
the stack grows down in memory (towards lesser addresses) when items are pushed on the stack
and shrinks up (towards greater addresses) when the items are popped from the stack.

A program or operating system/executive can set up many stacks. For example, in multitasking
systems, each task can be given its own stack. The number of stacks in a system is limited by
the maximum number of segments and the available physical memory. 

When a system sets up many stacks, only one stack—the current stack—is available at a time.
The current stack is the one contained in the segment referenced by the SS register.
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The processor references the SS register automatically for all stack operations. For example,
when the ESP register is used as a memory address, it automatically points to an address in the
current stack. Also, the CALL, RET, PUSH, POP, ENTER, and LEAVE instructions all perform
operations on the current stack.

6.2.1. Setting Up a Stack

To set a stack and establish it as the current stack, the program or operating system/executive
must do the following:

1. Establish a stack segment.

2. Load the segment selector for the stack segment into the SS register using a MOV, POP, or
LSS instruction.

3. Load the stack pointer for the stack into the ESP register using a MOV, POP, or LSS
instruction. (The LSS instruction can be used to load the SS and ESP registers in one
operation.)

Figure 6-1.  Stack Structure
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See “Segment Descriptors” in Chapter 3 of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3, for information on how to set up a segment descriptor and segment limits for
a stack segment.

6.2.2. Stack Alignment

The stack pointer for a stack segment should be aligned on 16-bit (word) or 32-bit (double-word)
boundaries, depending on the width of the stack segment. The D flag in the segment descriptor
for the current code segment sets the stack-segment width (see “Segment Descriptors” in Chap-
ter 3 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3). The PUSH and
POP instructions use the D flag to determine how much to decrement or increment the stack
pointer on a push or pop operation, respectively. When the stack width is 16 bits, the stack point-
er is incremented or decremented in 16-bit increments; when the width is 32 bits, the stack point-
er is incremented or decremented in 32-bit increments. Pushing a 16-bit value onto a 32-bit wide
stack can result in stack misaligned (that is, the stack pointer is not aligned on a doubleword
boundary). One exception to this rule is when the contents of a segment register (a 16-bit seg-
ment selector) are pushed onto a 32-bit wide stack. Here, the processor automatically aligns the
stack pointer to the next 32-bit boundary.

The processor does not check stack pointer alignment. It is the responsibility of the programs,
tasks, and system procedures running on the processor to maintain proper alignment of stack
pointers. Misaligning a stack pointer can cause serious performance degradation and in some in-
stances program failures.

6.2.3. Address-Size Attributes for Stack Accesses

Instructions that use the stack implicitly (such as the PUSH and POP instructions) have two
address-size attributes each of either 16 or 32 bits. This is because they always have the implicit
address of the top of the stack, and they may also have an explicit memory address (for example,
PUSH Array1[EBX]). The attribute of the explicit address is determined by the D flag of the
current code segment and the presence or absence of the 67H address-size prefix, as usual.

The address-size attribute of the top of the stack determines whether SP or ESP is used for the
stack access. Stack operations with an address-size attribute of 16 use the 16-bit SP stack pointer
register and can use a maximum stack address of FFFFH; stack operations with an address-size
attribute of 32 bits use the 32-bit ESP register and can use a maximum address of FFFFFFFFH.
The default address-size attribute for data segments used as stacks is controlled by the B flag of
the segment’s descriptor. When this flag is clear, the default address-size attribute is 16; when
the flag is set, the address-size attribute is 32.

6.2.4. Procedure Linking Information

The processor provides two pointers for linking of procedures: the stack-frame base pointer and
the return instruction pointer. When used in conjunction with a standard software procedure-call
technique, these pointers permit reliable and coherent linking of procedures.
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6.2.4.1. STACK-FRAME BASE POINTER

The stack is typically divided into frames. Each stack frame can then contain local variables,
parameters to be passed to another procedure, and procedure linking information. The stack-
frame base pointer (contained in the EBP register) identifies a fixed reference point within the
stack frame for the called procedure. To use the stack-frame base pointer, the called procedure
typically copies the contents of the ESP register into the EBP register prior to pushing any local
variables on the stack. The stack-frame base pointer then permits easy access to data structures
passed on the stack, to the return instruction pointer, and to local variables added to the stack by
the called procedure.

Like the ESP register, the EBP register automatically points to an address in the current stack
segment (that is, the segment specified by the current contents of the SS register). 

6.2.4.2. RETURN INSTRUCTION POINTER

Prior to branching to the first instruction of the called procedure, the CALL instruction pushes
the address in the EIP register onto the current stack. This address is then called the return-
instruction pointer and it points to the instruction where execution of the calling procedure
should resume following a return from the called procedure. Upon returning from a called
procedure, the RET instruction pops the return-instruction pointer from the stack back into the
EIP register. Execution of the calling procedure then resumes.

The processor does not keep track of the location of the return-instruction pointer. It is thus up
to the programmer to insure that stack pointer is pointing to the return-instruction pointer on the
stack, prior to issuing a RET instruction. A common way to reset the stack pointer to the point
to the return-instruction pointer is to move the contents of the EBP register into the ESP register.
If the EBP register is loaded with the stack pointer immediately following a procedure call, it
should point to the return instruction pointer on the stack.

The processor does not require that the return instruction pointer point back to the calling proce-
dure. Prior to executing the RET instruction, the return instruction pointer can be manipulated
in software to point to any address in the current code segment (near return) or another code
segment (far return). Performing such an operation, however, should be undertaken very
cautiously, using only well defined code entry points.

6.3. CALLING PROCEDURES USING CALL AND RET

The CALL instructions allows control transfers to procedures within the current code segment
(near call) and in a different code segment (far call). Near calls usually provide access to local
procedures within the currently running program or task. 

Far calls are usually used to access operating system procedures or procedures in a different task.
See “CALL—Call Procedure” in Chapter 3 of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2, for a detailed description of the CALL instruction.

The RET instruction also allows near and far returns to match the near and far versions of the
CALL instruction. In addition, the RET instruction allows a program to increment the stack
pointer on a return to release parameters from the stack. The number of bytes released from the
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stack is determined by an optional argument (n) to the RET instruction. See “RET—Return from
Procedure” in Chapter 3 of the IA-32 Intel Architecture Software Developer’s Manual, Volume
2, for a detailed description of the RET instruction.

6.3.1. Near CALL and RET Operation

When executing a near call, the processor does the following (see Figure 6-4):

1. Pushes the current value of the EIP register on the stack.

2. Loads the offset of the called procedure in the EIP register.

3. Begins execution of the called procedure.

When executing a near return, the processor performs these actions:

1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. (If the RET instruction has an optional n argument.) Increments the stack pointer by the
number of bytes specified with the n operand to release parameters from the stack.

3. Resumes execution of the calling procedure.

6.3.2. Far CALL and RET Operation

When executing a far call, the processor performs these actions (see Figure 6-2):

1. Pushes current value of the CS register on the stack.

2. Pushes the current value of the EIP register on the stack.

3. Loads the segment selector of the segment that contains the called procedure in the CS
register.

4. Loads the offset of the called procedure in the EIP register.

5. Begins execution of the called procedure.

When executing a far return, the processor does the following:

1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. Pops the top-of-stack value (the segment selector for the code segment being returned to)
into the CS register.

3. (If the RET instruction has an optional n argument.) Increments the stack pointer by the
number of bytes specified with the n operand to release parameters from the stack.

4. Resumes execution of the calling procedure.
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6.3.3. Parameter Passing

Parameters can be passed between procedures in any of three ways: through general-purpose
registers, in an argument list, or on the stack.

6.3.3.1. PASSING PARAMETERS THROUGH THE GENERAL-PURPOSE 
REGISTERS

The processor does not save the state of the general-purpose registers on procedure calls. A
calling procedure can thus pass up to six parameter to the called procedure by copying the
parameters into any of these registers (except the ESP and EBP registers) prior to executing the
CALL instruction. The called procedure can likewise pass parameters back to the calling proce-
dure through general-purpose registers.

Figure 6-2.  Stack on Near and Far Calls
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6.3.3.2. PASSING PARAMETERS ON THE STACK

To pass a large number of parameters to the called procedure, the parameters can be placed on
the stack, in the stack frame for the calling procedure. Here, it is useful to use the stack-frame
base pointer (in the EBP register) to make a frame boundary for easy access to the parameters.

The stack can also be used to pass parameters back from the called procedure to the calling
procedure.

6.3.3.3. PASSING PARAMETERS IN AN ARGUMENT LIST

An alternate method of passing a larger number of parameters (or a data structure) to the called
procedure is to place the parameters in an argument list in one of the data segments in memory.
A pointer to the argument list can then be passed to the called procedure through a general-
purpose register or the stack. Parameters can also be passed back to the calling procedure in this
same manner.

6.3.4. Saving Procedure State Information

The processor does not save the contents of the general-purpose registers, segment registers, or
the EFLAGS register on a procedure call. A calling procedure should explicitly save the values
in any of the general-purpose registers that it will need when it resumes execution after a return.
These values can be saved on the stack or in memory in one of the data segments.

The PUSHA and POPA instruction facilitates saving and restoring the contents of the general-
purpose registers. PUSHA pushes the values in all the general-purpose registers on the stack in
the following order: EAX, ECX, EDX, EBX, ESP (the value prior to executing the PUSHA
instruction), EBP, ESI, and EDI. The POPA instruction pops all the register values saved with a
PUSHA instruction (except the ESI value) from the stack to their respective registers.

If a called procedure changes the state of any of the segment registers explicitly, it should restore
them to their former value before executing a return to the calling procedure.

If a calling procedure needs to maintain the state of the EFLAGS register it can save and restore
all or part of the register using the PUSHF/PUSHFD and POPF/POPFD instructions. The
PUSHF instruction pushes the lower word of the EFLAGS register on the stack, while the
PUSHFD instruction pushes the entire register. The POPF instruction pops a word from the
stack into the lower word of the EFLAGS register, while the POPFD instruction pops a double
word from the stack into the register.

6.3.5. Calls to Other Privilege Levels

The IA-32 architecture’s protection mechanism recognizes four privilege levels, numbered from
0 to 3, where greater numbers mean lesser privileges. The primary reason to use these privilege
levels is to improve the reliability of operating systems. For example, Figure 6-3 shows how
privilege levels can be interpreted as rings of protection. 
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In this example, the highest privilege level 0 (at the center of the diagram) is used for segments
that contain the most critical code modules in the system, usually the kernel of an operating
system. The outer rings (with progressively lower privileges) are used for segments that contain
code modules for less critical software. 

Code modules in lower privilege segments can only access modules operating at higher privi-
lege segments by means of a tightly controlled and protected interface called a gate. Attempts
to access higher privilege segments without going through a protection gate and without having
sufficient access rights causes a general-protection exception (#GP) to be generated.

If an operating system or executive uses this multilevel protection mechanism, a call to a proce-
dure that is in a more privileged protection level than the calling procedure is handled in a
similar manner as a far call (see Section 6.3.2., “Far CALL and RET Operation”). The differ-
ences are as follows:

• The segment selector provided in the CALL instruction references a special data structure
called a call gate descriptor. Among other things, the call gate descriptor provides the
following:

— Access rights information.

— The segment selector for the code segment of the called procedure.

— An offset into the code segment (that is, the instruction pointer for the called
procedure).

Figure 6-3.  Protection Rings
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• The processor switches to a new stack to execute the called procedure. Each privilege level
has its own stack. The segment selector and stack pointer for the privilege level 3 stack are
stored in the SS and ESP registers, respectively, and are automatically saved when a call to
a more privileged level occurs. The segment selectors and stack pointers for the privilege
level 2, 1, and 0 stacks are stored in a system segment called the task state segment (TSS). 

The use of a call gate and the TSS during a stack switch are transparent to the calling procedure,
except when a general-protection exception is raised.

6.3.6. CALL and RET Operation Between Privilege Levels

When making a call to a more privileged protection level, the processor does the following (see
Figure 6-4):

1. Performs an access rights check (privilege check).

2. Temporarily saves (internally) the current contents of the SS, ESP, CS, and EIP registers.

Figure 6-4.  Stack Switch on a Call to a Different Privilege Level
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3. Loads the segment selector and stack pointer for the new stack (that is, the stack for the
privilege level being called) from the TSS into the SS and ESP registers and switches to
the new stack.

4. Pushes the temporarily saved SS and ESP values for the calling procedure’s stack onto the
new stack.

5. Copies the parameters from the calling procedure’s stack to the new stack. (A value in the
call gate descriptor determines how many parameters to copy to the new stack.)

6. Pushes the temporarily saved CS and EIP values for the calling procedure to the new stack.

7. Loads the segment selector for the new code segment and the new instruction pointer from
the call gate into the CS and EIP registers, respectively.

8. Begins execution of the called procedure at the new privilege level.

When executing a return from the privileged procedure, the processor performs these actions:

1. Performs a privilege check.

2. Restores the CS and EIP registers to their values prior to the call.

3. (If the RET instruction has an optional n argument.) Increments the stack pointer by the
number of bytes specified with the n operand to release parameters from the stack. If the
call gate descriptor specifies that one or more parameters be copied from one stack to the
other, a RET n instruction must be used to release the parameters from both stacks. Here,
the n operand specifies the number of bytes occupied on each stack by the parameters. On
a return, the processor increments ESP by n for each stack to step over (effectively
remove) these parameters from the stacks.

4. Restores the SS and ESP registers to their values prior to the call, which causes a switch
back to the stack of the calling procedure.

5. (If the RET instruction has an optional n argument.) Increments the stack pointer by the
number of bytes specified with the n operand to release parameters from the stack (see
explanation in step 3).

6. Resumes execution of the calling procedure.

See Chapter 4, Protection, in the IA-32 Intel Architecture Software Developer’s Manual, Volume
3, for detailed information on calls to privileged levels and the call gate descriptor.

6.4. INTERRUPTS AND EXCEPTIONS

The processor provides two mechanisms for interrupting program execution: interrupts and
exceptions:

• An interrupt is an asynchronous event that is typically triggered by an I/O device.

• An exception is a synchronous event that is generated when the processor detects one or
more predefined conditions while executing an instruction. The IA-32 architecture
specifies three classes of exceptions: faults, traps, and aborts. 
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The processor responds to interrupts and exceptions in essentially the same way. When an inter-
rupt or exception is signaled, the processor halts execution of the current program or task and
switches to a handler procedure that has been written specifically to handle the interrupt or
exception condition. The processor accesses the handler procedure through an entry in the inter-
rupt descriptor table (IDT). When the handler has completed handling the interrupt or exception,
program control is returned to the interrupted program or task.

The operating system, executive, and/or device drivers normally handle interrupts and excep-
tions independently from application programs or tasks. Application programs can, however,
access the interrupt and exception handlers incorporated in an operating system or executive
through assembly-language calls. The remainder of this section gives a brief overview of the
processor’s interrupt and exception handling mechanism. See Chapter 5, Interrupt and Excep-
tion Handling in the IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for a
detailed description of this mechanism.

The IA-32 Architecture defines 17 predefined interrupts and exceptions and 224 user defined
interrupts, which are associated with entries in the IDT. Each interrupt and exception in the IDT
is identified with a number, called a vector. Table 6-1 lists the interrupts and exceptions with
entries in the IDT and their respective vector numbers. Vectors 0 through 8, 10 through 14, and
16 through 19 are the predefined interrupts and exceptions, and vectors 32 through 255 are the
user-defined interrupts, called maskable interrupts.

Note that the processor defines several additional interrupts that do not point to entries in the
IDT; the most notable of these interrupts is the SMI interrupt. See “Exception and Interrupt
Vectors” in Chapter 5 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3,
for more information about the interrupts and exceptions that the IA-32 Architecture supports.

When the processor detects an interrupt or exception, it does one of the following things:

• Executes an implicit call to a handler procedure.

• Executes an implicit call to a handler task.

6.4.1. Call and Return Operation for Interrupt or Exception 
Handling Procedures

A call to an interrupt or exception handler procedure is similar to a procedure call to another
protection level (see Section 6.3.6., “CALL and RET Operation Between Privilege Levels”).
Here, the interrupt vector references one of two kinds of gates: an interrupt gate or a trap gate.
Interrupt and trap gates are similar to call gates in that they provide the following information:

• Access rights information.

• The segment selector for the code segment that contains the handler procedure.

• An offset into the code segment to the first instruction of the handler procedure.

The difference between an interrupt gate and a trap gate is as follows. If an interrupt or exception
handler is called through an interrupt gate, the processor clears the interrupt enable (IF) flag in
the EFLAGS register to prevent subsequent interrupts from interfering with the execution of the
handler. When a handler is called through a trap gate, the state of the IF flag is not changed.
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1. The UD2 instruction was introduced in the Pentium Pro processor.

2. IA-32 processors after the Intel386 processor do not generate this exception.

3. This exception was introduced in the Intel486 processor.

4. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.

5. This exception was introduced in the Pentium III processor.

Table 6-1.  Exceptions and Interrupts

Vector No. Mnemonic Description Source

 0 #DE Divide Error DIV and IDIV instructions.

 1 #DB Debug Any code or data reference.

 2 NMI Interrupt Non-maskable external interrupt.

 3 #BP Breakpoint INT 3 instruction.

 4 #OF Overflow INTO instruction.

 5 #BR BOUND Range Exceeded BOUND instruction.

 6 #UD Invalid Opcode (UnDefined 
Opcode)

UD2 instruction or reserved opcode.1

 7 #NM Device Not Available (No Math 
Coprocessor)

Floating-point or WAIT/FWAIT instruction.

 8 #DF Double Fault Any instruction that can generate an 
exception, an NMI, or an INTR.

 9 #MF CoProcessor Segment Overrun 
(reserved)

Floating-point instruction.2

10 #TS Invalid TSS Task switch or TSS access.

11 #NP Segment Not Present Loading segment registers or accessing 
system segments.

12 #SS Stack Segment Fault Stack operations and SS register loads.

13 #GP General Protection Any memory reference and other 
protection checks.

14 #PF Page Fault Any memory reference.

15 (Intel reserved. Do not use.)

16 #MF Floating-Point Error (Math Fault) Floating-point or WAIT/FWAIT instruction.

17 #AC Alignment Check Any data reference in memory.3

18 #MC Machine Check Error codes (if any) and source are model 
dependent.4

19 #XF SIMD Floating-Point Exception5 SIMD Floating-Point Instruction

20-31 (Intel reserved. Do not use.)

32-255 Maskable Interrupts External interrupt from INTR pin or INT n 
instruction.
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If the code segment for the handler procedure has the same privilege level as the currently
executing program or task, the handler procedure uses the current stack; if the handler executes
at a more privileged level, the processor switches to the stack for the handler’s privilege level. 

If no stack switch occurs, the processor does the following when calling an interrupt or excep-
tion handler (see Figure 6-5):

1. Pushes the current contents of the EFLAGS, CS, and EIP registers (in that order) on the
stack.

2. Pushes an error code (if appropriate) on the stack.

3. Loads the segment selector for the new code segment and the new instruction pointer
(from the interrupt gate or trap gate) into the CS and EIP registers, respectively.

4. If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

5. Begins execution of the handler procedure at the new privilege level.

Figure 6-5.  Stack Usage on Transfers to Interrupt and Exception Handling Routines
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If a stack switch does occur, the processor does the following:

1. Temporarily saves (internally) the current contents of the SS, ESP, EFLAGS, CS, and EIP
registers.

2. Loads the segment selector and stack pointer for the new stack (that is, the stack for the
privilege level being called) from the TSS into the SS and ESP registers and switches to
the new stack.

3. Pushes the temporarily saved SS, ESP, EFLAGS, CS, and EIP values for the interrupted
procedure’s stack onto the new stack.

4. Pushes an error code on the new stack (if appropriate).

5. Loads the segment selector for the new code segment and the new instruction pointer
(from the interrupt gate or trap gate) into the CS and EIP registers, respectively.

6. If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.

7. Begins execution of the handler procedure at the new privilege level.

A return from an interrupt or exception handler is initiated with the IRET instruction. The IRET
instruction is similar to the far RET instruction, except that it also restores the contents of the
EFLAGS register for the interrupted procedure:

When executing a return from an interrupt or exception handler from the same privilege level as
the interrupted procedure, the processor performs these actions:

1. Restores the CS and EIP registers to their values prior to the interrupt or exception.

2. Restores the EFLAGS register.

3. Increments the stack pointer appropriately

4. Resumes execution of the interrupted procedure.

When executing a return from an interrupt or exception handler from a different privilege level
than the interrupted procedure, the processor performs these actions:

1. Performs a privilege check.

2. Restores the CS and EIP registers to their values prior to the interrupt or exception.

3. Restores the EFLAGS register.

4. Restores the SS and ESP registers to their values prior to the interrupt or exception,
resulting in a stack switch back to the stack of the interrupted procedure.

5. Resumes execution of the interrupted procedure.
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6.4.2. Calls to Interrupt or Exception Handler Tasks

Interrupt and exception handler routines can also be executed in a separate task. Here, an inter-
rupt or exception causes a task switch to a handler task. The handler task is given its own address
space and (optionally) can execute at a higher protection level than application programs or
tasks. 

The switch to the handler task is accomplished with an implicit task call that references a task
gate descriptor. The task gate provides access to the address space for the handler task. As part
of the task switch, the processor saves complete state information for the interrupted program or
task. Upon returning from the handler task, the state of the interrupted program or task is
restored and execution continues. See Chapter 5, Interrupt and Exception Handling, in the IA-
32 Intel Architecture Software Developer’s Manual, Volume 3, for a detailed description of the
processor’s mechanism for handling interrupts and exceptions through handler tasks.

6.4.3. Interrupt and Exception Handling in Real-Address Mode

When operating in real-address mode, the processor responds to an interrupt or exception with
an implicit far call to an interrupt or exception handler. The processor uses the interrupt or
exception vector number as an index into an interrupt table. The interrupt table contains instruc-
tion pointers to the interrupt and exception handler procedures.

The processor saves the state of the EFLAGS register, the EIP register, the CS register, and an
optional error code on the stack before switching to the handler procedure.

A return from the interrupt or exception handler is carried out with the IRET instruction. 

See Chapter 16, 8086 Emulation, in the IA-32 Intel Architecture Software Developer’s Manual,
Volume 3, for more information on handling interrupts and exceptions in real-address mode.

6.4.4. INT n, INTO, INT 3, and BOUND Instructions

The INT n, INTO, INT 3, and BOUND instructions allow a program or task to explicitly call an
interrupt or exception handler. The INT n instruction uses an interrupt vector as an argument,
which allows a program to call any interrupt handler.

The INTO instruction explicitly calls the overflow exception (#OF) handler if the overflow flag
(OF) in the EFLAGS register is set. The OF flag indicates overflow on arithmetic instructions,
but it does not automatically raise an overflow exception. An overflow exception can only be
raised explicitly in either of the following ways:

• Execute the INTO instruction.

• Test the OF flag and execute the INT n instruction with an argument of 4 (the vector
number of the overflow exception) if the flag is set.

Both the methods of dealing with overflow conditions allow a program to test for overflow at
specific places in the instruction stream.

The INT 3 instruction explicitly calls the breakpoint exception (#BP) handler.
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The BOUND instruction explicitly calls the BOUND-range exceeded exception (#BR) handler
if an operand is found to be not within predefined boundaries in memory. This instruction is
provided for checking references to arrays and other data structures. Like the overflow
exception, the BOUND-range exceeded exception can only be raised explicitly with the
BOUND instruction or the INT n instruction with an argument of 5 (the vector number of the
bounds-check exception). The processor does not implicitly perform bounds checks and raise
the BOUND-range exceeded exception.

6.4.5. Handling Floating-Point Exceptions

When operating on individual or packed floating-point values, the IA-32 architecture supports
a set of six floating-point exceptions. These exceptions can be generated during operations
performed by the x87 FPU instructions or by the SSE and SSE2 instructions. When an x87 FPU
instruction generates one or more of these exceptions, it in turn generates an floating-point error
exception (#MF); when an SSE and SSE2 instruction generates a floating-point exception, it in
turn generates a SIMD floating-point exception (#XF). See the following sections for further
descriptions of the floating-point exceptions, how they are generated, and how they are handled:

• Section 4.9.1., “Floating-Point Exception Conditions” and Section 4.9.3., “Typical Actions
of a Floating-Point Exception Handler”.

• Section 8.4., “x87 FPU Floating-Point Exception Handling” and Section 8.5., “x87 FPU
Floating-Point Exception Conditions”.

• Section 11.5.1., “SIMD Floating-Point Exceptions”.

6.5. PROCEDURE CALLS FOR BLOCK-STRUCTURED 
LANGUAGES

The IA-32 architecture supports an alternate method of performing procedure calls with the
ENTER (enter procedure) and LEAVE (leave procedure) instructions. These instructions auto-
matically create and release, respectively, stack frames for called procedures. The stack frames
have predefined spaces for local variables and the necessary pointers to allow coherent returns
from called procedures. They also allow scope rules to be implemented so that procedures can
access their own local variables and some number of other variables located in other stack
frames.

The ENTER and LEAVE instructions offer two benefits:

• They provide machine-language support for implementing block-structured languages,
such as C and Pascal. 

• They simplify procedure entry and exit in compiler-generated code.
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6.5.1. ENTER Instruction

The ENTER instruction creates a stack frame compatible with the scope rules typically used in
block-structured languages. In block-structured languages, the scope of a procedure is the set of
variables to which it has access. The rules for scope vary among languages. They may be based
on the nesting of procedures, the division of the program into separately compiled files, or some
other modularization scheme.

The ENTER instruction has two operands. The first specifies the number of bytes to be reserved
on the stack for dynamic storage for the procedure being called. Dynamic storage is the memory
allocated for variables created when the procedure is called, also known as automatic variables.
The second parameter is the lexical nesting level (from 0 to 31) of the procedure. The nesting
level is the depth of a procedure in a hierarchy of procedure calls. The lexical level is unrelated
to either the protection privilege level or to the I/O privilege level of the currently running
program or task.

The ENTER instruction in the following example, allocates 2 Kbytes of dynamic storage on the
stack and sets up pointers to two previous stack frames in the stack frame for this procedure.

ENTER 2048,3

The lexical nesting level determines the number of stack frame pointers to copy into the new
stack frame from the preceding frame. A stack frame pointer is a doubleword used to access the
variables of a procedure. The set of stack frame pointers used by a procedure to access the
variables of other procedures is called the display. The first doubleword in the display is a
pointer to the previous stack frame. This pointer is used by a LEAVE instruction to undo the
effect of an ENTER instruction by discarding the current stack frame.

After the ENTER instruction creates the display for a procedure, it allocates the dynamic local
variables for the procedure by decrementing the contents of the ESP register by the number of
bytes specified in the first parameter. This new value in the ESP register serves as the initial top-
of-stack for all PUSH and POP operations within the procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP register
pointing to the first doubleword in the display. Because stacks grow down, this is actually the
doubleword with the highest address in the display. Data manipulation instructions that specify
the EBP register as a base register automatically address locations within the stack segment
instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical level is
0, the non-nested form is used. The non-nested form pushes the contents of the EBP register on
the stack, copies the contents of the ESP register into the EBP register, and subtracts the first
operand from the contents of the ESP register to allocate dynamic storage. The non-nested form
differs from the nested form in that no stack frame pointers are copied. The nested form of the
ENTER instruction occurs when the second parameter (lexical level) is not zero.

The following pseudo code shows the formal definition of the ENTER instruction. STORAGE
is the number of bytes of dynamic storage to allocate for local variables, and LEVEL is the
lexical nesting level.

PUSH EBP;
FRAME_PTR ← ESP;
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IF LEVEL > 0 
THEN

DO (LEVEL − 1) times
EBP ← EBP − 4;
PUSH Pointer(EBP); (* doubleword pointed to by EBP *)

OD;
PUSH FRAME_PTR;

FI;
EBP ← FRAME_PTR;
ESP ← ESP − STORAGE;

The main procedure (in which all other procedures are nested) operates at the highest lexical
level, level 1. The first procedure it calls operates at the next deeper lexical level, level 2. A level
2 procedure can access the variables of the main program, which are at fixed locations specified
by the compiler. In the case of level 1, the ENTER instruction allocates only the requested
dynamic storage on the stack because there is no previous display to copy.

A procedure which calls another procedure at a lower lexical level gives the called procedure
access to the variables of the caller. The ENTER instruction provides this access by placing a
pointer to the calling procedure’s stack frame in the display.

A procedure which calls another procedure at the same lexical level should not give access to
its variables. In this case, the ENTER instruction copies only that part of the display from the
calling procedure which refers to previously nested procedures operating at higher lexical levels.
The new stack frame does not include the pointer for addressing the calling procedure’s stack
frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the same lexical
level. In this case, each succeeding iteration of the re-entrant procedure can address only its own
variables and the variables of the procedures within which it is nested. A re-entrant procedure
always can address its own variables; it does not require pointers to the stack frames of previous
iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, the ENTER
instruction makes certain that procedures access only those variables of higher lexical levels, not
those at parallel lexical levels (see Figure 6-6).
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Block-structured languages can use the lexical levels defined by ENTER to control access to the
variables of nested procedures. In Figure 6-6, for example, if procedure A calls procedure B
which, in turn, calls procedure C, then procedure C will have access to the variables of the
MAIN procedure and procedure A, but not those of procedure B because they are at the same
lexical level. The following definition describes the access to variables for the nested procedures
in Figure 6-6.

1. MAIN has variables at fixed locations.

2. Procedure A can access only the variables of MAIN.

3. Procedure B can access only the variables of procedure A and MAIN. Procedure B cannot
access the variables of procedure C or procedure D.

4. Procedure C can access only the variables of procedure A and MAIN. procedure C cannot
access the variables of procedure B or procedure D.

5. Procedure D can access the variables of procedure C, procedure A, and MAIN. Procedure
D cannot access the variables of procedure B.

In Figure 6-7, an ENTER instruction at the beginning of the MAIN procedure creates three
doublewords of dynamic storage for MAIN, but copies no pointers from other stack frames. The
first doubleword in the display holds a copy of the last value in the EBP register before the
ENTER instruction was executed. The second doubleword holds a copy of the contents of the
EBP register following the ENTER instruction. After the instruction is executed, the EBP
register points to the first doubleword pushed on the stack, and the ESP register points to the last
doubleword in the stack frame.

When MAIN calls procedure A, the ENTER instruction creates a new display (see Figure 6-8).
The first doubleword is the last value held in MAIN’s EBP register. The second doubleword is
a pointer to MAIN’s stack frame which is copied from the second doubleword in MAIN’s
display. This happens to be another copy of the last value held in MAIN’s EBP register. Proce-
dure A can access variables in MAIN because MAIN is at level 1. 

Figure 6-6.  Nested Procedures
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Therefore the base address for the dynamic storage used in MAIN is the current address in the
EBP register, plus four bytes to account for the saved contents of MAIN’s EBP register. All
dynamic variables for MAIN are at fixed, positive offsets from this value. 

When procedure A calls procedure B, the ENTER instruction creates a new display (see Figure
6-9). The first doubleword holds a copy of the last value in procedure A’s EBP register. The
second and third doublewords are copies of the two stack frame pointers in procedure A’s
display. Procedure B can access variables in procedure A and MAIN by using the stack frame
pointers in its display.

Figure 6-7.  Stack Frame after Entering the MAIN Procedure

Figure 6-8.  Stack Frame after Entering Procedure A
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When procedure B calls procedure C, the ENTER instruction creates a new display for proce-
dure C (see Figure 6-10). The first doubleword holds a copy of the last value in procedure B’s
EBP register. This is used by the LEAVE instruction to restore procedure B’s stack frame. The
second and third doublewords are copies of the two stack frame pointers in procedure A’s
display. If procedure C were at the next deeper lexical level from procedure B, a fourth double-
word would be copied, which would be the stack frame pointer to procedure B’s local variables. 

Note that procedure B and procedure C are at the same level, so procedure C is not intended to
access procedure B’s variables. This does not mean that procedure C is completely isolated from
procedure B; procedure C is called by procedure B, so the pointer to the returning stack frame
is a pointer to procedure B's stack frame. In addition, procedure B can pass parameters to proce-
dure C either on the stack or through variables global to both procedures (that is, variables in the
scope of both procedures).

Figure 6-9.  Stack Frame after Entering Procedure B
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6.5.2. LEAVE Instruction

The LEAVE instruction, which does not have any operands, reverses the action of the previous
ENTER instruction. The LEAVE instruction copies the contents of the EBP register into the ESP
register to release all stack space allocated to the procedure. Then it restores the old value of the
EBP register from the stack. This simultaneously restores the ESP register to its original value.
A subsequent RET instruction then can remove any arguments and the return address pushed on
the stack by the calling program for use by the procedure.

Figure 6-10.  Stack Frame after Entering Procedure C
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CHAPTER 7
PROGRAMMING WITH THE

GENERAL-PURPOSE INSTRUCTIONS

The general-purpose instructions are a subset of the IA-32 instructions that represent the funda-
mental or basic instruction set for the Intel IA-32 processors. These instructions were introduced
into the IA-32 architecture with the first IA-32 processors (the Intel 8086 and 8088). Additional
instructions were added to this general-purpose instruction set in subsequent families of IA-32
processors (the Intel 286, Intel386, Intel486, Pentium, Pentium Pro, and Pentium II processors). 

The general-purpose instructions perform basic data movement, memory addressing, arithmetic
and logical, program flow control, input/output, and string operations on a set of integer, pointer,
and BCD data types. 

This chapter provides an overview of the general-purpose instructions. Chapter 3, Instruction
Set Reference, of the IA-32 Intel Architecture Software Developer’s Manual, Volume 2 gives
detailed descriptions of these instructions.

7.1. PROGRAMMING ENVIRONMENT FOR THE GENERAL-
PURPOSE INSTRUCTIONS

The programming environment for the general-purpose instructions consists of the set of regis-
ters and address space that make up the IA-32 architecture’s basic execution environment (see
Figure 7-1) and a set of data types. The basic execution environment includes the following
items: 

• General-purpose registers. The eight 32-bit general-purpose registers (see Figure 3-4)
are used along with the existing IA-32 addressing modes to address operands in memory.
These registers are referenced by the names EAX, EBX, ECX, EDX, EBP, ESI EDI, and
ESP.

• Segment registers. The six 16-bit segment registers contain segment pointers for use in
accessing memory. These registers are referenced by the names CS, DS, SS, ES, FS, and
GS.

• EFLAGS register. This 32-bit register (see Figure 3-7) is used to provide status and
control for basic arithmetic, compare, and system operations.

• EIP register. This 32-bit register contains the current instruction pointer.
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The general-purpose instructions operate on the following data types:

• Bytes, words, and doublewords (see Figure 4-1).

• Signed and unsigned byte, word, and double word integers (see Figure 4-3).

• Near and far pointers (see Figure 4-4).

• Bit fields (see Figure 4-5).

• BCD integers (see Figure 4-8).

7.2. SUMMARY OF THE GENERAL-PURPOSE INSTRUCTIONS

The general purpose instructions are divided into 11 groups:

• Data transfer

• Binary arithmetic

• Decimal arithmetic

• Logical

• Shift and rotate

• Bit and byte

• Control transfer

• String

• Flag control

• Segment register

• Miscellaneous

Figure 7-1.  Basic Execution Environment for General-Purpose Instructions

0

232 -1

Eight 32-Bit

Address Space

General-Purpose
Registers

EIP (Instruction Pointer Register)

EFLAGS Register

Six 16-bit

Segment
Registers

32 Bits

32-bits
7-2



PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS
7.2.1. Data Movement Instructions

The data movement instructions move bytes, words, doublewords, or quadwords both between
memory and the processor’s registers and between registers. These instructions are divided into
four subgroups:

• General data movement.

• Exchange.

• Stack manipulation.

• Type conversion.

7.2.1.1. GENERAL DATA MOVEMENT INSTRUCTIONS

Move instructions. The MOV (move) and CMOVcc (conditional move) instructions transfer
data between memory and registers or between registers.

The MOV instruction performs basic load data and store data operations between memory and
the processor’s registers and data movement operations between registers. It handles data trans-
fers along the paths listed in Table 7-1. (See “MOV—Move to/from Control Registers” and
“MOV—Move to/from Debug Registers” in Chapter 3 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2, for information on moving data to and from the control and
debug registers.) 

The MOV instruction cannot move data from one memory location to another or from one
segment register to another segment register. Memory-to-memory moves can be performed with
the MOVS (string move) instruction (see Section 7.2.8., “String Operations”). 

Conditional move instructions. The CMOVcc instructions are a group of instructions that
check the state of the status flags in the EFLAGS register and perform a move operation if the
flags are in a specified state (or condition). These instructions can be used to move a 16- or 32-
bit value from memory to a general-purpose register or from one general-purpose register to
another. The flag state being tested for each instruction is specified with a condition code (cc)
that is associated with the instruction. If the condition is not satisfied, a move is not performed
and execution continues with the instruction following the CMOVcc instruction.
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Table 7-4 shows the mnemonics for the CMOVcc instructions and the conditions being tested
for each instruction. The condition code mnemonics are appended to the letters “CMOV” to
form the mnemonics for the CMOVcc instructions. The instructions listed in Table 7-4 as pairs
(for example, CMOVA/CMOVNBE) are alternate names for the same instruction. The assem-
bler provides these alternate names to make it easier to read program listings.

The CMOVcc instructions are useful for optimizing small IF constructions. They also help elim-
inate branching overhead for IF statements and the possibility of branch mispredictions by the
processor. 

These conditional move instructions are supported only in the P6 family, Pentium 4, and Intel
Xeon processors. Software can check if the CMOVcc instructions are supported by checking the
processor’s feature information with the CPUID instruction (see “CPUID—CPU Identification”
in Chapter 3 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 2).

7.2.1.2. EXCHANGE INSTRUCTIONS 

The exchange instructions swap the contents of one or more operands and, in some cases,
performs additional operations such as asserting the LOCK signal or modifying flags in the
EFLAGS register.

The XCHG (exchange) instruction swaps the contents of two operands. This instruction takes
the place of three MOV instructions and does not require a temporary location to save the
contents of one operand location while the other is being loaded. When a memory operand is
used with the XCHG instruction, the processor’s LOCK signal is automatically asserted. This
instruction is thus useful for implementing semaphores or similar data structures for process
synchronization. (See “Bus Locking” in Chapter 7 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3, for more information on bus locking.) 

The BSWAP (byte swap) instruction reverses the byte order in a 32-bit register operand. Bit
positions 0 through 7 are exchanged with 24 through 31, and bit positions 8 through 15 are
exchanged with 16 through 23. Executing this instruction twice in a row leaves the register with

Table 7-1.  Move Instruction Operations

Type of Data Movement Source → Destination

From memory to a register Memory location → General-purpose register
Memory location → Segment register

From a register to memory General-purpose register → Memory location
Segment register → Memory location

Between registers General-purpose register → General-purpose register
General-purpose register → Segment register
Segment register → General-purpose register
General-purpose register → Control register
Control register → General-purpose register
General-purpose register → Debug register
Debug register → General-purpose register

Immediate data to a register Immediate → General-purpose register

Immediate data to memory Immediate → Memory location
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the same value as before. The BSWAP instruction is useful for converting between “big-endian”
and “little-endian” data formats. This instruction also speeds execution of decimal arithmetic.
(The XCHG instruction can be used to swap the bytes in a word.)

The XADD (exchange and add) instruction swaps two operands and then stores the sum of the
two operands in the destination operand. The status flags in the EFLAGS register indicate the
result of the addition. This instruction can be combined with the LOCK prefix (see
“LOCK—Assert LOCK# Signal Prefix” in Chapter 3 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2) in a multiprocessing system to allow multiple processors to
execute one DO loop.

The CMPXCHG (compare and exchange) and CMPXCHG8B (compare and exchange 8 bytes)
instructions are used to synchronize operations in systems that use multiple processors. The
CMPXCHG instruction requires three operands: a source operand in a register, another source
operand in the EAX register, and a destination operand. If the values contained in the destination
operand and the EAX register are equal, the destination operand is replaced with the value of
the other source operand (the value not in the EAX register). Otherwise, the original value of the
destination operand is loaded in the EAX register. The status flags in the EFLAGS register

Table 7-2.  Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description

Unsigned Conditional Moves

  CMOVA/CMOVNBE (CF or ZF)=0 Above/not below or equal

  CMOVAE/CMOVNB CF=0 Above or equal/not below

  CMOVNC CF=0 Not carry

  CMOVB/CMOVNAE CF=1 Below/not above or equal

  CMOVC CF=1 Carry

  CMOVBE/CMOVNA (CF or ZF)=1 Below or equal/not above

  CMOVE/CMOVZ ZF=1 Equal/zero

  CMOVNE/CMOVNZ ZF=0 Not equal/not zero

  CMOVP/CMOVPE PF=1 Parity/parity even

  CMOVNP/CMOVPO PF=0 Not parity/parity odd

Signed Conditional Moves

  CMOVGE/CMOVNL (SF xor OF)=0 Greater or equal/not less

  CMOVL/CMOVNGE (SF xor OF)=1 Less/not greater or equal

  CMOVLE/CMOVNG ((SF xor OF) or ZF)=1 Less or equal/not greater

  CMOVO OF=1 Overflow

  CMOVNO OF=0 Not overflow

  CMOVS SF=1 Sign (negative)

  CMOVNS SF=0 Not sign (non-negative)
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reflect the result that would have been obtained by subtracting the destination operand from the
value in the EAX register.

The CMPXCHG instruction is commonly used for testing and modifying semaphores. It checks
to see if a semaphore is free. If the semaphore is free it is marked allocated, otherwise it gets the
ID of the current owner. This is all done in one uninterruptible operation. In a single-processor
system, the CMPXCHG instruction eliminates the need to switch to protection level 0 (to disable
interrupts) before executing multiple instructions to test and modify a semaphore. 

For multiple processor systems, CMPXCHG can be combined with the LOCK prefix to perform
the compare and exchange operation atomically. (See “Locked Atomic Operations” in Chapter
7 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for more information
on atomic operations.)

The CMPXCHG8B instruction also requires three operands: a 64-bit value in EDX:EAX, a
64-bit value in ECX:EBX, and a destination operand in memory. The instruction compares the
64-bit value in the EDX:EAX registers with the destination operand. If they are equal, the 64-bit
value in the ECX:EBX register is stored in the destination operand. If the EDX:EAX register
and the destination are not equal, the destination is loaded in the EDX:EAX register. The
CMPXCHG8B instruction can be combined with the LOCK prefix to perform the operation
atomically.

7.2.1.3. STACK MANIPULATION INSTRUCTIONS

The PUSH, POP, PUSHA (push all registers), and POPA (pop all registers) instructions move
data to and from the stack. The PUSH instruction decrements the stack pointer (contained in the
ESP register), then copies the source operand to the top of stack (see Figure 7-2). It operates on
memory operands, immediate operands, and register operands (including segment registers).
The PUSH instruction is commonly used to place parameters on the stack before calling a proce-
dure. It can also be used to reserve space on the stack for temporary variables.

The PUSHA instruction saves the contents of the eight general-purpose registers on the stack
(see Figure 7-3). This instruction simplifies procedure calls by reducing the number of instruc-
tions required to save the contents of the general-purpose registers. The registers are pushed on
the stack in the following order: EAX, ECX, EDX, EBX, the initial value of ESP before EAX
was pushed, EBP, ESI, and EDI. 

Figure 7-2.  Operation of the PUSH Instruction
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The POP instruction copies the word or doubleword at the current top of stack (indicated by the
ESP register) to the location specified with the destination operand, and then increments the ESP
register to point to the new top of stack (see Figure 7-4). The destination operand may specify a
general-purpose register, a segment register, or a memory location. 

The POPA instruction reverses the effect of the PUSHA instruction. It pops the top eight words
or doublewords from the top of the stack into the general-purpose registers, except for the ESP
register (see Figure 7-5). If the operand-size attribute is 32, the doublewords on the stack are
transferred to the registers in the following order: EDI, ESI, EBP, ignore doubleword, EBX,
EDX, ECX, and EAX. The ESP register is restored by the action of popping the stack. If the
operand-size attribute is 16, the words on the stack are transferred to the registers in the
following order: DI, SI, BP, ignore word, BX, DX, CX, and AX.

Figure 7-3.  Operation of the PUSHA Instruction

Figure 7-4.  Operation of the POP Instruction
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7.2.1.4. TYPE CONVERSION INSTRUCTIONS

The type conversion instructions convert bytes into words, words into doublewords, and double-
words into quadwords. These instructions are especially useful for converting integers to larger
integer formats, because they perform sign extension (see Figure 7-6).

Two kinds of type conversion instructions are provided: simple conversion and move and
convert.

Simple conversion. The CBW (convert byte to word), CWDE (convert word to doubleword
extended), CWD (convert word to doubleword), and CDQ (convert doubleword to quadword)
instructions perform sign extension to double the size of the source operand.

The CBW instruction copies the sign (bit 7) of the byte in the AL register into every bit position
of the upper byte of the AX register. The CWDE instruction copies the sign (bit 15) of the word
in the AX register into every bit position of the high word of the EAX register.

Figure 7-5.  Operation of the POPA Instruction

Figure 7-6.  Sign Extension
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The CWD instruction copies the sign (bit 15) of the word in the AX register into every bit posi-
tion in the DX register. The CDQ instruction copies the sign (bit 31) of the doubleword in the
EAX register into every bit position in the EDX register. The CWD instruction can be used to
produce a doubleword dividend from a word before a word division, and the CDQ instruction
can be used to produce a quadword dividend from a doubleword before doubleword division.

Move with sign or zero extension. The MOVSX (move with sign extension) and MOVZX
(move with zero extension) instructions move the source operand into a register then perform
the sign extension.

The MOVSX instruction extends an 8-bit value to a 16-bit value or an 8- or 16-bit value to 32-bit
value by sign extending the source operand, as shown in Figure 7-6. The MOVZX instruction
extends an 8-bit value to a 16-bit value or an 8- or 16-bit value to 32-bit value by zero extending
the source operand.

7.2.2. Binary Arithmetic Instructions

The binary arithmetic instructions operate on 8-, 16-, and 32-bit numeric data encoded as signed
or unsigned binary integers. Operations include the add, subtract, multiply, and divide as well
as increment, decrement, compare, and change sign (negate). The binary arithmetic instructions
may also be used in algorithms that operate on decimal (BCD) values. 

7.2.2.1. ADDITION AND SUBTRACTION INSTRUCTIONS

The ADD (add integers), ADC (add integers with carry), SUB (subtract integers), and SBB
(subtract integers with borrow) instructions perform addition and subtraction operations on
signed or unsigned integer operands.

The ADD instruction computes the sum of two integer operands. 

The ADC instruction computes the sum of two integer operands, plus 1 if the CF flag is set. This
instruction is used to propagate a carry when adding numbers in stages. 

The SUB instruction computes the difference of two integer operands. 

The SBB instruction computes the difference of two integer operands, minus 1 if the CF flag is
set. This instruction is used to propagate a borrow when subtracting numbers in stages.

7.2.2.2. INCREMENT AND DECREMENT INSTRUCTIONS

The INC (increment) and DEC (decrement) instructions add 1 to or subtract 1 from an unsigned
integer operand, respectively. A primary use of these instructions is for implementing counters.
7-9



PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS
7.2.2.3. COMPARISON AND SIGN CHANGE INSTRUCTION

The CMP (compare) instruction computes the difference between two integer operands and
updates the OF, SF, ZF, AF, PF, and CF flags according to the result. The source operands are
not modified, nor is the result saved. The CMP instruction is commonly used in conjunction with
a Jcc (jump) or SETcc (byte set on condition) instruction, with the latter instructions performing
an action based on the result of a CMP instruction.

The NEG (negate) instruction subtracts a signed integer operand from zero. The effect of the
NEG instruction is to change the sign of a two’s complement operand while keeping its
magnitude.

7.2.2.4. MULTIPLICATION AND DIVIDE INSTRUCTIONS

The processor provides two multiply instructions, MUL (unsigned multiply) and IMUL signed
multiply), and two divide instructions, DIV (unsigned divide) and IDIV (signed divide).

The MUL instruction multiplies two unsigned integer operands. The result is computed to twice
the size of the source operands (for example, if word operands are being multiplied, the result is
a doubleword).

The IMUL instruction multiplies two signed integer operands. The result is computed to twice
the size of the source operands; however, in some cases the result is truncated to the size of the
source operands (see “IMUL—Signed Multiply” in Chapter 3 of the IA-32 Intel Architecture
Software Developer’s Manual, Volume 2).

The DIV instruction divides one unsigned operand by another unsigned operand and returns a
quotient and a remainder.

The IDIV instruction is identical to the DIV instruction, except that IDIV performs a signed
division.

7.2.3. Decimal Arithmetic Instructions

Decimal arithmetic can be performed by combining the binary arithmetic instructions ADD,
SUB, MUL, and DIV (discussed in Section 7.2.2., “Binary Arithmetic Instructions”) with the
decimal arithmetic instructions. The decimal arithmetic instructions are provided to carry out
the following operations:

• To adjust the results of a previous binary arithmetic operation to produce a valid BCD
result.

• To adjust the operands of a subsequent binary arithmetic operation so that the operation
will produce a valid BCD result. 

These instructions operate only on both packed and unpacked BCD values.
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7.2.3.1. PACKED BCD ADJUSTMENT INSTRUCTIONS

The DAA (decimal adjust after addition) and DAS (decimal adjust after subtraction) instructions
adjust the results of operations performed on packed BCD integers (see Section 4.7., “BCD
and Packed BCD Integers”). Adding two packed BCD values requires two instructions: an ADD
instruction followed by a DAA instruction. The ADD instruction adds (binary addition) the two
values and stores the result in the AL register. The DAA instruction then adjusts the value in the
AL register to obtain a valid, 2-digit, packed BCD value and sets the CF flag if a decimal carry
occurred as the result of the addition.

Likewise, subtracting one packed BCD value from another requires a SUB instruction followed
by a DAS instruction. The SUB instruction subtracts (binary subtraction) one BCD value from
another and stores the result in the AL register. The DAS instruction then adjusts the value in
the AL register to obtain a valid, 2-digit, packed BCD value and sets the CF flag if a decimal
borrow occurred as the result of the subtraction. 

7.2.3.2. UNPACKED BCD ADJUSTMENT INSTRUCTIONS

The AAA (ASCII adjust after addition), AAS (ASCII adjust after subtraction), AAM (ASCII
adjust after multiplication), and AAD (ASCII adjust before division) instructions adjust the
results of arithmetic operations performed in unpacked BCD values (see Section 4.7., “BCD
and Packed BCD Integers”). All these instructions assume that the value to be adjusted is stored
in the AL register or, in one instance, the AL and AH registers. 

The AAA instruction adjusts the contents of the AL register following the addition of two
unpacked BCD values. It converts the binary value in the AL register into a decimal value and
stores the result in the AL register in unpacked BCD format (the decimal number is stored in the
lower 4 bits of the register and the upper 4 bits are cleared). If a decimal carry occurred as a result
of the addition, the CF flag is set and the contents of the AH register are incremented by 1.

The AAS instruction adjusts the contents of the AL register following the subtraction of two
unpacked BCD values. Here again, a binary value is converted into an unpacked BCD value. If
a borrow was required to complete the decimal subtract, the CF flag is set and the contents of
the AH register are decremented by 1.

The AAM instruction adjusts the contents of the AL register following a multiplication of two
unpacked BCD values. It converts the binary value in the AL register into a decimal value and
stores the least significant digit of the result in the AL register (in unpacked BCD format) and
the most significant digit, if there is one, in the AH register (also in unpacked BCD format).

The AAD instruction adjusts a two-digit BCD value so that when the value is divided with the
DIV instruction, a valid unpacked BCD result is obtained. The instruction converts the BCD
value in registers AH (most significant digit) and AL (least significant digit) into a binary value
and stores the result in register AL. When the value in AL is divided by an unpacked BCD value,
the quotient and remainder will be automatically encoded in unpacked BCD format.
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7.2.4. Logical Instructions

The logical instructions AND, OR, XOR (exclusive or), and NOT perform the standard Boolean
operations for which they are named. The AND, OR, and XOR instructions require two oper-
ands; the NOT instruction operates on a single operand.

7.2.5. Shift and Rotate Instructions

The shift and rotate instructions rearrange the bits within an operand. These instructions fall into
the following classes:

• Shift.

• Double shift.

• Rotate.

7.2.5.1. SHIFT INSTRUCTIONS

The SAL (shift arithmetic left), SHL (shift logical left), SAR (shift arithmetic right), SHR (shift
logical right) instructions perform an arithmetic or logical shift of the bits in a byte, word, or
doubleword. 

The SAL and SHL instructions perform the same operation (see Figure 7-7). They shift the
source operand left by from 1 to 31 bit positions. Empty bit positions are cleared. The CF flag
is loaded with the last bit shifted out of the operand.
.

The SHR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure 7-8).
As with the SHL/SAL instruction, the empty bit positions are cleared and the CF flag is loaded
with the last bit shifted out of the operand.

Figure 7-7.  SHL/SAL Instruction Operation
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The SAR instruction shifts the source operand right by from 1 to 31 bit positions (see Figure 7-9).
This instruction differs from the SHR instruction in that it preserves the sign of the source
operand by clearing empty bit positions if the operand is positive or setting the empty bits if the
operand is negative. Again, the CF flag is loaded with the last bit shifted out of the operand.

The SAR and SHR instructions can also be used to perform division by powers of 2 (see
“SAL/SAR/SHL/SHR—Shift Instructions” in Chapter 3 of the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 2).

Figure 7-8.  SHR Instruction Operation

Figure 7-9.  SAR Instruction Operation
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7.2.5.2. DOUBLE-SHIFT INSTRUCTIONS

The SHLD (shift left double) and SHRD (shift right double) instructions shift a specified
number of bits from one operand to another (see Figure 7-10). They are provided to facilitate
operations on unaligned bit strings. They can also be used to implement a variety of bit string
move operations. 

The SHLD instruction shifts the bits in the destination operand to the left and fills the empty bit
positions (in the destination operand) with bits shifted out of the source operand. The destination
and source operands must be the same length (either words or doublewords). The shift count can
range from 0 to 31 bits. The result of this shift operation is stored in the destination operand, and
the source operand is not modified. The CF flag is loaded with the last bit shifted out of the desti-
nation operand.

The SHRD instruction operates the same as the SHLD instruction except bits are shifted to the
left in the destination operand, with the empty bit positions filled with bits shifted out of the
source operand.

7.2.5.3. ROTATE INSTRUCTIONS

The ROL (rotate left), ROR (rotate right), RCL (rotate through carry left) and RCR (rotate
through carry right) instructions rotate the bits in the destination operand out of one end and
back through the other end (see Figure 7-11). Unlike a shift, no bits are lost during a rotation.
The rotate count can range from 0 to 31.

Figure 7-10.  SHLD and SHRD Instruction Operations
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The ROL instruction rotates the bits in the operand to the left (toward more significant bit loca-
tions). The ROR instruction rotates the operand right (toward less significant bit locations).

The RCL instruction rotates the bits in the operand to the left, through the CF flag). This instruc-
tion treats the CF flag as a one-bit extension on the upper end of the operand. Each bit which
exits from the most significant bit location of the operand moves into the CF flag. At the same
time, the bit in the CF flag enters the least significant bit location of the operand.

The RCR instruction rotates the bits in the operand to the right through the CF flag. 

For all the rotate instructions, the CF flag always contains the value of the last bit rotated out of
the operand, even if the instruction does not use the CF flag as an extension of the operand. The
value of this flag can then be tested by a conditional jump instruction (JC or JNC).

Figure 7-11.  ROL, ROR, RCL, and RCR Instruction Operations
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7.2.6. Bit and Byte Instructions

The bit and byte instructions operate on bit or byte strings. They are divided into four groups:

• Bit test and modify instructions.

• Bit scan instructions.

• Byte set on condition.

• Test.

7.2.6.1. BIT TEST AND MODIFY INSTRUCTIONS

The bit test and modify instructions (see Table 7-3) operate on a single bit, which can be in an
operand. The location of the bit is specified as an offset from the least significant bit of the
operand. When the processor identifies the bit to be tested and modified, it first loads the CF flag
with the current value of the bit. Then it assigns a new value to the selected bit, as determined
by the modify operation for the instruction. 

7.2.6.2. BIT SCAN INSTRUCTIONS

The BSF (bit scan forward) and BSR (bit scan reverse) instructions scan a bit string in a source
operand for a set bit and store the bit index of the first set bit found in a destination register. The
bit index is the offset from the least significant bit (bit 0) in the bit string to the first set bit. The
BSF instruction scans the source operand low-to-high (from bit 0 of the source operand toward
the most significant bit); the BSR instruction scans high-to-low (from the most significant bit
toward the least significant bit).

7.2.6.3. BYTE SET ON CONDITION INSTRUCTIONS

The SETcc (set byte on condition) instructions set a destination-operand byte to 0 or 1,
depending on the state of selected status flags (CF, OF, SF, ZF, and PF) in the EFLAGS register.
The suffix (cc) added to the SET mnemonic determines the condition being tested for. 

Table 7-3.  Bit Test and Modify Instructions

Instruction Effect on CF Flag Effect on Selected Bit

BT (Bit Test) CF flag ← Selected Bit No effect

BTS (Bit Test and Set) CF flag ← Selected Bit Selected Bit ← 1

BTR (Bit Test and Reset) CF flag ← Selected Bit Selected Bit ← 0

BTC (Bit Test and Complement) CF flag ← Selected Bit Selected Bit ← NOT (Selected Bit)
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For example, the SETO instruction tests for overflow. If the OF flag is set, the destination byte
is set to 1; if OF is clear, the destination byte is cleared to 0. Appendix B, EFLAGS Condition
Codes lists the conditions it is possible to test for with this instruction.

7.2.6.4. TEST INSTRUCTION

The TEST instruction performs a logical AND of two operands and sets the SF, ZF, and PF flags
according to the results. The flags can then be tested by the conditional jump or loop instructions
or the SETcc instructions. The TEST instruction differs from the AND instruction in that it does
not alter either of the operands.

7.2.7. Control Transfer Instructions

The processor provides both conditional and unconditional control transfer instructions to direct
the flow of program execution. Conditional transfers are taken only for specified states of the
status flags in the EFLAGS register. Unconditional control transfers are always executed.

7.2.7.1. UNCONDITIONAL TRANSFER INSTRUCTIONS

The JMP, CALL, RET, INT, and IRET instructions transfer program control to another location
(destination address) in the instruction stream. The destination can be within the same code
segment (near transfer) or in a different code segment (far transfer).

Jump instruction. The JMP (jump) instruction unconditionally transfers program control to a
destination instruction. The transfer is one-way; that is, a return address is not saved. A destina-
tion operand specifies the address (the instruction pointer) of the destination instruction. The
address can be a relative address or an absolute address.

A relative address is a displacement (offset) with respect to the address in the EIP register. The
destination address (a near pointer) is formed by adding the displacement to the address in the
EIP register. The displacement is specified with a signed integer, allowing jumps either forward
or backward in the instruction stream.

An absolute address is a offset from address 0 of a segment. It can be specified in either of the
following ways:

• An address in a general-purpose register. This address is treated as a near pointer, which
is copied into the EIP register. Program execution then continues at the new address within
the current code segment.

• An address specified using the standard addressing modes of the processor. Here, the
address can be a near pointer or a far pointer. If the address is for a near pointer, the address
is translated into an offset and copied into the EIP register. If the address is for a far pointer,
the address is translated into a segment selector (which is copied into the CS register) and
an offset (which is copied into the EIP register).

In protected mode, the JMP instruction also allows jumps to a call gate, a task gate, and a task-
state segment.
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Call and return instructions. The CALL (call procedure) and RET (return from procedure)
instructions allow a jump from one procedure (or subroutine) to another and a subsequent jump
back (return) to the calling procedure.

The CALL instruction transfers program control from the current (or calling procedure) to
another procedure (the called procedure). To allow a subsequent return to the calling procedure,
the CALL instruction saves the current contents of the EIP register on the stack before jumping
to the called procedure. The EIP register (prior to transferring program control) contains the
address of the instruction following the CALL instruction. When this address is pushed on the
stack, it is referred to as the return instruction pointer or return address.

The address of the called procedure (the address of the first instruction in the procedure being
jumped to) is specified in a CALL instruction the same way as it is in a JMP instruction (see
“Jump instruction” on page 7-17.) The address can be specified as a relative address or an abso-
lute address. If an absolute address is specified, it can be either a near or a far pointer.

The RET instruction transfers program control from the procedure currently being executed (the
called procedure) back to the procedure that called it (the calling procedure). Transfer of control
is accomplished by copying the return instruction pointer from the stack into the EIP register.
Program execution then continues with the instruction pointed to by the EIP register.

The RET instruction has an optional operand, the value of which is added to the contents of the
ESP register as part of the return operation. This operand allows the stack pointer to be incre-
mented to remove parameters from the stack that were pushed on the stack by the calling
procedure.

See Section 6.3., “Calling Procedures Using CALL and RET”, for more information on the
mechanics of making procedure calls with the CALL and RET instructions.

Return from interrupt instruction. When the processor services an interrupt, it performs an
implicit call to an interrupt-handling procedure. The IRET (return from interrupt) instruction
returns program control from an interrupt handler to the interrupted procedure (that is, the proce-
dure that was executing when the interrupt occurred). The IRET instruction performs a similar
operation to the RET instruction (see “Call and return instructions” on page 7-18) except that it
also restores the EFLAGS register from the stack. The contents of the EFLAGS register are
automatically stored on the stack along with the return instruction pointer when the processor
services an interrupt.

7.2.7.2. CONDITIONAL TRANSFER INSTRUCTIONS

The conditional transfer instructions execute jumps or loops that transfer program control to
another instruction in the instruction stream if specified conditions are met. The conditions for
control transfer are specified with a set of condition codes that define various states of the status
flags (CF, ZF, OF, PF, and SF) in the EFLAGS register.

Conditional jump instructions. The Jcc (conditional) jump instructions transfer program
control to a destination instruction if the conditions specified with the condition code (cc) asso-
ciated with the instruction are satisfied (see Table 7-4). If the condition is not satisfied, execution
continues with the instruction following the Jcc instruction. As with the JMP instruction, the
transfer is one-way; that is, a return address is not saved.
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The destination operand specifies a relative address (a signed offset with respect to the address
in the EIP register) that points to an instruction in the current code segment. The Jcc instructions
do not support far transfers; however, far transfers can be accomplished with a combination of
a Jcc and a JMP instruction (see “Jcc—Jump if Condition Is Met” in Chapter 3 of the IA-32 Intel
Architecture Software Developer’s Manual, Volume 2).

Table 7-4 shows the mnemonics for the Jcc instructions and the conditions being tested for each
instruction. The condition code mnemonics are appended to the letter “J” to form the mnemonic
for a Jcc instruction. 

The instructions are divided into two groups: unsigned and signed conditional jumps. These
groups correspond to the results of operations performed on unsigned and signed integers,
respectively. Those instructions listed as pairs (for example, JA/JNBE) are alternate names for
the same instruction. The assembler provides these alternate names to make it easier to read
program listings.

Table 7-4.  Conditional Jump Instructions

Instruction Mnemonic Condition (Flag States) Description

Unsigned Conditional Jumps

  JA/JNBE (CF or ZF)=0 Above/not below or equal

  JAE/JNB CF=0 Above or equal/not below

  JB/JNAE CF=1 Below/not above or equal

  JBE/JNA (CF or ZF)=1 Below or equal/not above

  JC CF=1 Carry

  JE/JZ ZF=1 Equal/zero

  JNC CF=0 Not carry

  JNE/JNZ ZF=0 Not equal/not zero

  JNP/JPO PF=0 Not parity/parity odd

  JP/JPE PF=1 Parity/parity even

  JCXZ CX=0 Register CX is zero

  JECXZ ECX=0 Register ECX is zero

Signed Conditional Jumps

  JG/JNLE ((SF xor OF) or ZF) =0 Greater/not less or equal

  JGE/JNL (SF xor OF)=0 Greater or equal/not less

  JL/JNGE (SF xor OF)=1 Less/not greater or equal

  JLE/JNG ((SF xor OF) or ZF)=1 Less or equal/not greater

  JNO OF=0 Not overflow

  JNS SF=0 Not sign (non-negative)

  JO OF=1 Overflow

  JS SF=1 Sign (negative)
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The JCXZ and JECXZ instructions test the CX and ECX registers, respectively, instead of one
or more status flags. See “Jump if zero instructions” on page 7-20 for more information about
these instructions.

Loop instructions. The LOOP, LOOPE (loop while equal), LOOPZ (loop while zero),
LOOPNE (loop while not equal), and LOOPNZ (loop while not zero) instructions are condi-
tional jump instructions that use the value of the ECX register as a count for the number of times
to execute a loop. All the loop instructions decrement the count in the ECX register each time
they are executed and terminate a loop when zero is reached. The LOOPE, LOOPZ, LOOPNE,
and LOOPNZ instructions also accept the ZF flag as a condition for terminating the loop before
the count reaches zero.

The LOOP instruction decrements the contents of the ECX register (or the CX register, if the
address-size attribute is 16), then tests the register for the loop-termination condition. If the
count in the ECX register is non-zero, program control is transferred to the instruction address
specified by the destination operand. The destination operand is a relative address (that is, an
offset relative to the contents of the EIP register), and it generally points to the first instruction
in the block of code that is to be executed in the loop. When the count in the ECX register
reaches zero, program control is transferred to the instruction immediately following the
LOOP instruction, which terminates the loop. If the count in the ECX register is zero when the
LOOP instruction is first executed, the register is pre-decremented to FFFFFFFFH, causing the
loop to be executed 232 times.

The LOOPE and LOOPZ instructions perform the same operation (they are mnemonics for the
same instruction). These instructions operate the same as the LOOP instruction, except that they
also test the ZF flag. 

If the count in the ECX register is not zero and the ZF flag is set, program control is transferred
to the destination operand. When the count reaches zero or the ZF flag is clear, the loop is termi-
nated by transferring program control to the instruction immediately following the
LOOPE/LOOPZ instruction.

The LOOPNE and LOOPNZ instructions (mnemonics for the same instruction) operate the
same as the LOOPE/LOOPPZ instructions, except that they terminate the loop if the ZF flag is
set. 

Jump if zero instructions. The JECXZ (jump if ECX zero) instruction jumps to the location
specified in the destination operand if the ECX register contains the value zero. This instruction
can be used in combination with a loop instruction (LOOP, LOOPE, LOOPZ, LOOPNE, or
LOOPNZ) to test the ECX register prior to beginning a loop. As described in “Loop instructions
on page 7-20, the loop instructions decrement the contents of the ECX register before testing for
zero. If the value in the ECX register is zero initially, it will be decremented to FFFFFFFFH on
the first loop instruction, causing the loop to be executed 232 times. To prevent this problem, a
JECXZ instruction can be inserted at the beginning of the code block for the loop, causing a
jump out the loop if the EAX register count is initially zero. When used with repeated string scan
and compare instructions, the JECXZ instruction can determine whether the loop terminated
because the count reached zero or because the scan or compare conditions were satisfied.

The JCXZ (jump if CX is zero) instruction operates the same as the JECXZ instruction when the
16-bit address-size attribute is used. Here, the CX register is tested for zero.
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7.2.7.3. SOFTWARE INTERRUPTS

The INT n (software interrupt), INTO (interrupt on overflow), and BOUND (detect value out of
range) instructions allow a program to explicitly raise a specified interrupt or exception, which
in turn causes the handler routine for the interrupt or exception to be called.

The INT n instruction can raise any of the processor’s interrupts or exceptions by encoding the
vector number or the interrupt or exception in the instruction. This instruction can be used to
support software generated interrupts or to test the operation of interrupt and exception handlers

The IRET (return from interrupt) instruction returns program control from an interrupt handler
to the interrupted procedure. The IRET instruction performs a similar operation to the RET
instruction. 

The CALL (call procedure) and RET (return from procedure) instructions allow a jump from
one procedure to another and a subsequent return to the calling procedure. EFLAGS register
contents are automatically stored on the stack along with the return instruction pointer when the
processor services an interrupt.

The INTO instruction raises the overflow exception, if the OF flag is set. If the flag is clear,
execution continues without raising the exception. This instruction allows software to access the
overflow exception handler explicitly to check for overflow conditions.

The BOUND instruction compares a signed value against upper and lower bounds, and raises
the “BOUND range exceeded” exception if the value is less than the lower bound or greater than
the upper bound. This instruction is useful for operations such as checking an array index to
make sure it falls within the range defined for the array.

7.2.8. String Operations

The MOVS (Move String), CMPS (Compare string), SCAS (Scan string), LODS (Load string),
and STOS (Store string) instructions permit large data structures, such as alphanumeric char-
acter strings, to be moved and examined in memory. These instructions operate on individual
elements in a string, which can be a byte, word, or doubleword. The string elements to be oper-
ated on are identified with the ESI (source string element) and EDI (destination string element)
registers. Both of these registers contain absolute addresses (offsets into a segment) that point to
a string element. 

By default, the ESI register addresses the segment identified with the DS segment register. A
segment-override prefix allows the ESI register to be associated with the CS, SS, ES, FS, or GS
segment register. The EDI register addresses the segment identified with the ES segment
register; no segment override is allowed for the EDI register. The use of two different segment
registers in the string instructions permits operations to be performed on strings located in
different segments. Or by associating the ESI register with the ES segment register, both the
source and destination strings can be located in the same segment. (This latter condition can also
be achieved by loading the DS and ES segment registers with the same segment selector and
allowing the ESI register to default to the DS register.)
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The MOVS instruction moves the string element addressed by the ESI register to the location
addressed by the EDI register. The assembler recognizes three “short forms” of this instruction,
which specify the size of the string to be moved: MOVSB (move byte string), MOVSW (move
word string), and MOVSD (move doubleword string).

The CMPS instruction subtracts the destination string element from the source string element
and updates the status flags (CF, ZF, OF, SF, PF, and AF) in the EFLAGS register according to
the results. Neither string element is written back to memory. The assembler recognizes three
“short forms” of the CMPS instruction: CMPSB (compare byte strings), CMPSW (compare
word strings), and CMPSD (compare doubleword strings).

The SCAS instruction subtracts the destination string element from the contents of the EAX,
AX, or AL register (depending on operand length) and updates the status flags according to the
results. The string element and register contents are not modified. The following “short forms”
of the SCAS instruction specifies the operand length: SCASB (scan byte string), SCASW (scan
word string), and SCASD (scan doubleword string).

The LODS instruction loads the source string element identified by the ESI register into the
EAX register (for a doubleword string), the AX register (for a word string), or the AL register
(for a byte string). The “short forms” for this instruction are LODSB (load byte string), LODSW
(load word string), and LODSD (load doubleword string). This instruction is usually used in a
loop, where other instructions process each element of the string after they are loaded into the
target register.

The STOS instruction stores the source string element from the EAX (doubleword string), AX
(word string), or AL (byte string) register into the memory location identified with the EDI
register. The “short forms” for this instruction are STOSB (store byte string), STOSW (store
word string), and STOSD (store doubleword string). This instruction is also normally used in a
loop. Here a string is commonly loaded into the register with a LODS instruction, operated
on by other instructions, and then stored again in memory with a STOS instruction.

The I/O instructions (see Section 7.2.9., “I/O Instructions”) also perform operations on strings
in memory.

7.2.8.1. REPEATING STRING OPERATIONS

The string instructions described in Section 7.2.8., “String Operations” perform one iteration of
a string operation. To operate strings longer than a doubleword, the string instructions can be
combined with a repeat prefix (REP) to create a repeating instruction or be placed in a loop.

When used in string instructions, the ESI and EDI registers are automatically incremented or
decremented after each iteration of an instruction to point to the next element (byte, word, or
doubleword) in the string. String operations can thus begin at higher addresses and work toward
lower ones, or they can begin at lower addresses and work toward higher ones. The DF flag in
the EFLAGS register controls whether the registers are incremented (DF=0) or decremented
(DF=1). The STD and CLD instructions set and clear this flag, respectively.
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The following repeat prefixes can be used in conjunction with a count in the ECX register to
cause a string instruction to repeat:

• REP—Repeat while the ECX register not zero.

• REPE/REPZ—Repeat while the ECX register not zero and the ZF flag is set.

• REPNE/REPNZ—Repeat while the ECX register not zero and the ZF flag is clear.

When a string instruction has a repeat prefix, the operation executes until one of the termination
conditions specified by the prefix is satisfied. The REPE/REPZ and REPNE/REPNZ prefixes
are used only with the CMPS and SCAS instructions. Also, note that a A REP STOS instruction
is the fastest way to initialize a large block of memory.

7.2.9. I/O Instructions

The IN (input from port to register), INS (input from port to string), OUT (output from register
to port), and OUTS (output string to port) instructions move data between the processor’s I/O
ports and either a register or memory.

The register I/O instructions (IN and OUT) move data between an I/O port and the EAX register
(32-bit I/O), the AX register (16-bit I/O), or the AL (8-bit I/O) register. The I/O port being read
or written to is specified with an immediate operand or an address in the DX register. 

The block I/O instructions (INS and OUTS) instructions move blocks of data (strings) between
an I/O port and memory. These instructions operate similar to the string instructions (see Section
7.2.8., “String Operations”). The ESI and EDI registers are used to specify string elements in
memory and the repeat prefixes (REP) are used to repeat the instructions to implement block
moves. The assembler recognizes the following alternate mnemonics for these instructions:
INSB (input byte), INSW (input word), and INSD (input doubleword), and OUTB (output byte),
OUTW (output word), and OUTD (output doubleword).

The INS and OUTS instructions use an address in the DX register to specify the I/O port to be
read or written to.

7.2.10. Enter and Leave Instructions

The ENTER and LEAVE instructions provide machine-language support for procedure calls in
block-structured languages, such as C and Pascal. These instructions and the call and return
mechanism that they support are described in detail in Section 6.5., “Procedure Calls for Block-
Structured Languages”.

7.2.11. EFLAGS Instructions

The EFLAGS instructions allow the state of selected flags in the EFLAGS register to be read or
modified.
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7.2.11.1. CARRY AND DIRECTION FLAG INSTRUCTIONS

The STC (set carry flag), CLC (clear carry flag), and CMC (complement carry flag) instructions
allow the CF flags in the EFLAGS register to be modified directly. They are typically used to
initialize the CF flag to a known state before an instruction that uses the flag in an operation is
executed. They are also used in conjunction with the rotate-with-carry instructions (RCL and
RCR).

The STD (set direction flag) and CLD (clear direction flag) instructions allow the DF flag in the
EFLAGS register to be modified directly. The DF flag determines the direction in which index
registers ESI and EDI are stepped when executing string processing instructions. If the DF flag
is clear, the index registers are incremented after each iteration of a string instruction; if the DF
flag is set, the registers are decremented.

7.2.11.2. INTERRUPT FLAG INSTRUCTIONS

The STI (set interrupt flag) and CTI (clear interrupt flag) instructions allow the interrupt IF flag
in the EFLAGS register to be modified directly. The IF flag controls the servicing of hardware-
generated interrupts (those received at the processor’s INTR pin). If the IF flag is set, the
processor services hardware interrupts; if the IF flag is clear, hardware interrupts are masked.

7.2.11.3. EFLAGS TRANSFER INSTRUCTIONS

The EFLAGS transfer instructions allow groups of flags in the EFLAGS register to be copied
to a register or memory or be loaded from a register or memory. 

The LAHF (load AH from flags) and SAHF (store AH into flags) instructions operate on five of
the EFLAGS status flags (SF, ZF, AF, PF, and CF). The LAHF instruction copies the status flags
to bits 7, 6, 4, 2, and 0 of the AH register, respectively. The contents of the remaining bits in the
register (bits 5, 3, and 1) are undefined, and the contents of the EFLAGS register remain
unchanged. The SAHF instruction copies bits 7, 6, 4, 2, and 0 from the AH register into the SF,
ZF, AF, PF, and CF flags, respectively in the EFLAGS register.

The PUSHF (push flags), PUSHFD (push flags double), POPF (pop flags), and POPFD (pop flags
double) instructions copy the flags in the EFLAGS register to and from the stack. The PUSHF
instruction pushes the lower word of the EFLAGS register onto the stack (see Figure 7-12). The
PUSHFD instruction pushes the entire EFLAGS register onto the stack (with the RF and VM flags
read as clear).
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The POPF instruction pops a word from the stack into the EFLAGS register. Only bits 11, 10,
8, 7, 6, 4, 2, and 0 of the EFLAGS register are affected with all uses of this instruction. If the
current privilege level (CPL) of the current code segment is 0 (most privileged), the IOPL bits
(bits 13 and 12) also are affected. If the I/O privilege level (IOPL) is greater than or equal to the
CPL, numerically, the IF flag (bit 9) also is affected. 

The POPFD instruction pops a doubleword into the EFLAGS register. This instruction can
change the state of the AC bit (bit 18) and the ID bit (bit 21), as well as the bits affected by a
POPF instruction. The restrictions for changing the IOPL bits and the IF flag that were given for
the POPF instruction also apply to the POPFD instruction.

7.2.11.4. INTERRUPT FLAG INSTRUCTIONS

The CLI (clear interrupt flag) and STI (set interrupt flag) instructions clear and set the interrupt
flag (IF) in the EFLAGS register, respectively. Clearing the IF flag causes external interrupts to
be ignored. The ability to execute these instructions depends on the operating mode of the
processor and the current privilege level (CPL) of the program or task attempting to execute
these instructions.

7.2.12. Segment Register Instructions

The processor provides a variety of instructions that address the segment registers of the
processor directly. These instructions are only used when an operating system or executive is
using the segmented or the real-address mode memory model.

7.2.12.1. SEGMENT-REGISTER LOAD AND STORE INSTRUCTIONS

The MOV instruction (introduced in Section 7.2.1.1., “General Data Movement Instructions”)
and the PUSH and POP instructions (introduced in Section 7.2.1.3., “Stack Manipulation
Instructions”) can transfer 16-bit segment selectors to and from segment registers (DS, ES, FS,
GS, and SS). The transfers are always made to or from a segment register and a general-purpose
register or memory. Transfers between segment registers are not supported.

Figure 7-12.  Flags Affected by the PUSHF, POPF, PUSHFD, and POPFD Instructions
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The POP and MOV instructions cannot place a value in the CS register. Only the far control-
transfer versions of the JMP, CALL, and RET instructions (see Section 7.2.12.2., “Far Control
Transfer Instructions”) affect the CS register directly. 

7.2.12.2. FAR CONTROL TRANSFER INSTRUCTIONS

The JMP and CALL instructions (see Section 7.2.7., “Control Transfer Instructions”) both
accept a far pointer as a source operand to transfer program control to a segment other than the
segment currently being pointed to by the CS register. When a far call is made with the CALL
instruction, the current values of the EIP and CS registers are both pushed on the stack.

The RET instruction (see “Call and return instructions” on page 7-18) can be used to execute a
far return. Here, program control is transferred from a code segment that contains a called proce-
dure back to the code segment that contained the calling procedure. The RET instruction restores
the values of the CS and EIP registers for the calling procedure from the stack.

7.2.12.3. SOFTWARE INTERRUPT INSTRUCTIONS

The software interrupt instructions INT, INTO, BOUND, and IRET (see Section 7.2.7.3., “Soft-
ware Interrupts”) can also call and return from interrupt and exception handler procedures that
are located in a code segment other than the current code segment. With these instructions,
however, the switching of code segments is handled transparently from the application program.

7.2.12.4. LOAD FAR POINTER INSTRUCTIONS

The load far pointer instructions LDS (load far pointer using DS), LES (load far pointer using
ES), LFS (load far pointer using FS), LGS (load far pointer using GS), and LSS (load far pointer
using SS) load a far pointer from memory into a segment register and a general-purpose general
register. The segment selector part of the far pointer is loaded into the selected segment register
and the offset is loaded into the selected general-purpose register.

7.2.13. Miscellaneous Instructions

The following instructions perform miscellaneous operations that are of interest to applications
programmers.

7.2.13.1. ADDRESS COMPUTATION INSTRUCTION

The LEA (load effective address) instruction computes the effective address in memory (offset
within a segment) of a source operand and places it in a general-purpose register. This instruction
can interpret any of the processor’s addressing modes and can perform any indexing or scaling
that may be needed. It is especially useful for initializing the ESI or EDI registers before the
execution of string instructions or for initializing the EBX register before an XLAT instruction. 
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7.2.13.2. TABLE LOOKUP INSTRUCTIONS

The XLAT and XLATB (table lookup) instructions replace the contents of the AL register with
a byte read from a translation table in memory. The initial value in the AL register is interpreted
as an unsigned index into the translation table. This index is added to the contents of the EBX
register (which contains the base address of the table) to calculate the address of the table entry.
These instructions are used for applications such as converting character codes from one
alphabet into another (for example, an ASCII code could be used to look up its EBCDIC equiv-
alent in a table).

7.2.13.3. PROCESSOR IDENTIFICATION INSTRUCTION

The CPUID (processor identification) instruction returns information about the processor on
which the instruction is executed. 

7.2.13.4. NO-OPERATION AND UNDEFINED INSTRUCTIONS

The NOP (no operation) instruction increments the EIP register to point at the next instruction,
but affects nothing else.

The UD2 (undefined) instruction generates an invalid opcode exception. Intel reserves the
opcode for this instruction for this function. The instruction is provided to allow software to test
an invalid opcode exception handler.
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CHAPTER 8
PROGRAMMING WITH THE X87 FPU

The x87 Floating-Point Unit (FPU) provides high-performance floating-point processing capa-
bilities for use in graphics processing, scientific, engineering, and business applications. It
supports the floating-point, integer, and packed BCD integer data types and the floating-point
processing algorithms and exception handling architecture defined in the IEEE Standard 754 for
Binary Floating-Point Arithmetic.

This chapter describes the x87 FPU’s execution environment and instruction set. It also provides
exception handling information that is specific to the x87 FPU. Refer to the following chapters
or sections of chapters for additional information about x87 FPU instructions and floating-point
operations:

• Chapter 3, Instruction Set Reference, in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2 provides detailed descriptions of the x87 FPU instructions.

• Section 4.2.2., “Floating-Point Data Types”, Section 4.2.1.2., “Signed Integers”, and
Section 4.7., “BCD and Packed BCD Integers” describes the floating-point, integer, and
BCD data types that the x87 FPU operates on.

• Section 4.9., “Overview of Floating-Point Exceptions”, Section 4.9.1., “Floating-Point
Exception Conditions”, and Section 4.9.2., “Floating-Point Exception Priority” give an
overview of the floating-point exceptions that the x87 FPU can detect and report.

8.1. X87 FPU EXECUTION ENVIRONMENT

The x87 FPU represents a separate execution environment within the IA-32 architecture (see
Figure 8-1). This execution environment consists of 8 data registers (called the x87 FPU data
registers) and the following special-purpose registers: 

• The status register.

• The control register.

• The tag word register.

• Last instruction pointer register.

• Last data (operand) pointer register.

• Opcode register.

These registers are described in the following sections.

The x87 FPU executes instructions from the processor’s normal instruction stream. The state of
the x87 FPU is independent from the state of the basic execution environment (described in
Chapter 7) and from the state of the SSE extensions and SSE2 extensions (described in Chapters
10 and 11, respectively). 
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PROGRAMMING WITH THE X87 FPU
However, the x87 FPU and Intel MMX technology share state because the MMX registers are
aliased to the x87 FPU data registers. Therefore, when writing code that mixed x87 FPU and
MMX instructions, the programmer must explicitly manage the x87 FPU and MMX state (see
Section 9.5., “Compatibility with x87 FPU Architecture”).

8.1.1. x87 FPU Data Registers

The x87 FPU data registers (shown in Figure 8-1) consist of eight 80-bit registers. Values are
stored in these registers in the double extended-precision floating-point format shown in Figure
4-3. When floating-point, integer, or packed BCD integer values are loaded from memory into
any of the x87 FPU data registers, the values are automatically converted into double extended-
precision floating-point format (if they are not already in that format). When computation results
are subsequently transferred back into memory from any of the x87 FPU registers, the results
can be left in the double extended-precision floating-point format or converted back into a
shorter floating-point format, an integer format, or the packed BCD integer format. (See Section
8.2., “x87 FPU Data Types” for a description of the data types operated on by the x87 FPU.)

The x87 FPU instructions treat the eight x87 FPU data registers as a register stack (see Figure
8-2). All addressing of the data registers is relative to the register on the top of the stack. The
register number of the current top-of-stack register is stored in the TOP (stack TOP) field in the
x87 FPU status word. Load operations decrement TOP by one and load a value into the new top-
of-stack register, and store operations store the value from the current TOP register in memory

Figure 8-1.  x87 FPU Execution Environment
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PROGRAMMING WITH THE X87 FPU
and then increment TOP by one. (For the x87 FPU, a load operation is equivalent to a push and
a store operation is equivalent to a pop.) Note that load and store operations are also available
that do not push and pop the stack.

If a load operation is performed when TOP is at 0, register wraparound occurs and the new value
of TOP is set to 7. The floating-point stack-overflow exception indicates when wraparound
might cause an unsaved value to be overwritten (see Section 8.5.1.1., “Stack Overflow or Under-
flow Exception (#IS)”).

Many floating-point instructions have several addressing modes that permit the programmer to
implicitly operate on the top of the stack, or to explicitly operate on specific registers relative to
the TOP. Assemblers supports these register addressing modes, using the expression ST(0), or
simply ST, to represent the current stack top and ST(i) to specify the ith register from TOP in
the stack (0 ≤ i ≤ 7). For example, if TOP contains 011B (register 3 is the top of the stack), the
following instruction would add the contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2);

Figure 8-3 shows an example of how the stack structure of the x87 FPU registers and instruc-
tions are typically used to perform a series of computations. Here, a two-dimensional dot
product is computed, as follows:

1. The first instruction (FLD value1) decrements the stack register pointer (TOP) and loads
the value 5.6 from memory into ST(0). The result of this operation is shown in snap-shot
(a). 

2. The second instruction multiplies the value in ST(0) by the value 2.4 from memory and
stores the result in ST(0), shown in snap-shot (b).

3. The third instruction decrements TOP and loads the value 3.8 in ST(0).

4. The fourth instruction multiplies the value in ST(0) by the value 10.3 from memory and
stores the result in ST(0), shown in snap-shot (c).

Figure 8-2.  x87 FPU Data Register Stack
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PROGRAMMING WITH THE X87 FPU
5. The fifth instruction adds the value and the value in ST(1) and stores the result in ST(0),
shown in snap-shot (d).

The style of programming demonstrated in this example is supported by the floating-point
instruction set. In cases where the stack structure causes computation bottlenecks, the FXCH
(exchange x87 FPU register contents) instruction can be used to streamline a computation.

8.1.1.1. PARAMETER PASSING WITH THE X87 FPU REGISTER STACK

Like the general-purpose registers, the contents of the x87 FPU data registers are unaffected by
procedure calls, or in other words, the values are maintained across procedure boundaries. A
calling procedure can thus use the x87 FPU data registers (as well as the procedure stack) for
passing parameter between procedures. The called procedure can reference parameters passed
through the register stack using the current stack register pointer (TOP) and the ST(0) and ST(i)
nomenclature. It is also common practice for a called procedure to leave a return value or result
in register ST(0) when returning execution to the calling procedure or program.

When mixing MMX and x87 FPU instructions in the procedures or code sequences, the
programmer is responsible for maintaining the integrity of parameters being passed in the x87
FPU data registers. If an MMX instruction is executed before the parameters in the x87 FPU data
registers have been passed to another procedure, the parameters may be lost (see Section 9.5.,
“Compatibility with x87 FPU Architecture”).

Figure 8-3.  Example x87 FPU Dot Product Computation
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Dot Product = (5.6 x 2.4) + (3.8 x 10.3)

Code:
FLD  value1 ;(a) value1=5.6
FMUL value2 ;(b) value2=2.4
FLD  value3 ; value3=3.8
FMUL value4 ;(c)value4=10.3
FADD ST(1)  ;(d)
8-4



PROGRAMMING WITH THE X87 FPU
8.1.2. x87 FPU Status Register

The 16-bit x87 FPU status register (see Figure 8-4) indicates the current state of the x87 FPU.
The flags in the x87 FPU status register include the FPU busy flag, top-of-stack (TOP) pointer,
condition code flags, error summary status flag, stack fault flag, and exception flags. The x87
FPU sets the flags in this register to show the results of operations. 

The contents of the x87 FPU status register (referred to as the x87 FPU status word) can be
stored in memory using the FSTSW/FNSTSW, FSTENV/FNSTENV, FSAVE/FNSAVE, and
FXSAVE instructions. It can also be stored in the AX register of the integer unit, using the
FSTSW/FNSTSW instructions.

8.1.2.1. TOP OF STACK (TOP) POINTER

A pointer to the x87 FPU data register that is currently at the top of the x87 FPU register stack
is contained in bits 11 through 13 of the x87 FPU status word. This pointer, which is commonly
referred to as TOP (for top-of-stack), is a binary value from 0 to 7. See Section 8.1.1., “x87
FPU Data Registers”, for more information about the TOP pointer.

8.1.2.2. CONDITION CODE FLAGS

The four condition code flags (C0 through C3) indicate the results of floating-point comparison
and arithmetic operations. Table 8-1 summarizes the manner in which the floating-point instruc-
tions set the condition code flags. These condition code bits are used principally for conditional
branching and for storage of information used in exception handling (see Section 8.1.3.,
“Branching and Conditional Moves on Condition Codes”).

Figure 8-4.  x87 FPU Status Word

FPU Busy

15 1314 11 10 9 8 7 6 5 4 3 2 1 0

B I
E

P
E

O
E

U
E

Z
E

D
ETOP

Top of Stack Pointer

Exception Flags
   Precision
   Underflow
   Overflow
   Zero Divide
   Denormalized Operand
   Invalid Operation

Stack Fault
Error Summary Status

Condition
   Code

C
2

C
1

C
0

E
S

S
F

C
3

8-5



PROGRAMMING WITH THE X87 FPU
As shown in Table 8-1, the C1 condition code flag is used for a variety of functions. When both
the IE and SF flags in the x87 FPU status word are set, indicating a stack overflow or underflow
exception (#IS), the C1 flag distinguishes between overflow (C1=1) and underflow (C1=0).
When the PE flag in the status word is set, indicating an inexact (rounded) result, the C1 flag is
set to 1 if the last rounding by the instruction was upward. The FXAM instruction sets C1 to the
sign of the value being examined.

The C2 condition code flag is used by the FPREM and FPREM1 instructions to indicate an
incomplete reduction (or partial remainder). When a successful reduction has been completed,
the C0, C3, and C1 condition code flags are set to the three least-significant bits of the quotient
(Q2, Q1, and Q0, respectively). See “FPREM1—Partial Remainder” in Chapter 3, Instruction
Set Reference, of the IA-32 Intel Architecture Software Developer’s Manual, Volume 2, for more
information on how these instructions use the condition code flags.

The FPTAN, FSIN, FCOS, and FSINCOS instructions set the C2 flag to 1 to indicate that the
source operand is beyond the allowable range of ±263 and clear the C2 flag if the source operand
is within the allowable range.

Where the state of the condition code flags are listed as undefined in Table 8-1, do not rely on
any specific value in these flags.

8.1.2.3. X87 FPU FLOATING-POINT EXCEPTION FLAGS

The six x87 FPU floating-point exception flags (bits 0 through 5) of the x87 FPU status word
indicate that one or more floating-point exceptions has been detected since the bits were last
cleared. The individual exception flags (IE, DE, ZE, OE, UE, and PE) are described in detail in
Section 8.4., “x87 FPU Floating-Point Exception Handling”. Each of the exception flags can be
masked by an exception mask bit in the x87 FPU control word (see Section 8.1.4., “x87 FPU
Control Word”). The exception summary status (ES) flag (bit 7) is set when any of the unmasked
exception flags are set. When the ES flag is set, the x87 FPU exception handler is invoked, using
one of the techniques described in Section 8.7., “Handling x87 FPU Exceptions in Software”.
(Note that if an exception flag is masked, the x87 FPU will still set the flag if its associated
exception occurs, but it will not set the ES flag.) 

The exception flags are “sticky” bits, meaning that once set, they remain set until explicitly
cleared. They can be cleared by executing the FCLEX/FNCLEX (clear exceptions) instructions,
by reinitializing the x87 FPU with the FINIT/FNINIT or FSAVE/FNSAVE instructions, or by
overwriting the flags with an FRSTOR or FLDENV instruction.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the ES flag.
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8.1.2.4. STACK FAULT FLAG

The stack fault flag (bit 6 of the x87 FPU status word) indicates that stack overflow or stack
underflow has occurred with data in the x87 FPU data register stack. The x87 FPU explicitly
sets the SF flag when it detects a stack overflow or underflow condition, but it does not explicitly
clear the flag when it detects an invalid-arithmetic-operand condition. 

Table 8-1.  Condition Code Interpretation

Instruction C0 C3 C2 C1

FCOM, FCOMP, FCOMPP, 
FICOM, FICOMP, FTST, 
FUCOM, FUCOMP, 
FUCOMPP 

Result of Comparison Operands 
are not 
Comparable

0 or #IS

FCOMI, FCOMIP, FUCOMI, 
FUCOMIP

Undefined. (These instructions set the 
status flags in the EFLAGS register.)

#IS

FXAM  Operand class Sign

FPREM, FPREM1 Q2 Q1 0=reduction 
complete
1=reduction 
incomplete

Q0 or #IS

F2XM1, FADD, FADDP, 
FBSTP, FCMOVcc, FIADD, 
FDIV, FDIVP, FDIVR, 
FDIVRP, FIDIV, FIDIVR, 
FIMUL, FIST, FISTP, FISUB, 
FISUBR,FMUL, FMULP, 
FPATAN, FRNDINT, 
FSCALE, FST, FSTP, FSUB, 
FSUBP, FSUBR, 
FSUBRP,FSQRT, FYL2X, 
FYL2XP1

Undefined Roundup or #IS

FCOS, FSIN, FSINCOS, 
FPTAN

Undefined 0=source 
operand within 
range
1=source 
operand out of 
range.

Roundup or #IS 
(Undefined if 
C2=1)

FABS, FBLD, FCHS, 
FDECSTP, FILD, FINCSTP, 
FLD, Load Constants, FSTP 
(ext. prec.), FXCH, FXTRACT 

Undefined 0 or #IS

FLDENV, FRSTOR Each bit loaded from memory

FFREE, FLDCW, 
FCLEX/FNCLEX, FNOP, 
FSTCW/FNSTCW, 
FSTENV/FNSTENV, 
FSTSW/FNSTSW, 

Undefined

FINIT/FNINIT, 
FSAVE/FNSAVE

0 0 0 0
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When this flag is set, the condition code flag C1 indicates the nature of the fault: overflow
(C1 = 1) and underflow (C1 = 0). The SF flag is a “sticky” flag, meaning that after it is set,
the processor does not clear it until it is explicitly instructed to do so (for example, by an
FINIT/FNINIT, FCLEX/FNCLEX, or FSAVE/FNSAVE instruction). 

See Section 8.1.6., “x87 FPU Tag Word” for more information on x87 FPU stack faults.

8.1.3. Branching and Conditional Moves on Condition Codes

The x87 FPU (beginning with the P6 family processors) supports two mechanisms for branching
and performing conditional moves according to comparisons of two floating-point values. These
mechanism are referred to here as the “old mechanism” and the “new mechanism.” 

The old mechanism is available in x87 FPU’s prior to the P6 family processors and in the P6
family processors. This mechanism uses the floating-point compare instructions (FCOM,
FCOMP, FCOMPP, FTST, FUCOMPP, FICOM, and FICOMP) to compare two floating-point
values and set the condition code flags (C0 through C3) according to the results. The contents
of the condition code flags are then copied into the status flags of the EFLAGS register using a
two step process (see Figure 8-5):

1. The FSTSW AX instruction moves the x87 FPU status word into the AX register.

2. The SAHF instruction copies the upper 8 bits of the AX register, which includes the
condition code flags, into the lower 8 bits of the EFLAGS register.

When the condition code flags have been loaded into the EFLAGS register, conditional jumps
or conditional moves can be performed based on the new settings of the status flags in the
EFLAGS register.

Figure 8-5.  Moving the Condition Codes to the EFLAGS Register
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The new mechanism is available beginning with the P6 family processors. Using this mecha-
nism, the new floating-point compare and set EFLAGS instructions (FCOMI, FCOMIP,
FUCOMI, and FUCOMIP) compare two floating-point values and set the ZF, PF, and CF flags
in the EFLAGS register directly. A single instruction thus replaces the three instructions
required by the old mechanism.

Note also that the FCMOVcc instructions (also new in the P6 family processors) allow condi-
tional moves of floating-point values (values in the x87 FPU data registers) based on the setting
of the status flags (ZF, PF, and CF) in the EFLAGS register. These instructions eliminate the
need for an IF statement to perform conditional moves of floating-point values.

8.1.4. x87 FPU Control Word

The 16-bit x87 FPU control word (see Figure 8-6) controls the precision of the x87 FPU and
rounding method used. It also contains the x87 FPU floating-point exception mask bits. The
control word is cached in the x87 FPU control register. The contents of this register can be
loaded with the FLDCW instruction and stored in memory with the FSTCW/FNSTCW instruc-
tions.

When the x87 FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE instruction,
the x87 FPU control word is set to 037FH, which masks all floating-point exceptions, sets
rounding to nearest, and sets the x87 FPU precision to 64 bits.

Figure 8-6.  x87 FPU Control Word
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8.1.4.1. X87 FPU FLOATING-POINT EXCEPTION MASK BITS

The exception-flag mask bits (bits 0 through 5 of the x87 FPU control word) mask the 6 floating-
point exception flags in the x87 FPU status word. When one of these mask bits is set, its corre-
sponding x87 FPU floating-point exception is blocked from being generated.

8.1.4.2. PRECISION CONTROL FIELD

The precision-control (PC) field (bits 8 and 9 of the x87 FPU control word) determines the preci-
sion (64, 53, or 24 bits) of floating-point calculations made by the x87 FPU (see Table 8-2). The
default precision is double extended precision, which uses the full 64-bit significand available
with the double extended-precision floating-point format of the x87 FPU data registers. This
setting is best suited for most applications, because it allows applications to take full advantage
of the maximum precision available with the x87 FPU data registers.

The double precision and single precision settings reduce the size of the significand to 53 bits
and 24 bits, respectively. These settings are provided to support IEEE Standard 754 and to
provide compatibility with the specifications of certain existing programming languages. Using
these settings nullifies the advantages of the double extended-precision floating-point format’s
64-bit significand length. When reduced precision is specified, the rounding of the significand
value clears the unused bits on the right to zeros. 

The precision-control bits only affect the results of the following floating-point instructions:
FADD, FADDP, FIADD, FSUB, FSUBP, FISUB, FSUBR, FSUBRP, FISUBR, FMUL,
FMULP, FIMUL, FDIV, FDIVP, FIDIV, FDIVR, FDIVRP, FIDIVR, and FSQRT.

8.1.4.3. ROUNDING CONTROL FIELD

The rounding-control (RC) field of the x87 FPU control register (bits 10 and 11) controls how
the results of x87 FPU floating-point instructions are rounded. See Section 4.8.4., “Rounding”
for a discussion of rounding of floating-point values; See Section 4.8.4.1., “Rounding Control
(RC) Fields” for the encodings of the RC field.

Table 8-2.  Precision Control Field (PC)

Precision PC Field

Single Precision (24-Bits) 00B

Reserved 01B

Double Precision (53-Bits) 10B

Double Extended Precision (64-Bits) 11B
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8.1.5. Infinity Control Flag

The infinity control flag (bit 12 of the x87 FPU control word) is provided for compatibility with
the Intel 287 Math Coprocessor; it is not meaningful for later version x87 FPU coprocessors or
IA-32 processors. See Section 4.8.3.3., “Signed Infinities”, for information on how the x87
FPUs handle infinity values.

8.1.6. x87 FPU Tag Word

The 16-bit tag word (see Figure 8-7) indicates the contents of each the 8 registers in the x87 FPU
data-register stack (one 2-bit tag per register). The tag codes indicate whether a register contains
a valid number, zero, or a special floating-point number (NaN, infinity, denormal, or unsup-
ported format), or whether it is empty. The x87 FPU tag word is cached in the x87 FPU in the
x87 FPU tag word register. When the x87 FPU is initialized with either an FINIT/FNINIT or
FSAVE/FNSAVE instruction, the x87 FPU tag word is set to FFFFH, which marks all the x87
FPU data registers as empty.
.

Each tag in the x87 FPU tag word corresponds to a physical register (numbers 0 through 7). The
current top-of-stack (TOP) pointer stored in the x87 FPU status word can be used to associate
tags with registers relative to ST(0).

The x87 FPU uses the tag values to detect stack overflow and underflow conditions (see Section
8.5.1.1., “Stack Overflow or Underflow Exception (#IS)”).

Application programs and exception handlers can use this tag information to check the contents
of an x87 FPU data register without performing complex decoding of the actual data in the
register. To read the tag register, it must be stored in memory using either the
FSTENV/FNSTENV or FSAVE/FNSAVE instructions. The location of the tag word in memory
after being saved with one of these instructions is shown in Figures 8-9 through 8-12.

Software cannot directly load or modify the tags in the tag register. The FLDENV and
FRSTOR instructions load an image of the tag register into the x87 FPU; however, the x87 FPU
uses those tag values only to determine if the data registers are empty (11B) or non-empty
(00B, 01B, or 10B). 

Figure 8-7.  x87 FPU Tag Word

015

TAG Values

TAG(7) TAG(5)TAG(6) TAG(4) TAG(3) TAG(2) TAG(1) TAG(0)

00 — Valid
01 — Zero
10 — Special: invalid (NaN, unsupported), infinity, or denormal
11 — Empty
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If the tag register image indicates that a data register is empty, the tag in the tag register for that
data register is marked empty (11B); if the tag register image indicates that the data register is
non-empty, the x87 FPU reads the actual value in the data register and sets the tag for the register
accordingly. This action prevents a program from setting the values in the tag register to incor-
rectly represent the actual contents of non-empty data registers.

8.1.7. x87 FPU Instruction and Data (Operand) Pointers

The x87 FPU stores pointers to the instruction and data (operand) for the last non-control
instruction executed. These pointers are stored in two 48-bit registers: the x87 FPU instruction
pointer and x87 FPU operand (data) pointer registers (see Figure 8-1). (These pointers are saved
to provide state information for exception handlers.) 

Note that the value in the x87 FPU data pointer register is always a pointer to a memory operand,
If the last non-control instruction that was executed did not have a memory operand, the value
in the data pointer register is undefined (reserved).

The contents of the x87 FPU instruction and data pointer registers remain unchanged when any
of the control instructions (FINIT/FNINIT, FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW,
FSTSW/FNSTSW, FSTENV/FNSTENV, FLDENV, FSAVE/FNSAVE, FRSTOR, and
WAIT/FWAIT) are executed.

The pointers stored in the x87 FPU instruction and data pointer registers consist of an offset
(stored in bits 0 through 31) and a segment selector (stored in bits 32 through 47). 

These registers can be accessed by the FSTENV/FNSTENV, FLDENV, FINIT/FNINIT,
FSAVE/FNSAVE, FRSTOR, FXSAVE, and FXRSTOR instructions. The FINIT/FNINIT and
FSAVE/FNSAVE instructions clear these registers.

For all the x87 FPUs and NPXs except the 8087, the x87 FPU instruction pointer points to any
prefixes that preceded the instruction. For the 8087, the x87 FPU instruction pointer points only
to the actual opcode.

8.1.8. Last Instruction Opcode

The x87 FPU stores the opcode of the last non-control instruction executed in an 11-bit x87 FPU
opcode register. (This information provides state information for exception handlers.) Only the
first and second opcode bytes (after all prefixes) are stored in the x87 FPU opcode register.
Figure 8-8 shows the encoding of these two bytes. Since the upper 5 bits of the first opcode byte
are the same for all floating-point opcodes (11011B), only the lower 3 bits of this byte are stored
in the opcode register.

8.1.8.1. FOPCODE COMPATIBILITY MODE

Beginning with the Pentium 4 and Intel Xeon processors, the IA-32 architecture provides
program control over the storing of the last instruction opcode (sometimes referred to as the
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fopcode). Here, bit 2 of the IA32_MISC_ENABLE MSR enables (set) or disables (clear) the
fopcode compatibility mode. 

If FOP code compatibility mode is enabled, the FOP is defined as it has always been in previous
IA32 implementations (always defined as the FOP of the last non-transparent FP instruction
executed before a FSAVE/FSTENV/FXSAVE). If FOP code compatibility mode is disabled
(default), FOP is only valid if the last non-transparent FP instruction executed before a
FSAVE/FSTENV/FXSAVE had an unmasked exception.

The fopcode compatibility mode should be enabled only when x87 FPU floating-point excep-
tion handlers are designed to use the fopcode to analyze program performance or restart a
program after an exception has been handled.

8.1.9. Saving the x87 FPU’s State with the FSTENV/FNSTENV 
and FSAVE/FNSAVE Instructions

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions store x87 FPU state information in
memory for use by exception handlers and other system and application software. The
FSTENV/FNSTENV instruction saves the contents of the status, control, tag, x87 FPU instruc-
tion pointer, x87 FPU operand pointer, and opcode registers. The FSAVE/FNSAVE instruction
stores that information plus the contents of the x87 FPU data registers. Note that the
FSAVE/FNSAVE instruction also initializes the x87 FPU to default values (just as the
FINIT/FNINIT instruction does) after it has saved the original state of the x87 FPU.

The manner in which this information is stored in memory depends on the operating mode of
the processor (protected mode or real-address mode) and on the operand-size attribute in effect
(32-bit or 16-bit). See Figures 8-9 through 8-12. In virtual-8086 mode or SMM, the real-address
mode formats shown in Figure 8-12 is used. See “Using the FPU in SMM” in Chapter 13 of the
IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for special considerations for
using the x87 FPU while in SMM.

Figure 8-8.  Contents of x87 FPU Opcode Registers
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The FLDENV and FRSTOR instructions allow x87 FPU state information to be loaded from
memory into the x87 FPU. Here, the FLDENV instruction loads only the status, control, tag, x87
FPU instruction pointer, x87 FPU operand pointer, and opcode registers, and the FRSTOR
instruction loads all the x87 FPU registers, including the x87 FPU stack registers. 

Figure 8-9.  Protected Mode x87 FPU State Image in Memory, 32-Bit Format

Figure 8-10.  Real Mode x87 FPU State Image in Memory, 32-Bit Format
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8.1.10. Saving the x87 FPU’s State with the FXSAVE Instruction

The FXSAVE and FXRSTOR instructions save and restore, respectively, the x87 FPU state along
with the state of the XMM registers and the MXCSR register. Using the FXSAVE instruction to
save the x87 FPU state has two benefits: (1) FXSAVE executes faster than FSAVE, and (2)
FXSAVE saves the entire x87 FPU, MMX, and XMM state in one operation. See Section 10.5.,
“FXSAVE and FXRSTOR Instructions” for additional information about these instructions.

8.2. X87 FPU DATA TYPES

The x87 FPU recognizes and operates on the following seven data types (see Figures 8-13):
single-precision floating point, double-precision floating point, double extended-precision
floating point, signed word integer, signed doubleword integer, signed quadword integer, and
packed BCD decimal integers. 

Figure 8-11.  Protected Mode x87 FPU State Image in Memory, 16-Bit Format

Figure 8-12.  Real Mode x87 FPU State Image in Memory, 16-Bit Format
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For detailed information about these data types, see Section 4.2.2., “Floating-Point Data Types”,
Section 4.2.1.2., “Signed Integers”, and Section 4.7., “BCD and Packed BCD Integers”.

With the exception of the 80-bit double extended-precision floating-point format, all of these
data types exist in memory only. When they are loaded into x87 FPU data registers, they are
converted into double extended-precision floating-point format and operated on in that format.

Denormal values are also supported in each of the floating-point types, as required by IEEE
Standard 754. When a denormal number in single-precision or double-precision floating-point
format is used as a source operand and the denormal exception is masked, the x87 FPU automat-
ically normalizes the number when it is converted to double extended-precision format.

When stored in memory, the least significant byte of an x87 FPU data-type value is stored at the
initial address specified for the value. Successive bytes from the value are then stored in succes-
sively higher addresses in memory. The floating-point instructions load and store memory oper-
ands using only the initial address of the operand.

Figure 8-13.  x87 FPU Data Type Formats
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As a general rule, values should be stored in memory in double-precision format. This format
provides sufficient range and precision to return correct results with a minimum of programmer
attention. The single-precision format is useful for debugging algorithms, because rounding
problems will manifest themselves more quickly in this format. The double extended-precision
format is normally reserved for holding intermediate results in the x87 FPU registers and
constants. Its extra length is designed to shield final results from the effects of rounding and
overflow/underflow in intermediate calculations. However, when an application requires the
maximum range and precision of the x87 FPU (for data storage, computations, and results),
values can be stored in memory in double extended-precision format.

8.2.1. Indefinites

For each x87 FPU data type, one unique encoding is reserved for representing the special
value indefinite. The x87 FPU produces indefinite values as responses to some masked
floating-point invalid-operation exceptions. See Tables 4-1, 4-3, and 4-4 for the encoding of
the integer indefinite, QNaN floating-point indefinite, and packed BCD integer indefinite,
respectively. 

The binary integer encoding 100..00B represents either of two things, depending on the circum-
stances of its use:

• The largest negative number supported by the format (–215, –231, or –263).

• The integer indefinite value.

If this encoding is used as a source operand (as in an integer load or integer arithmetic instruc-
tion), the x87 FPU interprets it as the largest negative number representable in the format being
used. If the x87 FPU detects an invalid operation when storing an integer value in memory with
an FIST/FISTP instruction and the invalid-operation exception is masked, the x87 FPU stores
the integer indefinite encoding in the destination operand as a masked response to the excep-
tion. In situations where the origin of a value with this encoding may be ambiguous, the
invalid-operation exception flag can be examined to see if the value was produced as a response
to an exception.

8.2.2. Unsupported Double Extended-Precision Floating-Point 
Encodings and Pseudo-Denormals

The double extended-precision floating-point format permits many encodings that do not fall
into any of the categories shown in Table 4-3. Table 8-3 shows these unsupported encodings.
Some of these encodings were supported by the Intel 287 math coprocessor; however, most of
them are not supported by the Intel 387 math coprocessor and later IA-32 processors. These
encodings are no longer supported due to changes made in the final version of IEEE Standard
754 that eliminated these encodings.
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Specifically, the categories of encodings formerly known as pseudo-NaNs, pseudo-infinities,
and un-normal numbers are not supported and should not be used as operand values. The Intel
387 math coprocessor and later IA-32 processors generate an invalid-operation exception when
they are encountered as operands.

Beginning with the Intel 387 math coprocessor, the encodings formerly known as pseudo-
denormal numbers are not generated by IA-32 processors. When encountered as operands,
however, they are handled correctly; that is, they are treated as denormals and a denormal excep-
tion is generated. Pseudo-denormal numbers should not be used as operand values. They are
supported by current IA-32 processors (as described here) to support legacy code.

Table 8-3.  Unsupported Double Extended-Precision Floating-Point Encodings and 
Pseudo-Denormals

Class Sign Biased Exponent
Significand

Integer Fraction

Positive 
Pseudo-NaNs Quiet

0
.
0

11..11
.

11..11

0 11..11
.

10..00

Signaling
0
.
0

11..11
.

11..11

0  01..11
.

00..01

Positive Floating 
Point

Pseudo-infinity 0 11..11 0 00..00

Unnormals
0
.
0

11..10
.

00..01

0 11..11
.

00..00

Pseudo-denormals 0
.
0

00..00
.

00..00

1 11..11
.

00..00

Negative Floating 
Point

Pseudo-denormals 1
.
1

00..00
.

00..00

1 11..11
.

00..00

Unnormals
1
.
1

11..10
.

00..01

0 11..01
.

00..00

Pseudo-infinity 1 11..11 0 00..00

Negative 
Pseudo-NaNs Signaling

1
.
1

11..11
.

11..11

0 01..11
.

00..01

Quiet
1
.
1

11..11
.

11..11

0 11..11
.

10..00

← 15 bits → ← 63 bits →
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8.3. X86 FPU INSTRUCTION SET

The floating-point instructions that the x87 FPU supports can be grouped into six functional
categories:

• Data transfer instructions

• Basic arithmetic instructions

• Comparison instructions

• Transcendental instructions

• Load constant instructions

• x87 FPU control instructions

See Section 5.2., “x87 FPU Instructions”, for a list of the floating-point instructions by category.

The following section briefly describes the instructions in each category. Detailed descriptions
of the floating-point instructions are given in Chapter 3, Instruction Set Reference, in the IA-32
Intel Architecture Software Developer’s Manual, Volume 2. 

8.3.1. Escape (ESC) Instructions

All of the instructions in the x87 FPU instruction set fall into a class of instructions known as
escape (ESC) instructions. All of these instructions have a common opcode format, where the
first byte of the opcode is one of the numbers from D8H through DFH.

8.3.2. x87 FPU Instruction Operands

Most floating-point instructions require one or two operands, located on the x87 FPU data-
register stack or in memory. (None of the floating-point instructions accept immediate
operands.) 

When an operand is located in a data register, it is referenced relative to the ST(0) register (the
register at the top of the register stack), rather than by a physical register number. Often the
ST(0) register is an implied operand.

Operands in memory can be referenced using the same operand addressing methods described
in Section 3.7., “Operand Addressing”.

8.3.3. Data Transfer Instructions

The data transfer instructions (see Table 8-4) perform the following operations:

• Load a floating-point, integer, or packed BCD operand from memory into the ST(0)
register.
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• Store the value in an ST(0) register to memory in floating-point, integer, or packed BCD
format.

• Move values between registers in the x87 FPU register stack.

The FLD (load floating point) instruction pushes a floating-point operand from memory onto
the top of the x87 FPU data-register stack. If the operand is in single-precision or double-preci-
sion floating-point format, it is automatically converted to double extended-precision floating-
point format. This instruction can also be used to push the value in a selected x87 FPU data
register onto the top of the register stack.

The FILD (load integer) instruction converts an integer operand in memory into double
extended-precision floating-point format and pushes the value onto the top of the register stack.
The FBLD (load packed decimal) instruction performs the same load operation for a packed
BCD operand in memory.

The FST (store floating point) and FIST (store integer) instructions store the value in register
ST(0) in memory in the destination format (floating point or integer, respectively). Again, the
format conversion is carried out automatically.

The FSTP (store floating point and pop), FISTP (store integer and pop), and FBSTP (store
packed decimal and pop) instructions store the value in the ST(0) registers into memory in the
destination format (floating point, integer, or packed BCD), then performs a pop operation on
the register stack. A pop operation causes the ST(0) register to be marked empty and the stack
pointer (TOP) in the x87 FPU control work to be incremented by 1. The FSTP instruction can
also be used to copy the value in the ST(0) register to another x87 FPU register [ST(i)].

The FXCH (exchange register contents) instruction exchanges the value in a selected register in
the stack [ST(i)] with the value in ST(0).

The FCMOVcc (conditional move) instructions move the value in a selected register in the stack
[ST(i)] to register ST(0) if a condition specified with a condition code (cc) is satisfied (see Table
8-5). The condition being tested for is represented by the status flags in the EFLAGS register.
The condition code mnemonics are appended to the letters “FCMOV” to form the mnemonic for
a FCMOVcc instruction.

Table 8-4.  Data Transfer Instructions

Floating Point Integer Packed Decimal

FLD Load Floating Point FILD Load Integer FBLD Load Packed
Decimal

FST Store Floating Point FIST Store Integer

FSTP Store Floating Point 
and Pop

FISTP Store Integer
and Pop

FBSTP Store Packed
Decimal and Pop

FXCH Exchange Register 
Contents

FCMOVcc Conditional Move
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Like the CMOVcc instructions, the FCMOVcc instructions are useful for optimizing small IF
constructions. They also help eliminate branching overhead for IF operations and the possibility
of branch mispredictions by the processor. 

Software can check if the FCMOVcc instructions are supported by checking the processor’s
feature information with the CPUID instruction (see “CPUID—CPU Identification” in Chapter
3 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 2).

8.3.4. Load Constant Instructions

The following instructions push commonly used constants onto the top [ST(0)] of the x87 FPU
register stack:

FLDZ Load +0.0
FLD1 Load +1.0
FLDPI Load π
FLDL2T Load log2 10
FLDL2E Load log2e
FLDLG2 Load log102
FLDLN2 Load loge2

The constant values have full double extended-precision floating-point precision (64 bits) and
are accurate to approximately 19 decimal digits. They are stored internally in a format more
precise than double extended-precision floating point. When loading the constant, the x87 FPU
rounds the more precise internal constant according to the RC (rounding control) field of the x87
FPU control word. The inexact-result exception (#P) is not generated as a result of this rounding,
nor is the C1 flag set in the x87 FPU status word if the value is rounded up. See Section 8.3.8.,
“Pi”, for information on the π constant.

Table 8-5.  Floating-Point Conditional Move Instructions
Instruction Mnemonic Status Flag States Condition Description

FCMOVB CF=1 Below

FCMOVNB CF=0 Not below

FCMOVE ZF=1 Equal

FCMOVNE ZF=0 Not equal

FCMOVBE CF=1 or ZF=1 Below or equal

FCMOVNBE CF=0 or ZF=0 Not below nor equal

FCMOVU PF=1 Unordered

FCMOVNU PF=0 Not unordered
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8.3.5. Basic Arithmetic Instructions

The following floating-point instructions perform basic arithmetic operations on floating-point
numbers. Where applicable, these instructions match IEEE Standard 754:

FADD/FADDP Add floating point
FIADD Add integer to floating point
FSUB/FSUBP Subtract floating point
FISUB Subtract integer from floating point
FSUBR/FSUBRP Reverse subtract floating point
FISUBR Reverse subtract floating point from integer
FMUL/FMULP Multiply floating point
FIMUL Multiply integer by floating point
FDIV/FDIVP Divide floating point
FIDIV Divide floating point by integer
FDIVR/FDIVRP Reverse divide
FIDIVR Reverse divide integer by floating point
FABS Absolute value
FCHS Change sign
FSQRT Square root
FPREM Partial remainder
FPREM1 IEEE partial remainder
FRNDINT Round to integral value
FXTRACT Extract exponent and significand

The add, subtract, multiply and divide instructions operate on the following types of operands:

• Two x87 FPU data registers.

• An x87 FPU data register and a floating-point or integer value in memory.

(See Section 8.1.1., “x87 FPU Data Registers” for a description of how operands are referenced
on the data register stack.)

Operands in memory can be in single-precision floating-point, double-precision floating-point,
word-integer, or doubleword-integer format. They are converted to double extended-precision
floating-point format automatically.

Reverse versions of the subtract (FSUBR) and divide (FDIVR) instructions enable efficient
coding. For example, the following options are available with the FSUB and FSUBR instruc-
tions for operating on values in a specified x87 FPU data register ST(i) and the ST(0) register:

FSUB:

ST(0) ← ST(0) − ST(i)
ST(i) ← ST(i) − ST(0)

FSUBR:

ST(0) ← ST(i) − ST(0)
ST(i) ← ST(0) − ST(i)
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These instructions eliminate the need to exchange values between register ST(0) and another
x87 FPU register to perform a subtraction or division.

The pop versions of the add, subtract, multiply and divide instructions offer the option of
popping the x87 FPU register stack following the arithmetic operation. These instructions
operate on values in the ST(i) and ST(0) registers, store the result in the ST(i) register, and pop
the ST(0) register.

The FPREM instruction computes the remainder from the division of two operands in the
manner used by the Intel 8087 and Intel 287 math coprocessors; the FPREM1 instruction
computes the remainder in the manner specified in IEEE Standard 754.

The FSQRT instruction computes the square root of the source operand.

The FRNDINT instruction returns a floating-point value that is the integral value closest to the
source value in the direction of the rounding mode specified in the RC field of the x87 FPU
control word.

The FABS, FCHS, and FXTRACT instructions perform convenient arithmetic operations. The
FABS instruction produces the absolute value of the source operand. The FCHS instruction
changes the sign of the source operand. The FXTRACT instruction separates the source operand
into its exponent and fraction and stores each value in a register in floating-point format.

8.3.6. Comparison and Classification Instructions

The following instructions compare or classify floating-point values:

FCOM/FCOMP/FCOMPP Compare floating point and set x87 FPU condition code
flags.

FUCOM/FUCOMP/FUCOMPP Unordered compare floating point and set x87 FPU 
condition code flags.

FICOM/FICOMP Compare integer and set x87 FPU condition code flags.
FCOMI/FCOMIP Compare floating point and set EFLAGS status flags.
FUCOMI/FUCOMIP Unordered compare floating point and set EFLAGS status

flags.
FTST Test (compare floating point with 0.0).
FXAM Examine.

Comparison of floating-point values differ from comparison of integers because floating-point
values have four (rather than three) mutually exclusive relationships: less than, equal, greater
than, and unordered.

The unordered relationship is true when at least one of the two values being compared is a NaN
or in an unsupported format. This additional relationship is required because, by definition,
NaNs are not numbers, so they cannot have less than, equal, or greater than relationships with
other floating-point values.

The FCOM, FCOMP, and FCOMPP instructions compare the value in register ST(0) with a
floating-point source operand and set the condition code flags (C0, C2, and C3) in the x87 FPU
status word according to the results (see Table 8-6). 
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If an unordered condition is detected (one or both of the values are NaNs or in an undefined
format), a floating-point invalid-operation exception is generated.

The pop versions of the instruction pop the x87 FPU register stack once or twice after the
comparison operation is complete.

The FUCOM, FUCOMP, and FUCOMPP instructions operate the same as the FCOM, FCOMP,
and FCOMPP instructions. The only difference is that with the FUCOM, FUCOMP, and
FUCOMPP instructions, if an unordered condition is detected because one or both of the oper-
ands are QNaNs, the floating-point invalid-operation exception is not generated.

The FICOM and FICOMP instructions also operate the same as the FCOM and FCOMP instruc-
tions, except that the source operand is an integer value in memory. The integer value is auto-
matically converted into an double extended-precision floating-point value prior to making the
comparison. The FICOMP instruction pops the x87 FPU register stack following the compar-
ison operation.

The FTST instruction performs the same operation as the FCOM instruction, except that the
value in register ST(0) is always compared with the value 0.0.

The FCOMI and FCOMIP instructions were introduced into the IA-32 architecture in the P6
family processors. They perform the same comparison as the FCOM and FCOMP instructions,
except that they set the status flags (ZF, PF, and CF) in the EFLAGS register to indicate the
results of the comparison (see Table 8-7) instead of the x87 FPU condition code flags. The
FCOMI and FCOMIP instructions allow condition branch instructions (Jcc) to be executed
directly from the results of their comparison.

Table 8-6.  Setting of x87 FPU Condition Code Flags for Floating-Point Number 
Comparisons

Condition C3 C2 C0

ST(0) > Source Operand 0 0 0

ST(0) < Source Operand 0 0 1

ST(0) = Source Operand 1 0 0

Unordered 1 1 1

Table 8-7.  Setting of EFLAGS Status Flags for Floating-Point Number Comparisons

Comparison Results ZF PF CF

ST0 > ST(i) 0 0 0

ST0 < ST(i) 0 0 1

ST0 = ST(i) 1 0 0

Unordered 1 1 1
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Software can check if the FCOMI and FCOMIP instructions are supported by checking the
processor’s feature information with the CPUID instruction (see “CPUID—CPU Identification”
in Chapter 3 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 2).

The FUCOMI and FUCOMIP instructions operate the same as the FCOMI and FCOMIP
instructions, except that they do not generate a floating-point invalid-operation exception if the
unordered condition is the result of one or both of the operands being a QNaN. The FCOMIP
and FUCOMIP instructions pop the x87 FPU register stack following the comparison operation.

The FXAM instruction determines the classification of the floating-point value in the ST(0)
register (that is, whether the value is zero, a denormal number, a normal finite number, ∞, a NaN,
or an unsupported format) or that the register is empty. It sets the x87 FPU condition code flags
to indicate the classification (see “FXAM—Examine” in Chapter 3, Instruction Set Reference,
of the IA-32 Intel Architecture Software Developer’s Manual, Volume 2). It also sets the C1 flag
to indicate the sign of the value.

8.3.6.1. BRANCHING ON THE X87 FPU CONDITION CODES

The processor does not offer any control-flow instructions that branch on the setting of the
condition code flags (C0, C2, and C3) in the x87 FPU status word. To branch on the state of these
flags, the x87 FPU status word must first be moved to the AX register in the integer unit. The
FSTSW AX (store status word) instruction can be used for this purpose. When these flags are
in the AX register, the TEST instruction can be used to control conditional branching as follows:

1. Check for an unordered result. Use the TEST instruction to compare the contents of the
AX register with the constant 0400H (see Table 8-8). This operation will clear the ZF flag
in the EFLAGS register if the condition code flags indicate an unordered result; otherwise,
the ZF flag will be set. The JNZ instruction can then be used to transfer control (if
necessary) to a procedure for handling unordered operands.

2. Check ordered comparison result. Use the constants given in Table 8-8 in the TEST
instruction to test for a less than, equal to, or greater than result, then use the corresponding
conditional branch instruction to transfer program control to the appropriate procedure or
section of code.

If a program or procedure has been thoroughly tested and it incorporates periodic checks for
QNaN results, then it is not necessary to check for the unordered result every time a comparison
is made.

Table 8-8.  TEST Instruction Constants for Conditional Branching

Order Constant Branch

ST(0) > Source Operand 4500H JZ

ST(0) < Source Operand 0100H JNZ

ST(0) = Source Operand 4000H JNZ

Unordered 0400H JNZ
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See Section 8.1.3., “Branching and Conditional Moves on Condition Codes”, for another tech-
nique for branching on x87 FPU condition codes.

Some non-comparison x87 FPU instructions update the condition code flags in the x87 FPU
status word. To ensure that the status word is not altered inadvertently, store it immediately
following a comparison operation.

8.3.7. Trigonometric Instructions

The following instructions perform four common trigonometric functions:

FSIN Sine
FCOS Cosine
FSINCOS Sine and cosine
FPTAN Tangent
FPATAN Arctangent

These instructions operate on the top one or two registers of the x87 FPU register stack and they
return their results to the stack. The source operands for the FSIN, FCOS, FSINCOS, and
FPTAN instructions must be given in radians; the source operand for the FPATAN instruction is
given in rectangular coordinate units.

The FSINCOS instruction returns both the sine and the cosine of a source operand value. It oper-
ates faster than executing the FSIN and FCOS instructions in succession.

The FPATAN instruction computes the arctangent of ST(1) divided by ST(0), returning a result
in radians. It is useful for converting rectangular coordinates to polar coordinates.

8.3.8. Pi

When the argument (source operand) of a trigonometric function is within the range of the func-
tion, the argument is automatically reduced by the appropriate multiple of 2π through the same
reduction mechanism used by the FPREM and FPREM1 instructions. The internal value of π
that the x87 FPU uses for argument reduction and other computations is as follows:

π = 0.f ∗ 22

where:

f = C90FDAA2  2168C234  C

(The spaces in the fraction above indicate 32-bit boundaries.)

This internal π value has a 66-bit mantissa, which is 2 bits more than is allowed in the signifi-
cand of an double extended-precision floating-point value. (Since 66 bits is not an even number
of hexadecimal digits, two additional zeros have been added to the value so that it can be
represented in hexadecimal format. The least-significant hexadecimal digit (C) is thus
1100B, where the two least-significant bits represent bits 67 and 68 of the mantissa.)
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This value of π has been chosen to guarantee no loss of significance in a source operand,
provided the operand is within the specified range for the instruction.

If the results of computations that explicitly use π are to be used in the FSIN, FCOS, FSINCOS,
or FPTAN instructions, the full 66-bit fraction of π should be used. This insures that the results
are consistent with the argument-reduction algorithms that these instructions use. Using a
rounded version of π can cause inaccuracies in result values, which if propagated through
several calculations, might result in meaningless results.

A common method of representing the full 66-bit fraction of π is to separate the value into two
numbers (highπ and lowπ) that when added together give the value for π shown earlier in this
section with the full 66-bit fraction:

π = highπ + lowπ

For example, the following two values (given in scientific notation with the fraction in hexadec-
imal and the exponent in decimal) represent the 33 most-significant and the 33 least-significant
bits of the fraction:

highπ (unnormalized)= 0.C90FDAA20 * 2+2 

lowπ (unnormalized) = 0.42D184698 * 2−31

These values encoded in the IEEE double-precision floating-point format are as follows:

highπ = 400921FB  54400000

lowπ = 3DE0B461  1A600000

(Note that in the IEEE double-precision floating-point format, the exponents are biased (by
1023) and the fractions are normalized.)

Similar versions of π can also be written in double extended-precision floating-point format.

When using this two-part π value in an algorithm, parallel computations should be performed
on each part, with the results kept separate. When all the computations are complete, the two
results can be added together to form the final result.

The complications of maintaining a consistent value of π for argument reduction can be avoided,
either by applying the trigonometric functions only to arguments within the range of the
automatic reduction mechanism, or by performing all argument reductions (down to a magni-
tude less than π/4) explicitly in software.

8.3.9. Logarithmic, Exponential, and Scale

The following instructions provide two different logarithmic functions, an exponential function,
and a scale function.

FYL2X Logarithm
FYL2XP1 Logarithm epsilon
F2XM1 Exponential
FSCALE Scale
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The FYL2X and FYL2XP1 instructions perform two different base 2 logarithmic operations.
The FYL2X instruction computes (y ∗ log2x). This operation permits the calculation of the log
of any base using the following equation:

logb x = (1/log2 b) ∗ log2 x

The FYL2XP1 instruction computes (y ∗ log2(x + 1)). This operation provides optimum accu-
racy for values of x that are close to 0.

The F2XM1 instruction computes (2x − 1). This instruction only operates on source values in
the range −1.0 to +1.0.

The FSCALE instruction multiplies the source operand by a power of 2.

8.3.10. Transcendental Instruction Accuracy

New transcendental instruction algorithms were incorporated into the IA-32 architecture begin-
ning with the Pentium processors. These new algorithms (used in transcendental instructions
FSIN, FCOS, FSINCOS, FPTAN, FPATAN, F2XM1, FYL2X, and FYL2XP1) allow a higher
level of accuracy than was possible in earlier IA-32 processors and x87 math coprocessors. The
accuracy of these instructions is measured in terms of units in the last place (ulp). For a given
argument x, let f(x) and F(x) be the correct and computed (approximate) function values, respec-
tively. The error in ulps is defined to be:

where k is an integer such that 

With the Pentium processor and later IA-32 processors, the worst case error on transcen-
dental functions is less than 1 ulp when rounding to the nearest (even) and less than 1.5 ulps
when rounding in other modes. The functions are guaranteed to be monotonic, with respect to
the input operands, throughout the domain supported by the instruction.

The instructions FYL2X and FYL2XP1 are two operand instructions and are guaranteed to be
within 1 ulp only when y equals 1. When y is not equal to 1, the maximum ulp error is always
within 1.35 ulps in round to nearest mode. (For the two operand functions, monotonicity was
proved by holding one of the operands constant.)

8.3.11. x87 FPU Control Instructions

The following instructions control the state and modes of operation of the x87 FPU. They also
allow the status of the x87 FPU to be examined:

FINIT/FNINIT Initialize x87 FPU
FLDCW Load x87 FPU control word
FSTCW/FNSTCW Store x87 FPU control word
FSTSW/FNSTSW Store x87 FPU status word

error f x( ) F x( )–

2
k 63–

---------------------------=

1 2
k–

f x( ) 2.<≤
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FCLEX/FNCLEX Clear x87 FPU exception flags
FLDENV Load x87 FPU environment
FSTENV/FNSTENV Store x87 FPU environment
FRSTOR Restore x87 FPU state
FSAVE/FNSAVE Save x87 FPU state
FINCSTP Increment x87 FPU register stack pointer
FDECSTP Decrement x87 FPU register stack pointer
FFREE Free x87 FPU register
FNOP No operation
WAIT/FWAIT Check for and handle pending unmasked x87 FPU exceptions

The FINIT/FNINIT instructions initialize the x87 FPU and its internal registers to default
values.

The FLDCW instructions loads the x87 FPU control word register with a value from memory.
The FSTCW/FNSTCW and FSTSW/FNSTSW instructions store the x87 FPU control and status
words, respectively, in memory (or for an FSTSW/FNSTSW instruction in a general-purpose
register).

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions save the x87 FPU environment
and state, respectively, in memory. The x87 FPU environment includes all the x87 FPU’s control
and status registers; the x87 FPU state includes the x87 FPU environment and the data registers
in the x87 FPU register stack. (The FSAVE/FNSAVE instruction also initializes the x87 FPU to
default values, like the FINIT/FNINIT instruction, after it saves the original state of the x87
FPU.) 

The FLDENV and FRSTOR instructions load the x87 FPU environment and state, respectively,
from memory into the x87 FPU. These instructions are commonly used when switching tasks or
contexts.

The WAIT/FWAIT instructions are synchronization instructions. (They are actually mnemonics
for the same opcode.) These instructions check the x87 FPU status word for pending unmasked
x87 FPU exceptions. If any pending unmasked x87 FPU exceptions are found, they are handled
before the processor resumes execution of the instructions (integer, floating-point, or system
instruction) in the instruction stream. The WAIT/FWAIT instructions are provided to allow
synchronization of instruction execution between the x87 FPU and the processor’s integer unit.
See Section 8.6., “x87 FPU Exception Synchronization” for more information on the use of the
WAIT/FWAIT instructions.

8.3.12. Waiting Vs. Non-waiting Instructions

All of the x87 FPU instructions except a few special control instructions perform a wait opera-
tion (similar to the WAIT/FWAIT instructions), to check for and handle pending unmasked x87
FPU floating-point exceptions, before they perform their primary operation (such as adding two
floating-point numbers). These instructions are called waiting instructions. Some of the x87
FPU control instructions, such as FSTSW/FNSTSW, have both a waiting and a non-waiting
version. The waiting version (with the “F” prefix) executes a wait operation before it performs
its primary operation; whereas, the non-waiting version (with the “FN” prefix) ignores pending
unmasked exceptions. 
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Non-waiting instructions allow software to save the current x87 FPU state without first handling
pending exceptions or to reset or reinitialize the x87 FPU without regard for pending exceptions.

NOTE

When operating a Pentium or Intel486 processor in MS-DOS compatibility
mode, it is possible (under unusual circumstances) for a non-waiting
instruction to be interrupted prior to being executed to handle a pending x87
FPU exception. The circumstances where this can happen and the resulting
action of the processor are described in Section D.2.1.3., “No-Wait x87 FPU
Instructions Can Get x87 FPU Interrupt in Window”. When operating a P6
family, Pentium 4, or Intel Xeon processor in MS-DOS compatibility mode,
non-waiting instructions can not be interrupted in this way (see Section
D.2.2., “MS-DOS Compatibility Mode in the P6 Family and Pentium 4
Processors”).

8.3.13. Unsupported x87 FPU Instructions

The Intel 8087 instructions FENI and FDISI and the Intel 287 math coprocessor instruction
FSETPM perform no function in the Intel 387 math coprocessor and later IA-32 processors. If
these opcodes are detected in the instruction stream, the x87 FPU performs no specific operation
and no internal x87 FPU states are affected.

8.4. X87 FPU FLOATING-POINT EXCEPTION HANDLING

The x87 FPU detects the six classes of exception conditions described in Section 4.9., “Over-
view of Floating-Point Exceptions”:

• Invalid operation (#I)

• Denormalized operand (#D)

• Divide-by-zero (#Z)

• Numeric overflow (#O)

• Numeric underflow (#U)

• Inexact result (precision) (#P)

In addition, the invalid-operation exception class is subdivided into two sub-classes:

• Stack overflow or underflow (#IS)

• Invalid arithmetic operation (#IA)
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Each of the six exception classes has a corresponding flag bit in the x87 FPU status word and a
mask bit in the x87 FPU control word (see Section 8.1.2., “x87 FPU Status Register” and Section
8.1.4., “x87 FPU Control Word”, respectively). In addition, the exception summary (ES) flag in
the status word indicates when one or more unmasked exceptions has been detected. The stack
fault (SF) flag (also in the status word) distinguishes between the two types of invalid-operation
exceptions.

The mask bits can be set with the FLDCW, FRSTOR, or FXRSTOR instruction; they can be read
with either the FSTCW/FNSTCW, FSAVE/FNSAVE, or FXSAVE instructions. The flag bits
can be read with the FSTSW/FNSTSW, FSAVE/FNSAVE, or FXSAVE instructions.

NOTE

Section 4.9.1., “Floating-Point Exception Conditions” provides a general
overview of how the IA-32 processor detects and handles the various classes
of floating-point exceptions. This information pertains to the x87 FPU as well
as the SSE and SSE2 extensions. The following sections give specific
information about how the x87 FPU handles floating-point exceptions that
are unique to the x87 FPU.

8.4.1. Arithmetic vs. Non-arithmetic Instructions

When dealing with floating-point exceptions, it is useful to distinguish between arithmetic
instructions and non-arithmetic instructions. Non-arithmetic instructions have no operands
or do not make substantial changes to their operands. Arithmetic instructions do make signifi-
cant changes to their operands; in particular, they make changes that could result in floating-
point exceptions being signaled. Table 8-9 lists the non-arithmetic and arithmetic instructions.
It should be noted that some non-arithmetic instructions can signal a floating-point stack (fault)
exception, but this exception is not the result of an operation on an operand.

Table 8-9.  Arithmetic and Non-arithmetic Instructions

Non-arithmetic Instructions Arithmetic Instructions

FABS F2XM1

FCHS FADD/FADDP

FCLEX FBLD

FDECSTP FBSTP

FFREE FCOM/FCOMP/FCOMPP

FINCSTP FCOS

FINIT/FNINIT FDIV/FDIVP/FDIVR/FDIVRP

FLD (register-to-register) FIADD

FLD (extended format from memory) FICOM/FICOMP

FLD constant FIDIV/FIDIVR

FLDCW FILD
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8.5. X87 FPU FLOATING-POINT EXCEPTION CONDITIONS

The following sections describe the various conditions that cause a floating-point exception to
be generated by the x87 FPU and the masked response of the x87 FPU when these conditions
are detected. Chapter 3, Instruction Set Reference, in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2, lists the floating-point exceptions that can be signaled for each
floating-point instruction.

See Section 4.9.2., “Floating-Point Exception Priority” for a description of the rules for exception
precedence when more than one floating-point exception condition is detected for an instruction.

8.5.1. Invalid Operation Exception

The floating-point invalid-operation exception occurs in response to two sub-classes of operations:

• Stack overflow or underflow (#IS).

• Invalid arithmetic operand (#IA).

FLDENV FIMUL

FNOP FIST/FISTP

FRSTOR FISUB/FISUBR

FSAVE/FNSAVE FLD (single and double)

FST/FSTP (register-to-register) FMUL/FMULP

FSTP (extended format to memory) FPATAN

FSTCW/FNSTCW FPREM/FPREM1

FSTENV/FNSTENV FPTAN

FSTSW/FNSTSW FRNDINT

WAIT/FWAIT FSCALE

FXAM FSIN

FXCH FSINCOS

FSQRT

FST/FSTP (single and double)

FSUB/FSUBP/FSUBR/FSUBRP

FTST

FUCOM/FUCOMP/FUCOMPP

FXTRACT

FYL2X/FYL2XP1

Table 8-9.  Arithmetic and Non-arithmetic Instructions (Contd.)

Non-arithmetic Instructions Arithmetic Instructions
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The flag for this exception (IE) is bit 0 of the x87 FPU status word, and the mask bit (IM) is bit
0 of the x87 FPU control word. The stack fault flag (SF) of the x87 FPU status word indicates
the type of operation that caused the exception. When the SF flag is set to 1, a stack operation
has resulted in stack overflow or underflow; when the flag is cleared to 0, an arithmetic instruc-
tion has encountered an invalid operand. Note that the x87 FPU explicitly sets the SF flag when
it detects a stack overflow or underflow condition, but it does not explicitly clear the flag when
it detects an invalid-arithmetic-operand condition. As a result, the state of the SF flag can be 1
following an invalid-arithmetic-operation exception, if it was not cleared from the last time a
stack overflow or underflow condition occurred. See Section 8.1.2.4., “Stack Fault Flag”, for
more information about the SF flag.

8.5.1.1. STACK OVERFLOW OR UNDERFLOW EXCEPTION (#IS)

The x87 FPU tag word keeps track of the contents of the registers in the x87 FPU register stack
(see Section 8.1.6., “x87 FPU Tag Word”). It then uses this information to detect two different
types of stack faults:

• Stack overflow—an instruction attempts to load a non-empty x87 FPU register from
memory. A non-empty register is defined as a register containing a zero (tag value of 01), a
valid value (tag value of 00), or a special value (tag value of 10).

• Stack underflow—an instruction references an empty x87 FPU register as a source
operand, including attempting to write the contents of an empty register to memory. An
empty register has a tag value of 11.

NOTE

The term stack overflow originates from the situation where the program has
loaded (pushed) eight values from memory onto the x87 FPU register stack
and the next value pushed on the stack causes a stack wraparound to a register
that already contains a value. The term stack underflow originates from the
opposite situation. Here, a program has stored (popped) eight values from the
x87 FPU register stack to memory and the next value popped from the stack
causes stack wraparound to an empty register.

When the x87 FPU detects stack overflow or underflow, it sets the IE flag (bit 0) and the SF flag
(bit 6) in the x87 FPU status word to 1. It then sets condition-code flag C1 (bit 9) in the x87 FPU
status word to 1 if stack overflow occurred or to 0 if stack underflow occurred. 

If the invalid-operation exception is masked, the x87 FPU returns the floating point, integer, or
packed decimal integer indefinite value to the destination operand, depending on the instruction
being executed. This value overwrites the destination register or memory location specified by
the instruction.

If the invalid-operation exception is not masked, a software exception handler is invoked (see
Section 8.7., “Handling x87 FPU Exceptions in Software”) and the top-of-stack pointer (TOP)
and source operands remain unchanged.
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8.5.1.2. INVALID ARITHMETIC OPERAND EXCEPTION (#IA)

The x87 FPU is able to detect a variety of invalid arithmetic operations that can be coded in a
program. These operations are listed in Table 8-10. (This list includes the invalid operations
defined in IEEE Standard 754.)

When the x87 FPU detects an invalid arithmetic operand, it sets the IE flag (bit 0) in the x87
FPU status word to 1. If the invalid-operation exception is masked, the x87 FPU then returns an
indefinite value or QNaN to the destination operand and/or sets the floating-point condition
codes as shown in Table 8-10. If the invalid-operation exception is not masked, a software
exception handler is invoked (see Section 8.7., “Handling x87 FPU Exceptions in Software”)
and the top-of-stack pointer (TOP) and source operands remain unchanged.

Table 8-10.  Invalid Arithmetic Operations and the Masked Responses to Them

Condition Masked Response

Any arithmetic operation on an operand that is in an 
unsupported format.

Return the QNaN floating-point indefinite value to 
the destination operand.

Any arithmetic operation on a SNaN. Return a QNaN to the destination operand (see 
Table 4-7).

Ordered compare and test operations: one or both 
operands are NaNs.

Set the condition code flags (C0, C2, and C3) in 
the x87 FPU status word or the CF, PF, and ZF 
flags in the EFLAGS register to 111B (not 
comparable).

Addition: operands are opposite-signed infinities.
Subtraction: operands are like-signed infinities.

Return the QNaN floating-point indefinite value to 
the destination operand.

Multiplication: ∞ by 0; 0 by ∞. Return the QNaN floating-point indefinite value to 
the destination operand.

Division: ∞ by ∞; 0 by 0. Return the QNaN floating-point indefinite value to 
the destination operand.

Remainder instructions FPREM, FPREM1: modulus 
(divisor) is 0 or dividend is ∞.

Return the QNaN floating-point indefinite; clear 
condition code flag C2 to 0.

Trigonometric instructions FCOS, FPTAN, FSIN, 
FSINCOS: source operand is ∞.

Return the QNaN floating-point indefinite; clear 
condition code flag C2 to 0.

FSQRT: negative operand (except FSQRT (–0) = –0); 
FYL2X: negative operand (except FYL2X (–0) = –∞); 
FYL2XP1: operand more negative than –1.

Return the QNaN floating-point indefinite value to 
the destination operand.

FBSTP: Converted value cannot be represented in 18 
decimal digits, or source value is an SNaN, QNaN, ±∞, 
or in an unsupported format.

Store packed BCD integer indefinite value in the 
destination operand.

FIST/FISTP: Converted value exceeds representable 
integer range of the destination operand, or source 
value is an SNaN, QNaN, ±∞, or in an unsupported 
format.

Store integer indefinite value in the destination 
operand.

FXCH: one or both registers are tagged empty. Load empty registers with the QNaN floating-
point indefinite value, then perform the exchange.
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Normally, when one or both of the source operands is a QNaN (and neither is an SNaN or in an
unsupported format), an invalid-operand exception is not generated. An exception to this rule is
most of the compare instructions (such as the FCOM and FCOMI instructions) and the floating-
point to integer conversion instructions (FIST/FISTP and FBSTP). With these instructions, a
QNaN source operand will generate an invalid-operand exception.

8.5.2. Denormal Operand Exception (#D)

The x87 FPU signals the denormal-operand exception under the following conditions:

• If an arithmetic instruction attempts to operate on a denormal operand (see Section
4.8.3.2., “Normalized and Denormalized Finite Numbers”).

• If an attempt is made to load a denormal single-precision or double-precision floating-
point value into an x87 FPU register. (If the denormal value being loaded is a double
extended-precision floating-point value, the denormal-operand exception is not reported.)

The flag (DE) for this exception is bit 1 of the x87 FPU status word, and the mask bit (DM) is
bit 1 of the x87 FPU control word.

When a denormal-operand exception occurs and the exception is masked, the x87 FPU sets the
DE flag, then proceeds with the instruction. The denormal operand in single- or double-preci-
sion floating-point format is automatically normalized when converted to the double extended-
precision floating-point format. Subsequent operations will benefit from the additional precision
of the internal double extended-precision floating-point format.

When a denormal-operand exception occurs and the exception is not masked, the DE flag is set
and a software exception handler is invoked (see Section 8.7., “Handling x87 FPU Exceptions
in Software”). The top-of-stack pointer (TOP) and source operands remain unchanged.

For additional information about the denormal-operation exception, see Section 4.9.1.2.,
“Denormal Operand Exception (#D)”.

8.5.3. Divide-By-Zero Exception (#Z)

The x87 FPU reports a floating-point divide-by-zero exception whenever an instruction
attempts to divide a finite non-zero operand by 0. The flag (ZE) for this exception is bit 2 of the
x87 FPU status word, and the mask bit (ZM) is bit 2 of the x87 FPU control word. The FDIV,
FDIVP, FDIVR, FDIVRP, FIDIV, and FIDIVR instructions and the other instructions that
perform division internally (FYL2X and FXTRACT) can report the divide-by-zero exception. 

When a divide-by-zero exception occurs and the exception is masked, the x87 FPU sets the ZE
flag and returns the values shown in Table 8-10. If the divide-by-zero exception is not masked,
the ZE flag is set, a software exception handler is invoked (see Section 8.7., “Handling x87 FPU
Exceptions in Software”), and the top-of-stack pointer (TOP) and source operands remain
unchanged.
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8.5.4. Numeric Overflow Exception (#O)

The x87 FPU reports a floating-point numeric overflow exception (#O) whenever the rounded
result of an arithmetic instruction exceeds the largest allowable finite value that will fit into the
floating-point format of the destination operand. (See Section 4.9.1.4., “Numeric Overflow
Exception (#O)” for additional information about the numeric overflow exception.)

When using the x87 FPU, numeric overflow can occur on arithmetic operations where the result
is stored in an x87 FPU data register. It can also occur on store floating-point operations (using
the FST and FSTP instructions), where a within-range value in a data register is stored in
memory in a single-precision or double-precision floating-point format. The numeric overflow
exception cannot occur when storing values in an integer or BCD integer format. Instead, the
invalid-arithmetic-operand exception is signaled.

The flag (OE) for the numeric-overflow exception is bit 3 of the x87 FPU status word, and the
mask bit (OM) is bit 3 of the x87 FPU control word. 

When a numeric-overflow exception occurs and the exception is masked, the x87 FPU sets the
OE flag and returns one of the values shown in Table 4-10. The value returned depends on the
current rounding mode of the x87 FPU (see Section 8.1.4.3., “Rounding Control Field”).

The action that the x87 FPU takes when numeric overflow occurs and the numeric-overflow
exception is not masked, depends on whether the instruction is supposed to store the result in
memory or on the register stack.

• Destination is a memory location. The OE flag is set and a software exception handler is
invoked (see Section 8.7., “Handling x87 FPU Exceptions in Software”). The top-of-stack
pointer (TOP) and source and destination operands remain unchanged. Because the data in
the stack is in double extended-precision format, the exception handler has the option
either of re-executing the store instruction after proper adjustment of the operand or of
rounding the significand on the stack to the destination's precision as the standard requires.
The exception handler should ultimately store a value into the destination location in
memory if the program is to continue.

• Destination is the register stack. The significand of the result is rounded according to
current settings of the precision and rounding control bits in the x87 FPU control word and
the exponent of the result is adjusted by dividing it by 224576. (For instructions not affected
by the precision field, the significand is rounded to double-extended precision.) The
resulting value is stored in the destination operand. Condition code bit C1 in the x87 FPU

Table 8-11.  Divide-By-Zero Conditions and the Masked Responses to Them

Condition Masked Response

Divide or reverse divide operation 
with a 0 divisor.

Returns an ∞ signed with the exclusive OR of the sign of the two 
operands to the destination operand.

FYL2X instruction. Returns an ∞ signed with the opposite sign of the non-zero 
operand to the destination operand.

FXTRACT instruction. ST(1) is set to –∞; ST(0) is set to 0 with the same sign as the 
source operand.
8-36



PROGRAMMING WITH THE X87 FPU
status word (called in this situation the “round-up bit”) is set if the significand was rounded
upward and cleared if the result was rounded toward 0. After the result is stored, the OE
flag is set and a software exception handler is invoked. The scaling bias value 24,576 is
equal to 3 ∗ 213. Biasing the exponent by 24,576 normally translates the number as nearly
as possible to the middle of the double extended-precision floating-point exponent range
so that, if desired, it can be used in subsequent scaled operations with less risk of causing
further exceptions.

When using the FSCALE instruction, massive overflow can occur, where the result is too
large to be represented, even with a bias-adjusted exponent. Here, if overflow occurs again,
after the result has been biased, a properly signed ∞ is stored in the destination operand.

8.5.5. Numeric Underflow Exception (#U)

The x87 FPU detects a floating-point numeric underflow condition whenever the rounded result
of an arithmetic instruction is tiny; that is, less than the smallest possible normalized, finite value
that will fit into the floating-point format of the destination operand. (See Section 4.9.1.5.,
“Numeric Underflow Exception (#U)” for additional information about the numeric underflow
exception.)

Like numeric overflow, numeric underflow can occur on arithmetic operations where the result
is stored in an x87 FPU data register. It can also occur on store floating-point operations (with
the FST and FSTP instructions), where a within-range value in a data register is stored in
memory in the smaller single-precision or double-precision floating-point formats. A numeric
underflow exception cannot occur when storing values in an integer or BCD integer format,
because a tiny value is always rounded to an integral value of 0 or 1, depending on the rounding
mode in effect.

The flag (UE) for the numeric-underflow exception is bit 4 of the x87 FPU status word, and the
mask bit (UM) is bit 4 of the x87 FPU control word.

When a numeric-underflow condition occurs and the exception is masked, the x87 FPU
performs the operation described in Section 4.9.1.5., “Numeric Underflow Exception (#U)”.

When the exception is not masked, the action of the x87 FPU depends on whether the instruction
is supposed to store the result in a memory location or on the x87 FPU resister stack.

• Destination is a memory location. (Can occur only with a store instruction.) The UE flag
is set and a software exception handler is invoked (see Section 8.7., “Handling x87 FPU
Exceptions in Software”). The top-of-stack pointer (TOP) and source and destination
operands remain unchanged, and no result is stored in memory. 
Because the data in the stack is in double extended-precision format, the exception handler
has the option either of re-exchanges the store instruction after proper adjustment of the
operand or of rounding the significand on the stack to the destination's precision as the
standard requires. The exception handler should ultimately store a value into the
destination location in memory if the program is to continue.

• Destination is the register stack. The significand of the result is rounded according to
current settings of the precision and rounding control bits in the x87 FPU control word and
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the exponent of the result is adjusted by multiplying it by 224576. (For instructions not
affected by the precision field, the significand is rounded to double extended precision.)
The resulting value is stored in the destination operand. Condition code bit C1 in the x87
FPU status register (acting here as a “round-up bit”) is set if the significand was rounded
upward and cleared if the result was rounded toward 0. After the result is stored, the UE
flag is set and a software exception handler is invoked. The scaling bias value 24,576 is the
same as is used for the overflow exception and has the same effect, which is to translate the
result as nearly as possible to the middle of the double extended-precision floating-point
exponent range.

When using the FSCALE instruction, massive underflow can occur, where the result is too
tiny to be represented, even with a bias-adjusted exponent. Here, if underflow occurs again
after the result has been biased, a properly signed 0 is stored in the destination operand.

8.5.6. Inexact-Result (Precision) Exception (#P)

The inexact-result exception (also called the precision exception) occurs if the result of an oper-
ation is not exactly representable in the destination format. (See Section 4.9.1.6., “Inexact-
Result (Precision) Exception (#P)” for additional information about the numeric overflow
exception.) Note that the transcendental instructions (FSIN, FCOS, FSINCOS, FPTAN,
FPATAN, F2XM1, FYL2X, and FYL2XP1) by nature produce inexact results.

The inexact-result exception flag (PE) is bit 5 of the x87 FPU status word, and the mask bit (PM)
is bit 5 of the x87 FPU control word. 

If the inexact-result exception is masked when an inexact-result condition occurs and a numeric
overflow or underflow condition has not occurred, the x87 FPU handles the exception as
describe in Section 4.9.1.6., “Inexact-Result (Precision) Exception (#P)”, with one additional
action. The C1 (round-up) bit in the x87 FPU status word is set to indicate whether the inexact
result was rounded up (C1 is set) or “not rounded up” (C1 is cleared). In the “not rounded up”
case, the least-significant bits of the inexact result are truncated so that the result fits in the desti-
nation format.

If the inexact-result exception is not masked when an inexact result occurs and numeric over-
flow or underflow has not occurred, the x87 FPU handles the exception as described the
previous paragraph and, in addition, invokes a software exception handler.

If an inexact result occurs in conjunction with numeric overflow or underflow, the x87 FPU
carries out one of the following operations:

• If an inexact result occurs in conjunction with masked overflow or underflow, the OE or
UE flag and the PE flag are set and the result is stored as described for the overflow or
underflow exceptions (see Section 8.5.4., “Numeric Overflow Exception (#O)” or Section
8.5.5., “Numeric Underflow Exception (#U)”). If the inexact result exception is unmasked,
the x87 FPU also invokes a software exception handler.

• If an inexact result occurs in conjunction with unmasked overflow or underflow and the
destination operand is a register, the OE or UE flag and the PE flag are set, the result is
stored as described for the overflow or underflow exceptions (see Section 8.5.4., “Numeric
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Overflow Exception (#O)” or Section 8.5.5., “Numeric Underflow Exception (#U)”, and a
software exception handler is invoked.

If an unmasked numeric overflow or underflow exception occurs and the destination operand is
a memory location (which can happen only for a floating-point store), the inexact-result condi-
tion is not reported and the C1 flag is cleared.

8.6. X87 FPU EXCEPTION SYNCHRONIZATION

Because the integer unit and x87 FPU are separate execution units, it is possible for the
processor to execute floating-point, integer, and system instructions concurrently. No special
programming techniques are required to gain the advantages of concurrent execution. (Floating-
point instructions are placed in the instruction stream along with the integer and system instruc-
tions.) However, concurrent execution can cause problems for floating-point exception
handlers. 

This problem is related to the way the x87 FPU signals the existence of unmasked floating-point
exceptions. (Special exception synchronization is not required for masked floating-point excep-
tions, because the x87 FPU always returns a masked result to the destination operand.) 

When a floating-point exception is unmasked and the exception condition occurs, the x87 FPU
stops further execution of the floating-point instruction and signals the exception event. On the
next occurrence of a floating-point instruction or a WAIT/FWAIT instruction in the instruction
stream, the processor checks the ES flag in the x87 FPU status word for pending floating-point
exceptions. It floating-point exceptions are pending, the x87 FPU makes an implicit call (traps)
to the floating-point software exception handler. The exception handler can then execute
recovery procedures for selected or all floating-point exceptions.

Synchronization problems occur in the time frame between the moment when the exception is
signaled and when it is actually handled. Because of concurrent execution, integer or system
instructions can be executed during this time frame. It is thus possible for the source or destina-
tion operands for a floating-point instruction that faulted to be overwritten in memory, making
it impossible for the exception handler to analyze or recover from the exception.

To solve this problem, an exception synchronizing instruction (either a floating-point instruction
or a WAIT/FWAIT instruction) can be placed immediately after any floating-point instruction
that might present a situation where state information pertaining to a floating-point exception
might be lost or corrupted. Floating-point instructions that store data in memory are prime candi-
dates for synchronization. For example, the following three lines of code have the potential for
exception synchronization problems:

FILD COUNT ; Floating-point instruction
INC COUNT  ; Integer instruction
FSQRT      ; Subsequent floating-point instruction

In this example, the INC instruction modifies the source operand of the floating-point instruc-
tion, FILD. If an exception is signaled during the execution of the FILD instruction, the INC
instruction would be allowed to overwrite the value stored in the COUNT memory location
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before the floating-point exception handler is called. With the COUNT variable modified, the
floating-point exception handler would not be able to recover from the error.

Rearranging the instructions, as follows, so that the FSQRT instruction follows the FILD
instruction, synchronizes floating-point exception handling and eliminates the possibility of the
COUNT variable being overwritten before the floating-point exception handler is invoked.

FILD COUNT ; Floating-point instruction
FSQRT      ; Subsequent floating-point instruction synchronizes
           ; any exceptions generated by the FILD instruction.
INC COUNT  ; Integer instruction

The FSQRT instruction does not require any synchronization, because the results of this instruc-
tion are stored in the x87 FPU data registers and will remain there, undisturbed, until the next
floating-point or WAIT/FWAIT instruction is executed. To absolutely insure that any exceptions
emanating from the FSQRT instruction are handled (for example, prior to a procedure call), a
WAIT instruction can be placed directly after the FSQRT instruction.

Note that some floating-point instructions (non-waiting instructions) do not check for pending
unmasked exceptions (see Section 8.3.11., “x87 FPU Control Instructions”). They include the
FNINIT, FNSTENV, FNSAVE, FNSTSW, FNSTCW, and FNCLEX instructions. When an
FNINIT, FNSTENV, FNSAVE, or FNCLEX instruction is executed, all pending exceptions are
essentially lost (either the x87 FPU status register is cleared or all exceptions are masked). The
FNSTSW and FNSTCW instructions do not check for pending interrupts, but they do not
modify the x87 FPU status and control registers. A subsequent “waiting” floating-point instruc-
tion can then handle any pending exceptions.

8.7. HANDLING X87 FPU EXCEPTIONS IN SOFTWARE

The x87 FPU in Pentium and later IA-32 processors provides two different modes of operation for
invoking a software exception handler for floating-point exceptions: native mode and MS-DOS
compatibility mode. The mode of operation is selected with the NE flag of control register CR0.
(See Chapter 2, System Architecture Overview, in the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 3, for more information about the NE flag.)

8.7.1. Native Mode

The native mode for handling floating-point exceptions is selected by setting the NE flag in
control register CR0 to 1. In this mode, if the x87 FPU detects an exception condition while
executing a floating-point instruction and the exception is unmasked (the mask bit for the excep-
tion is cleared), the x87 FPU sets the flag for the exception and the ES flag in the x87 FPU status
word. It then invokes the software exception handler through the floating-point-error exception
(#MF, vector 16), immediately before execution of any of the following instructions in the
processor’s instruction stream:

• The next floating-point instruction, unless it is one of the non-waiting instructions
(FNINIT, FNCLEX, FNSTSW, FNSTCW, FNSTENV, and FNSAVE). 
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• The next WAIT/FWAIT instruction.

• The next MMX instruction.

If the next floating-point instruction in the instruction stream is a non-waiting instruction, the
x87 FPU executes the instruction without invoking the software exception handler.

8.7.2. MS-DOS* Compatibility Mode

If the NE flag in control register CR0 is set to 0, the MS-DOS compatibility mode for handling
floating-point exceptions is selected. In this mode, the software exception handler for floating-
point exceptions is invoked externally using the processor’s FERR#, INTR, and IGNNE# pins.
This method of reporting floating-point errors and invoking an exception handler is provided to
support the floating-point exception handling mechanism used in PC systems that are running
the MS-DOS or Windows* 95 operating system.

The MS-DOS compatibility mode is typically used as follows to invoke the floating-point
exception handler:

1. If the x87 FPU detects an unmasked floating-point exception, it sets the flag for the
exception and the ES flag in the x87 FPU status word.

2. If the IGNNE# pin is deasserted, the x87 FPU then asserts the FERR# pin either immedi-
ately, or else delayed (deferred) until just before the execution of the next waiting floating-
point instruction or MMX instruction. Whether the FERR# pin is asserted immediately or
delayed depends on the type of processor, the instruction, and the type of exception.

3. If a preceding floating-point instruction has set the exception flag for an unmasked x87
FPU exception, the processor freezes just before executing the next WAIT instruction,
waiting floating-point instruction, or MMX instruction. Whether the FERR# pin was
asserted at the preceding floating-point instruction or is just now being asserted, the
freezing of the processor assures that the x87 FPU exception handler will be invoked
before the new floating-point (or MMX) instruction gets executed.

4. The FERR# pin is connected through external hardware to IRQ13 of a cascaded, program-
mable interrupt controller (PIC). When the FERR# pin is asserted, the PIC is programmed
to generate an interrupt 75H.

5. The PIC asserts the INTR pin on the processor to signal the interrupt 75H.

6. The BIOS for the PC system handles the interrupt 75H by branching to the interrupt 2
(NMI) interrupt handler.

7. The interrupt 2 handler determines if the interrupt is the result of an NMI interrupt or a
floating-point exception.

8. If a floating-point exception is detected, the interrupt 2 handler branches to the floating-
point exception handler.

If the IGNNE# pin is asserted, the processor ignores floating-point error conditions. This pin is
provided to inhibit floating-point exceptions from being generated while the floating-point
exception handler is servicing a previously signaled floating-point exception.
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Appendix D, Guidelines for Writing x87 FPU Exception Handlers, describes the MS-DOS
compatibility mode in much greater detail. This mode is somewhat more complicated in the
Intel486 and Pentium processor implementations, as described in Appendix D.

8.7.3. Handling x87 FPU Exceptions in Software

Section 4.9.3., “Typical Actions of a Floating-Point Exception Handler” shows actions that may
be carried out by a floating-point exception handler. The state of the x87 FPU can be saved with
the FSTENV/FNSTENV or FSAVE/FNSAVE instructions (see Section 8.1.9., “Saving the x87
FPU’s State with the FSTENV/FNSTENV and FSAVE/FNSAVE Instructions”). 

If the faulting floating-point instruction is followed by one or more non-floating-point instruc-
tions, it may not be useful to re-execute the faulting instruction. See Section 8.6., “x87 FPU
Exception Synchronization”, for more information on synchronizing floating-point exceptions.

In cases where the handler needs to restart program execution with the faulting instruction, the
IRET instruction cannot be used directly. The reason for this is that because the exception is not
generated until the next floating-point or WAIT/FWAIT instruction following the faulting
floating-point instruction, the return instruction pointer on the stack may not point to the faulting
instruction. To restart program execution at the faulting instruction, the exception handler must
obtain a pointer to the instruction from the saved x87 FPU state information, load it into the
return instruction pointer location on the stack, and then execute the IRET instruction.

See Section D.3.4., “x87 FPU Exception Handling Examples”, for general examples of floating-
point exception handlers and for specific examples of how to write a floating-point exception
handler when using the MS-DOS compatibility mode.
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CHAPTER 9
PROGRAMMING WITH THE INTEL

MMX TECHNOLOGY

The Intel MMX technology was introduced into the IA-32 architecture in the Pentium II
processor family and Pentium processor with MMX technology. The extensions introduced in
the MMX technology support a single-instruction, multiple-data (SIMD) execution model that
is designed to accelerate the performance of advanced media and communications applications.

This chapter describes the MMX technology.

9.1. OVERVIEW OF THE MMX TECHNOLOGY

The MMX technology defines a simple and flexible SIMD execution model to handle 64-bit
packed integer data. This model adds the following features to the IA-32 architecture, while
maintaining backwards compatibility with all IA-32 applications and operating-system code:

• Eight new 64-bit data registers, called the MMX registers.

• Three new packed data types:

— 64-bit packed byte integers (signed and unsigned).

— 64-bit packed word integers (signed and unsigned).

— 64-bit packed doubleword integers (signed and unsigned).

• New instructions to support the new data types and to handle MMX state management.

• Extensions to the CPUID instruction.

The ability perform SIMD operations on packed integers provides important performance gains
for the IA-32 architecture when executing algorithms that perform repetitive operations on large
arrays of integer data elements.

The MMX technology is accessible from all the IA32-architecture execution modes (protected
mode, real address mode, and virtual 8086 mode), and it does not add any new modes to the
architecture.

The following sections of this chapter describe the MMX technology’s programming environ-
ment, including the MMX register set, data types, and instruction set. Additional instructions
that operate on the MMX registers have been added to the IA-32 architecture in the SSE and
SSE2 extensions. For additional information on the MMX technology see the following refer-
ences:

• Section 10.4.4., “SSE 64-bit SIMD Integer Instructions” describes the MMX instructions
added to the IA-32 architecture with the SSE extensions.
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• Section 11.4.2., “SSE2 64-Bit and 128-Bit SIMD Integer Instructions” describes the MMX
instructions added to the IA-32 architecture with the SSE2 extensions.

• Chapter 3, Instruction Set Reference, of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2 gives detailed descriptions of the MMX instructions.

• Chapter 11, MMX Technology System Programming Model, in the IA-32 Intel Architecture
Software Developer’s Manual, Volume 3 describes the manner in which the MMX
technology is integrated into the IA-32 system programming model.

9.2. THE MMX TECHNOLOGY PROGRAMMING ENVIRONMENT 

Figure 9-1 shows the execution environment for the MMX technology. All MMX instruction
operate on the MMX registers, the general-purpose registers, and/or memory as follows: 

• MMX registers. These eight registers (see Figure 9-1) are used to perform operations on
64-bit packed integer data. They are referenced by the names MM0 through MM7.

• General-purpose registers. The eight general-purpose registers (see Figure 3-4) are used
along with the existing IA-32 addressing modes to address operands in memory. (The
MMX registers cannot be used to address memory). The general-purpose registers are also
used to hold operands for some MMX technology operations. These registers are
referenced by the names EAX, EBX, ECX, EDX, EBP, ESI EDI, and ESP.

9.2.1. MMX Registers

The MMX register set consists of eight 64-bit registers (see Figure 9-2), which are used to
perform calculations on the MMX packed integer data types. Values in MMX registers have the
same format as a 64-bit quantity in memory. 

Figure 9-1.  MMX Technology Execution Environment
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The MMX registers have two data access modes: 64-bit access mode and 32-bit access mode.
The 64-bit access mode is used for 64-bit memory accesses; 64-bit transfers between MMX
registers; all pack, logical and arithmetic instructions; and some unpack instructions. The 32-bit
access mode is used for 32-bit memory accesses, 32-bit transfer between general-purpose regis-
ters and MMX registers, and some unpack instructions.

Although the MMX registers are defined in the IA-32 architecture as separate registers, they are
aliased to the registers in the FPU data register stack (R0 through R7). See Section 9.5.,
“Compatibility with x87 FPU Architecture”.

9.2.2. MMX Data Types

The MMX technology introduced the following 64-bit data types to the IA-32 architecture (see
Figure 9-3):

• 64-bit packed byte integers—eight packed bytes.

• 64-bit packed word integers—four packed words.

• 64-bit packed doubleword integers—two packed doublewords.

The MMX instructions move the 64-bit packed data types (packed bytes, packed words, or
packed doublewords) and the quadword data type between the MMX registers and memory or
between MMX registers in 64-bit blocks. However, when performing arithmetic or logical oper-
ations on the packed data types, the MMX instructions operate in parallel on the individual
bytes, words, or doublewords contained in MMX registers (see Section 9.2.4., “Single Instruc-
tion, Multiple Data (SIMD) Execution Model”).

Figure 9-2.   MMX Register Set
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9.2.3. Memory Data Formats

When stored in memory, the bytes, words, and doublewords in the packed data types are stored
in consecutive addresses, with the least significant byte, word, or doubleword being stored in
the at the lowest address and the more significant bytes, words, or doubleword being stored at
consecutively higher addresses. The ordering of bytes, words, or doublewords in memory is
always little endian. That is, the bytes with the lower addresses are less significant than the bytes
with the higher addresses.

9.2.4. Single Instruction, Multiple Data (SIMD) Execution Model

The MMX technology uses the single instruction, multiple data (SIMD) technique for
performing arithmetic and logical operations on the bytes, words, or doublewords packed into
MMX registers (see Figure 9-4). For example, the PADDSW instruction adds 4 signed word
integers from one source operand to 4 signed word integers in a second source operand and
stores 4 word integer results in the destination operand. (Note that the same MMX register is
generally used for the second source and the destination operand.) This SIMD technique speeds
up software performance by allowing the same operation to be carried out on multiple data
elements in parallel. The MMX technology supports parallel operations on byte, word, and
doubleword data elements when contained in MMX registers.

The SIMD execution model supported in the MMX technology directly addresses the needs of
modern media, communications, and graphics applications, which often use sophisticated algo-
rithms that perform the same operations on a large number of small data types (bytes, words,
and doublewords). For example, most audio data is represented in 16-bit (word) quantities. The
MMX instructions can operate on 4 words simultaneously with one instruction. Video and
graphics information is commonly represented as palletized 8-bit (byte) quantities. Here, one
MMX instruction can operate on 8 bytes simultaneously.

Figure 9-3.  Data Types Introduced with the MMX Technology
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9.3. SATURATION AND WRAPAROUND MODES

When performing integer arithmetic, an operation may result in an out-of-range condition,
where the true result cannot be represented in the destination format. For example, when
performing arithmetic on signed word integers, positive overflow can occur causing the true
signed result is larger than 16 bits.

The MMX technology provides three ways of handling out-of-range conditions:

• Wraparound arithmetic.

• Signed saturation arithmetic.

• Unsigned saturation arithmetic.

With wraparound arithmetic, a true out-of-range result is truncated (that is, the carry or overflow
bit is ignored and only the least significant bits of the result are returned to the destination).
Wraparound arithmetic is suitable for applications that control the range of operands to prevent
out-of-range results. If the range of operands is not controlled, however, wraparound arithmetic
can lead to large errors. For example, adding two large signed numbers can cause positive over-
flow and produce a negative result.

With signed saturation arithmetic, out-of-range results are limited to the representable range of
signed integers for the integer size being operated on (see Table 9-1). For example, if positive
overflow occurs when operating on signed word integers, the result is “saturated” to 7FFFH,
which is the largest positive integer that can be represented in 16 bits; if negative overflow
occurs, the result is saturated to 8000H.

With unsigned saturation arithmetic, out-of-range results are limited to the representable range
of unsigned integers for the integer size being operated on. So, positive overflow when operating
on unsigned byte integers results in FFH being returned and negative overflow results in 00H
being retuned.

Figure 9-4.  SIMD Execution Model
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Saturation arithmetic provides a more natural answer for many overflow situations. For
example, in color calculations, saturation causes a color to remain pure black or pure white
without allowing inversion. It also prevents wraparound artifacts from entering into computa-
tions, when range checking of source operands it not used.

MMX instructions do not indicate overflow or underflow occurrence by generating exceptions
or setting flags in the EFLAGS register.

9.4. MMX INSTRUCTIONS

The MMX instruction set consists of 47 instructions, grouped into the following categories:

• Data transfer

• Arithmetic

• Comparison

• Conversion

• Unpacking

• Logical

• Shift

• Empty MMX state instruction (EMMS)

Table 9-2 gives a summary of the instructions in the MMX instruction set. The following
sections give a brief overview of each group of instructions in the MMX instruction set and the
instructions within each group.

NOTE

The MMX instructions described in this chapter are those instructions that are
available in an IA-32 processor when the CPUID MMX feature bit (bit 23) is
set. Section 10.4.4., “SSE 64-bit SIMD Integer Instructions” and to Section
11.4.2., “SSE2 64-Bit and 128-Bit SIMD Integer Instructions” list additional
instructions included with the SSE and SSE2 extensions that operate on the
MMX registers but are not considered part of the MMX instruction set. 

Table 9-1.  Data Range Limits for Saturation

Data Type Lower Limit Upper Limit

Hexadecimal Decimal Hexadecimal Decimal

Signed Byte     80H     -128     7FH      127

Signed Word 8000H -32,768 7FFFH 32,767

Unsigned Byte     00H           0     FFH      255

Unsigned Word 0000H           0 FFFFH 65,535
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9.4.1. Data Transfer Instructions

The MOVD (Move 32 Bits) instruction transfers 32 bits of packed data from memory to an
MMX register and visa versa, or from a general-purpose register to an MMX register and visa
versa.

Table 9-2.  MMX Instruction Set Summary

Category Wraparound Signed 
Saturation

Unsigned 
Saturation

Arithmetic Addition

Subtraction

Multiplication
Multiply and Add

PADDB, PADDW, 
PADDD
PSUBB, PSUBW, 
PSUBD
PMULL, PMULH
PMADD

PADDSB, 
PADDSW
PSUBSB, 
PSUBSW

PADDUSB, 
PADDUSW
PSUBUSB, 
PSUBUSW

Comparison Compare for Equal

Compare for 
Greater Than

PCMPEQB, 
PCMPEQW, 
PCMPEQD
PCMPGTPB, 
PCMPGTPW, 
PCMPGTPD

Conversion Pack PACKSSWB,
PACKSSDW

PACKUSWB

Unpack Unpack High

Unpack Low

PUNPCKHBW, 
PUNPCKHWD, 
PUNPCKHDQ
PUNPCKLBW, 
PUNPCKLWD, 
PUNPCKLDQ

Packed Full Quadword

Logical And
And Not
Or
Exclusive OR

PAND
PANDN
POR
PXOR

Shift Shift Left Logical
Shift Right Logical
Shift Right 
Arithmetic

PSLLW, PSLLD
PSRLW, PSRLD
PSRAW, PSRAD

PSLLQ
PSRLQ

Doubleword Transfers Quadword Transfers

Data Transfer Register to Register
Load from Memory
Store to Memory

MOVD
MOVD
MOVD

MOVQ
MOVQ
MOVQ

Empty MMX 
State

EMMS
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The MOVQ (Move 64 Bits) instruction transfers 64 bits of packed data from memory to an
MMX register and vise versa, or transfers data between MMX registers.

9.4.2. Arithmetic Instructions

The arithmetic instructions perform addition, subtraction, multiplication, and multiply/add oper-
ations on packed data types.

The PADDB, PADDW, and PADDD (add packed integers) and PSUBB, PSUBW, and PSUBD
(subtract packed integers) instructions add or subtract the corresponding signed or unsigned data
elements of the source and destination operands in wraparound mode. These instructions operate
on packed byte, word, and doubleword data types.

The PADDSB and PADDSW (add packed signed integers with signed saturation) and PSUBSB
and PSUBSW (subtract packed signed integers with signed saturation) instructions add or
subtract the corresponding signed data elements of the source and destination operands and satu-
rate the result to the limits of the signed data-type range. These instructions operate on packed
byte and word data types.

The PADDUSB and PADDUSW (add packed unsigned integers with unsigned saturation) and
PSUBUSB and PSUBUSW (subtract packed unsigned integers with unsigned saturation)
instructions add or subtract the corresponding unsigned data elements of the source and destina-
tion operands and saturate the result to the limits of the unsigned data-type range. These instruc-
tions operate on packed byte and word data types.

The PMULHW (multiply packed signed integers and store high result) and PMULLW (multiply
packed signed integers and store low result) instructions performs a signed multiply of the corre-
sponding words of the source and destination operands and write the high-order or low-order 16
bits of each of the results, respectively, to the destination operand.

The PMADDWD (multiply and add packed integers) instruction computes the products of the
corresponding signed words of the source and destination operands. The four intermediate 32-bit
doubleword products are summed in pairs (high-order pair and low-order pair) to produce two
32-bit doubleword results. 

9.4.3. Comparison Instructions

The PCMPEQB, PCMPEQW, and PCMPEQD (compare packed data for equal) and
PCMPGTB, PCMPGTW, and PCMPGTD (compare packed signed integers for greater than)
instructions compare the corresponding signed data elements (bytes, words, or doublewords) in
the source and destination operands for equal to or greater than, respectively. These instructions
generate a mask of ones or zeros which are written to the destination operand. Logical opera-
tions can use the mask to select packed elements. This can be used to implement a packed condi-
tional move operation without a branch or a set of branch instructions. No flags in the EFLAGS
register are affected. 
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9.4.4. Conversion Instructions

The PACKSSWB (pack words into bytes with signed saturation) and PACKSSDW (pack
doublewords into words with signed saturation) instructions convert signed words into signed
bytes and signed doublewords into signed words, respectively, using signed saturation.

The PACKUSWB (pack words into bytes with unsigned saturation) instruction converts signed
words into unsigned bytes, using unsigned saturation.

9.4.5. Unpack Instructions

The PUNPCKHBW, PUNPCKHWD, and PUNPCKHDQ (unpack high-order data elements)
and PUNPCKLBW, PUNPCKLWD, and PUNPCKLDQ (unpack low-order data elements)
instructions unpack bytes, words, or doublewords from the high- or low-order data elements of
the source and destination operands and interleave them in the destination operand. By placing
all 0s in the source operand, these instructions can be used to convert byte integers to word inte-
gers, word integers to doubleword integers, or doubleword integers to quadword integers. 

9.4.6. Logical Instructions

The PAND (bitwise logical AND), PANDN (bitwise logical AND NOT), POR (bitwise logical
OR), and PXOR (bitwise logical exclusive OR) instructions perform bitwise logical operations
on the quadword source and destination operands.

9.4.7. Shift Instructions

The logical shift left, logical shift right and arithmetic shift right instructions shift each element
by a specified number of bit positions.

The PSLLW, PSLLD, and PSLLQ (shift packed data left logical) and PSRLW, PSRLD, and
PSRLQ (shift packed data right logical) instructions perform a logical left or right shift of the
data elements and fill the empty high or low order bit positions with zeros. These instructions
operate on packed words, doublewords, and quadwords.

The PSRAW and PSRAD (shift packed data right arithmetic) instruction performs an arithmetic
right shift, copying the sign bit for each data element into empty bit positions on the upper end
of each data element. This instruction operates on packed words and doublewords. 

9.4.8. EMMS Instruction

The EMMS instruction empties the MMX state by setting the tags in x87 FPU tag word to 11B,
indicating empty registers. This instruction must executed at the end of an MMX routine before
calling other routines that can execute floating-point instructions. See Section 9.6.3., “Using the
EMMS Instruction” for more information on the use of this instruction.
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9.5. COMPATIBILITY WITH X87 FPU ARCHITECTURE

The MMX state is aliased to the x87 FPU state. No new states or modes have been added to
IA-32 architecture to support the MMX technology. The same floating-point instructions that
save and restore the x87 FPU state also handle the MMX state (for example, during context
switching).

MMX technology uses the same interface techniques between the x87 FPU and the operating
system (primarily for task switching purposes). For more details, see Chapter 11, MMX Tech-
nology System Programming Model, in the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3.

9.5.1. MMX Instructions and the x87 FPU Tag Word

After each MMX instruction, the entire x87 FPU tag word is set to valid (00B). The EMMS
instruction (empty MMX state) sets the entire x87 FPU tag word to empty (11B). 

Chapter 11, MMX Technology System Programming Model, in the IA-32 Intel Architecture Soft-
ware Developer’s Manual, Volume 3, provides additional information about the effects of x87
FPU and MMX instructions on the x87 FPU tag word. For a description of the tag word, see
Section 8.1.6., “x87 FPU Tag Word”.

9.6. WRITING APPLICATIONS WITH MMX CODE

The following sections give guidelines for writing applications code that uses the MMX tech-
nology.

9.6.1. Checking for MMX Technology Support

Before an application attempts to use the MMX technology, it should check that it is present on
the processor. The application can make this check by following these steps:

1. Check that the processor supports the CPUID instruction by attempting to execute the
CPUID instruction. If the processor does not support the CPUID instruction, it will
generate an invalid-opcode exception (#UD).

2. Check that the processor supports the MMX technology by using the CPUID instruction to
check MMX technology feature bit. Execute the CPUID instruction with an argument of 1
in the EAX register and check that bit 23 (MMX) is set to 1.

3. Check that the EM bit in control register CR0 is set to 0, indicating that emulation of the
x87 FPU is disabled.

If the processor attempts to execute an unsupported MMX instruction or attempts to execute an
MMX instruction when the EM bit of control register CR0 is set, the processor will generate an
invalid-opcode exception (#UD).
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Example 9-1 illustrates how to use the CPUID instruction to detect the MMX technology. This
example does not represent the entire CPUID sequence, but shows the portion used for detection
of MMX technology.

Example 9-1.  Partial Routine for Detecting MMX Technology with the CPUID Instruction

... ; identify existence of CPUID instruction

...

... ; identify Intel processor

....

mov EAX, 1 ; request for feature flags

CPUID ; 0Fh, 0A2h CPUID instruction

test EDX, 00800000h ; Is IA MMX technology bit (Bit 23 of EDX)

; in feature flags set?

jnz MMX_Technology_Found

9.6.2. Transitions Between x87 FPU and MMX Code

An application can contain both x87 FPU floating-point and MMX instructions. However,
because the MMX registers are aliased to the x87 FPU register stack, care must be taken when
making transitions between x87 FPU instructions and MMX instructions to prevent the loss of
data in the x87 FPU and MMX registers and to prevent incoherent or unexpected results.

When an MMX instruction (other than the EMMS instruction) is executed, the processor
changes the x87 FPU state as follows:

• The TOS (top of stack) value of the x87 FPU status word is set to 0.

• The entire x87 FPU tag word is set to the valid state (00B in all tag fields). 

• When an MMX instruction writes to an MMX register, it writes ones (11B) to the exponent
part of the corresponding floating-point register (bits 64 through 79).

The net result of these actions is that any x87 FPU state prior to the execution of the MMX
instruction is essentially lost.

When an x87 FPU instruction is executed, the processor assumes that the current state of the x87
FPU register stack and control registers is valid and executes the instruction without any prepa-
ratory modifications to the x87 FPU state.

If the application contains both x87 FPU floating-point and MMX instructions, the following
guidelines are recommended:

• When transitioning between x87 FPU and MMX code, save the state of any x87 FPU data
or control registers that needs to be preserved for future use. The FSAVE and FXSAVE
instructions save the entire x87 FPU state.
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• When transitioning between MMX and x87 FPU code, do the following:

— Save any data in the MMX registers that needs to be preserved for future use. The
FSAVE and FXSAVE instructions also save the state of MMX registers.

— Execute the EMMS register to clear the MMX state from the x87 data and control
registers.

The following sections describe the use of the EMMS instruction and gives additional guidelines
for mixing x87 FPU and MMX code.

9.6.3. Using the EMMS Instruction

As described in Section 9.6.2., “Transitions Between x87 FPU and MMX Code”, when an
MMX instruction executes, the x87 FPU tag word is marked valid (00B). In this state, the execu-
tion of subsequent x87 FPU instructions may produce unexpected x87 FPU floating-point
exceptions and/or incorrect results because the x87 FPU register stack appears to contain valid
data. The EMMS instruction is provided to prevent this problem by marking the x87 FPU tag
word as empty.

The EMMS instruction should be used in each of the following cases: 

• When an application using the x87 FPU instructions calls an MMX technology
library/DLL. (Use the EMMS instruction at the end of the MMX code.)

• When an application using MMX instructions calls a x87 FPU floating-point library/DLL.
(Use the EMMS instruction before calling the x87 FPU code.)

• When a switch is made between MMX code in a task or thread and other tasks or threads in
cooperative operating systems, unless it is certain that more MMX instructions will be
executed before any x87 FPU code.

The EMMS instruction is not required when mixing MMX technology instructions with SSE
and/or SSE2 instructions (see Section 11.6.7., “Interaction of SSE and SSE2 Instructions with
x87 FPU and MMX Instructions”).

9.6.4. Mixing MMX and x87 FPU Instructions

An application can contain both x87 FPU floating-point and MMX instructions. However,
frequent transitions between MMX and x87 FPU instructions are not recommended, because
they can degrade performance in some processor implementations. When mixing MMX code
with x87 FPU code, follow these guidelines:

• Keep the code in separate modules, procedures, or routines.

• Do not rely on register contents across transitions between x87 FPU and MMX code
modules.

• When transitioning between MMX code and x87 FPU code, save the MMX register state
(if it will be needed in the future) and execute an EMMS instruction to empty the MMX
state.
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• When transitioning between x87 FPU code and MMX code, save the x87 FPU state, if it
will be needed in the future.

9.6.5. Interfacing with MMX Code

The MMX technology enables direct access to all the MMX registers. This means that all
existing interface conventions that apply to the use of the processor’s general-purpose registers
(EAX, EBX, etc.) also apply to use of MMX register.

An efficient interface to MMX routines might pass parameters and return values through the
MMX registers or through a combination of memory locations (via the stack) and MMX regis-
ters. Do not use the EMMS instruction or mix MMX and x87 FPU code when using to the MMX
registers to pass parameters.

If a high-level language that does not support the MMX data types directly is used, the MMX
data types can be defined as a 64-bit structure containing packed data types.

When implementing MMX instructions in high-level languages, other approaches can be taken,
such as: 

• Passing parameters to an MMX routine by passing a pointer to a structure via the stack.

• Returning a value from a function by returning a pointer to a structure.

9.6.6. Using MMX Code in a Multitasking Operating System 
Environment

An application needs to identify the nature of the multitasking operating system on which it
runs. Each task retains its own state which must be saved when a task switch occurs. The
processor state (context) consists of the general-purpose registers and the floating-point and
MMX registers.

Operating systems can be classified into two types:

• Cooperative multitasking operating system.

• Preemptive multitasking operating system.

Cooperative multitasking operating systems do not save the FPU or MMX state when
performing a context switch. Therefore, the application needs to save the relevant state before
relinquishing direct or indirect control to the operating system.

Preemptive multitasking operating systems are responsible for saving and restoring the FPU and
MMX state when performing a context switch. Therefore, the application does not have to save
or restore the FPU and MMX state.

The behavior of the two operating-system types in context switching is described in “Context
Switching” in Chapter 11 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3.
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9.6.7. Exception Handling in MMX Code

MMX instructions generate the same type of memory-access exceptions as other IA-32 instruc-
tions, such as page fault, segment not present, and limit violations. Existing exception handlers
do not have to be modified to handle these types of exceptions when generated from MMX code.

Unless there is a pending floating-point exception, MMX instructions do not generate numeric
exceptions. Therefore, there is no need to modify existing exception handlers or add new ones
to handle numeric exceptions. 

If a floating-point exception is pending, the subsequent MMX instruction generates a numeric
error exception (interrupt 16 and/or assertion of the FERR# pin). The MMX instruction resumes
execution upon return from the exception handler.

9.6.8. Register Mapping

The MMX registers and their tags are mapped to physical locations of the floating-point regis-
ters and their tags. Register aliasing and mapping is described in more detail in Chapter 11,
MMX Technology System Programming Model, in the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 3.

9.6.9. Effect of Instruction Prefixes on MMX Instructions

Table 9-3 describes the effects of the instruction prefixes on the MMX instructions. Unpredict-
able behavior can range from being treated as a reserved operation on one generation of IA-32
processors to generating an invalid opcode exception on another generation of processors.

See the section titled “Instruction Prefixes” in Chapter 2 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2, for description of the instructions prefixes.

Table 9-3.  Effect of Prefixes on MMX Instructions

Prefix Type Effect on MMX Instructions 

Address Size Prefix (67H) Affects instructions with a memory operand.

Reserved for instructions without a memory operand and may 
result in unpredictable behavior.

Operand Size (66H) Reserved and may result in unpredictable behavior.

Segment Override 
(2EH,36H,3EH,26H,64H,65H)

Affects instructions with a memory operand.

Reserved for instructions without a memory operand and may 
result in unpredictable behavior.

Repeat Prefix (F3H) Reserved and may result in unpredictable behavior.

Repeat NE Prefix(F2H) Reserved and may result in unpredictable behavior.

Lock Prefix (F0H) Reserved; generates invalid opcode exception (#UD).

Branch Hint Prefixes (2EH and 3EH) Reserved and may result in unpredictable behavior.
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CHAPTER 10
PROGRAMMING WITH THE

STREAMING SIMD EXTENSIONS (SSE)

The streaming SIMD extensions (SSE) were introduced into the IA-32 architecture in the
Pentium III processor family. These extensions were designed to enhance the performance of
IA-32 processors for advanced 2-D and 3-D graphics, motion video, image processing, speech
recognition, audio synthesis, telephony, and video conferencing. 

This chapter describes the SSE extensions. Chapter 11, Programming With the Streaming SIMD
Extensions 2 (SSE2), provides information to assist in writing application programs that use
these extensions and the SSE2 extensions. 

10.1. OVERVIEW OF THE SSE EXTENSIONS

The Intel MMX technology introduced single-instruction multiple-data (SIMD) capability into
the IA-32 architecture, with the 64-bit MMX registers, 64-bit packed integer data types, and
instructions that allowed SIMD operations to be performed on packed integers. The SSE exten-
sions extend this SIMD execution model, by adding facilities for handling packed and scalar
single-precision floating-point values contained in 128-bit registers.

The SSE extensions add the following features to the IA-32 architecture, while maintaining
backward compatibility with all existing IA-32 processors, applications and operating systems.

• Eight 128-bit data registers, called the XMM registers.

• The 32-bit MXCSR register, which provides control and status bits for operations
performed on the XMM registers.

• The 128-bit packed single-precision floating-point data type (four IEEE single-precision
floating-point values packed into a double quadword).

• Instructions that perform SIMD operations on single-precision floating-point values and
that extend the SIMD operations that can be performed on integers:

— 128-bit Packed and scalar single-precision floating-point instructions that operate on
data located in the XXM registers.

— 64-bit SIMD integer instructions that support additional operations on packed integer
operands located in the MMX registers.

• Instructions that save and restore the state of the MXCSR register.

• Instructions that support explicit prefetching of data, control of the cacheability of data,
and control the ordering of store operations.

• Extensions to the CPUID instruction.
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These features extend the IA-32 architecture’s SIMD programming model in four important
ways: 

• The ability to perform SIMD operations on four packed single-precision floating-point
values greatly enhances the performance of IA-32 processors for applications such as
advanced media and communications that use computation-intensive algorithms to
perform repetitive operations on large arrays of simple, native data elements. 

• The ability to perform SIMD single-precision floating-point operations in the XMM
registers and SIMD integer operations in the MMX registers provides greater flexibility
and throughput for executing applications that operate on large arrays of floating-point and
integer data.

• The cache control instructions provide the ability to stream data in and out of the XMM
registers without polluting the caches and the ability to prefetch data to selected cache
levels before it is actually used. Applications that require regular access to large amounts
of data benefit from these prefetching and streaming store capabilities. 

• The SFENCE (store fence) instruction provides greater control over the ordering of store
operations when using weakly-ordered memory types.

The SSE extensions are fully compatible with all software written for IA-32 processors. All
existing software continues to run correctly, without modification, on processors that incorpo-
rate The SSE extensions, as well as in the presence of existing and new applications that incor-
porate these extensions. Enhancements to the CPUID instruction permit easy detection of The
SSE extensions.

The SSE extensions are accessible from all IA-32 execution modes: protected mode, real
address mode, virtual-8086 mode.

The following sections of this chapter describe the programming environment for The SSE
extensions, including the XMM registers, the packed single-precision floating-point data type,
and the SSE instructions. For additional information about the SSE extensions, see the following
references:

• Section 11.6., “Writing Applications with the SSE and SSE2 Extensions”.

• Section 11.5., “SSE and SSE2 Exceptions”, describes the exceptions that can be generated
with the SSE and SSE2 instructions.

• Chapter 3, Instruction Set Reference, of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2 gives detailed descriptions of the SSE instructions.

• Chapter 12, SSE and SSE2 System Programming, in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3 gives guidelines for integrating the SSE and SSE2
extensions into an operating-system environment.

10.2. SSE PROGRAMMING ENVIRONMENT

Figure 10-1 shows the execution environment for the SSE extensions. All SSE instructions
operate on the XMM registers, the MMX registers, and/or memory as follows: 
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• XMM registers. These eight registers (see Figure 10-2 and Section 10.2.1., “XMM
Registers”) are used to operate on packed or scalar single-precision floating-point data.
Scalar operations are operations performed on individual (unpacked) single-precision
floating-point values stored in the low doubleword of an XMM register. The XMM
registers are referenced by the names XMM0 through XMM7.

• MXCSR register. This 32-bit register (see Figure 10-3 and Section 10.2.2., “MXCSR
Control and Status Register”) provides status and control bits used in SIMD floating-point
operations.

• MMX registers. These eight registers (see Figure 9-2) are used to perform operations on
64-bit packed integer data. They are also used to hold operands for some operations
performed between the MMX and XMM registers. The MMX registers are referenced by
the names MM0 through MM7.

• General-purpose registers. The eight general-purpose registers (see Figure 3-4) are used
along with the existing IA-32 addressing modes to address operands in memory. (The
MMX and XMM registers cannot be used to address memory). The general-purpose
registers are also used to hold operands for some SSE instructions. These registers are
referenced by the names EAX, EBX, ECX, EDX, EBP, ESI EDI, and ESP.

• EFLAGS register. This 32-bit register (see Figure 3-7) is used to record results of some
compare operations.

Figure 10-1.  SSE Execution Environment
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10.2.1. XMM Registers

The eight 128-bit XMM data registers were introduced into the IA-32 architecture with the SSE
extensions (see Figure 10-2). These registers can be accessed directly using the names XMM0 to
XMM7; and they can be accessed independently from the x87 FPU and MMX registers and the
general-purpose registers (that is, they are not aliased to any other of the processor’s registers). 

The SSE instructions use the XMM registers only to operate on packed single-precision
floating-point operands. The SSE2 extensions expand the functions of the XMM registers to
operand on packed or scalar double-precision floating-point operands and packed integer oper-
ands (see Section 11.2., “SSE2 Programming Environment”).

The XMM registers can only be used to perform calculations on data; they cannot be used to
address memory. Addressing memory is accomplished by using the general-purpose registers.

Data can be loaded into the XMM registers or written from the registers to memory in 32-bit,
64-bit, and 128-bit increments. When storing the entire contents of an XMM register in memory
(128-bit store), the data is stored in 16 consecutive bytes, with the low-order byte of the register
being stored in the first byte in memory.

10.2.2. MXCSR Control and Status Register

The 32-bit MXCSR register (see Figure 10-3) contains control and status information for SSE
and SSE2 SIMD floating-point operations. This register contains the flag and mask bits for the
SIMD floating-point exceptions, the rounding control field for SIMD floating-point operations,
the flush-to-zero flag that provides a means of controlling underflow conditions on SIMD
floating-point operations, and the denormals-are-zeros flag that controls how SIMD floating-
point instructions handle denormal source operands. 

Figure 10-2.  XMM Registers
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The contents of this register can be loaded from memory with the LDMXCSR and FXRSTOR
instructions and stored in memory with the STMXCSR and FXSAVE instructions.

Bits 16 through 31 of the MXCSR register are reserved and are cleared on a power-up or reset
of the processor; attempting to write a non-zero value to these bits, using either the FXRSTOR
or LDMXCSR instructions, will result in a general-protection exception (#GP) being generated.

10.2.2.1. SIMD FLOATING-POINT MASK AND FLAG BITS

Bits 0 through 5 of the MXCSR register indicate whether a SIMD floating-point exception has
been detected. They are “sticky” flags; that is, after a flag is set, it remains set until explicitly
cleared. To clear these flags, use the LDMXCSR or FXRSTOR instruction to write zeroes into
them.

Bits 7 through 12 provide individual mask bits for the SIMD floating-point exceptions. An
exception type is masked if the corresponding mask bit is set, and it is unmasked if the bit is
clear. These mask bits are set upon a power-up or reset, causing all SIMD floating-point excep-
tions to be initially masked.

If an LDMXCSR or FXRSTOR instruction clears a mask bit and sets the corresponding excep-
tion flag bit, a SIMD floating-point exception will not be generated as a result of this change.
The newly unmasked exception will be generated only upon the execution of the next SSE or
SSE2 instruction that detects the unmasked exception condition. 

Figure 10-3.  MXCSR Control/Status Register 
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For more information about the use of the SIMD floating-point exception mask and flag bits,
see Section 11.5., “SSE and SSE2 Exceptions”.

10.2.2.2. SIMD FLOATING-POINT ROUNDING CONTROL FIELD

Bits 13 and 14 of the MXCSR register (the rounding control [RC] field) control how the results
of SIMD floating-point instructions are rounded. See Section 4.8.4., “Rounding” for a descrip-
tion of the function and encoding of the rounding control bits.

10.2.2.3. FLUSH-TO-ZERO

Bit 15 (FZ) of the MXCSR register enables the flush-to-zero mode, which controls the masked
response to a SIMD floating-point underflow condition. When the underflow exception is
masked and the flush-to-zero mode is enabled, the processor performs the following operation
when it detects a floating-point underflow condition:

• Returns a zero result with the sign of the true result.

• Sets the precision and underflow exception flags.

If the underflow exception is not masked, the flush-to-zero bit is ignored.

The flush-to-zero mode is not compatible with IEEE Standard 754. The IEEE-mandated masked
response to underflow is to deliver the denormalized result (see Section 4.8.3.2., “Normalized
and Denormalized Finite Numbers”). The flush-to-zero mode is provided primarily for perfor-
mance reasons. At the cost of a slight precision loss, faster execution can be achieved for appli-
cations where underflows are common and rounding the underflow result to zero can be
tolerated.

The flush-to-zero bit is cleared upon a power-up or reset of the processor, disabling the flush-to-
zero mode.

10.2.2.4. DENORMALS ARE ZEROS

Bit 6 (DAZ) of the MXCSR register enables the denormals-are-zeros mode, which controls the
processor’s response to a SIMD floating-point denormal operand condition. When the denor-
mals-are-zeros flag is set, the processor converts all denormal source operands to a zero with the
sign of the original operand before performing any computations on them. The processor does
not set the denormal-operand exception flag (DE), regardless of the setting of the denormal-
operand exception mask bit (DM), and does not generate a denormal-operand exception if the
exception is unmasked.

The denormals-are-zeros mode is not compatible with IEEE Standard 754 (see Section 4.8.3.2.,
“Normalized and Denormalized Finite Numbers”). The denormals-are-zeros mode is provided
to improve processor performance for applications such as streaming media processing, where
rounding a denormal operand to zero does not appreciably affect the quality of the processed
data.

The denormals-are-zeros flag is cleared upon a power-up or reset of the processor, disabling the
denormals-are-zeros mode.
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The denormals-are-zeros mode was introduced in the Pentium 4 and Intel Xeon processor with
the SSE2 extensions; however, it is fully compatible with the SSE SIMD floating-point instruc-
tions (that is, the denormals-are-zeros flag affects the operation of the SSE SIMD floating-point
instructions). In earlier IA-32 processors and in some models of the Pentium 4 processor, this
flag (bit 6) is reserved. See Section 11.6.3., “Checking for the DAZ Flag in the MXCSR
Register” for instructions for detecting the availability of this feature.

Attempting to set bit 6 of the MXCSR register on processors that do not support the DAZ flag
and the denormals-are-zeros mode will cause a general-protection exception (#GP). See Section
11.6.6., “Guidelines for Writing to the MXCSR Register” for instructions for preventing such
general-protection exceptions by using the MXCSR_MASK value returned by the FXSAVE
instruction.

10.2.3. Compatibility of the SSE Extensions with the SSE2 
Extensions, MMX Technology, and x87 FPU Programming 
Environments

The state (XMM registers and MXCSR register) introduced into the IA-32 execution environ-
ment with the SSE extensions is shared with the SSE2 extensions. The SSE and SSE2 instruc-
tions are fully compatible; they can be executed together in the same instruction stream with no
need to save state when switching between SSE and SSE2 instruction sets.

The XMM registers are independent of the x87 FPU and MMX registers, so SSE and SSE2 oper-
ations performed on the XMM registers can be performed in parallel with operations on the x87
FPU and MMX registers (see Section 11.6.7., “Interaction of SSE and SSE2 Instructions with
x87 FPU and MMX Instructions”).

The FXSAVE and FXRSTOR instructions save and restore the SSE and SSE2 state along with
the x87 FPU and MMX state.

10.3. SSE DATA TYPES

The SSE extensions introduced one data type, the 128-bit packed single-precision floating-point
data type, to the IA-32 architecture (see Figure 10-4). This data type consists of four IEEE 32-bit
single-precision floating-point values packed into a double quadword. (See Figure 4-3 for the
layout of a single-precision floating-point value; refer to Section 4.2.2., “Floating-Point Data
Types” for a detailed description of the single-precision floating-point format.)

Figure 10-4.  128-Bit Packed Single-Precision Floating-Point Data Type
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This 128-bit packed single-precision floating-point data type is operated on in the XMM regis-
ters or memory. Conversion instructions are provided to convert two packed single-precision
floating-point values into two packed doubleword integers or a scalar single-precision floating-
point value into a doubleword integer (see Figure 11-8).

The SSE extensions provide conversion instructions between XMM registers and MMX regis-
ters, and XMM registers and general-purpose bit registers, see Figure 11-8.

The address of a 128-bit packed memory operand must be aligned on a 16-byte boundary, except
in the following cases: 

• The MOVUPS instruction supports unaligned accesses.

• Scalar instructions that use a 4-byte memory operand that is not subject to alignment
requirements.

Figure 4-2 shows the byte order of 128-bit (double quadword) data types in memory.

10.4. SSE INSTRUCTION SET

The SSE instructions are divided into four functional groups

• Packed and scalar single-precision floating-point instructions.

• 64-bit SIMD integer instructions.

• State management instructions.

• Cacheability control, prefetch, and memory ordering instructions.

The SSE CPUID feature bit (bit 25 in the EDX register) indicates whether the SSE instructions
have been implemented in an IA-32 processor implementation.

The following sections given an overview of each of the instructions in these groups.

10.4.1. SSE Packed and Scalar Floating-Point Instructions

The packed and scalar single-precision floating-point instructions are divided into the following
subgroups:

• Data movement instructions

• Arithmetic instructions

• Logical instructions

• Comparison instructions

• Shuffle instructions

• Conversion instructions
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The packed single-precision floating-point instructions perform SIMD operations on packed
single-precision floating-point operands (see Figure 10-5). Each source operand contains four
single-precision floating-point values, and the destination operand contains the results of the
operation (OP) performed in parallel on the corresponding values (X0 and Y0, X1 and Y1, X2
and Y2, and X3 and Y3) in each operand.

The scalar single-precision floating-point instructions operate on the low (least significant)
doublewords of the two source operands (X0 and Y0) (see Figure 10-6). The three most signif-
icant doublewords (X1, X2, and X3) of the first source operand are passed through to the desti-
nation. The scalar operations are similar to the floating-point operations performed in the x87
FPU data registers.

Figure 10-5.  Packed Single-Precision Floating-Point Operation

Figure 10-6.  Scalar Single-Precision Floating-Point Operation
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10.4.1.1. SSE DATA MOVEMENT INSTRUCTIONS

The SSE data movement instructions move single-precision floating-point data between XMM
registers and between an XMM register and memory.

The MOVAPS (move aligned packed single-precision floating-point values) instruction trans-
fers a double quadword operand containing four packed single-precision floating-point values
from memory to an XMM register and vice versa, or between XMM registers. The memory
address must be aligned to a 16-byte boundary; otherwise, a general-protection exception (#GP)
is generated.

The MOVUPS (move unaligned packed single-precision, floating-point) instruction performs
the same operations as the MOVAPS instruction, except that 16-byte alignment of a memory
address is not required.

The MOVSS (move scalar single-precision floating-point) instruction transfers a 32-bit single-
precision floating-point operand from memory to the low doubleword of an XMM register and
vice versa, or between XMM registers.

The MOVLPS (move low packed single-precision floating-point) instruction moves two packed
single-precision floating-point values from memory to the low quadword of an XMM register
and vice versa. The high quadword of the register is left unchanged.

The MOVHPS (move high packed single-precision floating-point) instruction moves two
packed single-precision floating-point values from memory to the high quadword of an XMM
register and vice versa. The low quadword of the register is left unchanged.

The MOVLHPS (move packed single-precision floating-point low to high) instruction moves
two packed single-precision floating-point values from the low quadword the source XMM
register into the high quadword of the destination XMM register. The low quadword of the desti-
nation register is left unchanged.

The MOVHLPS (move packed single-precision floating-point high to low) instruction moves
two packed single-precision floating-point values from the high quadword the source XMM
register into the low quadword of the destination XMM register. The high quadword of the desti-
nation register is left unchanged.

The MOVMSKPS (move packed single-precision floating-point mask) instruction transfers the
most significant bit of each of the four packed single-precision floating-point numbers in an
XMM register to a general-purpose register. This 4-bit value can then be used as a condition to
perform branching.

10.4.1.2. SSE ARITHMETIC INSTRUCTIONS

The SSE arithmetic instructions perform addition, subtraction, multiply, divide, reciprocal,
square root, reciprocal of square root, and maximum/minimum operations on packed and scalar
single-precision floating-point values.

The ADDPS (add packed single-precision floating-point values) and SUBPS (subtract packed
single-precision floating-point values) instructions add and subtract, respectively, two packed
single-precision floating-point operands.
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The ADDSS (add scalar single-precision floating-point values) and SUBSS (subtract scalar
single-precision floating-point values) instructions add and subtract, respectively, the low
single-precision floating-point values of two operands and stores the result in the low double-
word of the destination operand.

The MULPS (multiply packed single-precision floating-point values) instruction multiplies two
packed single-precision floating-point operands.

The MULSS (multiply scalar single-precision floating-point values) instruction multiplies the
low single-precision floating-point values of two operands and stores the result in the low
doubleword of the destination operand.

The DIVPS (divide packed, single-precision floating-point values) instruction divides two
packed single-precision floating-point operands.

The DIVSS (divide scalar single-precision floating-point values) instruction divides the low
single-precision floating-point values of two operands and stores the result in the low double-
word of the destination operand.

The RCPPS (compute reciprocals of packed single-precision floating-point values) instruction
computes the approximate reciprocals of values in a packed single-precision floating-point
operand.

The RCPSS (compute reciprocal of scalar single-precision floating-point values) instruction
computes the approximate reciprocal of the low single-precision floating-point value in the
source operand and stores the result in the low doubleword of the destination operand.

The SQRTPS (compute square roots of packed single-precision floating-point values) instruc-
tion computes the square roots of the values in a packed single-precision floating-point operand.

The SQRTSS (compute square root of scalar single-precision floating-point values) instruction
computes the square root of the low single-precision floating-point value in the source operand
and stores the result in the low doubleword of the destination operand.

The RSQRTPS (compute reciprocals of square roots of packed single-precision floating-point
values) instruction computes the approximate reciprocals of the square roots of the values in a
packed single-precision floating-point operand.

The RSQRTSS (reciprocal of square root of scalar single-precision floating-point value) instruc-
tion computes the approximate reciprocal of the square root of the low single-precision floating-
point value in the source operand and stores the result in the low doubleword of the destination
operand.

The MAXPS (return maximum of packed single-precision floating-point values) instruction
compares the corresponding values from two packed single-precision floating-point operands
and returns the numerically greater value from each comparison to the destination operand.

The MAXSS (return maximum of scalar single-precision floating-point values) instruction
compares the low values from two packed single-precision floating-point operands and returns
the numerically greater value from the comparison to the low doubleword of the destination
operand.
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The MINPS (return minimum of packed single-precision floating-point values) instruction
compares the corresponding values from two packed single-precision floating-point operands
and returns the numerically lesser value from each comparison to the destination operand.

The MINSS (return minimum of scalar single-precision floating-point values) instruction
compares the low values from two packed single-precision floating-point operands and returns
the numerically lesser value from the comparison to the low doubleword of the destination
operand.

10.4.2. SSE Logical Instructions

The SSE logical instructions preform AND, AND NOT, OR, and XOR operations on packed
single-precision floating-point values. 

The ANDPS (bitwise logical AND of packed single-precision floating-point values) instruction
returns the logical AND of two packed single-precision floating-point operands.

The ANDNPS (bitwise logical AND NOT of packed single-precision, floating-point values)
instruction returns the logical AND NOT of two packed single-precision floating-point
operands.

The ORPS (bitwise logical OR of packed single-precision, floating-point values) instruction
returns the logical OR of two packed single-precision floating-point operands.

The XORPS (bitwise logical XOR of packed single-precision, floating-point values) instruction
returns the logical XOR of two packed single-precision floating-point operands.

10.4.2.1. SSE COMPARISON INSTRUCTIONS

The compare instructions compare packed and scalar single-precision floating-point values and
return the results of the comparison either to the destination operand or to the EFLAGS register.

The CMPPS (compare packed single-precision floating-point values) instruction compares the
corresponding values from two packed single-precision floating-point operands, using an imme-
diate operand as a predicate, and returns a 32-bit mask result of all 1s or all 0s for each compar-
ison to the destination operand. The value of the immediate operand allows the selection of any
of 8 compare conditions: equal, less than, less than equal, unordered, not equal, not less than,
not less than or equal, or ordered.

The CMPSS (compare scalar single-precision, floating-point values) instruction compares the
low values from two packed single-precision floating-point operands, using an immediate
operand as a predicate, and returns a 32-bit mask result of all 1s or all 0s for the comparison to
the low doubleword of the destination operand. The immediate operand selects the compare
conditions as with the CMPPS instruction.

The COMISS (compare scalar single-precision floating-point values and set EFLAGS) and
UCOMISS (unordered compare scalar single-precision floating-point values and set EFLAGS)
instructions compare the low values of two packed single-precision floating-point operands and
set the ZF, PF, and CF flags in the EFLAGS register to show the result (greater than, less than,
equal, or unordered). These two instructions differ as follows: the COMISS instruction signals
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a floating-point invalid-operation (#I) exception when a source operand is either a QNaN or an
SNaN; the UCOMISS instruction only signals an invalid-operation exception when a source
operand is an SNaN.

10.4.2.2. SSE SHUFFLE AND UNPACK INSTRUCTIONS

The SSE shuffle and unpack instructions shuffle or interleave the contents of two packed single-
precision floating-point values and store the results in the destination operand.

The SHUFPS (shuffle packed single-precision floating-point values) instruction places any two
of the four packed single-precision floating-point values from destination operand into the two
low-order doublewords of the destination operand, and places any two of the four packed single-
precision floating-point values from the source operand in the two high-order doublewords of
the destination operand (see Figure 10-7). By using the same register for the source and desti-
nation operands, the SHUFPS instruction can shuffle four single-precision floating-point values
into any order. 

The UNPCKHPS (unpack and interleave high packed single-precision floating-point values)
instruction performs an interleaved unpack of the high-order single-precision floating-point
values from the source and destination operands and stores the result in the destination operand
(see Figure 10-8).

Figure 10-7.  SHUFPS Instruction Packed Shuffle Operation
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The UNPCKLPS (unpack and interleave low packed single-precision floating-point values)
instruction performs an interleaved unpack of the low-order single-precision floating-point
values from the source and destination operands and stores the result in the destination operand
(see Figure 10-9).

10.4.3. SSE Conversion Instructions

The SSE conversion instructions (see Figure 11-8) support packed and scalar conversions
between single-precision floating-point and doubleword integer formats.

The CVTPI2PS (convert packed doubleword integers to packed single-precision floating-point
values) instruction converts two packed signed doubleword integers into the two packed single-
precision floating-point values. When the conversion is inexact, the result is rounded according
to the rounding mode selected in the MXCSR register. 

Figure 10-8.  UNPCKHPS Instruction High Unpack and Interleave Operation

Figure 10-9.  UNPCKLPS Instruction Low Unpack and Interleave Operation
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The CVTSI2SS (convert doubleword integer to scalar single-precision floating-point value)
instruction converts a signed doubleword integer into a single-precision floating-point value.
When the conversion is inexact, the result is rounded according to the rounding mode selected
in the MXCSR register. 

The CVTPS2PI (convert packed single-precision floating-point values to packed doubleword
integers) instruction converts the two packed single-precision floating-point values into two
packed signed doubleword integers. When the conversion is inexact, the result is rounded
according to the rounding mode selected in the MXCSR register. The CVTTPS2PI (convert with
truncation packed single-precision floating-point values to packed doubleword integers)
instruction is similar to the CVTPS2PI instruction, except that truncation is used to round a
source value to an integer value (see Section 4.8.4.2., “Truncation with SSE and SSE2 Conver-
sion Instructions”).

The CVTSS2SI (convert scalar single-precision floating-point value to doubleword integer)
instruction converts a single-precision floating-point value into a signed doubleword integer.
When the conversion is inexact, the result is rounded according to the rounding mode selected
in the MXCSR register. The CVTTSS2SI (convert with truncation scalar single-precision
floating-point value to doubleword integer) instruction is similar to the CVTSS2SI instruction,
except that truncation is used to round the source value to an integer value (see Section 4.8.4.2.,
“Truncation with SSE and SSE2 Conversion Instructions”).

10.4.4. SSE 64-bit SIMD Integer Instructions

The SSE extensions add the following 64-bit packed integer instructions to the IA-32 architec-
ture. These instructions operate on data in MMX registers and 64-bit memory locations. 

NOTE

When the SSE2 extension are present in an IA-32 processor, these instruction
are extended to operate also on 128-bit operands in XMM registers and 128-bit
memory locations.

The PAVGB (compute average of packed unsigned byte integers) and PAVGW (compute
average of packed unsigned word integers) instructions compute a SIMD average of two packed
unsigned byte or word integer operands, respectively. For each corresponding pair of data
elements in the packed source operands, the elements are added together, a 1 is added to the
temporary sum, and that result is shifted right one bit position.

The PEXTRW (extract word) instruction copies a selected word from an MMX register into the
a general-purpose register.

The PINSRW (insert word) instruction copies a word from a general-purpose register or from
memory into a selected word location in an MMX register.

The PMAXUB (maximum of packed unsigned byte integers) instruction compares the corre-
sponding unsigned byte integers in two packed operands and returns the greater of each compar-
ison to the destination operand.
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The PMINUB (minimum of packed unsigned byte integers) instruction compares the corre-
sponding unsigned byte integers in two packed operands and returns the lesser of each compar-
ison to the destination operand.

The PMAXSW (maximum of packed signed word integers) instruction compares the corre-
sponding signed word integers in two packed operands and returns the greater of each compar-
ison to the destination operand.

The PMINSW (minimum of packed signed word integers) instruction compares the corre-
sponding signed word integers in two packed operands and returns the lesser of each comparison
to the destination operand.

The PMOVMSKB (move byte mask) instruction creates an 8-bit mask from the packed byte
integers in an MMX register and stores the result in the low byte of a general-purpose register.
The mask contains the most significant bit of each byte in the MMX register. (When operating
on 128-bit operands, a 16-bit mask is created.)

The PMULHUW (multiply packed unsigned word integers and store high result) instruction
performs a SIMD unsigned multiply of the words in the two source operands and returns the
high word of each result to an MMX register.

The PSADBW (compute sum of absolute differences) instruction computes the SIMD absolute
differences of the corresponding unsigned byte integers in two source operands, sums the differ-
ences, and stores the sum in the low word of the destination operand.

The PSHUFW (shuffle packed word integers) instruction shuffles the words in the source
operand according to the order specified by an 8-bit immediate operand and returns the result to
the destination operand.

10.4.5. MXCSR State Management Instructions

The MXCSR state management instructions (LDMXCSR and STMXCSR) load and save the
state of the MXCSR register, respectively. The LDMXCSR instruction loads the MXCSR
register from memory, while the STMXCSR instruction stores the contents of the register to
memory.

10.4.6. Cacheability Control, Prefetch, and Memory Ordering 
Instructions

The SSE extensions introduce several new instructions to give programs more control over the
caching of data. It also introduces the PREFETCHh instructions, which provides the ability to
prefetch data to a specified cache level, and the SFENCE instruction which enforces program
ordering on stores. These new instructions are described in the following sections.
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10.4.6.1. CACHEABILITY CONTROL INSTRUCTIONS

The following three instructions enable data from the MMX and XMM registers to be stored to
memory using a non-temporal hint. The non-temporal hint directs the processor to when
possible store the data to memory without writing the data into the cache hierarchy: (See Section
10.4.6.2., “Caching of Temporal Vs. Non-Temporal Data” below for more information about
non-temporal stores and hints.)

The MOVNTQ (store quadword using non-temporal hint) instruction stores packed integer data
from an MMX register to memory, using a non-temporal hint.

The MOVNTPS (store packed single-precision floating-point values using non-temporal hint)
instruction stores packed floating-point data from an XMM register to memory, using a non-
temporal hint.

The MASKMOVQ (store selected bytes of quadword) instruction stores selected byte integers
from an MMX register to memory, using a byte mask to selectively write the individual bytes.
This instruction also uses a non-temporal hint.

10.4.6.2. CACHING OF TEMPORAL VS. NON-TEMPORAL DATA

Data referenced by a program can be temporal (data will be used again) or non-temporal (data
will be referenced once and not reused in the immediate future). For example, program code is
generally temporal, whereas, multimedia data, such as the display list in a 3-D graphics appli-
cation, is often non-temporal. To make efficient use of the processor’s caches, it is generally
desirable to cache temporal data and not cache non-temporal data. Overloading the processor’s
caches with non-temporal data is sometimes referred to as “polluting the caches.” The SSE and
SSE2 cacheability control instructions enable a program to write non-temporal data to memory
in a manner that minimizes pollution of cached. 

These SSE and SSE2 non-temporal store instruction minimize cache pollutions by treating the
memory being accessed as the write combining (WC) type. If a program specifies a non-
temporal store with one of these instructions and the destination region is mapped as cacheable
memory (WB, WT or WC memory type), the processor will do the following:

• If the memory location being written to is present in the cache hierarchy, the data in the
caches is evicted.

• The non-temporal data is written to memory with WC semantics.

Using the WC semantics, the store transaction will be weakly ordered, meaning that the data
may not be written to memory in program order, and the store will not write allocate (that is, the
processor will not fetch the corresponding cache line into the cache hierarchy, prior to
performing the store). Also, different processor implementations may choose to collapse and
combine these stores.

The memory type of the region being written to can override the non-temporal hint, if the
memory address specified for the non-temporal store is in uncacheable memory. Uncacheable
as referred to here means that the region being written to has been mapped with either a UC or
WP memory type.
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In general, WC semantics require software to ensure coherence, with respect to other processors
and other system agents (such as graphics cards). Appropriate use of synchronization and
fencing must be performed for producer-consumer usage models. Fencing ensures that all
system agents have global visibility of the stored data; for instance, failure to fence may result
in a written cache line staying within a processor and not being visible to other agents. 

For processors that implement non-temporal stores by updating data in-place that already
resides in the cache hierarchy, the destination region should also be mapped as WC. Otherwise
if mapped as WB or WT, there is the potential for speculative processor reads to bring the data
into the caches; in this case, non-temporal stores would then update in place, and data would not
be flushed from the processor by a subsequent fencing operation.

The memory type visible on the bus in the presence of memory type aliasing is implementation
specific. As one possible example, the memory type written to the bus may reflect the memory
type for the first store to this line, as seen in program order; other alternatives are possible. This
behavior should be considered reserved, and dependence on the behavior of any particular
implementation risks future incompatibility.

10.4.6.3. PREFETCHh INSTRUCTIONS

The PREFETCHh instructions permits a program to load data into the processor at a suggested
cache level, so that it is closer to the processors load and store unit when it is needed. These
instructions fetch 32 aligned bytes (or more, depending on the implementation) containing the
addressed byte, to a location in the cache hierarchy specified by the temporal locality hint (see
Table 10-1). In this table, the first-level cache is closest to the processor and second-level cache
is farther away from the processor than the first-level cache. The hints specify a prefetch of
either temporal or non-temporal data (see Section 10.4.6.2., “Caching of Temporal Vs. Non-
Temporal Data”). Subsequent accesses to temporal data are treated like normal accesses, while
those to non-temporal data will continue to minimize cache pollution. If the data is already
present in a level of the cache hierarchy that is closer to the processor, the PREFETCHh instruc-
tion will not result in any data movement. The PREFETCHh instructions do not affect functional
behavior of the program.

See Section 11.6.13., “Cacheability Hint Instructions” for additional information about the
PREFETCHh instructions.

10.4.6.4. SFENCE INSTRUCTION

The SFENCE (Store Fence) instruction controls write ordering by creating a fence for memory
store operations. This instruction guarantees that the results of every store instruction that
precedes the store fence in program order is globally visible before any store instruction that
follows the fence. The SFENCE instruction provides an efficient way of ensuring ordering
between procedures that produce weakly-ordered data and procedures that consume that data.
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10.5. FXSAVE AND FXRSTOR INSTRUCTIONS

The FXSAVE and FXRSTOR instructions were introduced into the IA-32 architecture in the
Pentium II processor family (prior to the introduction of the SSE extensions). The original
versions of these instructions performed a fast save and restore, respectively, of the x87 FPU
register state. (By saving the state of the x87 FPU data registers, the FXSAVE and FXRSTOR
instructions implicitly save and restore the state of the MMX registers.) 

The SSE extensions expanded the scope of these instructions to save and restore the states of the
XMM registers and the MXCSR register, along with the x87 FPU and MMX state. 

The FXSAVE and FXRSTOR instructions can be used in place of the FSAVE/FNSAVE and
FRSTOR instructions; however, the operations of the FXSAVE and FXRSTOR instructions are
not identical to the operations of the FSAVE/FNSAVE and FRSTOR instructions.

NOTE

The FXSAVE and FXRSTOR instructions are not considered part of the SSE
instruction group. They have a separate CPUID feature bit (bit 24 of the EAX
register) to indicate whether they are present on a particular IA-32 processor
implementation. The CPUID feature bit for the SSE extensions (bit 25 of the
EAX register) does not indicate the presence of the FXSAVE and FXRSTOR
instructions.

10.6. HANDLING SSE INSTRUCTION EXCEPTIONS

See Section 11.5., “SSE and SSE2 Exceptions” for a detailed discussion of the general and
SIMD floating-point exceptions that can be generated with the SSE instructions and for guide-
lines for handling these exceptions when they occur.

Table 10-1.  PREFETCHh Instructions Caching Hints

PREFETCHh 
Instruction Mnemonic

Actions

PREFETCHT0 Temporal data—fetch data into all levels of cache hierarchy:
• Pentium III processor—1st-level cache or 2nd-level cache
• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHT1 Temporal data—fetch data into level 2 cache and higher
• Pentium III processor—2nd-level cache
• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHT2 Temporal data—fetch data into level 2 cache and higher
• Pentium III processor—2nd-level cache
• Pentium 4 and Intel Xeon processor—2nd-level cache

PREFETCHNTA Non-temporal data—fetch data into location close to the processor, minimizing 
cache pollution 
• Pentium III processor—1st-level cache 
• Pentium 4 and Intel Xeon processor—2nd-level cache
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10.7. WRITING APPLICATIONS WITH THE SSE EXTENSIONS

See Section 11.6., “Writing Applications with the SSE and SSE2 Extensions” for additional
information about writing applications and operating-system code using the SSE extensions.
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CHAPTER 11
PROGRAMMING WITH THE

STREAMING SIMD EXTENSIONS 2 (SSE2)

The streaming SIMD extensions 2 (SSE2) were introduced into the IA-32 architecture in the
Pentium 4 and Intel Xeon processors. These extensions are designed to enhance the performance
of IA-32 processors for advanced 3-D graphics, video decoding/encoding, speech recognition,
E-commerce, Internet, scientific, and engineering applications. 

This chapter describes the SSE2 extensions and provides information to assist in writing appli-
cation programs that use these and the SSE extensions. 

11.1. OVERVIEW OF THE SSE2 EXTENSIONS

The SSE2 extensions use the same single instruction multiple data (SIMD) execution model that
is used with the MMX technology and the SSE extensions. It extends this model with support
for packed double-precision floating-point values and for 128-bit packed integers.

The SSE2 extensions add the following features to the IA-32 architecture, while maintaining
backward compatibility with all existing IA-32 processors, applications and operating systems.

• Six data types: 

— 128-bit packed double-precision floating-point (two IEEE Standard 754 double-
precision floating-point values packed into a double quadword).

— 128-bit packed byte integers.

— 128-bit packed word integers.

— 128-bit packed doubleword integers.

— 128-bit packed quadword integers.

• Instructions to support the additional data types and extend existing SIMD integer
operations:

— Packed and scalar double-precision floating-point instructions.

— Additional 64-bit and 128-bit SIMD integer instructions.

— 128-bit versions of SIMD integer instructions introduced with the MMX technology
and the SSE extensions.

— Additional cacheability-control and instruction-ordering instructions.
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• Modifications to existing IA-32 instructions to support SSE2 features:

— Extensions and modifications to the CPUID instruction.

— Modifications to the RDPMC instruction.

These new features extend the IA-32 architecture’s SIMD programming model in three impor-
tant ways: 

• The ability to perform SIMD operations on pairs of packed double-precision floating-point
values permits higher precision computations to be carried out in the XMM registers,
which enhances processor performance in scientific and engineering applications and in
applications that use advanced 3-D geometry techniques, such as ray tracing. Additional
flexibility is provided with instructions that operate on single (scalar) double-precision
floating-point values located in the low quadword of an XMM register. 

• The ability to operate on 128-bit packed integers (bytes, words, doublewords, and
quadwords) in XMM registers provides greater flexibility and greater throughput when
performing SIMD operations on packed integers. This capability is particularly useful for
applications such as RSA authentication and RC5 encryption. Using the full set of SIMD
registers, data types, and instructions provided with the MMX technology and the SSE and
SSE2 extensions, programmers can now develop algorithms that finely mix packed single-
and double-precision floating-point data and 64- and 128-bit packed integer data. 

• The SSE2 extensions enhance the support introduced with the SSE extensions for
controlling the cacheability of SIMD data. The SSE2 cache control instructions provide the
ability to stream data in and out of the XMM registers without polluting the caches and the
ability to prefetch data before it is actually used.   

The SSE2 extensions are fully compatible with all software written for IA-32 processors. All
existing software continues to run correctly, without modification, on processors that incorpo-
rate the SSE2 extensions, as well as in the presence of existing and new applications that incor-
porate these extensions. Enhancements to the CPUID instruction permit easy detection of the
SSE2 extensions. Also, because the SSE2 extensions use the same registers as the SSE exten-
sions, no new operating-system support is required for saving and restoring program state during
a context switch beyond that provided for the SSE extensions.

The SSE2 extensions are accessible from all IA-32 execution modes: protected mode, real
address mode, virtual 8086 mode.

The following sections in this chapter describe the programming environment for the SSE2
extensions, including the 128-bit XMM floating-point register set, the new data types, and the
new SSE2 instructions. It also describes the exceptions that can be generated with the SSE and
SSE2 instructions and gives guidelines for writing applications with both the SSE and SSE2
extensions.

For additional information about the SSE2 extensions, see the following references:

• Chapter 3, Instruction Set Reference, of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2 gives detailed descriptions of SSE2 instructions.
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• Chapter 12, SSE and SSE2 System Programming, in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3 gives guidelines for integrating the SSE and SSE2
extensions into an operating-system environment.

11.2. SSE2 PROGRAMMING ENVIRONMENT

Figure 11-1 shows the programming environment for the SSE2 extensions. No new registers or
other instruction execution state are defined with the SSE2 extensions. The SSE2 instructions
use the XMM registers, the MMX registers, and/or IA-32 general-purpose registers, as follows: 

• XMM registers. These eight registers (see Figure 10-2) are used to operate on packed or
scalar double-precision floating-point data. Scalar operations are operations performed on
individual (unpacked) double-precision floating-point values stored in the low quadword
of an XMM register. The XMM registers are also used to perform operations on 128-bit
packed integer data. These registers are referenced by the names XMM0 through XMM7.

• MXCSR register. This 32-bit register (see Figure 10-3) provides status and control bits
used in floating-point operations. The denormals-are-zeros and flush-to-zero flags in this
register provide a higher performance alternative for the handling of denormal source
operands and denormal (underflow) results. For more information on the functions of these
flags see Section 10.2.2.4., “Denormals Are Zeros” and Section 10.2.2.3., “Flush-To-
Zero”.

Figure 11-1.  Steaming SIMD Extensions 2 Execution Environment
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• MMX registers. These eight registers (see Figure 9-2) are used to perform operations on
64-bit packed integer data. They are also used to hold operands for some operations
performed between the MMX and XMM registers. The MMX registers are referenced by
the names MM0 through MM7.

• General-purpose registers. The eight general-purpose registers (see Figure 3-4) are used
along with the existing IA-32 addressing modes to address operands in memory. (The
MMX and XMM registers cannot be used to address memory). The general-purpose
registers are also used to hold operands for some SSE2 instructions. These registers are
referenced by the names EAX, EBX, ECX, EDX, EBP, ESI EDI, and ESP.

• EFLAGS register. This 32-bit register (see Figure 3-7) is used to record the results of
some compare operations.

11.2.1. Compatibility of the SSE2 Extensions with the SSE, MMX 
Technology, and x87 FPU Programming Environments

The SSE2 extensions do not introduce any new state to the IA-32 execution environment. The
SSE2 extensions represent an enhancement of the SSE extensions; they are fully compatible and
share the same state information. The SSE and SSE2 instructions can be executed together in
the same instruction stream without the need to save state when switching between instruction
sets.

The XMM registers are independent of the x87 FPU and MMX registers, so SSE and SSE2 oper-
ations performed on the XMM registers can be performed in parallel with x87 FPU or MMX
technology operations (see Section 11.6.7., “Interaction of SSE and SSE2 Instructions with x87
FPU and MMX Instructions”).

The FXSAVE and FXRSTOR instructions save and restore the SSE and SSE2 state along with
the x87 FPU and MMX state.

11.2.2. Denormals-Are-Zeros Flag

The denormals-are-zeros flag (bit 6 in the MXCSR register) was introduced into the IA-32
architecture with the SSE2 extensions. See Section 10.2.2.4., “Denormals Are Zeros” for a
description of this flag.

11.3. SSE2 DATA TYPES

The SSE2 extensions introduced one 128-bit packed floating-point data type and four 128-bit
SIMD integer data types to the IA-32 architecture (see Figure 11-2). 
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• Packed double-precision floating-point. This 128-bit data type consists of two IEEE 64-bit
double-precision floating-point values packed into a double quadword. (See Figure 4-3 for
the layout of a 64-bit double-precision floating-point value; refer to Section 4.2.2.,
“Floating-Point Data Types” for a detailed description of double-precision floating-point
values.)

• 128-bit packed integers. The four 128-bit packed integer data types can contain 16 byte
integers, 8 word integers, 4 doubleword integers, or 2 quadword integers. (Refer to Section
4.6.2., “128-Bit Packed SIMD Data Types” for a detailed description of the 128-bit packed
integers.)

All of these data types are operated on in the XMM registers or memory. Instructions are
provided to convert between these 128-bit data types and the 64-bit and 32-bit data types.

The address of a 128-bit packed memory operand must be aligned on a 16-byte boundary, except
in the following cases: 

• The MOVUPD instruction supports unaligned accesses.

• Scalar instructions that use an 8-byte memory operand that is not subject to alignment
requirements.

Figure 4-2 shows the byte order of 128-bit (double quadword) and 64-bit (quadword) data types
in memory.

Figure 11-2.  Data Types Introduced with the SSE2 Extensions
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11.4. SSE2 INSTRUCTIONS

The SSE2 instructions are divided into four functional groups:

• Packed and scalar double-precision floating-point instructions.

• 64-bit and 128-bit SIMD integer instructions.

• 128-bit extensions of SIMD integer instructions introduced with the MMX technology and
the SSE extensions.

• Cacheability-control and instruction-ordering instructions.

The following sections give an overview of each of the instructions in these groups.

11.4.1. Packed and Scalar Double-Precision Floating-Point 
Instructions

The packed and scalar double-precision floating-point instructions are divided into the
following groups:

• Data movement instructions

• Arithmetic instructions

• Comparison instructions

• Conversion instructions

• Logical instructions

• Shuffle instructions

The packed double-precision floating-point instructions perform SIMD operations similarly to
the packed single-precision floating-point instructions (see Figure 11-3). Each source operand
contains two double-precision floating-point values, and the destination operand contains the
results of the operation (OP) performed in parallel on the corresponding values (X0 and Y0, and
X1 and Y1) in each operand.
11-6



PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 (SSE2)
The scalar double-precision floating-point instructions operate on the low (least significant)
quadwords of the two source operands (X0 and Y0), as shown in Figure 11-4. The high quad-
word (X1) of the first source operand is passed through to the destination. The scalar operations
are similar to the floating-point operations performed in the x87 FPU data registers with preci-
sion control field in the x87 FPU control word set for double precision (53-bit significand). See
Section 11.6.8., “Compatibility of SIMD and x87 FPU Floating-Point Data Types”, for more
information about obtaining compatible results when performing both scalar double-precision
floating-point operations in XMM registers and in the x87 FPU data registers.

11.4.1.1. DATA MOVEMENT INSTRUCTIONS

The data movement instructions move double-precision floating-point data between XMM
registers and between XMM registers and memory.

Figure 11-3.  Packed Double-Precision Floating-Point Operations

Figure 11-4.  Scalar Double-Precision Floating-Point Operations
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The MOVAPD (move aligned packed double-precision floating-point) instruction transfers a
128-bit packed double-precision floating-point operand from memory to an XMM register and
vice versa, or between XMM registers. The memory address must be aligned to a 16-byte
boundary; if not, a general-protection exception (GP#) is generated.

The MOVUPD (move unaligned packed double-precision floating-point) instruction transfers a
128-bit packed double-precision floating-point operand from memory to and XMM register and
vice versa, or between XMM registers. Alignment of the memory address is not required.

The MOVSD (move scalar double-precision floating-point) instruction transfers a 64-bit
double-precision floating-point operand from memory to the low quadword of an XMM register
and vice versa, or between XMM registers. Alignment of the memory address is not required,
unless alignment checking is enabled.

The MOVHPD (move high packed double-precision floating-point) instruction transfers a 64-bit
double-precision floating-point operand from memory to the high quadword of an XMM register
and vice versa. The low quadword of the register is left unchanged. Alignment of the memory
address is not required, unless alignment checking is enabled.

The MOVLPD (move low packed double-precision floating-point) instruction transfers a 64-bit
double-precision floating-point operand from memory to the low quadword of an XMM register
and vice versa. The high quadword of the register is left unchanged. Alignment of the memory
address is not required, unless alignment checking is enabled.

The MOVMSKPD (move packed double-precision floating-point mask) instruction extracts the
sign bit of each of the two packed double-precision floating-point numbers in an XMM register
and saves them in a general-purpose register. This 2-bit value can then be used as a condition to
perform branching.

11.4.1.2. SSE2 ARITHMETIC INSTRUCTIONS

The SSE2 arithmetic instructions perform addition, subtraction, multiply, divide, square root,
and maximum/minimum operations on packed and scalar double-precision floating-point
values.

The ADDPD (add packed double-precision floating-point values) and SUBPD (subtract packed
double-precision floating-point values) instructions add and subtract, respectively, two packed
double-precision floating-point operands.

The ADDSD (add scalar double-precision floating-point values) and SUBSD (subtract scalar
double-precision floating-point values) instructions add and subtract, respectively, the low
double-precision floating-point values of two operands and stores the result in the low quadword
of the destination operand.

The MULPD (multiply packed double-precision floating-point values) instruction multiplies
two packed double-precision floating-point operands.

The MULSD (multiply scalar double-precision floating-point values) instruction multiplies the
low double-precision floating-point values of two operands and stores the result in the low quad-
word of the destination operand.
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The DIVPD (divide packed double-precision floating-point values) instruction divides two
packed double-precision floating-point operands.

The DIVSD (divide scalar double-precision floating-point values) instruction divides the low
double-precision floating-point values of two operands and stores the result in the low quadword
of the destination operand.

The SQRTPD (compute square roots of packed double-precision floating-point values) instruc-
tion computes the square roots of the values in a packed double-precision floating-point
operand.

The SQRTSD (compute square root of scalar double-precision floating-point values) instruction
computes the square root of the low double-precision floating-point value in the source operand
and stores the result in the low quadword of the destination operand.

The MAXPD (return maximum of packed double-precision floating-point values) instruction
compares the corresponding values in two packed double-precision floating-point operands and
returns the numerically greater value from each comparison to the destination operand.

The MAXSD (return maximum of scalar double-precision floating-point values) instruction
compares the low double-precision floating-point values from two packed double-precision
floating-point operands and returns the numerically higher value from the comparison to the low
quadword of the destination operand.

The MINPD (return minimum of packed double-precision floating-point values) instruction
compares the corresponding values from two packed double-precision floating-point operands
and returns the numerically lesser value from each comparison to the destination operand.

The MINSD (return minimum of scalar double-precision floating-point values) instruction
compares the low values from two packed double-precision floating-point operands and returns
the numerically lesser value from the comparison to the low quadword of the destination
operand.

11.4.1.3. SSE2 LOGICAL INSTRUCTIONS

The SSE2 logical instructions perform AND, AND NOT, OR, and XOR operations on packed
double-precision floating-point values. 

The ANDPD (bitwise logical AND of packed double-precision floating-point values) instruc-
tion returns the logical AND of two packed double-precision floating-point operands.

The ANDNPD (bitwise logical AND NOT of packed double-precision floating-point values)
instruction returns the logical AND NOT of two packed double-precision floating-point operands.

The ORPD (bitwise logical OR of packed double-precision floating-point values) instruction
returns the logical OR of two packed double-precision floating-point operands.

The XORPD (bitwise logical XOR of packed double-precision floating-point values) instruction
returns the logical XOR of two packed double-precision floating-point operands.
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11.4.1.4. SSE2 COMPARISON INSTRUCTIONS

The SSE2 compare instructions compare packed and scalar double-precision floating-point
values and return the results of the comparison either to the destination operand or to the
EFLAGS register.

The CMPPD (compare packed double-precision floating-point values) instruction compares the
corresponding values from two packed double-precision floating-point operands, using an
immediate operand as a predicate, and returns a 64-bit mask result of all 1s or all 0s for each
comparison to the destination operand. The value of the immediate operand allows the selection
of any of 8 compare conditions: equal, less than, less than equal, unordered, not equal, not less
than, not less than or equal, or ordered.

The CMPSD (compare scalar double-precision floating-point values) instruction compares the
low values from two packed double-precision floating-point operands, using an immediate
operand as a predicate, and returns a 64-bit mask result of all 1s or all 0s for the comparison to
the low quadword of the destination operand. The immediate operand selects the compare
condition as with the CMPPD instruction.

The COMISD (compare scalar double-precision floating-point values and set EFLAGS) and
UCOMISD (unordered compare scalar double-precision floating-point values and set EFLAGS)
instructions compare the low values of two packed double-precision floating-point operands and
set the ZF, PF, and CF flags in the EFLAGS register to show the result (greater than, less than,
equal, or unordered). These two instructions differ as follows: the COMISD instruction signals
a floating-point invalid-operation (#I) exception when a source operand is either a QNaN or an
SNaN; the UCOMISD instruction only signals an invalid-operation exception when a source
operand is an SNaN.

11.4.1.5. SSE2 SHUFFLE AND UNPACK INSTRUCTIONS

The SSE2 shuffle instructions shuffle the contents of two packed double-precision floating-
point values and store the results in the destination operand.

The SHUFPD (shuffle packed double-precision floating-point values) instruction places either
of the two packed double-precision floating-point values from the destination operand in the low
quadword of the destination operand, and places either of the two packed double-precision
floating-point values from source operand in the high quadword of the destination operand (see
Figure 11-5). By using the same register for the source and destination operands, the SHUFPD
instruction can swap two packed double-precision floating-point values. 
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The UNPCKHPD (unpack and interleave high packed double-precision floating-point values)
instruction performs an interleaved unpack of the high values from the source and destination
operands and stores the result in the destination operand (see Figure 11-6).

The UNPCKLPD (unpack and interleave low packed double-precision floating-point values)
instruction performs an interleaved unpack of the low values from the source and destination
operands and stores the result in the destination operand (see Figure 11-7).

Figure 11-5.  SHUFPD Instruction Packed Shuffle Operation
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11.4.1.6. SSE2 CONVERSION INSTRUCTIONS

The SSE2 conversion instructions (see Figure 11-8) support packed and scalar conversions
between:

• Double-precision and single-precision floating-point formats.

• Double-precision floating-point and doubleword integer formats.

• Single-precision floating-point and doubleword integer formats.

Conversion between double-precision and single-precision floating-points values. The
following instructions convert operands between double-precision and single-precision
floating-point formats. The operands being operated on are contained in XMM registers or
memory.

Figure 11-6.  UNPCKHPD Instruction High Unpack and Interleave Operation

Figure 11-7.  UNPCKLPD Instruction Low Unpack and Interleave Operation
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The CVTPS2PD (convert packed single-precision floating-point values to packed double-preci-
sion floating-point values) instruction converts the two packed single-precision floating-point
values to two double-precision floating-point values.

The CVTPD2PS (convert packed double-precision floating-point values to packed single-preci-
sion floating-point values) instruction converts the two packed double-precision floating-point
values to two single-precision floating-point values. When a conversion is inexact, the result is
rounded according to the rounding mode selected in the MXCSR register.

The CVTSS2SD (convert scalar single-precision floating-point value to scalar double-precision
floating-point value) instruction converts a single-precision floating-point value to a double-
precision floating-point value.

The CVTSD2SS (convert scalar double-precision floating-point value to scalar single-precision
floating-point value) instruction converts a double-precision floating-point value to a single-
precision floating-point value. When the conversion is inexact, the result is rounded according
to the rounding mode selected in the MXCSR register.

Figure 11-8.  SSE and SSE2 Conversion Instructions
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Conversion between double-precision floating-point values and doubleword integers. The
following instructions convert operands between double-precision floating-point and double-
word integer formats. The operands being operated on are contained in XMM registers, MMX
registers, and/or memory.

The CVTPD2PI (convert packed double-precision floating-point values to packed doubleword
integers) instruction converts the two packed double-precision floating-point numbers to two
packed signed doubleword integers, with the result stored in an MMX register. When rounding
to an integer value, the source value is rounded according to the rounding mode in the MXCSR
register. The CVTTPD2PI (convert with truncation packed double-precision floating-point
values to packed doubleword integers) instruction is similar to the CVTPD2PI instruction
except that truncation is used to round a source value to an integer value (see Section 4.8.4.2.,
“Truncation with SSE and SSE2 Conversion Instructions”).

The CVTPI2PD (convert packed doubleword integers to packed double-precision floating-point
values) instruction converts two packed signed doubleword integers to two double-precision
floating-point values. 

The CVTPD2DQ (convert packed double-precision floating-point values to packed doubleword
integers) instruction converts the two packed double-precision floating-point numbers to two
packed signed doubleword integers, with the result stored in the low quadword of an XMM
register. When rounding an integer value, the source value is rounded according to the rounding
mode selected in the MXCSR register. The CVTTPD2DQ (convert with truncation packed
double-precision floating-point values to packed doubleword integers) instruction is similar to
the CVTPD2DQ instruction except that truncation is used to round a source value to an integer
value (see Section 4.8.4.2., “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTDQ2PD (convert packed doubleword integers to packed double-precision floating-
point values) instruction converts two packed signed doubleword integers located in the low-
order doublewords of an XMM register to two double-precision floating-point values. 

The CVTSD2SI (convert scalar double-precision floating-point value to doubleword integer)
instruction converts a double-precision floating-point value to a doubleword integer, and stores
the result in a general-purpose register. When rounding an integer value, the source value is
rounded according to the rounding mode selected in the MXCSR register. The CVTTSD2SI
(convert with truncation scalar double-precision floating-point value to doubleword integer)
instruction is similar to the CVTSD2SI instruction except that truncation is used to round the
source value to an integer value (see Section 4.8.4.2., “Truncation with SSE and SSE2 Conver-
sion Instructions”).

The CVTSI2SD (convert doubleword integer to scalar double-precision floating-point value)
instruction converts a signed doubleword integer in a general-purpose register to a double-preci-
sion floating-point number, and stores the result in an XMM register. 

Conversion between single-precision floating-point and doubleword integer formats.
These instructions convert between packed single-precision floating-point and packed double-
word integer formats in XMM registers. These SSE2 instructions supplement the conversion
instructions (CVTPI2PS, CVTPS2PI, CVTTPS2PI, CVTSI2SS, CVTSS2SI, and CVTTSS2SI)
introduced in the SSE extensions.
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The CVTPS2DQ (convert packed single-precision floating-point values to packed doubleword
integers) instruction converts four packed single-precision floating-point values to four packed
signed doubleword integers, with the source and destination operands in XMM registers. When
the conversion is inexact, the rounded value according to the rounding mode selected in the
MXCSR register is returned. The CVTTPS2DQ (convert with truncation packed single-preci-
sion floating-point values to packed doubleword integers) instruction is similar to the
CVTPS2DQ instruction except that truncation is used to round a source value to an integer value
(see Section 4.8.4.2., “Truncation with SSE and SSE2 Conversion Instructions”).

The CVTDQ2PS (convert packed doubleword integers to packed single-precision floating-point
values) instruction converts four packed signed doubleword integers to four packed single-
precision floating-point numbers, with the source and destination operands in XMM registers.
When the conversion is inexact, the rounded value according to the rounding mode selected in
the MXCSR register is returned. 

11.4.2. SSE2 64-Bit and 128-Bit SIMD Integer Instructions

The SSE2 extensions adds several 128-bit packed integer instructions to the IA-32 architecture.
Where appropriate, a 64-bit version of each of these instruction is also provided. The 128-bit
versions of instructions operate on data in the XMM registers, and the 64 bit versions of these
new instructions operate on data in the MMX registers. These instructions are as follows.

The MOVDQA (move aligned double quadword) instruction transfers a double quadword
operand from memory to an XMM register and vice versa, or between XMM registers. The
memory address must be aligned to a 16-byte boundary; otherwise, a general-protection excep-
tion (#GP) is generated.

The MOVDQU (move unaligned double quadword) instruction performs the same operations
as the MOVDQA instruction, except that 16-byte alignment of a memory address is not
required.

The PADDQ (packed quadword add) instruction adds two packed quadword integer operands
or two single quadword integer operands, and stores the results in an XMM or MMX register,
respectively. This instruction can operate on either unsigned or signed (two’s complement nota-
tion) integer operands.

The PSUBQ (packed quadword subtract) instruction subtracts two packed quadword integer
operands or two single quadword integer operands, and stores the results in an XMM or MMX
register, respectively. Like the PADDQ instruction, PSUBQ can operate on either unsigned or
signed (two’s complement notation) integer operands.

The PMULUDQ (multiply packed unsigned doubleword integers) instruction performs an
unsigned multiply of unsigned doubleword integers and returns a quadword result. Both 64-bit
and 128-bit versions of this instruction is available. The 64-bit version operates on two double-
word integers stored in the low doubleword of each source operand, and the quadword result is
returned to an MMX register. The 128-bit version performs a packed multiply of two pairs of
doubleword integers. Here, the doublewords packed in the first and third doublewords of the
source operands, and the quadword results are stored in the low and high quadwords of an XMM
register.
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The PSHUFLW (shuffle packed low words) instruction shuffles the word integers packed into
the low quadword of the source operand and stores the shuffled result in the low quadword of
the destination operand. An 8-bit immediate operand specifies the shuffle order.

The PSHUFHW (shuffle packed high words) instruction shuffles the word integers packed into
the high quadword of the source operand and stores the shuffled result in the high quadword of
the destination operand. An 8-bit immediate operand specifies the shuffle order.

The PSHUFD (shuffle packed doubleword integers) instruction shuffles the doubleword inte-
gers packed into the source operand and stores the shuffled result in the destination operand. An
8-bit immediate operand specifies the shuffle order.

The PSLLDQ (shift double quadword left logical) instruction shifts the contents of the source
operand to the left by the amount of bytes specified by an immediate operand. The empty low-
order bytes are cleared (set to 0).

The PSRLDQ (shift double quadword right logical) instruction shifts the contents of the source
operand to the right by the amount of bytes specified by an immediate operand. The empty high-
order bytes are cleared (set to 0).

The PUNPCKHQDQ (Unpack high quadwords) instruction interleaves the high quadword of
the source operand and the high quadword of the destination operand and writes them to the
destination register.

The PUNPCKLQDQ (Unpack low quadwords) instruction interleaves the low quadwords of the
source operand and the low quadwords of the destination operand and writes them to the desti-
nation register.

Two additional SSE instructions enable data movement from the MMX registers to the XMM
registers. 

The MOVQ2DQ (move quadword integer from MMX to XMM registers) instruction moves the
quadword integer from an MMX source register to an XMM destination register.

The MOVDQ2Q (move quadword integer from XMM to MMX registers) instruction moves the
low quadword integer from an XMM source register to an MMX destination register. 

11.4.3. 128-Bit SIMD Integer Instruction Extensions

All of the 64-bit SIMD integer instructions introduced with the MMX technology and the SSE
extensions (with the exception of the PSHUFW instruction) have been extended with the SSE2
extensions to operate on 128-bit packed integer operands located in the XMM registers. The new
128-bit versions of these instructions follow the same SIMD conventions regarding packed
operands as the original 64-bit versions. For example, where the 64-bit version of the PADDB
instruction operates on 8 packed bytes, the 128-bit version has been extended to operate on 16
packed bytes. 
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11.4.4. Cacheability Control and Memory Ordering Instructions

The SSE2 extensions introduces several new instructions to give programs more control over
the caching of data and of the loading and storing of data. These new instructions are described
in the following sections.

11.4.4.1. FLUSH CACHE LINE

The CLFLUSH (flush cache line) instruction writes and invalidates the cache line associated
with a specified linear address. The invalidation is for all levels of the processor’s cache hier-
archy, and it is broadcast throughout the cache coherency domain.

Note that the CLFLUSH instruction was introduced with the SSE2 extensions, however, can be
implemented in IA-32 processors that do not implement the SSE2 extensions. The CLFLUSH
instruction has it own CPUID feature bit (bit 19 of register EDX) and can thus be detected inde-
pendently from the SSE2 extensions.

11.4.4.2. CACHEABILITY CONTROL INSTRUCTIONS

The following four instructions enable data from the XMM and general-purpose registers to be
stored to memory using a non-temporal hint. The non-temporal hint directs the processor to
when possible store the data to memory without writing the data into the cache hierarchy: (See
Section 10.4.6.2., “Caching of Temporal Vs. Non-Temporal Data” for more information about
non-temporal stores and hints.)

The MOVNTDQ (store double quadword using non-temporal hint) instruction stores packed
integer data from an XMM register to memory, using a non-temporal hint.

The MOVNTPD (store packed double-precision floating-point values using non-temporal hint)
instruction stores packed double-precision floating-point data from an XMM register to
memory, using a non-temporal hint.

The MOVNTI (store doubleword using non-temporal hint) instruction stores integer data from
a general-purpose register to memory, using a non-temporal hint.

The MASKMOVDQU (store selected bytes of double quadword) instruction stores selected
byte integers from an XMM register to memory, using a byte mask to selectively write the indi-
vidual bytes. The memory location does not need to be aligned on a natural boundary. This
instruction also uses a non-temporal hint. 

11.4.4.3. MEMORY ORDERING INSTRUCTIONS

The SSE2 extensions introduce two new fence instructions (LFENCE and MFENCE) as
companions to the SFENCE instruction introduced with the SSE extensions. The LFENCE
instruction establishes a memory fence for loads. It guarantees ordering between two loads and
prevents speculative loads from passing the load fence (that is, no speculative loads are allowed
until all loads specified before the load fence have been carried out).
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The MFENCE instruction combines the functions of the LFENCE and SFENCE instructions by
establishing a memory fence for both loads and stores. It guarantees that all loads and stores
specified before the fence are globally observable prior to any loads or stores being carried out
after the fence.

11.4.4.4. PAUSE

The PAUSE instruction is provided to improve the performance of “spin-wait loops” executed
on a Pentium 4 or Intel Xeon processor. On a Pentium 4 processor, it also provides the added
benefit of reducing processor power consumption while executing a spin-wait loop. It is recom-
mended that a PAUSE instruction always be included in the code sequence for a spin-wait loop.

11.4.5. Branch Hints

The SSE2 extensions designates two instruction prefixes (2EH and 3EH) to provide branch hints
to the processor (see “Instruction Prefixes” in Chapter 2 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2). These prefixes can only be used with the Jcc instruction, and
they can be used only at the machine code level (that is, there are no mnemonics for the branch
hints).

11.5. SSE AND SSE2 EXCEPTIONS

The SSE and SSE2 extensions generate two general types of exceptions:

• Non-numeric exceptions

• SIMD floating-point exceptions

The SSE and SSE2 instructions can generate the same type of memory-access and other non-
numeric exceptions as other IA-32 architecture instructions can. Existing exception handlers can
generally handle these exceptions without any code modification. See “Providing Non-Numeric
Exception Handlers for Exceptions Generated by the SSE and SSE2 Instructions” in Chapter 12,
SSE and SSE2 System Programming, of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 3, for a list of the non-numeric exceptions that can be generated by SSE and
SSE2 instructions and for guidelines for handling these exceptions.

The SSE and SSE2 instructions do not generate any numeric exceptions on packed integer oper-
ations; however, they can generate numeric (SIMD floating-point) exceptions on packed single-
precision and double-precision floating-point operations. These SIMD floating-point exceptions
are defined in the IEEE Standard 754 for Binary Floating-Point Arithmetic and are the same
exceptions that are generated for x87 FPU instructions. See Section 11.5.1., “SIMD Floating-
Point Exceptions” for a description of these exceptions.
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11.5.1. SIMD Floating-Point Exceptions

The SIMD floating-point exceptions are those exceptions that can be generated by SSE and
SSE2 instructions that operate on packed or scalar floating-point operands.

The six classes of SIMD floating-point exceptions that can be generated are as follows:

• Invalid operation (#I)

• Divide-by-zero (#Z)

• Denormal operand (#D)

• Numeric overflow (#O)

• Numeric underflow (#U)

• Inexact result (Precision) (#P)

All of these exceptions (except the denormal operand exception) are defined in IEEE Standard
754, and they are the same exceptions that are generated with the x87 floating-point instructions.
Section 4.9., “Overview of Floating-Point Exceptions” gives a detailed description of these
exceptions and of how and when they are generated. The following sections discuss the specific
implementation of these exceptions with the SSE and SSE2 extensions.

All the SIMD floating-point exceptions are precise and occur as soon as the instruction
completes execution. 

Each of the six exception conditions has a corresponding flag (IE, DE, ZE, OE, UE, and PE) and
mask bit (IM, DM, ZM, OM, UM, and PM) in the MXCSR register (see Figure 10-3). The mask
bits can be set with either the LDMXCSR or FXRSTOR instruction; the mask and flag bits can
be read with either the STMXCSR or FXSAVE instruction.

The OSXMMEXCEPT flag (bit 10) of control register CR4 provides additional control over
generation of SIMD floating-point exceptions by allowing the operating system to indicate
whether or not it supports software exception handlers for the SIMD floating-point exceptions.
If an unmasked SIMD floating-point exception is generated, and the OSXMMEXCEPT flag is
set, the processor invokes a software exception handler by generating a SIMD floating-point
exception (#XF). If the OSXMMEXCEPT bit is clear, the processor generates an invalid-opcode
exception (#UD) on the first SSE or SSE2 instruction that detects a SIMD floating-point excep-
tion condition. See Section 11.6.2., “Checking for SSE and SSE2 Support”.

11.5.2. SIMD Floating-Point Exception Conditions

The following sections describe the various conditions that cause a SIMD floating-point excep-
tion to be generated and the masked response of the processor when these conditions are
detected. 

See Section 4.9.2., “Floating-Point Exception Priority” for a description of the rules for excep-
tion precedence when more than one floating-point exception condition is detected for an
instruction.
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11.5.2.1. INVALID OPERATION EXCEPTION (#I)

The floating-point invalid-operation exception (#I) occurs in response to an invalid arithmetic
operand. The flag (IE) and mask (IM) bits for the invalid operation exception are bits 0 and 7,
respectively, in the MXCSR register.

If the invalid-operation exception is masked, the processor returns a QNaN, QNaN floating-point
indefinite, integer indefinite, or one of the source operands to the destination operand, or it sets
the EFLAGS, depending on the operation being performed. When a value is returned to the desti-
nation operand, it overwrites the destination register specified by the instruction. Table 11-1 lists
the invalid-arithmetic operations that the processor detects for SSE and SSE2 instructions and
the masked responses to these operations.

Table 11-1.  Masked Responses of SSE and SSE2 Instructions to Invalid Arithmetic 
Operations

Condition Masked Response

ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, 
SUBSS, SUBPD, SUBSD, MULPS, MULSS, 
MULPD, MULSD, DIVPS, DIVSS, DIVPD, or 
DIVSD instruction with an SNaN.

Return the SNaN converted to a QNaN; Refer to 
Table 4-7 for more details.

SQRTPS, SQRTSS, SQRTPD, or SQRTSD with 
SNaN operands.

Return the SNaN converted to a QNaN.

SQRTPS, SQRTSS, SQRTPD, or SQRTSD with 
negative operands (except zero).

Return the QNaN floating-point Indefinite.

MAXPS, MAXSS, MAXPD, MAXSD, MINPS, 
MINSS, MINPD, or MINSD instruction with QNaN 
or SNaN operands.

Return the source 2 operand value.

CMPPS, CMPSS, CMPPD or CMPSD instruction 
with QNaN or SNaN operands

Return a mask of all 0s (except for the predicates 
“not-equal,” “unordered,” “not-less-than,” or “not-
less-than-or-equal,” which returns a mask of all 1s).

CVTPD2PS, CVTSD2SS, CVTPS2PD, 
CVTSS2SD with SNaN operands

Return the SNaN converted to a QNaN

COMISS or COMISD with QNaN or SNaN 
operand(s).

Set EFLAGS values to “not comparable”.

Addition of opposite signed infinities or subtraction 
of like-signed infinities.

Return the QNaN floating-point Indefinite.

Multiplication of infinity by zero. Return the QNaN floating-point Indefinite.

Divide of (0/0) or (∞/∞) Return the QNaN floating-point Indefinite.

Conversion to integer when the value in the source 
register is a NaN, ∞, or exceeds the representable 
range for CVTPS2PI, CVTTPS2PI, CVTSS2SI, 
CVTTSS2SI, CVTPD2PI, CVTSD2SI, 
CVTPD2DQ, CVTTPD2PI, CVTTSD2SI, 
CVTTPD2DQ, CVTPS2DQ, or CVTTPS2DQ.

Return the integer Indefinite.
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If the invalid operation exception is not masked, a software exception handler is invoked and the
operands remain unchanged. (See Section 11.5.4., “Handling SIMD Floating-Point Exceptions
in Software”.)

Normally, one or more of the source operands are QNaNs (and neither is an SNaN or in an
unsupported format), an invalid-operation exception is not generated. An exception to this rule
is the COMISS and COMISD instructions and the CMPPS, CMPSS, CMPPD, and CMPSD
instructions (when the predicate is less than, less-than or equal, not less-than, or not less-than or
equal). With these instructions, a QNaN source operand will generate an invalid-operation
exception.

The invalid-operation exception is not affected by the flush-to-zero mode.

11.5.2.2. DENORMAL OPERAND EXCEPTION (#D)

The processor signals the denormal-operand exception if an arithmetic instruction attempts to
operate on a denormal operand. The flag (DE) and mask (DM) bits for the denormal-operand
exception are bits 1 and 8, respectively, in the MXCSR register.

The CVTPI2PD, CVTPD2PI, CVTTPD2PI, CVTDQ2PD, CVTPD2DQ, CVTTPD2DQ,
CVTSI2SD, CVTSD2SI, CVTTSD2SI, CVTPI2PS, CVTPS2PI, CVTTPS2PI, CVTSS2SI,
CVTTSS2SI, CVTSI2SS, CVTDQ2PS, CVTPS2DQ, and CVTTPS2DQ conversion instruc-
tions and the RCPSS, RCPPS, RSQRTSS, a and RSQRTPS instructions do not signal denormal
exceptions.

The denormals-are-zero flag (bit 6) of the MXCSR register provides an additional option for
handling denormal-operand exceptions. When this flag is set, denormal source operands are
automatically converted to zeros with the sign of the source operand (see Section 10.2.2.4.,
“Denormals Are Zeros”).

See Section 4.9.1.2., “Denormal Operand Exception (#D)” for additional information about the
denormal exception. See Section 11.5.4., “Handling SIMD Floating-Point Exceptions in Soft-
ware”, for information on handling unmasked exceptions.

11.5.2.3. DIVIDE-BY-ZERO EXCEPTION (#Z)

The processor reports a divide-by-zero exception whenever a DIVPD or DIVSD instruction
attempts to divide a finite non-zero operand by 0. The flag (ZE) and mask (ZM) bits for the
divide-by-zero exception are bits 2 and 9, respectively, in the MXCSR register.

See Section 4.9.1.3., “Divide-By-Zero Exception (#Z)” for additional information about the
divide-by-zero exception. See Section 11.5.4., “Handling SIMD Floating-Point Exceptions in
Software”, for information on handling unmasked exceptions.

The divide-by-zero exception is not affected by the flush-to-zero mode.
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11.5.2.4. NUMERIC OVERFLOW EXCEPTION (#O)

The processor reports a numeric overflow exception whenever the rounded result of an arith-
metic instruction exceeds the largest allowable finite value that will fit into the destination
operand. This exception can be generated with the ADDPS, ADDSS, ADDPD, ADDSD,
SUBPS, SUBSS, SUBPD, SUBSD, MULPS, MULSS, MULPD, MULSD, DIVPS, DIVSS,
DIVPD, DIVSD, CVTPD2PS, CVTSD2SS instructions. The flag (OE) and mask (OM) bits for
the numeric overflow exception are bits 3 and 10, respectively, in the MXCSR register.

See Section 4.9.1.4., “Numeric Overflow Exception (#O)” for additional information about the
numeric-overflow exception. See Section 11.5.4., “Handling SIMD Floating-Point Exceptions
in Software”, for information on handling unmasked exceptions.

The numeric overflow exception is not affected by the flush-to-zero mode.

11.5.2.5. NUMERIC UNDERFLOW EXCEPTION (#U)

The processor reports a numeric underflow exception whenever the rounded result of an arith-
metic instruction is tiny (that is, less than the smallest possible normalized, finite value that will
fit into the destination operand) and the numeric-underflow exception is not masked. If the
numeric-underflow exception is masked, both underflow and an inexact-result condition must
be detected before numeric underflow is reported. This exception can be generated with the
ADDPS, ADDSS, ADDPD, ADDSD, SUBPS, SUBSS, SUBPD, SUBSD, MULPS, MULSS,
MULPD, MULSD, DIVPS, DIVSS, DIVPD, DIVSD, CVTPD2PS, CVTSD2SS instructions.
The flag (UE) and mask (UM) bits for the numeric underflow exception are bits 4 and 11,
respectively, in the MXCSR register.

The flush-to-zero flag (bit 15) of the MXCSR register provides an additional option for handling
numeric-underflow exceptions. When this flag is set and the numeric-underflow exceptions is
masked, tiny results (results that trigger the underflow exception) are returned as a zero with the
sign of the true result (see Section 10.2.2.3., “Flush-To-Zero”).

See Section 4.9.1.5., “Numeric Underflow Exception (#U)” for additional information about the
numeric-underflow exception. See Section 11.5.4., “Handling SIMD Floating-Point Exceptions
in Software”, for information on handling unmasked exceptions.

11.5.2.6. INEXACT-RESULT (PRECISION) EXCEPTION (#P)

The inexact-result exception (also called the precision exception) occurs if the result of an oper-
ation is not exactly representable in the destination format. For example, the fraction 1/3 cannot
be precisely represented in binary form. This exception occurs frequently and indicates that
some (normally acceptable) accuracy has been lost. The exception is supported for applications
that need to perform exact arithmetic only. Because the rounded result is generally satisfactory
for most applications, this exception is commonly masked. 

The flag (PE) and mask (PM) bits for the inexact-result exception are bits 2 and 12, respectively,
in the MXCSR register.
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See Section 4.9.1.6., “Inexact-Result (Precision) Exception (#P)” for additional information
about the inexact-result exception. See Section 11.5.4., “Handling SIMD Floating-Point Excep-
tions in Software”, for information on handling unmasked exceptions.

In flush-to-zero mode, the inexact result exception is reported.

11.5.3. Generating SIMD Floating-Point Exceptions

When the processor executes a SSE or SSE2 packed or scalar floating-point instruction, it looks
for and reports on SIMD floating-point exception conditions in two steps:

1. It first looks for, reports on, and handles pre-computation exception conditions (invalid-
operand, divide-by-zero, and denormal operand).

2. Then, it looks for, reports on, and handles post-computation exception conditions (numeric
overflow, numeric underflow, and inexact result).

If both pre- and post-computational exceptions are unmasked, it is possible for the processor to
generate a SIMD floating-point exception (#XF) twice during the execution of an SSE or SSE2
instructions: once when it detects an handles a pre-computational exception and once when it
detects a post-computational exception.

11.5.3.1. HANDLING MASKED EXCEPTIONS

If all the exceptions are masked, the processor handles the exceptions it detects by placing the
masked result (or results for packed operands) in the destination operand and continuing
program execution. The masked result may be a rounded normalized value, signed infinity,
denormal finite number, zero, QNaN floating-point indefinite, or QNaN depending on the
exception condition detected. In most cases, the corresponding exception flag bit in MXCSR is
also set. The one situation where an exception flag is not set is when an underflow condition is
detected and it is not accompanied by an inexact result.

When operating on packed floating-point operands, the processor returns a masked result for
each of the sub-operand computations and sets a separate set of (internal) exception flags for
each computation. It then performs a logical-OR of the internal exception flag settings for each
exception type and sets the exception flags in the MXCSR register according to the results of
the OR operations.

For example, Figure 11-9 shows the results of an MULPS instruction, where all SIMD floating-
point exceptions are masked. Here, a denormal exception condition is detected prior to the addi-
tion of sub-operands X0 and Y0, no exception condition is detected for the addition of X1 and
Y1, a numeric overflow exception condition is detected for the addition of X2 and Y2, and
another denormal exception is detected prior to the addition of sub-operands X3 and Y3.
Because denormal exceptions are masked, the processor uses the denormal source values in the
additions of X0 and Y0 and of X3 and Y3 and passes the results of the additions through to the
destination operand. With the denormal operand, the result of the X0 and Y0 computation is a
normalized finite value, with no exceptions detected. However, the X3 and Y3 computation
produces a tiny and inexact result, the corresponding internal numeric underflow and inexact-
result exception flags are set.
11-23



PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 (SSE2)
For the addition of X2 and Y2, the processor stores the floating-point ∞ in the destination
operand, and sets the corresponding internal sub-operand numeric overflow flag. The result of
the X1 and Y1 addition is passed through to the destination operand, with no internal sub-
operand exception flags being set. Following the computations, the individual sub-operand
exceptions flags for denormal operand, numeric underflow, inexact result, and numeric over-
flow are OR’d and the corresponding flags are set in the MXCSR register.

The net result of this computation is that the addition of X0 and Y0 produces a normalized finite
result, the addition of X1 and Y1 produces a normalized finite result, the addition of X2 and Y2
produces a floating-point ∞ result, and the addition of X3 and Y3 produces a tiny, inexact, finite
result. Also, the denormal operand, numeric underflow, numeric underflow, and inexact result
flags are set in the MXCSR register.

11.5.3.2. HANDLING UNMASKED EXCEPTIONS

If all the exceptions are unmasked, the processor handles the exceptions it detects as follows:

1. If the processor detects any pre-computation exceptions, it ORs those exceptions, sets the
appropriate exception flags, leaves the source and destination operands unaltered, and goes
to step 2. If it does not detect any pre-computation exceptions, it goes to step 5.

2. Checks the OSXMMEXCPT flag (bit 10) of control register CR4. If this flag is set, the
processor goes to step 3; if the flag is clear, it generates an invalid-opcode exception (#UD)
and makes an implicit call to the invalid-opcode exception handler.

3. Generates a SIMD floating-point exception (#XF), and makes an implicit call to the SIMD
floating-point exception handler.

4. If the exception handler is able to fix the source operands that generated the pre-
computation exceptions or mask the condition in such a way as to allow the processor to
continue executing the instruction, the processor resumes instruction execution as
described in step 5.

Figure 11-9.  Example Masked Response for Packed Operations

X3 X2 X1 X0 (Denormal)

Y3 (Denormal) Y2 Y1 Y0 

Tiny, Inexact, Finite Normalized Finite

MULPS MULPS MULPS MULPS

∞ Normalized Finite
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5. Upon returning from the exceptions handler (or if no pre-computation exceptions were
detected), the processor checks for post-computation exceptions. If the processor detects
any post-computation exceptions, it ORs those exceptions, sets the appropriate exception
flags, leaves the source and destination operands unaltered, and repeats steps 2, 3, and 4.

6. Upon returning from the exceptions handler in step 4 (or if no post-computation exceptions
were detected), the processor completes the execution of the instruction.

The implication of this procedure is that for unmasked exceptions, the processor can generate a
SIMD floating-point exception (#XF) twice: once if it detects pre-computation exception condi-
tions and a second time if it detects post-computation exception conditions. For example, if
SIMD floating-point exceptions are unmasked for the computation shown in Figure 11-9, the
processor would generate one SIMD floating-point exception for the denormal operand condi-
tions and a second SIMD floating-point exception for the overflow, underflow, and inexact
result conditions.

11.5.3.3. HANDLING COMBINATIONS OF MASKED AND UNMASKED 
EXCEPTIONS

In situations where both masked and unmasked exceptions are detected, the processor will set
exception flags for both the masked and the unmasked exceptions, but it will not return masked
results until after the processor has detected and handled the unmasked post-computation
exceptions and returned from the exception handler (as in step 6 above) to finish executing the
instruction.

11.5.4. Handling SIMD Floating-Point Exceptions in Software

Section 4.9.3., “Typical Actions of a Floating-Point Exception Handler” shows actions that may
be carried out by a SIMD floating-point exception handler. The SSE and SSE2 state is saved
with the FXSAVE instruction (see Section 11.6.5., “Saving and Restoring the SSE and SSE2
State”). 

11.5.5. Interaction of SIMD and x87 FPU Floating-Point 
Exceptions

SIMD floating-point exceptions are generated independently from the x87 FPU floating-point
exceptions. SIMD floating-point exceptions will not cause assertion of the FERR# pin (indepen-
dent of the value of CR0.NE), and they ignore the assertion and deassertion of the IGNNE# pin.

If applications use SSE and SSE2 instructions along with x87 FPU instructions (in the same task
or program), the following implications must be considered:
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• All SIMD floating-point exceptions are reported independently from the x87 FPU floating-
point exceptions. SIMD and x87 FPU floating-point exceptions can be unmasked indepen-
dently, however, separate x87 FPU and SIMD floating-point exception handlers must be
provided if the same exception is unmasked for x87 FPU and for SSE and/or SSE2
operations.

• The rounding mode specified in the MXCSR register does not affect x87 FPU instructions,
and likewise, the rounding mode specified in the x87 FPU control word does not affect the
SSE and SSE2 instructions. To use the same rounding mode, the rounding control bits in
the MXCSR register and in the x87 FPU control word must be set explicitly to the same
value.

• The flush-to-zero mode set in the MXCSR register for SSE and SSE2 instructions has no
counterpart in the x87 FPU. For compatibility with the x87 FPU, the flush-to-zero bit
should be set to 0.

• The denormals-are-zeros mode set in the MXCSR register for SSE and SSE2 instructions
has no counterpart in the x87 FPU. For compatibility with the x87 FPU, the denormals-are-
zeros bit should be set to 0.

• An application that expects to detect x87 FPU exceptions that occur during the execution
of x87 FPU instructions will not be notified if exceptions occurs during the execution of
corresponding SSE and SSE2 instructions, unless the exception masks that are enabled in
the x87 FPU control word have also been enabled in the MXCSR register and the
application is capable of handling the SIMD floating-point exception (#XF).

— Masked exceptions that occur during an SSE or SSE2 library call cannot be detected
by unmasking the exceptions (in an attempt to generate the fault based on the fact that
an exception flag is set). A SIMD floating-point exception flag that is set when the
corresponding exception is unmasked will not generate a fault; only the next
occurrence of that unmasked exception will generate a fault.

— An application which checks x87 FPU status word to determine if any masked
exception flags were set during an x87 FPU library call will also need to check the
MXCSR register to detect a similar occurrence of a masked exception flag being set
during an SSE and SSE2 library call.

11.6. WRITING APPLICATIONS WITH THE SSE AND SSE2 
EXTENSIONS

The following sections give some guidelines for writing application programs and operating-
system code that uses the SSE and SSE2 extensions. Because SSE and SSE2 extensions share
the same state and perform companion operations, these guidelines apply to both sets of
extensions. 

Chapter 12, SSE and SSE2 System Programming in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3 discusses the interface to the processor for context switching as
well as other operating system considerations when writing code that uses the SSE and SSE2
extensions.
11-26



PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 (SSE2)
11.6.1. General Guidelines for Using the SSE and SSE2 
Extensions

The following guidelines describe how to take full advantage of the performance gains available
with the SSE and SSE2 extensions:

• Ensure that the processor supports the SSE and SSE2 extensions.

• Ensure that your operating system supports the SSE and SSE2 extensions. (Operating
system support for the SSE extensions implies support for SSE2 extension and vice versa.)

• Use stack and data alignment techniques to keep data properly aligned for efficient
memory use.

• Use the non-temporal store instructions offered with the SSE and SSE2 extensions.

• Employ the optimization and scheduling techniques described in the Intel Pentium 4
Optimization Reference Manual (see Section 1.4., “Related Literature”, for the order
number for this manual).

11.6.2. Checking for SSE and SSE2 Support

Before an application attempts to use the SSE and/or SSE2 extensions, it should check that they
are present on the processor and that the operating system supports them. The application can
make this check by following these steps:

1. Check that the processor supports the CPUID instruction by attempting to execute the
CPUID instruction. If the processor does not support the CPUID instruction, it will
generate an invalid-opcode exception (#UD).

2. Check that the processor supports the SSE and/or SSE2 extensions. Execute the CPUID
instruction with an argument of 1 in the EAX register, and check that bit 25 (SSE) and/or
bit 26 (SSE2) are set to 1.

3. Check that the processor supports the FXSAVE and FXRSTOR instructions. Execute the
CPUID instruction with an argument of 1 in the EAX register, and check that bit 24
(FXSR) is set to 1.

4. Check that the operating system supports the FXSAVE and FXRSTOR instructions.
Execute a MOV instruction to read the contents of control register CR4, and check that bit
9 of CR4 (the OSFXSR bit) is set to 1.

5. Check that the operating system supports the SIMD floating-point exception handling.
Execute a MOV instruction to read the contents control register CR4, and check that bit 10
of CR4 (the OSXMMEXCPT bit) is set to 1.
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NOTE

The OSFXSR and OSXMMEXCPT bits in control register CR4 must be set
by the operating system. The processor has no other way of detecting
operating-system support for the FXSAVE and FXRSTOR instructions or for
handling SIMD floating-point exceptions.

6. Check that emulation of the x87 FPU is disabled. Execute a MOV instruction to read the
contents control register CR0, and check that bit 2 of CR0 (the EM bit) is set to 0.

If the processor attempts to execute an unsupported SSE or a SSE2 instruction, the processor
will generate an invalid-opcode exception (#UD).

11.6.3. Checking for the DAZ Flag in the MXCSR Register

The denormals-are-zero flag in the MXCSR register was introduced in later models of the
Pentium 4 processor and in the Intel Xeon processor. To check for the presence of the DAZ flag
in the MXCSR register, do the following:

1. Establish a 512-byte FXSAVE area in memory.

2. Clear the FXSAVE area to all 0s.

3. Execute the FXSAVE instruction, using the address of the first byte of the cleared
FXSAVE area as a source operand. See “FXSAVE—Save x87 FPU, MMX, SSE, and
SSE2 State” in Chapter 3 of the IA-32 Intel Architecture Software Developer’s Manual,
Volume 2 for a description of the FXSAVE instruction and the layout of the FXSAVE
image.

4. Check the value in the MXCSR_MASK field in the FXSAVE image (bytes 28 through 31).

— If the value of the MXCSR_MASK field is 00000000H, the DAZ flag and denormals-
are-zero mode are not supported.

— If the value of the MXCSR_MASK field is non-zero and bit 6 is set, the DAZ flag and
denormals-are-zero mode are supported.

If the DAZ flag is not supported, then it is a reserved bit and attempting to write a 1 to it will
cause a general-protection exception (#GP). See Section 11.6.6., “Guidelines for Writing to the
MXCSR Register” for general guidelines for preventing general-protection exceptions when
writing to the MXCSR register.

11.6.4. Initialization of the SSE and SSE2 Extensions

The SSE and SSE2 state in contained in the XMM and MXCSR registers. Upon a hardware reset
of the processor, this state is initialized as follows (see Table 11-2):

• All SIMD floating-point exceptions are masked (bits 7 through 12 of the MXCSR register
are set to 1).
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• All SIMD floating-point exception flags are cleared (bits 0 through 5 of the MXCSR
register are set to 0).

• The rounding control is set to round-nearest (bits 13 and 14 of the MXCSR register are set
to 00B).

• The flush-to-zero mode is disabled (bit 15 of the MXCSR register are set to 0).

• The denormals-are-zeros mode is disabled (bit 6 of the MXCSR register are set to 0). If the
denormals-are-zeros mode is not supported, this bit is reserved and will be set to 0 on
initialization.

• Each of the XMM registers is cleared (set to all zeros).

If the processor is reset by asserting the INIT# pin, the SSE and SSE2 state is not changed.

11.6.5. Saving and Restoring the SSE and SSE2 State

The FXSAVE instruction saves the SSE and SSE2 state (which includes the contents of eight
XMM registers and the MXCSR registers) in a 512-byte block of memory. The FXRSTOR
instruction restores the saved SSE and SSE2 state from memory. See the FXSAVE instruction
in Chapter 3, Instruction Set Reference, of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2 for the layout of the 512-byte state block.

In addition to saving and restoring the SSE and SSE2 state, the FXSAVE and FXRSTOR
instructions also save and restore the x87 FPU state, which because the MMX registers are
aliased to the x87 FPU data registers also includes saving and restoring the MMX state. For
greater code efficiency, it is suggested that the FXSAVE and FXRSTOR instructions be substi-
tuted for the FSAVE/FNSAVE and FRSTOR instructions in the following situations:

• When a context switch is being made in a multitasking environment.

• During calls and returns from interrupt and exception handlers.

In situations where the code is switching between x87 FPU and MMX technology computations
(without a context switch or a call to an interrupt or exception), the FSAVE/FNSAVE and
FRSTOR instructions are more efficient than the FXSAVE and FXRSTOR instructions.

Table 11-2.  SSE and SSE2 State Following a Power-up/Reset or INIT

Registers Power-Up or Reset INIT

XMM0 through XMM7 +0.0 Unchanged

MXCSR 1F80H Unchanged
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11.6.6. Guidelines for Writing to the MXCSR Register

The MXCSR has several reserved bits, and attempting to write a 1 to any of these bits will cause
a general-protection exception (#GP) to be generated. To allow software to identify these
reserved bits, the MXCSR_MASK value is provided. Software can determine this mask value
as follows:

1. Establish a 512-byte FXSAVE area in memory.

2. Clear the FXSAVE area to all 0s.

3. Execute the FXSAVE instruction, using the address of the first byte of the cleared
FXSAVE area as a source operand. See “FXSAVE—Save x87 FPU, MMX, SSE, and
SSE2 State” in Chapter 3 of the IA-32 Intel Architecture Software Developer’s Manual,
Volume 2 for a description of the FXSAVE instruction and the layout of the FXSAVE
image.

4. Check the value in the MXCSR_MASK field in the FXSAVE image (bytes 28 through 31).

— If the value of the MXCSR_MASK field is 00000000H, then the MXCSR_MASK
value is the default value of 0000FFBFH. (Note that this value indicates that bit 6 of
the MXCSR register is reserved, which in turn indicates that the denormals-are-zero
mode is not supported on the processor.)

— If the value of the MXCSR_MASK field is non-zero, then that MXCSR_MASK value
should be used as the MXCSR_MASK.

All bits set to 0 in the MXCSR_MASK value indicate reserved bits in the MXCSR register.
Thus, if the MXCSR_MASK value is AND’d with a value to be written into the MXCSR
register, the resulting value will be assured of having all its reserved bits set to 0, preventing the
possibility of a general-protection exception being generated when the value is written to the
MXCSR register. 

For example, the default MXCSR_MASK value when 00000000H is returned in the FXSAVE
image is 0000FFBFH. If software AND’s a value to be written to MXCSR register with
0000FFBFH, bit 6 of the result (the DAZ flag) will be ensured of being set to 0, which is the
required setting to prevent general-protection exceptions on processors that do not support the
denormals-are-zero mode.

To prevent general-protection exceptions, the MXCSR_MASK value should be AND’d with the
value to be written into the MXCSR register in the following situations:

• Operating system routines that receive a parameter from an application program and then
write that value to the MXCSR register (either with an FXRSTOR or LDMXCSR
instruction).

• Any application program that writes to the MXCSR register and that needs to run robustly
on several different IA-32 processors. 

Note that all bits in the MXCSR_MASK value that are set to 1 indicate features that are
supported by the MXCSR register; so the bits in the MXCSR_MASK value can also treated as
feature flags for identifying processor capabilities (similar to the feature flags information
returned by the CPUID instruction).
11-30



PROGRAMMING WITH THE STREAMING SIMD EXTENSIONS 2 (SSE2)
11.6.7. Interaction of SSE and SSE2 Instructions with x87 FPU 
and MMX Instructions

The XMM registers and the x87 FPU and MMX registers represent separate execution environ-
ments, which has certain ramifications when executing SSE, SSE2, MMX, and x87 FPU instruc-
tions in the same code module or when mixing code modules that contain these instructions:

• Those SSE and SSE2 instruction that operate only on the XMM registers (such as the
packed and scalar floating-point instructions and the 128-bit SIMD integer instructions)
can be executed in the same instruction stream with 64-bit SIMD integer or x87 FPU
instructions without any restrictions. For example, an application can perform the majority
of its floating-point computations in the XMM registers, using the packed and scalar
floating-point instructions, and at the same time use the x87 FPU to perform trigonometric
and other transcendental computations. Likewise, an application can perform packed 64-bit
and 128-bit SIMD integer operations can be executed together without restrictions.

• Those SSE and SSE2 instructions that operate on MMX registers (such as the CVTPS2PI,
CVTTPS2PI, CVTPI2PS, CVTPD2PI, CVTTPD2PI, CVTPI2PD, MOVDQ2Q,
MOVQ2DQ, PADDQ, and PSUBQ instructions) can also be executed in the same
instruction stream as 64-bit SIMD integer or x87 FPU instructions, however, here they
subject to the restrictions on the simultaneous use of MMX technology and x87 FPU
instructions, which include:

— Transition from x87 FPU to MMX technology instructions or to SSE or SSE2 instruc-
tions that operate on MMX registers should be preceded by saving the state of the x87
FPU.

— Transition from MMX technology instructions or from SSE or SSE2 instructions that
operate on MMX registers to x87 FPU instructions should be preceded by execution of
the EMMS instruction.

11.6.8. Compatibility of SIMD and x87 FPU Floating-Point Data 
Types

The SSE and SSE2 extensions operate on the same single-precision and double-precision
floating-point data types that the x87 FPU operates on. However, when operating on these data
types, the SSE and SSE2 extensions operate on them in their native format (single-precision or
double-precision), in contrast to the x87 FPU which extends them to double extended-precision
floating-point format to perform computations and then rounds the result back to a single-preci-
sion or double-precision format before writing results to memory. Because the x87 FPU operates
on a higher precision format and then rounds the result to a lower precision format, it may return
a slightly different result when performing the same operation on the same single-precision or
double-precision floating-point values than is returned by the SSE and SSE2 extensions. The
difference occurs only in the least-significant bits of the mantissa.
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11.6.9. Intermixing Packed and Scalar Floating-Point and 128-Bit 
SIMD Integer Instructions and Data

The SSE and SSE2 extensions define typed operations on packed and scalar floating-point data
types and on 128-bit SIMD integer data types, but IA-32 processors do not enforce this typing
at the architectural level. They only enforce it at the micro-architectural level. Therefore, when
a Pentium 4 or Intel Xeon processor loads a packed or scalar floating-point operand or a 128-bit
packed integer operand from memory into an XMM register, it does not check that the actual
data being loaded matches the data type specified in the instruction. Likewise, when the
processor performs an arithmetic operation on the data in an XMM register, it does not check
that the data being operated on matches the data type specified in the instruction.

As a general rule, because data typing of the SIMD floating-point and integer data types is not
enforced at the architectural level, it is the responsibility of the programmer, assembler, or
compiler to insure that code enforces correct data typing. Failure to enforce correct data typing
can in the worst case lead to computations that return unexpected results and at the minimum
decreased performance.

For example, in the following code sample, two packed single-precision floating-point operands
are moved from memory into XMM registers (using MOVAPS instructions), and then, a double-
precision packed add operation (using the ADDPD instruction) is performed on the operands:

movaps xmm0, [eax] ; EAX register contains pointer to packed 

; single-precision floating-point operand

movaps xmm1, [ebx]

addpd xmm0, xmm1

The Pentium 4 and Intel Xeon processors execute these instructions without generating an
invalid-operand exception (#UD), and will produce the expected results in register XMM0 (that
is, the high and low 64-bits of each register will be treated as a double-precision floating-point
value, and the processor will operate on them accordingly). Because the data types operated on
and the data type expected by the ADDPD instruction were inconsistent, the instruction may
result in a SIMD floating-point exception (such as numeric overflow [#O] or invalid operation
[#I]) being generated, but the actual source of the problem (inconsistent data types) is not
detected.

This ability to operate on an operand that contains a data type that is inconsistent with the typing
of the instruction being executed, permits some valid operations to be performed. For example,
the following instructions load a packed double-precision floating-point operand from memory
into register XMM0, and a mask into register XMM1, then uses the XORPD instruction to
toggle the sign bits of the two packed values in register XMM0.

movapd xmm0, [eax] ; EAX register contains pointer to packed 

; double-precision floating-point operand

movaps xmm1, [ebx] ; EBX register contains pointer to packed

; double-precision floating-point mask

xorpd xmm0, xmm1 ; XOR operation toggles sign bits using 

; the mask in xmm1
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In this example, the XORPS, XORSS, XORSD, or PXOR instructions can be used in place of
the XORPD instructions, and yield the same, correct result; however, because of the type
mismatch between the operand data type and the instruction data type, a latency penalty will be
incurred due to implementations of the instructions at the micro-architecture level. 

Latency penalties can also be incurred from using move instructions of the wrong type. For
example, the MOVAPS and MOVAPD instructions can both be used to move a packed single-
precision operand from memory to an XMM register. However, if the MOVAPD instruction is
used, a latency penalty will be incurred when a correctly typed instruction attempts to use the
data in the register.

Note that these latency penalties are not incurred when moving data from XMM registers to
memory.

11.6.10. Interfacing with SSE and SSE2 Procedures and Functions

The SSE and SSE2 extensions allow direct access to the XMM registers. This means that all
existing interface conventions between procedures and functions that apply to the use of the
general-purpose registers (EAX, EBX, etc.) also apply to XMM register usage.

11.6.10.1. PASSING PARAMETERS IN XMM REGISTERS

The state of the XMM registers is preserved across procedure (or function) boundaries. Param-
eters can therefore be passed from one procedure to another in XMM registers.

11.6.10.2. SAVING XMM REGISTER STATE ON A PROCEDURE OR FUNCTION 
CALL

The state of the XMM registers can be saved in either of two ways: FXSAVE instruction or a move
instruction. The FXSAVE instruction saves the state of all the XMM registers (along with the state
of the MXCSR and x87 FPU registers). This instruction is typically used for major changes in the
context of the execution environment, such as on a task switch. The FXRSTOR instruction restores
the XMM, MXCSR, and x87 FPU registers stored with an FXSTOR instruction.

In cases where only the XMM registers need to be saved, or where only selected XMM registers
need to be saved, the move instructions (MOVAPS, MOVUPS, MOVSS, MOVAPD,
MOVUPD, MOVSD, MOVDQA, and MOVDQU) can be used. These same instructions can
also be used to restore the contents of the XMM registers. To avoid performance degradation
when saving the XMM registers to memory or when loading XMM registers from memory, be
sure to use the appropriately typed move instructions for the data being moved.

The move instructions can also be used to save the contents of one or more XMM registers on
the stack. Here, the stack pointer (in the ESP register) is used as the memory address to the next
available byte in the stack. The stack pointer is not automatically incremented on a move
instruction (as it is with a PUSH instruction). 
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The procedure that saves the contents of an XMM register onto the stack is thus responsible for
decrementing the value in the ESP register by 16, following the save operation. To load an XMM
register from the stack, a move instruction can be used, followed by an operation to increment
the ESP register by 16. Again, to avoid performance degradation when moving the contents of
the XMM registers to and from the stack, use the appropriately typed move instructions for the
data being moved.

Use the LDMXCSR and STMXCSR instructions to save and restore, respectively, the contents
of the MXCSR register on a procedure call and return.

11.6.10.3. CALLER-SAVE REQUIREMENT FOR PROCEDURE AND FUNCTION 
CALLS

When making procedure (or function) calls from SSE or SSE2 code a caller-save convention is
recommended for saving the state of the calling procedure. Using this convention, any registers
whose contents must survive intact across a procedure call must be stored in memory by the
calling procedure prior to executing the call. 

The primary reason for using the caller-save convention is to prevent performance degradation.
The XMM registers can contain packed or scalar double-precision floating-point, packed single-
precision floating-point, and 128-bit packed integer data types. The called procedure has no way
of knowing the types of the data in the XMM registers following a call, so it is unlikely to use
the correctly typed move instruction to store the contents of XMM registers in memory or to
restore the contents of XMM registers from memory. As described in Section 11.6.9., “Inter-
mixing Packed and Scalar Floating-Point and 128-Bit SIMD Integer Instructions and Data”,
executing a move instruction that does not match the type for the data being moved to or from
the XMM registers, will be carried out correctly, but it will lead to a greater instruction latency
on later operations.

11.6.11. Updating Existing MMX Technology Routines Using 128-
Bit SIMD Integer Instructions

The SSE2 extensions extended all of the 64-bit SIMD integer instructions introduced with the
MMX technology to operate on 128-bit SIMD integers located in the XMM registers. The
extended 128-bit SIMD integer instructions operate the same as the 64-bit SIMD integer instruc-
tions, which simplifies porting of current MMX technology applications to wider packed oper-
ations in the XMM registers. However, there are few additional considerations:

• To take advantage of the wider the 128-bit SIMD integer instructions, existing MMX
technology code must be recompiled to reference the XMM registers instead of the MMX
registers.

• Computation instructions that reference memory operands that are not aligned on 16-byte
boundaries should be replaced with an unaligned 128-bit load (MOVUDQ instruction)
followed by the same computation operation that uses register instead of memory
operands. 
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Use of 128-bit packed integer computation instructions with memory operands that are not
16-byte aligned will result in a general protection exception (#GP) being generated.

• Extension of the PSHUFW instruction (shuffle word across 64-bit integer operand) across
a full 128-bit operand is emulated by a combination of the following instructions:
PSHUFHW, PSHUFLW, PSHUFD.

• Use of the 64-bit shift by bit instructions (PSRLQ, PSLLQ) can be extended to 128 bits in
either of two ways:

— Use of the PSRLQ and PSLLQ instructions, along with masking logic operations. 

— Rewrite the code sequence to use the PSRLDQ and PSLLDQ instructions (shift double
quadword operand by bytes).

• Loop counters need to be updated, since each 128-bit SIMD integer instruction operates on
twice the amount of data as its 64-bit SIMD integer counterpart.

For a detailed description of MMX technology, refer to Chapter 9, Programming With the Intel
MMX Technology.

11.6.12. Branching on Arithmetic Operations

There are no condition codes in the SSE and SSE2 state. A packed-data comparison instruction
generates a mask which can then be transferred to an integer register. The following code
sequence is an example of how to perform a conditional branch, based on the result of an SSE2
arithmetic operation. 

cmppd XMM0, XMM1; generates a mask in XMM0

movmskpd EAX, XMM0 ; moves a 2 bit mask to eax

test EAX, 0,2 ; compare with desired result

jne BRANCH TARGET

The COMISD and UCOMISD instructions update the EFLAGS as the result of a scalar compar-
ison. A conditional branch can then be scheduled immediately following the
COMISD/UCOMISD instruction.

11.6.13. Cacheability Hint Instructions

The SSE and SSE2 cacheability control instructions enable the programmer to control
prefetching, caching, and loading and storing of data. When correctly used, these instructions
can significantly improve application performance. 

To make the most efficient use of the processor’s super-scalar micro-architecture, a program
needs to provide a steady stream of data to the executing program to avoid stalling the processor
while it waits for data. The PREFETCHh instructions (introduced in the SSE extensions) can
minimize the latency of data accesses in performance-critical sections of application code by
allowing data to be fetched into the processor cache hierarchy in advance of actual usage. 
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The PREFETCHh instructions do not change the user-visible semantics of a program, although
they may affect the performance of a program. The operation of these instructions is implemen-
tation-dependent and can be overloaded to a subset of the hints (for example, T0, T1, and T2
may have the same behavior) or altogether ignored by an implementation. Programmers may
need to tune code for each IA-32 processor implementation to take advantage of these instruc-
tions. Excessive usage of PREFETCHh instructions may waste memory bandwidth and reduce
performance. For more detailed information on the use of prefetch hints, refer to Chapter 6,
“Optimizing Cache Utilization for Pentium III Processors”, in the Pentium 4 Processor Optimi-
zation Reference Manual (see Section 1.4., “Related Literature”, for the order number for this
manual).

The non-temporal store instructions (MOVNTI, MOVNTPD, MOVNTPS, MOVNTDQ,
MOVNTQ, MASKMOVQ, and MASKMOVDQU) minimize cache pollution when writing
non-temporal data to memory (see Section 10.4.6.2., “Caching of Temporal Vs. Non-Temporal
Data”, and Section 10.4.6.1., “Cacheability Control Instructions”). Essentially, they prevent
non-temporal data from being written into the processors caches on a store operation. These
instructions are implementation specific. Programmers may have to tune their applications for
each IA-32 processor implementation to take advantage of these instructions.

Besides reducing cache pollution, the use of weakly-ordered memory types can be important
under certain data sharing relationships, such as a producer-consumer relationship. The use of
weakly ordered memory can make the assembling of data more efficient, but care must be taken
to ensure that the consumer obtains the data that the producer intended it to see. Some common
usage models that may be affected in this way by weakly-ordered stores are: 

• Library functions that use weakly ordered memory to write results.

• Compiler-generated code that writes weakly-ordered results.

• Hand-crafted code.

The degree to which a consumer of data knows that the data is weakly ordered can vary for these
cases. As a result, the SFENCE or MFENCE instruction should be used to ensure ordering
between routines that produce weakly-ordered data and routines that consume this data. The
SFENCE and MFENCE instructions provides a performance-efficient way to ensure ordering,
by guaranteeing that every store instruction that precedes an SFENCE or MFENCE instruction
in program order is globally visible before any store instruction that follows the fence. 

11.6.14. Effect of Instruction Prefixes on the SSE and SSE2 
Instructions

Table 11-3 describes the effects of the instruction prefixes on the SSE and SSE2 instructions.
Unpredictable behavior can range from being treated as a reserved operation on one generation
of IA-32 processors to generating an invalid opcode exception on another generation of
processors.

See the section titled “Instruction Prefixes” in Chapter 2 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 2, for description of the instructions prefixes.
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NOTE

Some of the SSE and SSE2 instructions have three-byte opcodes. For these
opcodes, the third opcode byte may be F2H, F3H, or 66H. This third opcode
byte should not be thought of as a prefix even though it has the same
encoding as the operand size prefix (66H) or one of the repeat prefixes (F2H
or F3H). As shown in Table 11-3, using the operand size and repeat prefixes
with SSE and SSE2 instructions is reserved.

Table 11-3.  Effect of Prefixes on SSE and SSE2 Instructions

Prefix Type Effect on SSE and SSE2 Instructions 

Address Size Prefix (67H) Affects instructions with a memory operand.

Reserved for instructions without a memory operand and may 
result in unpredictable behavior.

Operand Size (66H) Reserved and may result in unpredictable behavior.

Segment Override 
(2EH,36H,3EH,26H,64H,65H)

Affects instructions with a memory operand.

Reserved for instructions without a memory operand and may 
result in unpredictable behavior.

Repeat Prefixes (F2H and F3H) Reserved and may result in unpredictable behavior.

Lock Prefix (F0H) Reserved; generates invalid opcode exception (#UD).

Branch Hint Prefixes(E2H and E3H) Reserved and may result in unpredictable behavior.
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CHAPTER 12
INPUT/OUTPUT

In addition to transferring data to and from external memory, IA-32 processors can also transfer
data to and from input/output ports (I/O ports). I/O ports are created in system hardware by
circuity that decodes the control, data, and address pins on the processor. These I/O ports are
then configured to communicate with peripheral devices. An I/O port can be an input port, an
output port, or a bidirectional port. Some I/O ports are used for transmitting data, such as to and
from the transmit and receive registers, respectively, of a serial interface device. Other I/O ports
are used to control peripheral devices, such as the control registers of a disk controller.

This chapter describes the processor’s I/O architecture. The topics discussed include:

• I/O port addressing.

• I/O instructions.

• I/O protection mechanism.

12.1. I/O PORT ADDRESSING

The processor permits applications to access I/O ports in either of two ways:

• Through a separate I/O address space.

• Through memory-mapped I/O.

Accessing I/O ports through the I/O address space is handled through a set of I/O instructions
and a special I/O protection mechanism. Accessing I/O ports through memory-mapped I/O is
handled with the processors general-purpose move and string instructions, with protection
provided through segmentation or paging. I/O ports can be mapped so that they appear in the
I/O address space or the physical-memory address space (memory mapped I/O) or both.

One benefit of using the I/O address space is that writes to I/O ports are guaranteed to be
completed before the next instruction in the instruction stream is executed. Thus, I/O writes to
control system hardware cause the hardware to be set to its new state before any other instruc-
tions are executed. See Section 12.6., “Ordering I/O”, for more information on serializing of I/O
operations.

12.2. I/O PORT HARDWARE

From a hardware point of view, I/O addressing is handled through the processor’s address lines.
For the P6 family, Pentium 4, and Intel Xeon processors, the request command lines signal
whether the address lines are being driven with a memory address or an I/O address; for Pentium
processors and earlier IA-32 processors, the M/IO# pin indicates a memory address (1) or an I/O
address (0). When the separate I/O address space is selected, it is the responsibility of the hard-
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ware to decode the memory-I/O bus transaction to select I/O ports rather than memory. Data is
transmitted between the processor and an I/O device through the data lines.

12.3. I/O ADDRESS SPACE

The processor’s I/O address space is separate and distinct from the physical-memory address
space. The I/O address space consists of 216 (64K) individually addressable 8-bit I/O ports,
numbered 0 through FFFFH. I/O port addresses 0F8H through 0FFH are reserved. Do not assign
I/O ports to these addresses. The result of an attempt to address beyond the I/O address space
limit of FFFFH is implementation-specific; see the Developer’s Manuals for specific processors
for more details.

Any two consecutive 8-bit ports can be treated as a 16-bit port, and any four consecutive ports
can be a 32-bit port. In this manner, the processor can transfer 8, 16, or 32 bits to or from a device
in the I/O address space. Like words in memory, 16-bit ports should be aligned to even addresses
(0, 2, 4, ...) so that all 16 bits can be transferred in a single bus cycle. Likewise, 32-bit ports
should be aligned to addresses that are multiples of four (0, 4, 8, ...). The processor supports data
transfers to unaligned ports, but there is a performance penalty because one or more extra bus
cycle must be used.

The exact order of bus cycles used to access unaligned ports is undefined and is not guaranteed
to remain the same in future IA-32 processors. If hardware or software requires that I/O ports be
written to in a particular order, that order must be specified explicitly. For example, to load a
word-length I/O port at address 2H and then another word port at 4H, two word-length writes
must be used, rather than a single doubleword write at 2H.

Note that the processor does not mask parity errors for bus cycles to the I/O address space.
Accessing I/O ports through the I/O address space is thus a possible source of parity errors.

12.3.1. Memory-Mapped I/O

I/O devices that respond like memory components can be accessed through the processor’s
physical-memory address space (see Figure 12-1). When using memory-mapped I/O, any of the
processor’s instructions that reference memory can be used to access an I/O port located at a
physical-memory address. For example, the MOV instruction can transfer data between any
register and a memory-mapped I/O port. The AND, OR, and TEST instructions may be used to
manipulate bits in the control and status registers of a memory-mapped peripheral devices.

When using memory-mapped I/O, caching of the address space mapped for I/O operations must
be prevented. With the Pentium 4, Intel Xeon, and P6 family processors, caching of I/O accesses
can be prevented by using memory type range registers (MTRRs) to map the address space used
for the memory-mapped I/O as uncacheable (UC). See Chapter 9, Memory Cache Control, in
the IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for a complete discussion
of the MTRRs.

The Pentium and Intel486 processors do not support MTRRs. Instead, they provide the KEN#
pin, which when held inactive (high) prevents caching of all addresses sent out on the system
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bus. To use this pin, external address decoding logic is required to block caching in specific
address spaces.

All the IA-32 processors that have on-chip caches also provide the PCD (page-level cache
disable) flag in page table and page directory entries. This flag allows caching to be disabled on
a page-by-page basis. See “Page-Directory and Page-Table Entries” in Chapter 3 of in the IA-32
Intel Architecture Software Developer’s Manual, Volume 3.

12.4. I/O INSTRUCTIONS

The processor’s I/O instructions provide access to I/O ports through the I/O address space.
(These instructions cannot be used to access memory-mapped I/O ports.) There are two groups
of I/O instructions:

• Those which transfer a single item (byte, word, or doubleword) between an I/O port and a
general-purpose register.

• Those which transfer strings of items (strings of bytes, words, or doublewords) between an
I/O port and memory.

The register I/O instructions IN (input from I/O port) and OUT (output to I/O port) move data
between I/O ports and the EAX register (32-bit I/O), the AX register (16-bit I/O), or the AL
(8-bit I/O) register. The address of the I/O port can be given with an immediate value or a value
in the DX register. 

Figure 12-1.  Memory-Mapped I/O
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The string I/O instructions INS (input string from I/O port) and OUTS (output string to I/O port)
move data between an I/O port and a memory location. The address of the I/O port being
accessed is given in the DX register; the source or destination memory address is given in the
DS:ESI or ES:EDI register, respectively.

When used with one of the repeat prefixes (such as REP), the INS and OUTS instructions
perform string (or block) input or output operations. The repeat prefix REP modifies the INS
and OUTS instructions to transfer blocks of data between an I/O port and memory. Here, the ESI
or EDI register is incremented or decremented (according to the setting of the DF flag in the
EFLAGS register) after each byte, word, or doubleword is transferred between the selected I/O
port and memory.

See the individual references for the IN, INS, OUT, and OUTS instructions in Chapter 3,
Instruction Set Reference, of the IA-32 Intel Architecture Software Developer’s Manual, Volume
2, for more information on these instructions.

12.5. PROTECTED-MODE I/O

When the processor is running in protected mode, the following protection mechanisms regulate
access to I/O ports:

• When accessing I/O ports through the I/O address space, two protection devices control
access:

— The I/O privilege level (IOPL) field in the EFLAGS register.

— The I/O permission bit map of a task state segment (TSS).

• When accessing memory-mapped I/O ports, the normal segmentation and paging
protection and the MTRRs (in processors that support them) also affect access to I/O ports.
See Chapter 4, Protection, and Chapter 9, Memory Cache Control, in the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 3, for a complete discussion of memory
protection. 

The following sections describe the protection mechanisms available when accessing I/O ports
in the I/O address space with the I/O instructions.

12.5.1. I/O Privilege Level

In systems where I/O protection is used, the IOPL field in the EFLAGS register controls access
to the I/O address space by restricting use of selected instructions. This protection mechanism
permits the operating system or executive to set the privilege level needed to perform I/O. In a
typical protection ring model, access to the I/O address space is restricted to privilege levels 0
and 1. Here, kernel and the device drivers are allowed to perform I/O, while less privileged
device drivers and application programs are denied access to the I/O address space. Application
programs must then make calls to the operating system to perform I/O.

The following instructions can be executed only if the current privilege level (CPL) of the
program or task currently executing is less than or equal to the IOPL: IN, INS, OUT, OUTS, CLI
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(clear interrupt-enable flag), and STI (set interrupt-enable flag). These instructions are called
I/O sensitive instructions, because they are sensitive to the IOPL field. Any attempt by a less
privileged program or task to use an I/O sensitive instruction results in a general-protection
exception (#GP) being signaled. Because each task has its own copy of the EFLAGS register,
each task can have a different IOPL.

The I/O permission bit map in the TSS can be used to modify the effect of the IOPL on I/O sensi-
tive instructions, allowing access to some I/O ports by less privileged programs or tasks (see
Section 12.5.2., “I/O Permission Bit Map”).

A program or task can change its IOPL only with the POPF and IRET instructions; however,
such changes are privileged. No procedure may change the current IOPL unless it is running at
privilege level 0. An attempt by a less privileged procedure to change the IOPL does not result
in an exception; the IOPL simply remains unchanged.

The POPF instruction also may be used to change the state of the IF flag (as can the CLI and
STI instructions); however, the POPF instruction in this case is also I/O sensitive. A procedure
may use the POPF instruction to change the setting of the IF flag only if the CPL is less than or
equal to the current IOPL. An attempt by a less privileged procedure to change the IF flag does
not result in an exception; the IF flag simply remains unchanged.

12.5.2. I/O Permission Bit Map

The I/O permission bit map is a device for permitting limited access to I/O ports by less privi-
leged programs or tasks and for tasks operating in virtual-8086 mode. The I/O permission bit
map is located in the TSS (see Figure 12-2) for the currently running task or program. The
address of the first byte of the I/O permission bit map is given in the I/O map base address field
of the TSS. The size of the I/O permission bit map and its location in the TSS are variable. 

Figure 12-2.  I/O Permission Bit Map
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lowed by a byte 
with all bits set
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Because each task has its own TSS, each task has its own I/O permission bit map. Access to indi-
vidual I/O ports can thus be granted to individual tasks.

If in protected mode and the CPL is less than or equal to the current IOPL, the processor allows
all I/O operations to proceed. If the CPL is greater than the IOPL or if the processor is operating
in virtual-8086 mode, the processor checks the I/O permission bit map to determine if access to
a particular I/O port is allowed. Each bit in the map corresponds to an I/O port byte address. For
example, the control bit for I/O port address 29H in the I/O address space is found at bit position
1 of the sixth byte in the bit map. Before granting I/O access, the processor tests all the bits corre-
sponding to the I/O port being addressed. For a doubleword access, for example, the processors
tests the four bits corresponding to the four adjacent 8-bit port addresses. If any tested bit is set,
a general-protection exception (#GP) is signaled. If all tested bits are clear, the I/O operation is
allowed to proceed.

Because I/O port addresses are not necessarily aligned to word and doubleword boundaries, the
processor reads two bytes from the I/O permission bit map for every access to an I/O port. To
prevent exceptions from being generated when the ports with the highest addresses are accessed,
an extra byte needs to included in the TSS immediately after the table. This byte must have all
of its bits set, and it must be within the segment limit.

It is not necessary for the I/O permission bit map to represent all the I/O addresses. I/O addresses
not spanned by the map are treated as if they had set bits in the map. For example, if the TSS
segment limit is 10 bytes past the bit-map base address, the map has 11 bytes and the first 80 I/O
ports are mapped. Higher addresses in the I/O address space generate exceptions.

If the I/O bit map base address is greater than or equal to the TSS segment limit, there is no I/O
permission map, and all I/O instructions generate exceptions when the CPL is greater than the
current IOPL.

12.6. ORDERING I/O

When controlling I/O devices it is often important that memory and I/O operations be carried
out in precisely the order programmed. For example, a program may write a command to an I/O
port, then read the status of the I/O device from another I/O port. It is important that the status
returned be the status of the device after it receives the command, not before. 

When using memory-mapped I/O, caution should be taken to avoid situations in which the
programmed order is not preserved by the processor. To optimize performance, the processor
allows cacheable memory reads to be reordered ahead of buffered writes in most situations.
Internally, processor reads (cache hits) can be reordered around buffered writes. When using
memory-mapped I/O, therefore, is possible that an I/O read might be performed before the
memory write of a previous instruction. The recommended method of enforcing program
ordering of memory-mapped I/O accesses with the Pentium 4, Intel Xeon, and P6 family proces-
sors is to use the MTRRs to make the memory mapped I/O address space uncacheable; for the
Pentium and Intel486 processors, either the #KEN pin or the PCD flags can be used for this
purpose (see Section 12.3.1., “Memory-Mapped I/O”). 
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When the target of a read or write is in an uncacheable region of memory, memory reordering
does not occur externally at the processor’s pins (that is, reads and writes appear in-order).
Designating a memory mapped I/O region of the address space as uncacheable insures that reads
and writes of I/O devices are carried out in program order. See Chapter 9, Memory Cache
Control, in the IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for more infor-
mation on using MTRRs.

Another method of enforcing program order is to insert one of the serializing instructions, such
as the CPUID instruction, between operations. See Chapter 7, Multiple Processor Management,
in the IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for more information
on serialization of instructions.

It should be noted that the chip set being used to support the processor (bus controller, memory
controller, and/or I/O controller) may post writes to uncacheable memory which can lead to out-
of-order execution of memory accesses. In situations where out-of-order processing of memory
accesses by the chip set can potentially cause faulty memory-mapped I/O processing, code must
be written to force synchronization and ordering of I/O operations. Serializing instructions can
often be used for this purpose.

When the I/O address space is used instead of memory-mapped I/O, the situation is different in
two respects:

• The processor never buffers I/O writes. Therefore, strict ordering of I/O operations is
enforced by the processor. (As with memory-mapped I/O, it is possible for a chip set to
post writes in certain I/O ranges.)

• The processor synchronizes I/O instruction execution with external bus activity (see
Table 12-1). 

Table 12-1.  I/O Instruction Serialization

Instruction Being 
Executed

Processor Delays Execution of … Until Completion of …

Current 
Instruction? Next Instruction? Pending Stores? Current Store?

IN Yes Yes

INS Yes Yes

REP INS Yes Yes

OUT Yes Yes Yes

OUTS Yes Yes Yes

REP OUTS Yes Yes Yes
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CHAPTER 13
PROCESSOR IDENTIFICATION AND FEATURE

DETERMINATION

When writing software intended to run on several different types of IA-32 processors, it is gener-
ally necessary to identify the type of processor present in a system and the processor features
that are available to an application. This chapter describes how to identify the processor that is
executing the code and determine the features the processor supports. For more information
about processor identification and supported features, refer to the following documents:

• AP-485, Intel Processor Identification and the CPUID Instruction application note (see
Chapter 1.4., Related Literature)

• For a complete list of the features that are available for the different IA-32 processors, refer
to Chapter 18, Intel Architecture Compatibility, in the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3.

13.1. PROCESSOR IDENTIFICATION

The CPUID instruction can be used for processor identification in the Pentium 4 processor
family, Intel Xeon processor family, P6 family, Pentium processor, and later Intel486 processors.
This instruction returns the family, model, and (for some processors) a brand string for the
processor that executes the instruction. It also indicates the features that are present in the
processor and give information about the processors caches and TLB.

To obtain processor identification information, a source operand value is placed in the EAX
register to select the type of information to be returned. When the CPUID instruction is
executed, the selected information is returned in the EAX, EBX ECX, and EDX registers.

The information returned is divided into two groups: basic information and extended function
information. Basic information is returned by entering an input value of from 0 to 3 in the EAX
register depending on the IA-32 processor type; extended function information is returned by
entering an input value of from 80000000H to 80000004H. The extended function CPUID infor-
mation was introduced with the Pentium 4 and Intel Xeon processors and is not available in
earlier IA-32 processors. Table 13-1 shows the highest input value that the processor recognizes
for the CPUID instruction for basic information and for extended function information, for each
family of IA-32 processors on which the CPUID instruction is implemented.

If a higher value than is shown in Table 13-1 is entered for a particular processor, the information
for the highest useful basic information value is returned. For example, if an input value of 5 is
entered in EAX for a Pentium 4 processor, the information for an input value of 2 is returned.
The exception to this rule is the input values that return extended function information
(currently, the values 80000000H through 80000004H). For a Pentium 4 or Intel Xeon
processor, entering an input value of 80000005H or above, returns the information for an input
value of 2.
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Table 13-2 shows the information that is returned by the CPUID instruction for each source
operand value. See “CPUID—CPU Identification” in Chapter 3 of the IA-32 Intel Architecture
Software Developer’s Manual, Volume 2, for detailed information about the CPUID instruction.

Table 13-1.  Highest CPUID Source Operand for IA-32 Processors and Processor Families

IA-32 Processor Families Highest Value in EAX

Basic Information Extended Function Information

Earlier Intel486 Processors CPUID Not Implemented CPUID Not Implemented

Later Intel486 Processors and 
Pentium Processor

1H Not Implemented

Pentium Pro, Pentium II, and 
Celeron Processors

2H Not Implemented

Pentium III Processor 3H Not Implemented

Pentium 4 Processor 2H 80000004H

Intel Xeon Processor 2H 80000004H

Table 13-2.  Information Returned by CPUID Instruction

Initial EAX 
Value Information Provided about the Processor

Basic CPUID Information

0H EAX
EBX
ECX
EDX

Maximum Input Value for Basic CPUID Information (see Table 13-1).
“Genu”
“intel”
“ineI”

1H EAX
EBX

ECX
EDX

Version Information (Type, Family, Model, and Stepping ID)
Bits 7-0:     Brand Index
Bits 15-8:   CLFLUSH line size. (Value ∗ 8 = cache line size in bytes)
Bits 23-16: Number of logical processors per physical processor. 
Bits 31-24: Local APIC ID
Reserved
Feature Information

2H EAX
EBX
ECX
EDX

Cache and TLB Information
Cache and TLB Information
Cache and TLB Information
Cache and TLB Information

3H EAX
EBX
ECX

EDX

Reserved.
Reserved.
Bits 00-31 of 96 bit processor serial number. (Available in Pentium III 
processor only.)
Bits 32-63 of 96 bit processor serial number. (Available in Pentium III 
processor only.)
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Table 13-3 shows the feature information returned in the EDX register for Pentium 4 Intel Xeon
processors when the source operand value is 1.

NOTE

For the currently defined feature flags in register EDX, a 1 for a particular
feature bit indicates that the feature is present in the processor, and a 0
indicates the feature is not present. This rule is not architectural and may be
different for future feature flags.

Extended Function CPUID Information

80000000H EAX

EBX
ECX
EDX

Maximum Input Value for Extended Function CPUID Information (see Table 
13-1).
Reserved.
Reserved.
Reserved.

80000001H EAX

EBX
ECX
EDX

Extended Processor Signature and Extended Feature Bits. (Currently 
Reserved.)
Reserved.
Reserved.
Reserved.

80000002H EAX
EBX
ECX
EDX

Processor Brand String.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000003H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

80000004H EAX
EBX
ECX
EDX

Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.
Processor Brand String Continued.

Table 13-3.  Feature Flags Returned in EDX Register

Bit # Mnemonic Description

0 FPU Floating Point Unit On-Chip. The processor contains an x87 FPU.

1 VME Virtual 8086 Mode Enhancements. Virtual 8086 mode enhancements, including 
CR4.VME for controlling the feature, CR4.PVI for protected mode virtual 
interrupts, software interrupt indirection, expansion of the TSS with the software 
indirection bitmap, and EFLAGS.VIF and EFLAGS.VIP flags. 

2 DE Debugging Extensions. Support for I/O breakpoints, including CR4.DE for 
controlling the feature, and optional trapping of accesses to DR4 and DR5. 

Table 13-2.  Information Returned by CPUID Instruction (Contd.)

Initial EAX 
Value Information Provided about the Processor
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3 PSE Page Size Extension. Large pages of size 4 Mbyte are supported, including 
CR4.PSE for controlling the feature, the defined dirty bit in PDE (Page Directory 
Entries), optional reserved bit trapping in CR3, PDEs, and PTEs. 

4 TSC Time Stamp Counter. The RDTSC instruction is supported, including CR4.TSD 
for controlling privilege.

5 MSR Model Specific Registers RDMSR and WRMSR Instructions. The RDMSR and 
WRMSR instructions are supported. Some of the MSRs are implementation 
dependent.

6 PAE Physical Address Extension. Physical addresses greater than 32 bits are 
supported: extended page table entry formats, an extra level in the page 
translation tables is defined, 2 Mbyte pages are supported instead of 4 Mbyte 
pages if PAE bit is 1. The actual number of address bits beyond 32 is not defined, 
and is implementation specific. 

7 MCE Machine Check Exception. Exception 18 is defined for Machine Checks, 
including CR4.MCE for controlling the feature. This feature does not define the 
model-specific implementations of machine-check error logging, reporting, and 
processor shutdowns. Machine Check exception handlers may have to depend on 
processor version to do model specific processing of the exception, or test for the 
presence of the Machine Check feature.

8 CX8 CMPXCHG8B Instruction. The compare-and-exchange 8 bytes (64 bits) 
instruction is supported (implicitly locked and atomic). 

9 APIC APIC On-Chip. The processor contains an Advanced Programmable Interrupt 
Controller (APIC), responding to memory mapped commands in the physical 
address range FFFE0000H to FFFE0FFFH (by default - some processors permit 
the APIC to be relocated). 

10 Reserved Reserved 

11 SEP SYSENTER and SYSEXIT Instructions. The SYSENTER and SYSEXIT and 
associated MSRs are supported. 

12 MTRR Memory Type Range Registers. MTRRs are supported. The MTRRcap MSR 
contains feature bits that describe what memory types are supported, how many 
variable MTRRs are supported, and whether fixed MTRRs are supported. 

13 PGE PTE Global Bit. The global bit in page directory entries (PDEs) and page table 
entries (PTEs) is supported, indicating TLB entries that are common to different 
processes and need not be flushed. The CR4.PGE bit controls this feature. 

14 MCA Machine Check Architecture. The Machine Check Architecture, which provides 
a compatible mechanism for error reporting in Pentium 4 processors, Intel Xeon 
processors, P6 family processors, and future processors, is supported. The 
MCG_CAP MSR contains feature bits describing how many banks of error 
reporting MSRs are supported. 

15 CMOV Conditional Move Instructions. The conditional move instruction CMOV is 
supported. In addition, if x87 FPU is present as indicated by the CPUID.FPU 
feature bit, then the FCOMI and FCMOV instructions are supported. 

16 PAT Page Attribute Table. Page Attribute Table is supported. This feature augments 
the Memory Type Range Registers (MTRRs), allowing an operating system to 
specify attributes of memory on a 4K granularity through a linear address.

Table 13-3.  Feature Flags Returned in EDX Register (Contd.)

Bit # Mnemonic Description
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17 PSE-36 32-Bit Page Size Extension. Extended 4-MByte pages that are capable of 
addressing physical memory beyond 4 GBytes are supported. This feature 
indicates that the upper four bits of the physical address of the 4-MByte page is 
encoded by bits 13-16 of the page directory entry.

18 PSN Processor Serial Number. The processor supports the 96-bit processor 
identification number feature and the feature is enabled.

19 CLFSH CLFLUSH Instruction. CLFLUSH Instruction is supported.

20 Reserved Reserved

21 DS Debug Store. The processor supports the ability to write debug information into a 
memory resident buffer. This feature is used by the branch trace store (BTS) and 
precise event-based sampling (PEBS) facilities (see Chapter 15, Debugging and 
Performance Monitoring, in the IA-32 Intel Architecture Software Developer’s 
Manual, Volume 3).

22 ACPI ACPI Processor Performance Modulation Registers. The processor has 
internal registers that allow processor performance to be modulated in predefined 
duty cycles under software control.

23 MMX Intel MMX Technology. The processor supports the Intel MMX technology.

24 FXSR FXSAVE and FXRSTOR Instructions. The FXSAVE and FXRSTOR instructions 
are supported for fast save and restore of the floating point context. Presence of 
this bit also indicates that CR4.OSFXSR is available for an operating system to 
indicate that it supports the FXSAVE and FXRSTOR instructions

25 SSE SSE. The processor supports the SSE extensions.

26 SSE2 SSE2. The processor supports the SSE2 extensions.

27 SS Self Snoop. The processor supports the management of conflicting memory 
types by performing a snoop of its own cache structure for transactions issued to 
the bus

28 HHT Hyper-Threading Technology. The processor implements Hyper-Threading 
Technology.

29 TM Thermal Monitor. The processor implements the thermal monitor automatic 
thermal control circuitry (TCC).

30 Reserved Reserved

31 PBE Pending Break Enable. The processor supports the use of the FERR#/PBE# pin 
when the processor is in the stop-clock state (STPCLK# is asserted) to signal the 
processor that an interrupt is pending and that the processor should return to 
normal operation to handle the interrupt. Bit 10 (FERR# interrupt reporting enable) 
in the IA32_MISC_ENABLE MSR enables this capability.

Table 13-3.  Feature Flags Returned in EDX Register (Contd.)

Bit # Mnemonic Description
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The Intel Processor Identification and the CPUID Instruction application note provides addi-
tional information and example source code for use in identifying IA-32 processors. It also
contains guidelines for using the CPUID instruction to help maintain the widest range of soft-
ware compatibility. The following guidelines are among the most important, and should always
be followed when using the CPUID instruction to determine available features:

• Always begin by testing for the “GenuineIntel,” message in the EBX, EDX, and ECX
registers when the CPUID instruction is executed with EAX equal to 0. If the processor is
not genuine Intel, the feature identification flags may have different meanings than are
described in Table 13-3.

• Test feature identification flags individually and do not make assumptions about undefined
bits.

Note that the CPUID instruction will cause the invalid opcode exception (#UD) if executed on
a processor that does not support it. The CPUID instruction application note provides a code
sequence to test the validity of the CPUID instruction. Note that this test code is not reliable
when executed in virtual-8086 mode.

13.2. IDENTIFICATION OF EARLIER IA-32 PROCESSORS

The CPUID instruction is not available in earlier IA-32 processors up through the earlier
Intel486 processors. For these processors, several other architectural features can be exploited
to identify the processor.

The settings of bits 12 and 13 (IOPL), 14 (NT), and 15 (reserved) in the EFLAGS register (see
Figure 3-7) are different for Intel’s 32-bit processors than for the Intel 8086 and Intel 286 proces-
sors. By examining the settings of these bits (with the PUSHF/PUSHFD and POP/POPFD
instructions), an application program can determine whether the processor is an 8086, Intel 286,
or one of the Intel 32-bit processors:

• 8086 processor — Bits 12 through 15 of the EFLAGS register are always set.

• Intel 286 processor — Bits 12 through 15 are always clear in real-address mode.

• 32-bit processors — In real-address mode, bit 15 is always clear and bits 12 through 14
have the last value loaded into them. In protected mode, bit 15 is always clear, bit 14 has
the last value loaded into it, and the IOPL bits depends on the current privilege level
(CPL). The IOPL field can be changed only if the CPL is 0.

Other EFLAG register bits that can be used to differentiate between the 32-bit processors:

• Bit 18 (AC) — Implemented only on the Pentium 4, Intel Xeon, P6 family, Pentium, and
Intel486 processors. The inability to set or clear this bit distinguishes an Intel386 processor
from the later IA-32 processors.

• Bit 21 (ID) — Determines if the processor is able to execute the CPUID instruction. The
ability to set and clear this bit indicates that it is a Pentium 4, Intel Xeon, P6 family,
Pentium, or later-version Intel486 processor.
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To determine whether an x87 FPU or NPX is present in a system, applications can write to the
x87 FPU status and control registers using the FNINIT instruction and then verify that the
correct values are read back using the FNSTENV instruction. 

After determining that an x87 FPU or NPX is present, its type can then be determined. In most
cases, the processor type will determine the type of FPU or NPX; however, an Intel386
processor is compatible with either an Intel 287 or Intel 387 math coprocessor. 

The method the coprocessor uses to represent ∞ (after the execution of the FINIT, FNINIT, or
RESET instruction) indicates which coprocessor is present. The Intel 287 math coprocessor uses
the same bit representation for +∞ and −∞; whereas, the Intel 387 math coprocessor uses
different representations for +∞ and −∞.
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APPENDIX A
EFLAGS CROSS-REFERENCE

Table A-1 summarizes how the instructions affect the flags in the EFLAGS register. The follow-
ing codes describe how the flags are affected:

T Instruction tests flag.

M Instruction modifies flag (either sets or resets depending on operands).

0 Instruction resets flag.

1 Instruction sets flag.

— Instruction’s effect on flag is undefined.

R Instruction restores prior value of flag.

Blank Instruction does not affect flag.

Table A-1.  EFLAGS Cross-Reference

Instruction OF SF ZF AF PF CF TF IF DF NT RF

AAA — — — TM — M

AAD — M M — M —

AAM — M M — M —

AAS — — — TM — M

ADC M M M M M TM

ADD M M M M M M

AND 0 M M — M 0

ARPL M

BOUND

BSF/BSR — — M — — —

BSWAP

BT/BTS/BTR/BTC — — — — — M

CALL

CBW

CLC 0

CLD 0
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CLI 0

CLTS

CMC M

CMOVcc T T T T T

CMP M M M M M M

CMPS M M M M M M T

CMPXCHG M M M M M M

CMPXCHG8B M

COMSID 0 0 M 0 M M

COMISS 0 0 M 0 M M

CPUID

CWD

DAA — M M TM M TM

DAS — M M TM M TM

DEC M M M M M

DIV — — — — — —

ENTER

ESC

FCMOVcc T T T

FCOMI, FCOMIP, 
FUCOMI, FUCOMIP

M M M

HLT

IDIV — — — — — —

IMUL M — — — — M

IN

INC M M M M M

INS T

INT 0 0

INTO T 0 0

INVD

INVLPG

UCOMSID 0 0 M 0 M M

UCOMISS 0 0 M 0 M M

Table A-1.  EFLAGS Cross-Reference

Instruction OF SF ZF AF PF CF TF IF DF NT RF
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IRET R R R R R R R R R T

Jcc T T T T T

JCXZ

JMP

LAHF

LAR M

LDS/LES/LSS/LFS/LGS

LEA

LEAVE

LGDT/LIDT/LLDT/LMSW

LOCK

LODS T

LOOP

LOOPE/LOOPNE T

LSL M

LTR

MOV

MOV control, debug, test — — — — — —

MOVS T

MOVSX/MOVZX

MUL M — — — — M

NEG M M M M M M

NOP

NOT

OR 0 M M — M 0

OUT

OUTS T

POP/POPA

POPF R R R R R R R R R R

PUSH/PUSHA/PUSHF

RCL/RCR 1 M TM

RCL/RCR count — TM

Table A-1.  EFLAGS Cross-Reference

Instruction OF SF ZF AF PF CF TF IF DF NT RF
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RDMSR

RDPMC

RDTSC

REP/REPE/REPNE

RET

ROL/ROR 1 M M

ROL/ROR count — M

RSM M M M M M M M M M M M

SAHF R R R R R

SAL/SAR/SHL/SHR 1 M M M — M M

SAL/SAR/SHL/SHR count — M M — M M

SBB M M M M M TM

SCAS M M M M M M T

SETcc T T T T T

SGDT/SIDT/SLDT/SMSW

SHLD/SHRD — M M — M M

STC 1

STD 1

STI 1

STOS T

STR

SUB M M M M M M

TEST 0 M M — M 0

UD2

VERR/VERRW M

WAIT

WBINVD

WRMSR

XADD M M M M M M

XCHG

XLAT 

XOR 0 M M — M 0

Table A-1.  EFLAGS Cross-Reference

Instruction OF SF ZF AF PF CF TF IF DF NT RF
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APPENDIX B
EFLAGS CONDITION CODES

Table B-1 gives all the condition codes that can be tested for by the CMOVcc, FCMOVcc, Jcc
and SETcc instructions. The condition codes refer to the setting of one or more status flags (CF,
OF, SF, ZF, and PF) in the EFLAGS register. The “Mnemonic” column gives the suffix (cc) add-
ed to the instruction to specific the test condition. The “Condition Tested For” column describes
the condition specified in the “Status Flags Setting” column. The “Instruction Subcode” column
gives the opcode suffix added to the main opcode to specify a test condition.

Table B-1.  EFLAGS Condition Codes 

Mnemonic (cc) Condition Tested For
Instruction
Subcode Status Flags Setting

O Overflow 0000 OF = 1

NO No overflow 0001 OF = 0

B
NAE

Below
Neither above nor equal

0010 CF = 1

NB
AE

Not below
Above or equal

0011 CF = 0

E
Z

Equal
Zero

0100 ZF = 1

NE
NZ

Not equal
Not zero

0101 ZF = 0

BE
NA

Below or equal
Not above

0110 (CF OR ZF) = 1

NBE
A

Neither below nor equal
Above

0111 (CF OR ZF) = 0

S Sign 1000 SF = 1

NS No sign 1001 SF = 0

P
PE

Parity
Parity even

1010 PF = 1

NP
PO

No parity
Parity odd

1011 PF = 0

L
NGE

Less
Neither greater nor equal

1100 (SF xOR OF) = 1

NL
GE

Not less
Greater or equal

1101 (SF xOR OF) = 0

LE
NG

Less or equal
Not greater

1110 ((SF XOR OF) OR ZF) = 1
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Many of the test conditions are described in two different ways. For example, LE (less or equal)
and NG (not greater) describe the same test condition. Alternate mnemonics are provided to
make code more intelligible.

The terms “above” and “below” are associated with the CF flag and refer to the relation between
two unsigned integer values. The terms “greater” and “less” are associated with the SF and OF
flags and refer to the relation between two signed integer values.

NLE
G

Neither less nor equal
Greater

1111 ((SF XOR OF) OR ZF) = 0

Table B-1.  EFLAGS Condition Codes  (Contd.)

Mnemonic (cc) Condition Tested For
Instruction
Subcode Status Flags Setting
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APPENDIX C
FLOATING-POINT EXCEPTIONS SUMMARY

This appendix shows which the floating-point exceptions can be generated for three groups of
IA-32 instructions: 

• x87 FPU instructions—see Table C-2.

• SSE instructions—see Table C-3.

• SSE2 instructions (that operate on floating-point operands)—see Table C-4.

Table C-1, lists the six types of floating-point exceptions that can be generated by the x87 FPU,
SSE, and SSE2 instructions. Note that for the x87 FPU instructions, two types of invalid-oper-
ation exception can be generated: stack underflow and stack overflow (#IS) and invalid arith-
metic or unsupported formats (#IA). For the SSE and SSE2 instructions listed in Tables C3 and
C-4, #IA form of the exception can be generated. In Tables C-3 and C-4, this exception is indi-
cated in the #I column.

NOTE

All of the exceptions shown in Table C-1 except the denormal-operand
exception (#D) and invalid-operation exception for stack underflow or stack
overflow (#IS) are defined in IEEE Standard 754 for Binary Floating-Point
Arithmetic.

See Section 4.9.1., “Floating-Point Exception Conditions”, for a detailed discussion of the float-
ing-point exceptions.

Table C-1.  x87 FPU and SIMD Floating-Point Exceptions

Floating-point 
Exception Description

#IS Invalid-operation exception for stack underflow or stack overflow. (Can only be 
generated for x87 FPU instructions.)

#IA or #I Invalid-operation exception for invalid arithmetic operands and 
unsupported formats.

#D Denormal-operand exception.

#Z Divide-by-zero exception.

#O Numeric-overflow exception.

#U Numeric-underflow exception.

#P Inexact-result (precision) exception.
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C.1. X87 FPU INSTRUCTIONS

Table C-2 lists the x87 FPU instructions in alphabetical order. For each instruction, it summa-
rizes the floating-point exceptions that the instruction can generate.

Table C-2.  Exceptions Generated With x87 FPU Floating-Point Instructions

Mnemonic Instruction #IS #IA #D #Z #O #U #P

F2XM1 Exponential Y Y Y Y Y

FABS Absolute value Y

FADD(P) Add floating-point Y Y Y Y Y Y

FBLD BCD load Y

FBSTP BCD store and pop Y Y Y

FCHS Change sign Y

FCLEX Clear exceptions

FCMOVcc Floating-point conditional move Y

FCOM, FCOMP, FCOMPP Compare floating-point Y Y Y

FCOMI, FCOMIP, FUCOMI, 
FUCOMIP

Compare floating-point and set 
EFLAGS

Y Y Y

FCOS Cosine Y Y Y Y

FDECSTP Decrement stack pointer

FDIV(R)(P) Divide floating-point Y Y Y Y Y Y Y

FFREE Free register

FIADD Integer add Y Y Y Y Y Y

FICOM(P) Integer compare Y Y Y

FIDIV Integer divide Y Y Y Y Y Y

FIDIVR Integer divide reversed Y Y Y Y Y Y Y

FILD Integer load Y

FIMUL Integer multiply Y Y Y Y Y Y

FINCSTP Increment stack pointer

FINIT Initialize processor

FIST(P) Integer store Y Y Y

FISUB(R) Integer subtract Y Y Y Y Y Y

FLD extended or stack Load floating-point Y

FLD single or double Load floating-point Y Y Y

FLD1 Load + 1.0 Y

FLDCW Load Control word Y Y Y Y Y Y Y
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FLDENV Load environment Y Y Y Y Y Y Y

FLDL2E Load log2e Y

FLDL2T Load log210 Y

FLDLG2 Load log102 Y

FLDLN2 Load loge2 Y

FLDPI Load π Y

FLDZ Load + 0.0 Y

FMUL(P) Multiply floating-point Y Y Y Y Y Y

FNOP No operation

FPATAN Partial arctangent Y Y Y Y Y

FPREM Partial remainder Y Y Y Y

FPREM1 IEEE partial remainder Y Y Y Y

FPTAN Partial tangent Y Y Y Y Y

FRNDINT Round to integer Y Y Y Y

FRSTOR Restore state Y Y Y Y Y Y Y

FSAVE Save state

FSCALE Scale Y Y Y Y Y Y

FSIN Sine Y Y Y Y Y

FSINCOS Sine and cosine Y Y Y Y Y

FSQRT Square root Y Y Y Y

FST(P) stack or extended Store floating-point Y

FST(P) single or double Store floating-point Y Y Y Y Y

FSTCW Store control word

FSTENV Store environment

FSTSW (AX) Store status word

FSUB(R)(P) Subtract floating-point Y Y Y Y Y Y

FTST Test Y Y Y

FUCOM(P)(P) Unordered compare floating-
point

Y Y Y

FWAIT CPU Wait

FXAM Examine

FXCH Exchange registers Y

FXTRACT Extract Y Y Y Y

Table C-2.  Exceptions Generated With x87 FPU Floating-Point Instructions (Contd.)

Mnemonic Instruction #IS #IA #D #Z #O #U #P
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FLOATING-POINT EXCEPTIONS SUMMARY
C.2. SSE INSTRUCTIONS

Table C-3 lists the SSE instructions in alphabetical order. For each instruction, it summarizes the
floating-point exceptions that the instruction can generate. 

FYL2X Logarithm Y Y Y Y Y Y Y

FYL2XP1 Logarithm epsilon Y Y Y Y Y Y

Table C-3.  Exceptions Generated With the SSE Instructions

Mnemonic Instruction #I #D #Z #O #U #P

ADDPS Packed add Y Y Y Y Y

ADDSS Scalar add Y Y Y Y Y

ANDNPS Packed logical INVERT and 
AND

ANDPS Packed logical AND

CMPPS Packed compare Y Y

CMPSS Scalar compare Y Y

COMISS Scalar ordered compare lower 
SP FP numbers and set the 
status flags

Y Y

CVTPI2PS Convert two 32-bit signed 
integers from MM2/Mem to two 
SP FP.

Y

CVTPS2PI Convert lower 2 SP FP from 
XMM/Mem to 2 32-bit signed 
integers in MM using rounding 
specified by MXCSR.

Y Y

CVTSI2SS Convert one 32-bit signed 
integer from Integer Reg/Mem to 
one SP FP.

Y

CVTSS2SI Convert one SP FP from 
XMM/Mem to one 32-bit signed 
integer using rounding mode 
specified by MXCSR, and move 
the result to an integer register. 

Y Y

CVTTPS2PI Convert lower 2 SP FP from 
XMM2/Mem to 2 32-bit signed 
integers in MM1 using truncate.

Y Y

Table C-2.  Exceptions Generated With x87 FPU Floating-Point Instructions (Contd.)

Mnemonic Instruction #IS #IA #D #Z #O #U #P
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CVTTSS2SI Convert lowest SP FP from 
XMM/Mem to one 32-bit signed 
integer using truncate, and move 
the result to an integer register. 

Y Y

DIVPS Packed divide Y Y Y Y Y Y

DIVSS Scalar divide Y Y Y Y Y Y

LDMXCSR Load control/status word

MAXPS Packed maximum Y Y

MAXSS Scalar maximum Y Y

MINPS Packed minimum Y Y

MINSS Scalar minimum Y Y

MOVAPS Move aligned packed data

MOVHPS Move high 64 bits

MOVLPS Move low 64 bits

MOVMSKPS Move mask to r32

MOVSS Move scalar

MOVUPS Move unaligned packed data

MULPS Packed multiply Y Y Y Y Y

MULSS Scalar multiply Y Y Y Y Y

ORPS Packed OR

RCPPS Packed reciprocal

RCPSS Scalar reciprocal

RSQRTPS Packed reciprocal square root

RSQRTSS Scalar reciprocal square root

SHUFPS Shuffle

SQRTPS Square Root of the packed SP 
FP numbers

Y Y Y

SQRTSS Scalar square root Y Y Y

STMXCSR Store control/status word

SUBPS Packed subtract Y Y Y Y Y

SUBSS Scalar subtract Y Y Y Y Y

UCOMISS Unordered compare lower SP 
FP numbers and set the status 
flags

Y Y

Table C-3.  Exceptions Generated With the SSE Instructions (Contd.)

Mnemonic Instruction #I #D #Z #O #U #P
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FLOATING-POINT EXCEPTIONS SUMMARY
C.3. SSE2 INSTRUCTIONS

Table C-4 lists the SSE2 instructions (that operate on double-precision floating-point operands)
in alphabetical order. For each instruction, it summarizes the floating-point exceptions that the
instruction can generate. 

UNPCKHPS Interleave SP FP numbers

UNPCKLPS Interleave SP FP numbers

XORPS Packed XOR

Table C-4.   Exceptions Generated With the SSE2 Instructions

Instruction Description #I #D #Z #O #U #P

ADDPD Add packed DP FP numbers 
from XMM2/Mem to XMM1.

Y Y Y Y Y

ADDSD Add the lower DP FP number 
from XMM2/Mem to XMM1.

Y Y Y Y Y

ANDNPD Invert the 128 bits in XMM1and 
then AND the result with 128 bits 
from XMM2/Mem.

ANDPD Logical And of 128 bits from 
XMM2/Mem to XMM1 register.

CMPPD Compare packed DP FP 
numbers from XMM2/Mem to 
packed DP FP numbers in 
XMM1 register using imm8 as 
predicate.

Y Y

CMPSD Compare lowest DP FP number 
from XMM2/Mem to lowest DP 
FP number in XMM1 register 
using imm8 as predicate.

Y Y

COMISD Compare lower DP FP number in 
XMM1 register with lower DP FP 
number in XMM2/Mem and set 
the status flags accordingly

Y Y

CVTDQ2PS Convert 4 32-bit signed integers 
from XMM/Mem to 4 SP FP.

Y

CVTPS2DQ Convert 4 SP FP from 
XMM/Mem to 4 32-bit signed 
integers in XMM using rounding 
specified by MXCSR.

Y Y

Table C-3.  Exceptions Generated With the SSE Instructions (Contd.)

Mnemonic Instruction #I #D #Z #O #U #P
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CVTTPS2DQ Convert 4 SP FP from 
XMM/Mem to 4 32-bit signed 
integers in XMM using truncate.

Y Y

CVTDQ2PD Convert two 32-bit signed 
integers in XMM2/Mem to 2 DP 
FP in xmm1 using rounding 
specified by MXCSR.

CVTPD2DQ Convert two DP FP from 
XMM2/Mem to 2 32-bit signed 
integers in xmm1 using rounding 
specified by MXCSR.

Y Y

CVTPD2PI Convert lower 2 DP FP from 
XMM/Mem to 2 32-bit signed 
integers in MM using rounding 
specified by MXCSR.

Y Y

CVTPD2PS Convert two DP FP to two SP 
FP.

Y Y Y Y Y

CVTPI2PD Convert two 32-bit signed 
integers from MM2/Mem to two 
DP FP.

 

CVTPS2PD Convert two SP FP to two DP 
FP.

Y Y

CVTSD2SI Convert one DP FP from 
XMM/Mem to one 32 bit signed 
integer using rounding mode 
specified by MXCSR, and move 
the result to an integer register. 

Y Y

CVTSD2SS Convert scalar DP FP to scalar 
SP FP.

Y Y Y Y Y

CVTSI2SD Convert one 32-bit signed 
integer from Integer Reg/Mem to 
one DP FP.

 

CVTSS2SD Convert scalar SP FP to scalar 
DP FP.

Y Y

CVTTPD2DQ Convert 2 DP FP from 
XMM2/Mem to 2 32-bit signed 
integers in XMM1 using truncate.

Y Y

CVTTPD2PI Convert lower 2 DP FP from 
XMM2/Mem to 2 32-bit signed 
integers in MM1 using truncate.

Y Y

CVTTSD2SI Convert lowest DP FP from 
XMM/Mem to one 32 bit signed 
integer using truncate, and move 
the result to an integer register. 

Y Y

Table C-4.   Exceptions Generated With the SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
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DIVPD Divide packed DP FP numbers 
in XMM1 by XMM2/Mem

Y Y Y Y Y Y

DIVSD Divide lower DP FP numbers in 
XMM1 by XMM2/Mem

Y Y Y Y Y Y

MAXPD Return the maximum DP FP 
numbers between XMM2/Mem 
and XMM1.

Y Y

MAXSD Return the maximum DP FP 
number between the lower DP 
FP numbers from XMM2/Mem 
and XMM1.

Y Y

MINPD Return the minimum DP 
numbers between XMM2/Mem 
and XMM1.

Y Y

MINSD Return the minimum DP FP 
number between the lowest DP 
FP numbers from XMM2/Mem 
and XMM1.

Y Y

MOVAPD 

MOVAPD 

Move 128 bits representing 4 
packed DP data from 
XMM2/Mem to XMM1 register.
Move 128 bits representing 4 
packed DP from XMM1 register 
to XMM2/Mem.

MOVHPD 

MOVHPD

Move 64 bits representing one 
DP operand from Mem to upper 
field of XMM register.
Move 64 bits representing one 
DP operand from upper field of 
XMM register to Mem.

MOVLPD 

MOVLPD

Move 64 bits representing one 
DP operand from Mem to lower 
field of XMM register.
Move 64 bits representing one 
DP operand from lower field of 
XMM register to Mem.

MOVMSKPD Move the single mask to r32. 

MOVSD

MOVSD

Move 64 bits representing one 
scalar DP operand from 
XMM2/Mem to XMM1 register.
Move 64 bits representing one 
scalar DP operand from XMM1 
register to XMM2/Mem.

Table C-4.   Exceptions Generated With the SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
C-8



FLOATING-POINT EXCEPTIONS SUMMARY
MOVUPD 

MOVUPD

Move 128 bits representing four 
DP data from XMM2/Mem to 
XMM1 register.
Move 128 bits representing four 
DP data from XMM1 register to 
XMM2/Mem.

MULPD  Multiply packed DP FP numbers 
in XMM2/Mem to XMM1.

Y Y Y Y Y

MULSD Multiply the lowest DP FP 
number in XMM2/Mem to XMM1.

Y Y Y Y Y

ORPD OR 128 bits from XMM2/Mem to 
XMM1 register.

SHUFPD Shuffle Double.

SQRTPD Square Root Packed Double-
Precision 

Y Y Y

SQRTSD Square Root Scaler Double-
Precision

Y Y Y

SUBPD Subtract Packed Double-
Precision

Y Y Y Y Y

SUBSD Subtract Scaler Double-
Precision

Y Y Y Y Y

UCOMISD Compare lower DP FP number in 
XMM1 register with lower DP FP 
number in XMM2/Mem and set 
the status flags accordingly.

Y Y

UNPCKHPD Interleaves DP FP numbers from 
the high halves of XMM1 and 
XMM2/Mem into XMM1 register.

UNPCKLPD Interleaves DP FP numbers from 
the low halves of XMM1 and 
XMM2/Mem into XMM1 register.

XORPD XOR 128 bits from XMM2/Mem 
to XMM1 register.

Table C-4.   Exceptions Generated With the SSE2 Instructions (Contd.)

Instruction Description #I #D #Z #O #U #P
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APPENDIX D
GUIDELINES FOR WRITING X87 FPU

EXCEPTION HANDLERS

As described in Chapter 8, Programming with the x87 FPU, the IA-32 Architecture supports two
mechanisms for accessing exception handlers to handle unmasked x87 FPU exceptions: native
mode and MS-DOS* compatibility mode. The primary purpose of this appendix is to provide
detailed information to help software engineers design and write x87 FPU exception-handling
facilities to run on PC systems that use the MS-DOS compatibility mode1 for handling x87 FPU
exceptions. Some of the information in this appendix will also be of interest to engineers who
are writing native-mode x87 FPU exception handlers. The information provided is as follows:

• Discussion of the origin of the MS-DOS* x87 FPU exception handling mechanism and its
relationship to the x87 FPU’s native exception handling mechanism.

• Description of the IA-32 flags and processor pins that control the MS-DOS x87 FPU
exception handling mechanism.

• Description of the external hardware typically required to support MS-DOS exception
handling mechanism.

• Description of the x87 FPU’s exception handling mechanism and the typical protocol for
x87 FPU exception handlers.

• Code examples that demonstrate various levels of x87 FPU exception handlers.

• Discussion of x87 FPU considerations in multitasking environments.

• Discussion of native mode x87 FPU exception handling.

The information given is oriented toward the most recent generations of IA-32 processors,
starting with the Intel486. It is intended to augment the reference information given in Chapter
8, Programming with the x87 FPU.

A more extensive version of this appendix is available in the application note AP-578, Software
and Hardware Considerations for x87 FPU Exception Handlers for Intel Architecture Proces-
sors (Order Number 243291), which is available from Intel.

1 Microsoft Windows* 95 and Windows 3.1 (and earlier versions) operating systems use almost the same x87 FPU
exception handling interface as the operating system. The recommendations in this appendix for a MS-DOS* com-
patible exception handler thus apply to all three operating systems.
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D.1. ORIGIN OF THE MS-DOS COMPATIBILITY MODE FOR 
HANDLING X87 FPU EXCEPTIONS

The first generations of IA-32 processors (starting with the Intel 8086 and 8088 processors and
going through the Intel 286 and Intel386 processors) did not have an on-chip floating-point unit.
Instead, floating-point capability was provided on a separate numeric coprocessor chip. The first
of these numeric coprocessors was the Intel 8087, which was followed by the Intel 287 and Intel
387 numeric coprocessors. 

To allow the 8087 to signal floating-point exceptions to its companion 8086 or 8088, the 8087
has an output pin, INT, which it asserts when an unmasked floating-point exception occurs. The
designers of the 8087 recommended that the output from this pin be routed through a program-
mable interrupt controller (PIC) such as the Intel 8259A to the INTR pin of the 8086 or 8088.
The accompanying interrupt vector number could then be used to access the floating-point
exception handler.

However, the original IBM* PC design and MS-DOS operating system used a different mecha-
nism for handling the INT output from the 8087. It connected the INT pin directly to the NMI
input pin of the 8086 or 8088. The NMI interrupt handler then had to determine if the interrupt
was caused by a floating-point exception or another NMI event. This mechanism is the origin
of what is now called the “MS-DOS compatibility mode.” The decision to use this latter
floating-point exception handling mechanism came about because when the IBM PC was first
designed, the 8087 was not available. When the 8087 did become available, other functions had
already been assigned to the eight inputs to the PIC. One of these functions was a BIOS video
interrupt, which was assigned to interrupt number 16 for the 8086 and 8088.

The Intel 286 processor created the “native mode” for handling floating-point exceptions by
providing a dedicated input pin (ERROR#) for receiving floating-point exception signals and a
dedicated interrupt number, 16. Interrupt 16 was used to signal floating-point errors (also called
math faults). It was intended that the ERROR# pin on the Intel 286 be connected to a corre-
sponding ERROR# pin on the Intel 287 numeric coprocessor. When the Intel 287 signals a
floating-point exception using this mechanism, the Intel 286 generates an interrupt 16, to invoke
the floating-point exception handler. 

To maintain compatibility with existing PC software, the native floating-point exception
handling mode of the Intel 286 and 287 was not used in the IBM PC AT system design. Instead,
the ERROR# pin on the Intel 286 was tied permanently high, and the ERROR# pin from the Intel
287 was routed to a second (cascaded) PIC. The resulting output of this PIC was routed through
an exception handler and eventually caused an interrupt 2 (NMI interrupt). Here the NMI inter-
rupt was shared with IBM PC AT’s new parity checking feature. Interrupt 16 remained assigned
to the BIOS video interrupt handler. The external hardware for the MS-DOS compatibility mode
must prevent the Intel 286 processor from executing past the next x87 FPU instruction when an
unmasked exception has been generated. To do this, it asserts the BUSY# signal into the Intel 286
when the ERROR# signal is asserted by the Intel 287.
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The Intel386 processor and its companion Intel 387 numeric coprocessor provided the same
hardware mechanism for signaling and handling floating-point exceptions as the Intel 286 and
287 processors. And again, to maintain compatibility with existing MS-DOS software, basically
the same MS-DOS compatibility floating-point exception handling mechanism that was used in
the IBM PC AT was used in PCs based on the Intel386 processor.

D.2. IMPLEMENTATION OF THE MS-DOS COMPATIBILITY 
MODE IN THE INTEL486, PENTIUM, AND P6 PROCESSOR 
FAMILY, AND PENTIUM 4 PROCESSORS

Beginning with the Intel486 processor, the IA-32 architecture provided a dedicated mechanism
for enabling the MS-DOS compatibility mode for x87 FPU exceptions and for generating
external x87 FPU-exception signals while operating in this mode. The following sections
describe the implementation of the MS-DOS compatibility mode in the Intel486 and Pentium
processors and in the P6 family and Pentium 4 processors. Also described is the recommended
external hardware to support this mode of operation. 

D.2.1. MS-DOS Compatibility Mode in the Intel486 and Pentium 
Processors

In the Intel486 processor, several things were done to enhance and speed up the numeric copro-
cessor, now called the floating-point unit (x87 FPU). The most important enhancement was that
the x87 FPU was included in the same chip as the processor, for increased speed in x87 FPU
computations and reduced latency for x87 FPU exception handling. Also, for the first time, the
MS-DOS compatibility mode was built into the chip design, with the addition of the NE bit in
control register CR0 and the addition of the FERR# (Floating-point ERRor) and IGNNE#
(IGNore Numeric Error) pins. 

The NE bit selects the native x87 FPU exception handling mode (NE = 1) or the MS-DOS
compatibility mode (NE = 0). When native mode is selected, all signaling of floating-point
exceptions is handled internally in the Intel486 chip, resulting in the generation of an interrupt
16.

When MS-DOS compatibility mode is selected the FERRR# and IGNNE# pins are used to
signal floating-point exceptions. The FERR# output pin, which replaces the ERROR# pin from
the previous generations of IA-32 numeric coprocessors, is connected to a PIC. A new input
signal, IGNNE#, is provided to allow the x87 FPU exception handler to execute x87 FPU
instructions, if desired, without first clearing the error condition and without triggering the inter-
rupt a second time. This IGNNE# feature is needed to replicate the capability that was provided
on MS-DOS compatible Intel 286 and Intel 287 and Intel386 and Intel 387 systems by turning
off the BUSY# signal, when inside the x87 FPU exception handler, before clearing the error
condition.

Note that Intel, in order to provide Intel486 processors for market segments which had no need
for an x87 FPU, created the “SX” versions. These Intel486 SX processors did not contain the
floating-point unit. Intel also produced Intel 487 SX processors for end users who later decided
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to upgrade to a system with an x87 FPU. These Intel 487 SX processors are similar to standard
Intel486 processors with a working x87 FPU on board. 

Thus, the external circuitry necessary to support the MS-DOS compatibility mode for Intel 487
SX processors is the same as for standard Intel486 DX processors.

The Pentium, P6 family, and Pentium 4 processors offer the same mechanism (the NE bit and
the FERR# and IGNNE# pins) as the Intel486 processors for generating x87 FPU exceptions in
MS-DOS compatibility mode. The actions of these mechanisms are slightly different and more
straightforward for the P6 family and Pentium 4 processors, as described in Section D.2.2.,
“MS-DOS Compatibility Mode in the P6 Family and Pentium 4 Processors”.

For Pentium, P6 family, and Pentium 4 processors, it is important to note that the special DP
(Dual Processing) mode for Pentium processors and also the more general Intel MultiProcessor
Specification for systems with multiple Pentium, P6 family, or Pentium 4 processors support
x87 FPU exception handling only in the native mode. Intel does not recommend using the MS-
DOS compatibility x87 FPU mode for systems using more than one processor.

D.2.1.1. BASIC RULES: WHEN FERR# IS GENERATED

When MS-DOS compatibility mode is enabled for the Intel486 or Pentium processors (NE bit
is set to 0) and the IGNNE# input pin is de-asserted, the FERR# signal is generated as follows:

1. When an x87 FPU instruction causes an unmasked x87 FPU exception, the processor (in
most cases) uses a “deferred” method of reporting the error. This means that the processor
does not respond immediately, but rather freezes just before executing the next WAIT or
x87 FPU instruction (except for “no-wait” instructions, which the x87 FPU executes
regardless of an error condition). 

2. When the processor freezes, it also asserts the FERR# output.

3. The frozen processor waits for an external interrupt, which must be supplied by external
hardware in response to the FERR# assertion. 

4. In MS-DOS* compatibility systems, FERR# is fed to the IRQ13 input in the cascaded PIC.
The PIC generates interrupt 75H, which then branches to interrupt 2, as described earlier in
this appendix for systems using the Intel 286 and Intel 287 or Intel386 and Intel 387
processors. 

The deferred method of error reporting is used for all exceptions caused by the basic arithmetic
instructions (including FADD, FSUB, FMUL, FDIV, FSQRT, FCOM and FUCOM), for preci-
sion exceptions caused by all types of x87 FPU instructions, and for numeric underflow and
overflow exceptions caused by all types of x87 FPU instructions except stores to memory. 

Some x87 FPU instructions with some x87 FPU exceptions use an “immediate” method of
reporting errors. Here, the FERR# is asserted immediately, at the time that the exception occurs.
The immediate method of error reporting is used for x87 FPU stack fault, invalid operation and
denormal exceptions caused by all transcendental instructions, FSCALE, FXTRACT, FPREM
and others, and all exceptions (except precision) when caused by x87 FPU store instructions.
Like deferred error reporting, immediate error reporting will cause the processor to freeze just
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before executing the next WAIT or x87 FPU instruction if the error condition has not been
cleared by that time.

Note that in general, whether deferred or immediate error reporting is used for an x87 FPU
exception depends both on which exception occurred and which instruction caused that excep-
tion. A complete specification of these cases, which applies to both the Pentium and the Intel486
processors, is given in Section 5.1.21 in the Pentium Processor Family Developer’s Manual:
Volume 1. 

If NE=0 but the IGNNE# input is active while an unmasked x87 FPU exception is in effect, the
processor disregards the exception, does not assert FERR#, and continues. If IGNNE# is then
de-asserted and the x87 FPU exception has not been cleared, the processor will respond as
described above. (That is, an immediate exception case will assert FERR# immediately. A
deferred exception case will assert FERR# and freeze just before the next x87 FPU or WAIT
instruction.) The assertion of IGNNE# is intended for use only inside the x87 FPU exception
handler, where it is needed if one wants to execute non-control x87 FPU instructions for diag-
nosis, before clearing the exception condition. When IGNNE# is asserted inside the exception
handler, a preceding x87 FPU exception has already caused FERR# to be asserted, and the
external interrupt hardware has responded, but IGNNE# assertion still prevents the freeze at x87
FPU instructions. Note that if IGNNE# is left active outside of the x87 FPU exception handler,
additional x87 FPU instructions may be executed after a given instruction has caused an x87
FPU exception. In this case, if the x87 FPU exception handler ever did get invoked, it could not
determine which instruction caused the exception. 

To properly manage the interface between the processor’s FERR# output, its IGNNE# input, and
the IRQ13 input of the PIC, additional external hardware is needed. A recommended configu-
ration is described in the following section.

D.2.1.2. RECOMMENDED EXTERNAL HARDWARE TO SUPPORT THE 
MS-DOS COMPATIBILITY MODE

Figure D-1 provides an external circuit that will assure proper handling of FERR# and IGNNE#
when an x87 FPU exception occurs. In particular, it assures that IGNNE# will be active only
inside the x87 FPU exception handler without depending on the order of actions by the excep-
tion handler. Some hardware implementations have been less robust because they have
depended on the exception handler to clear the x87 FPU exception interrupt request to the PIC
(FP_IRQ signal) before the handler causes FERR# to be de-asserted by clearing the exception
from the x87 FPU itself. Figure D-2 shows the details of how IGNNE# will behave when the
circuit in Figure D-1 is implemented. The temporal regions within the x87 FPU exception
handler activity are described as follows:

1. The FERR# signal is activated by an x87 FPU exception and sends an interrupt request
through the PIC to the processor’s INTR pin.

2. During the x87 FPU interrupt service routine (exception handler) the processor will need
to clear the interrupt request latch (Flip Flop #1). It may also want to execute non-control
x87 FPU instructions before the exception is cleared from the x87 FPU. For this purpose
the IGNNE# must be driven low. Typically in the PC environment an I/O access to Port
0F0H clears the external x87 FPU exception interrupt request (FP_IRQ). In the
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recommended circuit, this access also is used to activate IGNNE#. With IGNNE# active
the x87 FPU exception handler may execute any x87 FPU instruction without being
blocked by an active x87 FPU exception.

3. Clearing the exception within the x87 FPU will cause the FERR# signal to be deactivated
and then there is no further need for IGNNE# to be active. In the recommended circuit, the
deactivation of FERR# is used to deactivate IGNNE#. If another circuit is used, the
software and circuit together must assure that IGNNE# is deactivated no later than the exit
from the x87 FPU exception handler.

*

Figure D-1.  Recommended Circuit for MS-DOS* Compatibility x87 FPU Exception 
Handling

Intel486�,
Pentium�, or
Pentium Pro
processor

FF #1

FF #2

FP_IRQ
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In the circuit in Figure D-1, when the x87 FPU exception handler accesses I/O port 0F0H it
clears the IRQ13 interrupt request output from Flip Flop #1 and also clocks out the IGNNE#
signal (active) from Flip Flop #2. So the handler can activate IGNNE#, if needed, by doing this
0F0H access before clearing the x87 FPU exception condition (which de-asserts FERR#). 

However, the circuit does not depend on the order of actions by the x87 FPU exception handler
to guarantee the correct hardware state upon exit from the handler. Flip Flop #2, which drives
IGNNE# to the processor, has its CLEAR input attached to the inverted FERR#. This ensures
that IGNNE# can never be active when FERR# is inactive. So if the handler clears the x87 FPU
exception condition before the 0F0H access, IGNNE# does not get activated and left on after
exit from the handler.

D.2.1.3. NO-WAIT X87 FPU INSTRUCTIONS CAN GET X87 FPU INTERRUPT 
IN WINDOW

The Pentium and Intel486 processors implement the “no-wait” floating-point instructions
(FNINIT, FNCLEX, FNSTENV, FNSAVE, FNSTSW, FNSTCW, FNENI, FNDISI or
FNSETPM) in the MS-DOS compatibility mode in the following manner. (See Section 8.3.11.,
“x87 FPU Control Instructions” and Section 8.3.12., “Waiting Vs. Non-waiting Instructions” for
a discussion of the no-wait instructions.)

If an unmasked numeric exception is pending from a preceding x87 FPU instruction, a member
of the no-wait class of instructions will, at the beginning of its execution, assert the FERR# pin
in response to that exception just like other x87 FPU instructions, but then, unlike the other x87
FPU instructions, FERR# will be de-asserted. This de-assertion was implemented to allow the
no-wait class of instructions to proceed without an interrupt due to any pending numeric excep-
tion. However, the brief assertion of FERR# is sufficient to latch the x87 FPU exception request
into most hardware interface implementations (including Intel’s recommended circuit). 

Figure D-2.  Behavior of Signals During x87 FPU Exception Handling

0F0H Address
   Decode
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All the x87 FPU instructions are implemented such that during their execution, there is a
window in which the processor will sample and accept external interrupts. If there is a pending
interrupt, the processor services the interrupt first before resuming the execution of the instruc-
tion. Consequently, it is possible that the no-wait floating-point instruction may accept the
external interrupt caused by it’s own assertion of the FERR# pin in the event of a pending
unmasked numeric exception, which is not an explicitly documented behavior of a no-wait
instruction. This process is illustrated in Figure D-3.

Figure D-3 assumes that a floating-point instruction that generates a “deferred” error (as defined
in the Section D.2.1.1., “Basic Rules: When FERR# Is Generated”), which asserts the FERR#
pin only on encountering the next floating-point instruction, causes an unmasked numeric
exception. Assume that the next floating-point instruction following this instruction is one of the
no-wait floating-point instructions. The FERR# pin is asserted by the processor to indicate the
pending exception on encountering the no-wait floating-point instruction. After the assertion of
the FERR# pin the no-wait floating-point instruction opens a window where the pending
external interrupts are sampled.

Then there are two cases possible depending on the timing of the receipt of the interrupt via the
INTR pin (asserted by the system in response to the FERR# pin) by the processor.

Case 1 If the system responds to the assertion of FERR# pin by the no-wait floating-
point instruction via the INTR pin during this window then the interrupt is
serviced first, before resuming the execution of the no-wait floating-point
instruction. 

Figure D-3.  Timing of Receipt of External Interrupt
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Case 2 If the system responds via the INTR pin after the window has closed then the
interrupt is recognized only at the next instruction boundary.

There are two other ways, in addition to Case 1 above, in which a no-wait floating-point instruc-
tion can service a numeric exception inside its interrupt window. First, the first floating-point
error condition could be of the “immediate” category (as defined in Section D.2.1.1., “Basic
Rules: When FERR# Is Generated”) that asserts FERR# immediately. If the system delay before
asserting INTR is long enough, relative to the time elapsed before the no-wait floating-point
instruction, INTR can be asserted inside the interrupt window for the latter. Second, consider
two no-wait x87 FPU instructions in close sequence, and assume that a previous x87 FPU
instruction has caused an unmasked numeric exception. Then if the INTR timing is too long for
an FERR# signal triggered by the first no-wait instruction to hit the first instruction’s interrupt
window, it could catch the interrupt window of the second.

The possible malfunction of a no-wait x87 FPU instruction explained above cannot happen if
the instruction is being used in the manner for which Intel originally designed it. The no-wait
instructions were intended to be used inside the x87 FPU exception handler, to allow manipula-
tion of the x87 FPU before the error condition is cleared, without hanging the processor because
of the x87 FPU error condition, and without the need to assert IGNNE#. They will perform this
function correctly, since before the error condition is cleared, the assertion of FERR# that caused
the x87 FPU error handler to be invoked is still active. Thus the logic that would assert FERR#
briefly at a no-wait instruction causes no change since FERR# is already asserted. The no-wait
instructions may also be used without problem in the handler after the error condition is cleared,
since now they will not cause FERR# to be asserted at all.

If a no-wait instruction is used outside of the x87 FPU exception handler, it may malfunction as
explained above, depending on the details of the hardware interface implementation and which
particular processor is involved. The actual interrupt inside the window in the no-wait instruc-
tion may be blocked by surrounding it with the instructions: PUSHFD, CLI, no-wait, then
POPFD. (CLI blocks interrupts, and the push and pop of flags preserves and restores the original
value of the interrupt flag.) However, if FERR# was triggered by the no-wait, its latched value
and the PIC response will still be in effect. Further code can be used to check for and correct
such a condition, if needed. Section D.3.6., “Considerations When x87 FPU Shared Between
Tasks”, discusses an important example of this type of problem and gives a solution.

D.2.2. MS-DOS Compatibility Mode in the P6 Family and 
Pentium 4 Processors

When bit NE=0 in CR0, the MS-DOS compatibility mode of the P6 family and Pentium 4
processors provides FERR# and IGNNE# functionality that is almost identical to the Intel486
and Pentium processors. The same external hardware described in Section D.2.1.2., “Recom-
mended External Hardware to Support the MS-DOS Compatibility Mode”, is recommended for
the P6 family and Pentium 4 processors as well as the two previous generations. The only
change to MS-DOS compatibility x87 FPU exception handling with the P6 family and Pentium
4 processors is that all exceptions for all x87 FPU instructions cause immediate error reporting.
That is, FERR# is asserted as soon as the x87 FPU detects an unmasked exception; there are no
cases in which error reporting is deferred to the next x87 FPU or WAIT instruction. 
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(As is discussed in Section D.2.1.1., “Basic Rules: When FERR# Is Generated”, most exception
cases in the Intel486 and Pentium processors are of the deferred type.)

Although FERR# is asserted immediately upon detection of an unmasked x87 FPU error, this
certainly does not mean that the requested interrupt will always be serviced before the next
instruction in the code sequence is executed. To begin with, the P6 family and Pentium 4 proces-
sors execute several instructions simultaneously. There also will be a delay, which depends on
the external hardware implementation, between the FERR# assertion from the processor and the
responding INTR assertion to the processor. Further, the interrupt request to the PICs (IRQ13)
may be temporarily blocked by the operating system, or delayed by higher priority interrupts,
and processor response to INTR itself is blocked if the operating system has cleared the IF bit
in EFLAGS. Note that Streaming SIMD Extensions numeric exceptions will not cause assertion
of FERR# (independent of the value of CR0.NE). In addition they ignore the assertion/deasser-
tion of IGNNE#).

However, just as with the Intel486 and Pentium processors, if the IGNNE# input is inactive, a
floating-point exception which occurred in the previous x87 FPU instruction and is unmasked
causes the processor to freeze immediately when encountering the next WAIT or x87 FPU
instruction (except for no-wait instructions). This means that if the x87 FPU exception handler
has not already been invoked due to the earlier exception (and therefore, the handler not has
cleared that exception state from the x87 FPU), the processor is forced to wait for the handler to
be invoked and handle the exception, before the processor can execute another WAIT or x87
FPU instruction. 

As explained in Section D.2.1.3., “No-Wait x87 FPU Instructions Can Get x87 FPU Interrupt in
Window”, if a no-wait instruction is used outside of the x87 FPU exception handler, in the
Intel486 and Pentium processors, it may accept an unmasked exception from a previous x87
FPU instruction which happens to fall within the external interrupt sampling window that is
opened near the beginning of execution of all x87 FPU instructions. This will not happen in the
P6 family and Pentium 4 processors, because this sampling window has been removed from the
no-wait group of x87 FPU instructions.

D.3. RECOMMENDED PROTOCOL FOR MS-DOS* 
COMPATIBILITY HANDLERS

The activities of numeric programs can be split into two major areas: program control and arith-
metic. The program control part performs activities such as deciding what functions to perform,
calculating addresses of numeric operands, and loop control. The arithmetic part simply adds,
subtracts, multiplies, and performs other operations on the numeric operands. The processor is
designed to handle these two parts separately and efficiently. An x87 FPU exception handler, if
a system chooses to implement one, is often one of the most complicated parts of the program
control code.
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D.3.1. Floating-Point Exceptions and Their Defaults

The x87 FPU can recognize six classes of floating-point exception conditions while executing
floating-point instructions:

1. #I — Invalid operation
    #IS — Stack fault
    #IA — IEEE standard invalid operation

2. #Z — Divide-by-zero

3. #D — Denormalized operand

4. #O — Numeric overflow

5. #U — Numeric underflow

6. #P — Inexact result (precision)

For complete details on these exceptions and their defaults, see Section 8.4., “x87 FPU Floating-
Point Exception Handling” and Section 8.5., “x87 FPU Floating-Point Exception Conditions”.

D.3.2. Two Options for Handling Numeric Exceptions

Depending on options determined by the software system designer, the processor takes one of
two possible courses of action when a numeric exception occurs:

• The x87 FPU can handle selected exceptions itself, producing a default fix-up that is
reasonable in most situations. This allows the numeric program execution to continue
undisturbed. Programs can mask individual exception types to indicate that the x87 FPU
should generate this safe, reasonable result whenever the exception occurs. The default
exception fix-up activity is treated by the x87 FPU as part of the instruction causing the
exception; no external indication of the exception is given (except that the instruction takes
longer to execute when it handles a masked exception.) When masked exceptions are
detected, a flag is set in the numeric status register, but no information is preserved
regarding where or when it was set.

• Alternatively, a software exception handler can be invoked to handle the exception. When
a numeric exception is unmasked and the exception occurs, the x87 FPU stops further
execution of the numeric instruction and causes a branch to a software exception handler.
The exception handler can then implement any sort of recovery procedures desired for any
numeric exception detectable by the x87 FPU.

D.3.2.1. AUTOMATIC EXCEPTION HANDLING: USING MASKED 
EXCEPTIONS

Each of the six exception conditions described above has a corresponding flag bit in the x87
FPU status word and a mask bit in the x87 FPU control word. If an exception is masked (the
corresponding mask bit in the control word = 1), the processor takes an appropriate default
action and continues with the computation. 
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The processor has a default fix-up activity for every possible exception condition it may
encounter. These masked-exception responses are designed to be safe and are generally accept-
able for most numeric applications.

For example, if the Inexact result (Precision) exception is masked, the system can specify
whether the x87 FPU should handle a result that cannot be represented exactly by one of four
modes of rounding: rounding it normally, chopping it toward zero, always rounding it up, or
always down. If the Underflow exception is masked, the x87 FPU will store a number that is too
small to be represented in normalized form as a denormal (or zero if it’s smaller than the smallest
denormal). Note that when exceptions are masked, the x87 FPU may detect multiple exceptions
in a single instruction, because it continues executing the instruction after performing its masked
response. For example, the x87 FPU could detect a denormalized operand, perform its masked
response to this exception, and then detect an underflow.

As an example of how even severe exceptions can be handled safely and automatically using the
default exception responses, consider a calculation of the parallel resistance of several values
using only the standard formula (see Figure D-4). If R1 becomes zero, the circuit resistance
becomes zero. With the divide-by-zero and precision exceptions masked, the processor will
produce the correct result. FDIV of R1 into 1 gives infinity, and then FDIV of (infinity +R2 +R3)
into 1 gives zero.

By masking or unmasking specific numeric exceptions in the x87 FPU control word, program-
mers can delegate responsibility for most exceptions to the processor, reserving the most severe
exceptions for programmed exception handlers. Exception-handling software is often difficult
to write, and the masked responses have been tailored to deliver the most reasonable result for
each condition. For the majority of applications, masking all exceptions yields satisfactory
results with the least programming effort. Certain exceptions can usefully be left unmasked
during the debugging phase of software development, and then masked when the clean software
is actually run. An invalid-operation exception for example, typically indicates a program error
that must be corrected.

Figure D-4.  Arithmetic Example Using Infinity
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The exception flags in the x87 FPU status word provide a cumulative record of exceptions that
have occurred since these flags were last cleared. Once set, these flags can be cleared only by
executing the FCLEX/FNCLEX (clear exceptions) instruction, by reinitializing the x87 FPU
with FINIT/FNINIT or FSAVE/FNSAVE, or by overwriting the flags with an FRSTOR or
FLDENV instruction. This allows a programmer to mask all exceptions, run a calculation, and
then inspect the status word to see if any exceptions were detected at any point in the calculation.

D.3.2.2. SOFTWARE EXCEPTION HANDLING

If the x87 FPU in or with an IA-32 processor (Intel 286 and onwards) encounters an unmasked
exception condition, with the system operated in the MS-DOS compatibility mode and with
IGNNE# not asserted, a software exception handler is invoked through a PIC and the
processor’s INTR pin. The FERR# (or ERROR#) output from the x87 FPU that begins the
process of invoking the exception handler may occur when the error condition is first detected,
or when the processor encounters the next WAIT or x87 FPU instruction. Which of these two
cases occurs depends on the processor generation and also on which exception and which x87
FPU instruction triggered it, as discussed earlier in Section D.1., “Origin of the MS-DOS
Compatibility Mode for Handling x87 FPU Exceptions” and Section D.2., “Implementation of
the MS-DOS Compatibility Mode In the Intel486, Pentium, and P6 Processor Family, and
Pentium 4 Processors”. The elapsed time between the initial error signal and the invocation of
the x87 FPU exception handler depends of course on the external hardware interface, and also
on whether the external interrupt for x87 FPU errors is enabled. But the architecture ensures that
the handler will be invoked before execution of the next WAIT or floating-point instruction
since an unmasked floating-point exception causes the processor to freeze just before executing
such an instruction (unless the IGNNE# input is active, or it is a no-wait x87 FPU instruction). 

The frozen processor waits for an external interrupt, which must be supplied by external hard-
ware in response to the FERR# (or ERROR#) output of the processor (or coprocessor), usually
through IRQ13 on the “slave” PIC, and then through INTR. Then the external interrupt invokes
the exception handling routine. Note that if the external interrupt for x87 FPU errors is disabled
when the processor executes an x87 FPU instruction, the processor will freeze until some other
(enabled) interrupt occurs if an unmasked x87 FPU exception condition is in effect. If NE = 0
but the IGNNE# input is active, the processor disregards the exception and continues. Error
reporting via an external interrupt is supported for MS-DOS compatibility. Chapter 18, Intel
Architecture Compatibility of the IA-32 Intel Architecture Software Developer’s Manual,
Volume 3, contains further discussion of compatibility issues.

The references above to the ERROR# output from the x87 FPU apply to the Intel 387 and Intel
287 math coprocessors (NPX chips). If one of these coprocessors encounters an unmasked
exception condition, it signals the exception to the Intel 286 or Intel386 processor using the
ERROR# status line between the processor and the coprocessor. See Section D.1., “Origin of the
MS-DOS Compatibility Mode for Handling x87 FPU Exceptions”, in this appendix, and
Chapter 18, Intel Architecture Compatibility, in the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 3 for differences in x87 FPU exception handling.
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The exception-handling routine is normally a part of the systems software. The routine must
clear (or disable) the active exception flags in the x87 FPU status word before executing any
floating-point instructions that cannot complete execution when there is a pending floating-
point exception. Otherwise, the floating-point instruction will trigger the x87 FPU interrupt
again, and the system will be caught in an endless loop of nested floating-point exceptions, and
hang. In any event, the routine must clear (or disable) the active exception flags in the x87 FPU
status word after handling them, and before IRET(D). Typical exception responses may include:

• Incrementing an exception counter for later display or printing.

• Printing or displaying diagnostic information (e.g., the x87 FPU environment and
registers).

• Aborting further execution, or using the exception pointers to build an instruction that will
run without exception and executing it.

Applications programmers should consult their operating system’s reference manuals for the
appropriate system response to numerical exceptions. For systems programmers, some details
on writing software exception handlers are provided in Chapter 5, Interrupt and Exception
Handling, in the IA-32 Intel Architecture Software Developer’s Manual, Volume 3, as well as in
Section D.3.4., “x87 FPU Exception Handling Examples”, in this appendix.

As discussed in Section D.2.1.2., “Recommended External Hardware to Support the MS-DOS
Compatibility Mode”, some early FERR# to INTR hardware interface implementations are less
robust than the recommended circuit. This is because they depended on the exception handler
to clear the x87 FPU exception interrupt request to the PIC (by accessing port 0F0H) before the
handler causes FERR# to be de-asserted by clearing the exception from the x87 FPU itself. To
eliminate the chance of a problem with this early hardware, Intel recommends that x87 FPU
exception handlers always access port 0F0H before clearing the error condition from the x87
FPU.

D.3.3. Synchronization Required for Use of x87 FPU Exception 
Handlers

Concurrency or synchronization management requires a check for exceptions before letting the
processor change a value just used by the x87 FPU. It is important to remember that almost any
numeric instruction can, under the wrong circumstances, produce a numeric exception. 

D.3.3.1. EXCEPTION SYNCHRONIZATION: WHAT, WHY AND WHEN

Exception synchronization means that the exception handler inspects and deals with the excep-
tion in the context in which it occurred. If concurrent execution is allowed, the state of the
processor when it recognizes the exception is often not in the context in which it occurred. The
processor may have changed many of its internal registers and be executing a totally different
program by the time the exception occurs. If the exception handler cannot recapture the original
context, it cannot reliably determine the cause of the exception or to recover successfully from
the exception. To handle this situation, the x87 FPU has special registers updated at the start of
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each numeric instruction to describe the state of the numeric program when the failed instruction
was attempted. 

This provides tools to help the exception handler recapture the original context, but the applica-
tion code must also be written with synchronization in mind. Overall, exception synchronization
must ensure that the x87 FPU and other relevant parts of the context are in a well defined state
when the handler is invoked after an unmasked numeric exception occurs. 

When the x87 FPU signals an unmasked exception condition, it is requesting help. The fact that
the exception was unmasked indicates that further numeric program execution under the arith-
metic and programming rules of the x87 FPU will probably yield invalid results. Thus the excep-
tion must be handled, and with proper synchronization, or the program will not operate reliably.

For programmers in higher-level languages, all required synchronization is automatically
provided by the appropriate compiler. However, for assembly language programmers exception
synchronization remains the responsibility of the programmer. It is not uncommon for a
programmer to expect that their numeric program will not cause numeric exceptions after it has
been tested and debugged, but in a different system or numeric environment, exceptions may
occur regularly nonetheless. An obvious example would be use of the program with some
numbers beyond the range for which it was designed and tested. Example D-1 and Example D-2
in Section D.3.3.2., “Exception Synchronization Examples”, shows a more subtle way in which
unexpected exceptions can occur.

As described in Section D.3.1., “Floating-Point Exceptions and Their Defaults”, depending on
options determined by the software system designer, the processor can perform one of two
possible courses of action when a numeric exception occurs.

• The x87 FPU can provide a default fix-up for selected numeric exceptions. If the x87 FPU
performs its default action for all exceptions, then the need for exception synchronization
is not manifest. However, code is often ported to contexts and operating systems for which
it was not originally designed. Example D-1 and Example D-2, below, illustrates that it is
safest to always consider exception synchronization when designing code that uses the x87
FPU.

• Alternatively, a software exception handler can be invoked to handle the exception. When
a numeric exception is unmasked and the exception occurs, the x87 FPU stops further
execution of the numeric instruction and causes a branch to a software exception handler.
When an x87 FPU exception handler will be invoked, synchronization must always be
considered to assure reliable performance.

Example D-1 and Example D-2, below, illustrate the need to always consider exception synchro-
nization when writing numeric code, even when the code is initially intended for execution with
exceptions masked.

D.3.3.2. EXCEPTION SYNCHRONIZATION EXAMPLES

In the following examples, three instructions are shown to load an integer, calculate its square
root, then increment the integer. The synchronous execution of the x87 FPU will allow both of
these programs to execute correctly, with INC COUNT being executed in parallel in the
processor, as long as no exceptions occur on the FILD instruction. However, if the code is later
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moved to an environment where exceptions are unmasked, the code in Example D-1 will not
work correctly:

Example D-1.  Incorrect Error Synchronization

FILD COUNT; x87 FPU instruction

INC COUNT; integer instruction alters operand

FSQRT ; subsequent x87 FPU instruction -- error 

; from previous x87 FPU instruction detected here

Example D-2.  Proper Error Synchronization

FILD COUNT; x87 FPU instruction

FSQRT ; subsequent x87 FPU instruction -- error from 

; previous x87 FPU instruction detected here

INC COUNT; integer instruction alters operand

In some operating systems supporting the x87 FPU, the numeric register stack is extended to
memory. To extend the x87 FPU stack to memory, the invalid exception is unmasked. A push to
a full register or pop from an empty register sets SF (Stack Fault flag) and causes an invalid oper-
ation exception. The recovery routine for the exception must recognize this situation, fix up the
stack, then perform the original operation. The recovery routine will not work correctly in
Example D-1. The problem is that the value of COUNT increments before the exception handler
is invoked, so that the recovery routine will load an incorrect value of COUNT, causing the
program to fail or behave unreliably.

D.3.3.3. PROPER EXCEPTION SYNCHRONIZATION IN GENERAL

As explained in Section D.2.1.2., “Recommended External Hardware to Support the MS-DOS
Compatibility Mode”, if the x87 FPU encounters an unmasked exception condition a software
exception handler is invoked before execution of the next WAIT or floating-point instruction.
This is because an unmasked floating-point exception causes the processor to freeze immedi-
ately before executing such an instruction (unless the IGNNE# input is active, or it is a no-wait
x87 FPU instruction). Exactly when the exception handler will be invoked (in the interval
between when the exception is detected and the next WAIT or x87 FPU instruction) is dependent
on the processor generation, the system, and which x87 FPU instruction and exception is
involved. 

To be safe in exception synchronization, one should assume the handler will be invoked at the
end of the interval. Thus the program should not change any value that might be needed by the
handler (such as COUNT in Example D-1 and Example D-2) until after the next x87 FPU
instruction following an x87 FPU instruction that could cause an error. If the program needs to
modify such a value before the next x87 FPU instruction (or if the next x87 FPU instruction
could also cause an error), then a WAIT instruction should be inserted before the value is modi-
fied. This will force the handling of any exception before the value is modified. A WAIT instruc-
tion should also be placed after the last floating-point instruction in an application so that any
unmasked exceptions will be serviced before the task completes.
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D.3.4. x87 FPU Exception Handling Examples

There are many approaches to writing exception handlers. One useful technique is to consider
the exception handler procedure as consisting of “prologue,” “body,” and “epilogue” sections of
code. 

In the transfer of control to the exception handler due to an INTR, NMI, or SMI, external inter-
rupts have been disabled by hardware. The prologue performs all functions that must be
protected from possible interruption by higher-priority sources. Typically, this involves saving
registers and transferring diagnostic information from the x87 FPU to memory. When the crit-
ical processing has been completed, the prologue may re-enable interrupts to allow higher-
priority interrupt handlers to preempt the exception handler. The standard “prologue” not only
saves the registers and transfers diagnostic information from the x87 FPU to memory but also
clears the floating-point exception flags in the status word. Alternatively, when it is not neces-
sary for the handler to be re-entrant, another technique may also be used. In this technique, the
exception flags are not cleared in the “prologue” and the body of the handler must not contain
any floating-point instructions that cannot complete execution when there is a pending floating-
point exception. (The no-wait instructions are discussed in Section 8.3.12., “Waiting Vs. Non-
waiting Instructions”.) Note that the handler must still clear the exception flag(s) before
executing the IRET. If the exception handler uses neither of these techniques the system will be
caught in an endless loop of nested floating-point exceptions, and hang.

The body of the exception handler examines the diagnostic information and makes a response
that is necessarily application-dependent. This response may range from halting execution, to
displaying a message, to attempting to repair the problem and proceed with normal execution.
The epilogue essentially reverses the actions of the prologue, restoring the processor so that
normal execution can be resumed. The epilogue must not load an unmasked exception flag into
the x87 FPU or another exception will be requested immediately.

The following code examples show the ASM386/486 coding of three skeleton exception
handlers, with the save spaces given as correct for 32-bit protected mode. They show how
prologues and epilogues can be written for various situations, but the application dependent
exception handling body is just indicated by comments showing where it should be placed.

The first two are very similar; their only substantial difference is their choice of instructions to
save and restore the x87 FPU. The trade-off here is between the increased diagnostic informa-
tion provided by FNSAVE and the faster execution of FNSTENV. (Also, after saving the orig-
inal contents, FNSAVE re-initializes the x87 FPU, while FNSTENV only masks all x87 FPU
exceptions.) For applications that are sensitive to interrupt latency or that do not need to examine
register contents, FNSTENV reduces the duration of the “critical region,” during which the
processor does not recognize another interrupt request. (See the Section 8.1.9., “Saving the x87
FPU’s State with the FSTENV/FNSTENV and FSAVE/FNSAVE Instructions”, for a complete
description of the x87 FPU save image.) If the processor supports Streaming SIMD Extensions
and the operating system supports it, the FXSAVE instruction should be used instead of
FNSAVE. If the FXSAVE instruction is used, the save area should be increased to 512 bytes and
aligned to 16 bytes to save the entire state. These steps will ensure that the complete context is
saved.
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After the exception handler body, the epilogues prepare the processor to resume execution from
the point of interruption (i.e., the instruction following the one that generated the unmasked
exception). Notice that the exception flags in the memory image that is loaded into the x87 FPU
are cleared to zero prior to reloading (in fact, in these examples, the entire status word image is
cleared).

Example D-3 and Example D-4 assume that the exception handler itself will not cause an
unmasked exception. Where this is a possibility, the general approach shown in Example D-5
can be employed. The basic technique is to save the full x87 FPU state and then to load a new
control word in the prologue. Note that considerable care should be taken when designing an
exception handler of this type to prevent the handler from being reentered endlessly.

Example D-3.  Full-State Exception Handler

SAVE_ALL PROC

;

; SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU STATE IMAGE

PUSHEBP

.

.

MOV EBP, ESP

SUB ESP, 108 ; ALLOCATES 108 BYTES (32-bit PROTECTED 

MODE SIZE)

;SAVE FULL x87 FPU STATE, RESTORE INTERRUPT ENABLE FLAG (IF)

FNSAVE[EBP-108]

PUSH [EBP + OFFSET_TO_EFLAGS] ; COPY OLD EFLAGS TO 

STACK TOP

POPFD; RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

;

; APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE

;

; CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)

; RESTORE MODIFIED STATE IMAGE

MOVBYTE PTR [EBP-104], 0H

FRSTOR[EBP-108]

; DE-ALLOCATE STACK SPACE, RESTORE REGISTERS

MOVESP, EBP

.

.

POPEBP

;

; RETURN TO INTERRUPTED CALCULATION

IRETD

SAVE_ALL ENDP
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Example D-4.  Reduced-Latency Exception Handler

SAVE_ENVIRONMENT PROC

;

; SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU ENVIRONMENT 

PUSHEBP

.

.

MOV EBP, ESP

SUB ESP, 28  ; ALLOCATES 28 BYTES (32-bit PROTECTED 

MODE SIZE)

;SAVE ENVIRONMENT, RESTORE INTERRUPT ENABLE FLAG (IF)

FNSTENV[EBP-28]

PUSH [EBP + OFFSET_TO_EFLAGS]  ; COPY OLD EFLAGS TO 

STACK TOP

POPFD; RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

;

; APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE

;

; CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)

; RESTORE MODIFIED ENVIRONMENT IMAGE

MOV BYTE PTR [EBP-24], 0H

FLDENV[EBP-28]

; DE-ALLOCATE STACK SPACE, RESTORE REGISTERS

MOV ESP, EBP

.

.

POP EBP

;

; RETURN TO INTERRUPTED CALCULATION

IRETD

SAVE_ENVIRONMENT ENDP
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Example D-5.  Reentrant Exception Handler

.

.

LOCAL_CONTROL DW ? ; ASSUME INITIALIZED

.

.

REENTRANT PROC

;

; SAVE REGISTERS, ALLOCATE STACK SPACE FOR x87 FPU STATE IMAGE

PUSH EBP

.

.

MOV EBP, ESP

SUB ESP, 108  ; ALLOCATES 108 BYTES (32-bit 

PROTECTED MODE SIZE)

; SAVE STATE, LOAD NEW CONTROL WORD, RESTORE INTERRUPT ENABLE FLAG (IF)

FNSAVE[EBP-108]

FLDCW LOCAL_CONTROL

PUSH [EBP + OFFSET_TO_EFLAGS]  ; COPY OLD EFLAGS TO 

STACK TOP

POPFD; RESTORE IF TO VALUE BEFORE x87 FPU EXCEPTION

.

.

;

; APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE. AN UNMASKED 

EXCEPTION

; GENERATED HERE WILL CAUSE THE EXCEPTION HANDLER TO BE REENTERED.

; IF LOCAL STORAGE IS NEEDED, IT MUST BE ALLOCATED ON THE STACK.

;

.

.

; CLEAR EXCEPTION FLAGS IN STATUS WORD (WHICH IS IN MEMORY)

; RESTORE MODIFIED STATE IMAGE

MOV BYTE PTR [EBP-104], 0H

FRSTOR[EBP-108]

; DE-ALLOCATE STACK SPACE, RESTORE REGISTERS

MOV ESP, EBP

.

.

POP EBP
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;

; RETURN TO POINT OF INTERRUPTION

IRETD

REENTRANT ENDP

D.3.5. Need for Storing State of IGNNE# Circuit If Using x87 FPU 
and SMM

The recommended circuit (see Figure D-1) for MS-DOS compatibility x87 FPU exception
handling for Intel486 processors and beyond contains two flip flops. When the x87 FPU excep-
tion handler accesses I/O port 0F0H it clears the IRQ13 interrupt request output from Flip Flop
#1 and also clocks out the IGNNE# signal (active) from Flip Flop #2. 

The assertion of IGNNE# may be used by the handler if needed to execute any x87 FPU instruc-
tion while ignoring the pending x87 FPU errors. The problem here is that the state of Flip Flop
#2 is effectively an additional (but hidden) status bit that can affect processor behavior, and so
ideally should be saved upon entering SMM, and restored before resuming to normal operation.
If this is not done, and also the SMM code saves the x87 FPU state, AND an x87 FPU error
handler is being used which relies on IGNNE# assertion, then (very rarely) the x87 FPU handler
will nest inside itself and malfunction. The following example shows how this can happen.

Suppose that the x87 FPU exception handler includes the following sequence:

FNSTSW  save_sw ; save the x87 FPU status word 

; using a no-wait x87 FPU instruction

OUT 0F0H, AL ; clears IRQ13 & activates IGNNE#

    . . . .

FLDCW new_cw ; loads new CW ignoring x87 FPU errors, 

; since IGNNE# is assumed active; or any 

; other x87 FPU instruction that is not a no-wait 

; type will cause the same problem

     . . . .

FCLEX ; clear the x87 FPU error conditions & thus 

; turn off FERR# & reset the IGNNE# FF

The problem will only occur if the processor enters SMM between the OUT and the FLDCW
instructions. But if that happens, AND the SMM code saves the x87 FPU state using FNSAVE,
then the IGNNE# Flip Flop will be cleared (because FNSAVE clears the x87 FPU errors and
thus de-asserts FERR#). When the processor returns from SMM it will restore the x87 FPU state
with FRSTOR, which will re-assert FERR#, but the IGNNE# Flip Flop will not get set. Then
when the x87 FPU error handler executes the FLDCW instruction, the active error condition will
cause the processor to re-enter the x87 FPU error handler from the beginning. This may cause
the handler to malfunction.
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To avoid this problem, Intel recommends two measures:

1. Do not use the x87 FPU for calculations inside SMM code. (The normal power
management, and sometimes security, functions provided by SMM have no need for x87
FPU calculations; if they are needed for some special case, use scaling or emulation
instead.) This eliminates the need to do FNSAVE/FRSTOR inside SMM code, except
when going into a 0 V suspend state (in which, in order to save power, the CPU is turned
off completely, requiring its complete state to be saved.)

2. The system should not call upon SMM code to put the processor into 0 V suspend while
the processor is running x87 FPU calculations, or just after an interrupt has occurred.
Normal power management protocol avoids this by going into power down states only
after timed intervals in which no system activity occurs.

D.3.6. Considerations When x87 FPU Shared Between Tasks

The IA-32 architecture allows speculative deferral of floating-point state swaps on task
switches. This feature allows postponing an x87 FPU state swap until an x87 FPU instruction is
actually encountered in another task. Since kernel tasks rarely use floating-point, and some
applications do not use floating-point or use it infrequently, the amount of time saved by
avoiding unnecessary stores of the floating-point state is significant. Speculative deferral of x87
FPU saves does, however, place an extra burden on the kernel in three key ways:

1. The kernel must keep track of which thread owns the x87 FPU, which may be different
from the currently executing thread.

2. The kernel must associate any floating-point exceptions with the generating task. This
requires special handling since floating-point exceptions are delivered asynchronous with
other system activity.

3. There are conditions under which spurious floating-point exception interrupts are
generated, which the kernel must recognize and discard.

D.3.6.1. SPECULATIVELY DEFERRING X87 FPU SAVES, GENERAL 
OVERVIEW

In order to support multitasking, each thread in the system needs a save area for the general-
purpose registers, and each task that is allowed to use floating-point needs an x87 FPU save area
large enough to hold the entire x87 FPU stack and associated x87 FPU state such as the control
word and status word. (See Section 8.1.9., “Saving the x87 FPU’s State with the
FSTENV/FNSTENV and FSAVE/FNSAVE Instructions”, for a complete description of the x87
FPU save image.) If the processor and the operating system support Streaming SIMD Exten-
sions, the save area should be large enough and aligned correctly to hold x87 FPU and Streaming
SIMD Extensions state.

On a task switch, the general-purpose registers are swapped out to their save area for the
suspending thread, and the registers of the resuming thread are loaded. The x87 FPU state does
not need to be saved at this point. If the resuming thread does not use the x87 FPU before it is
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itself suspended, then both a save and a load of the x87 FPU state has been avoided. It is often
the case that several threads may be executed without any usage of the x87 FPU.

The processor supports speculative deferral of x87 FPU saves via interrupt 7 “Device Not Avail-
able” (DNA), used in conjunction with CR0 bit 3, the “Task Switched” bit (TS). (See “Control
Registers” in Chapter 2 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3.)
Every task switch via the hardware supported task switching mechanism (see “Task Switching”
in Chapter 6 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3) sets TS.
Multi-threaded kernels that use software task switching2 can set the TS bit by reading CR0,
ORing a “1” into3 bit 3, and writing back CR0. Any subsequent floating-point instructions (now
being executed in a new thread context) will fault via interrupt 7 before execution. 

This allows a DNA handler to save the old floating-point context and reload the x87 FPU state
for the current thread. The handler should clear the TS bit before exit using the CLTS instruction.
On return from the handler the faulting thread will proceed with its floating-point computation.

Some operating systems save the x87 FPU context on every task switch, typically because they
also change the linear address space between tasks. The problem and solution discussed in the
following sections apply to these operating systems also.

D.3.6.2. TRACKING X87 FPU OWNERSHIP

Since the contents of the x87 FPU may not belong to the currently executing thread, the thread
identifier for the last x87 FPU user needs to be tracked separately. This is not complicated; the
kernel should simply provide a variable to store the thread identifier of the x87 FPU owner, sepa-
rate from the variable that stores the identifier for the currently executing thread. This variable
is updated in the DNA exception handler, and is used by the DNA exception handler to find the
x87 FPU save areas of the old and new threads. A simplified flow for a DNA exception handler
is then:

1. Use the “x87 FPU Owner” variable to find the x87 FPU save area of the last thread to use
the x87 FPU.

2. Save the x87 FPU contents to the old thread’s save area, typically using an FNSAVE or
FXSAVE instruction.

3. Set the x87 FPU Owner variable to the identify the currently executing thread.

4. Reload the x87 FPU contents from the new thread’s save area, typically using an FRSTOR
or FXSTOR instruction.

5. Clear TS using the CLTS instruction and exit the DNA exception handler.

2 In a software task switch, the operating system uses a sequence of instructions to save the suspending
thread’s state and restore the resuming thread’s state, instead of the single long non-interruptible task
switch operation provided by the IA-32 architecture.

3 Although CR0, bit 2, the emulation flag (EM), also causes a DNA exception, do not use the EM bit as a
surrogate for TS. EM means that no x87 FPU is available and that floating-point instructions must be
emulated. Using EM to trap on task switches is not compatible with the MMX technology. If the EM flag is
set, MMX instructions raise the invalid opcode exception.
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While this flow covers the basic requirements for speculatively deferred x87 FPU state swaps,
there are some additional subtleties that need to be handled in a robust implementation.

D.3.6.3. INTERACTION OF X87 FPU STATE SAVES AND FLOATING-POINT 
EXCEPTION ASSOCIATION

Recall these key points from earlier in this document: When considering floating-point excep-
tions across all implementations of the IA-32 architecture, and across all floating-point instruc-
tions, an floating-point exception can be initiated from any time during the excepting floating-
point instruction, up to just before the next floating-point instruction. The “next” floating-point
instruction may be the FNSAVE used to save the x87 FPU state for a task switch. In the case of
“no-wait:” instructions such as FNSAVE, the interrupt from a previously excepting instruction
(NE=0 case) may arrive just before the no-wait instruction, during, or shortly thereafter with a
system dependent delay. 

Note that this implies that an floating-point exception might be registered during the state swap
process itself, and the kernel and floating-point exception interrupt handler must be prepared for
this case.

A simple way to handle the case of exceptions arriving during x87 FPU state swaps is to allow
the kernel to be one of the x87 FPU owning threads. A reserved thread identifier is used to indi-
cate kernel ownership of the x87 FPU. During an floating-point state swap, the “x87 FPU
owner” variable should be set to indicate the kernel as the current owner. At the completion of
the state swap, the variable should be set to indicate the new owning thread. The numeric excep-
tion handler needs to check the x87 FPU owner and discard any numeric exceptions that occur
while the kernel is the x87 FPU owner. A more general flow for a DNA exception handler that
handles this case is shown in Figure D-5.

Numeric exceptions received while the kernel owns the x87 FPU for a state swap must be
discarded in the kernel without being dispatched to a handler. A flow for a numeric exception
dispatch routine is shown in Figure D-6.

It may at first glance seem that there is a possibility of floating-point exceptions being lost
because of exceptions that are discarded during state swaps. This is not the case, as the exception
will be re-issued when the floating-point state is reloaded. Walking through state swaps both
with and without pending numeric exceptions will clarify the operation of these two handlers.
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Case #1: x87 FPU State Swap Without Numeric Exception

Assume two threads A and B, both using the floating-point unit. Let A be the thread to have most
recently executed a floating-point instruction, with no pending numeric exceptions. Let B be the
currently executing thread. CR0.TS was set when thread A was suspended. 

Figure D-5.  General Program Flow for DNA Exception Handler

Figure D-6.  Program Flow for a Numeric Exception Dispatch Routine
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When B starts to execute a floating-point instruction the instruction will fault with the DNA
exception because TS is set.

At this point the handler is entered, and eventually it finds that the current x87 FPU Owner is
not the currently executing thread. To guard the x87 FPU state swap from extraneous numeric
exceptions, the x87 FPU Owner is set to be the kernel. The old owner’s x87 FPU state is saved
with FNSAVE, and the current thread’s x87 FPU state is restored with FRSTOR. Before exiting,
the x87 FPU owner is set to thread B, and the TS bit is cleared.

On exit, thread B resumes execution of the faulting floating-point instruction and continues.

Case #2: x87 FPU State Swap with Discarded Numeric Exception

Again, assume two threads A and B, both using the floating-point unit. Let A be the thread to
have most recently executed a floating-point instruction, but this time let there be a pending
numeric exception. Let B be the currently executing thread. When B starts to execute a floating-
point instruction the instruction will fault with the DNA exception and enter the DNA handler.
(If both numeric and DNA exceptions are pending, the DNA exception takes precedence, in
order to support handling the numeric exception in its own context.)

When the FNSAVE starts, it will trigger an interrupt via FERR# because of the pending numeric
exception. After some system dependent delay, the numeric exception handler is entered. It may
be entered before the FNSAVE starts to execute, or it may be entered shortly after execution of
the FNSAVE. Since the x87 FPU Owner is the kernel, the numeric exception handler simply
exits, discarding the exception. The DNA handler resumes execution, completing the FNSAVE
of the old floating-point context of thread A and the FRSTOR of the floating-point context for
thread B.

Thread A eventually gets an opportunity to handle the exception that was discarded during the
task switch. After some time, thread B is suspended, and thread A resumes execution. When
thread A starts to execute an floating-point instruction, once again the DNA exception handler
is entered. B’s x87 FPU state is Finessed, and A’s x87 FPU state is Frustrate. Note that in
restoring the x87 FPU state from A’s save area, the pending numeric exception flags are reloaded
in to the floating-point status word. Now when the DNA exception handler returns, thread A
resumes execution of the faulting floating-point instruction just long enough to immediately
generate a numeric exception, which now gets handled in the normal way. The net result is that
the task switch and resulting x87 FPU state swap via the DNA exception handler causes an extra
numeric exception which can be safely discarded.

D.3.6.4. INTERRUPT ROUTING FROM THE KERNEL

In MS-DOS, an application that wishes to handle numeric exceptions hooks interrupt 16 by
placing its handler address in the interrupt vector table, and exiting via a jump to the previous
interrupt 16 handler. Protected mode systems that run MS-DOS programs under a subsystem can
emulate this exception delivery mechanism. For example, assume a protected mode O.S. that
runs with CR.NE = 1, and that runs MS-DOS programs in a virtual machine subsystem. The
MS-DOS program is set up in a virtual machine that provides a virtualized interrupt table. The
MS-DOS application hooks interrupt 16 in the virtual machine in the normal way. A numeric
exception will trap to the kernel via the real INT 16 residing in the kernel at ring 0. 
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The INT 16 handler in the kernel then locates the correct MS-DOS virtual machine, and reflects
the interrupt to the virtual machine monitor. The virtual machine monitor then emulates an inter-
rupt by jumping through the address in the virtualized interrupt table, eventually reaching the
application’s numeric exception handler.

D.3.6.5. SPECIAL CONSIDERATIONS FOR OPERATING SYSTEMS THAT 
SUPPORT STREAMING SIMD EXTENSIONS

Operating systems that support Streaming SIMD Extensions instructions introduced with the
Pentium III processor should use the FXSAVE and FXRSTOR instructions to save and restore
the new SIMD floating-point instruction register state as well as the floating-point state. Such
operating systems must consider the following issues:

1. Enlarged state save area: the FNSAVE/FRSTOR instructions operate on a 94-byte or
108-byte memory region, depending on whether they are executed in 16-bit or 32-bit
mode. The FXSAVE/FXRSTOR instructions operate on a 512-byte memory region.

2. Alignment requirements: the FXSAVE/FXRSTOR instructions require the memory
region on which they operate to be 16-byte aligned (refer to the individual instruction
instructions descriptions in Chapter 3, Instruction Set Reference, in the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 2, for information about exceptions
generated if the memory region is not aligned).

3. Maintaining compatibility with legacy applications/libraries: The operating system
changes to support Streaming SIMD Extensions must be invisible to legacy applications or
libraries that deal only with floating-point instructions. The layout of the memory region
operated on by the FXSAVE/FXRSTOR instructions is different from the layout for the
FNSAVE/FRSTOR instructions. Specifically, the format of the x87 FPU tag word and the
length of the various fields in the memory region is different. Care must be taken to return
the x87 FPU state to a legacy application (e.g., when reporting FP exceptions) in the
format it expects.

4. Instruction semantic differences: There are some semantic differences between the way
the FXSAVE and FSAVE/FNSAVE instructions operate. The FSAVE/FNSAVE instruc-
tions clear the x87 FPU after they save the state while the FXSAVE instruction saves the
x87 FPU/Streaming SIMD Extensions state but does not clear it. Operating systems that
use FXSAVE to save the x87 FPU state before making it available for another thread (e.g.,
during thread switch time) should take precautions not to pass a “dirty” x87 FPU to
another application.

D.4. DIFFERENCES FOR HANDLERS USING NATIVE MODE

The 8087 has a pin INT which it asserts when an unmasked exception occurs. But there is no
interrupt input pin in the 8086 or 8088 dedicated to its attachment, nor an interrupt vector
number in the 8086 or 8088 specific for an x87 FPU error assertion. But beginning with the Intel
286 and Intel 287 hardware connections were dedicated to support the x87 FPU exception, and
interrupt vector 16 assigned to it.
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D.4.1. Origin with the Intel 286 and Intel 287, and Intel386 and 
Intel 387 Processors

The Intel 286 and Intel 287, and Intel386 and Intel 387 processor/coprocessor pairs are each
provided with ERROR# pins that are recommended to be connected between the processor and
x87 FPU. If this is done, when an unmasked x87 FPU exception occurs, the x87 FPU records
the exception, and asserts its ERROR# pin. The processor recognizes this active condition of the
ERROR# status line immediately before execution of the next WAIT or x87 FPU instruction
(except for the no-wait type) in its instruction stream, and branches to the routine at interrupt
vector 16. Thus an x87 FPU exception will be handled before any other x87 FPU instruction
(after the one causing the error) is executed (except for no-wait instructions, which will be
executed without triggering the x87 FPU exception interrupt, but it will remain pending).

Using the dedicated interrupt 16 for x87 FPU exception handling is referred to as the native
mode. It is the simplest approach, and the one recommended most highly by Intel.

D.4.2. Changes with Intel486, Pentium and Pentium Pro 
Processors with CR0.NE=1

With these latest three generations of the IA-32 architecture, more enhancements and speedup
features have been added to the corresponding x87 FPUs. Also, the x87 FPU is now built into
the same chip as the processor, which allows further increases in the speed at which the x87 FPU
can operate as part of the integrated system. This also means that the native mode of x87 FPU
exception handling, selected by setting bit NE of register CR0 to 1, is now entirely internal.

If an unmasked exception occurs during an x87 FPU instruction, the x87 FPU records the excep-
tion internally, and triggers the exception handler through interrupt 16 immediately before
execution of the next WAIT or x87 FPU instruction (except for no-wait instructions, which will
be executed as described in Section D.4.1., “Origin with the Intel 286 and Intel 287, and Intel386
and Intel 387 Processors”).

An unmasked numerical exception causes the FERR# output to be activated even with NE=1,
and at exactly the same point in the program flow as it would have been asserted if NE were
zero. However, the system would not connect FERR# to a PIC to generate INTR when operating
in the native, internal mode. (If the hardware of a system has FERR# connected to trigger IRQ13
in order to support MS-DOS, but an operating system using the native mode is actually running
the system, it is the operating system’s responsibility to make sure that IRQ13 is not enabled in
the slave PIC.) With this configuration a system is immune to the problem discussed in Section
D.2.1.3., “No-Wait x87 FPU Instructions Can Get x87 FPU Interrupt in Window”, where for
Intel486 and Pentium processors a no-wait x87 FPU instruction can get an x87 FPU exception.
D-28



GUIDELINES FOR WRITING X87 FPU EXCEPTION HANDLERS
D.4.3. Considerations When x87 FPU Shared Between Tasks 
Using Native Mode

The protocols recommended in Section D.3.6., “Considerations When x87 FPU Shared
Between Tasks”, for MS-DOS compatibility x87 FPU exception handlers that are shared
between tasks may be used without change with the native mode. However, the protocols for a
handler written specifically for native mode can be simplified, because the problem of a spurious
floating-point exception interrupt occurring while the kernel is executing cannot happen in
native mode. 

The problem as actually found in practical code in a MS-DOS compatibility system happens
when the DNA handler uses FNSAVE to switch x87 FPU contexts. If an x87 FPU exception is
active, then FNSAVE triggers FERR# briefly, which usually will cause the x87 FPU exception
handler to be invoked inside the DNA handler. In native mode, neither FNSAVE nor any other
no-wait instructions can trigger interrupt 16. (As discussed above, FERR# gets asserted inde-
pendent of the value of the NE bit, but when NE=1, the operating system should not enable its
path through the PIC.) Another possible (very rare) way a floating-point exception interrupt
could occur while the kernel is executing is by an x87 FPU immediate exception case having its
interrupt delayed by the external hardware until execution has switched to the kernel. This also
cannot happen in native mode because there is no delay through external hardware.

Thus the native mode x87 FPU exception handler can omit the test to see if the kernel is the x87
FPU owner, and the DNA handler for a native mode system can omit the step of setting the kernel
as the x87 FPU owner at the handler’s beginning. Since however these simplifications are minor
and save little code, it would be a reasonable and conservative habit (as long as the MS-DOS
compatibility mode is widely used) to include these steps in all systems.

Note that the special DP (Dual Processing) mode for Pentium processors, and also the more
general Intel MultiProcessor Specification for systems with multiple Pentium, P6 family, or
Pentium 4 processors, support x87 FPU exception handling only in the native mode. Intel
does not recommend using the MS-DOS compatibility mode for systems using more than one
processor.
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APPENDIX E
GUIDELINES FOR WRITING SIMD FLOATING-

POINT EXCEPTION HANDLERS

See Section 11.5., “SSE and SSE2 Exceptions” for a detailed discussion of SIMD floating-point
exceptions.

This appendix considers only the SSE and SSE2 instructions that can generate numeric (float-
ing-point) exceptions, and gives an overview of the necessary support for handling such excep-
tions. This appendix does not address RSQRTSS, RSQRTPS, RCPSS, RCPPS, or any unlisted
instruction. For detailed information on which instructions generate numeric exceptions, and a
listing of those exceptions, refer to Appendix C, Floating-Point Exceptions Summary. Non-nu-
meric exceptions are handled in a way similar to that for the standard IA-32 instructions.

E.1. TWO OPTIONS FOR HANDLING FLOATING-POINT 
EXCEPTIONS

Just as for x87 FPU floating-point exceptions, the processor takes one of two possible courses
of action when an SSE or SSE2 instruction raises a floating-point exception. 

• If the exception being raised is masked (by setting the corresponding mask bit in the
MXCSR to 1), then a default result is produced, which is acceptable in most situations. No
external indication of the exception is given, but the corresponding exception flags in the
MXCSR are set, and may be examined later. Note though that for packed operations, an
exception flag that is set in the MXCSR will not tell which of the sub-operands caused the
event to occur.

• If the exception being raised is not masked (by setting the corresponding mask bit in the
MXCSR to 0), a software exception handler previously registered by the user will be
invoked through the SIMD floating-point exception (#XF, vector 19). This case is
discussed below in Section E.2., “Software Exception Handling”.

E.2. SOFTWARE EXCEPTION HANDLING

The exception handling routine reached via interrupt vector 19 is usually part of the system soft-
ware (the operating system kernel). Note that an interrupt descriptor table (IDT) entry must have
been previously set up for this vector (refer to Chapter 5, Interrupt and Exception Handling, in
the IA-32 Software Developer’s Manual, Volume 3). Some compilers use specific run-time li-
braries to assist in floating-point exception handling. If any x87 FPU floating-point operations
are going to be performed that might raise floating-point exceptions, then the exception handling
routine must either disable all floating-point exceptions (for example, loading a local control
word with FLDCW), or it must be implemented as re-entrant (for the case of x87 FPU excep-
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tions, refer to Example D-1 in Appendix D, Guidelines for Writing x87 FPU Exception Han-
dlers). If this is not the case, the routine has to clear the status flags for x87 FPU exceptions, or
to mask all x87 FPU floating-point exceptions. For SIMD floating-point exceptions though, the
exception flags in MXCSR do not have to be cleared, even if they remain unmasked (they may
still be cleared). Exceptions are in this case precise and occur immediately, and a SIMD floating-
point exception status flag that is set when the corresponding exception is unmasked will not
generate an exception.

Typical actions performed by this low-level exception handling routine are:

• incrementing an exception counter for later display or printing

• printing or displaying diagnostic information (e.g. the MXCSR and XMM registers)

• aborting further execution, or using the exception pointers to build an instruction that will
run without exception and executing it

• storing information about the exception in a data structure that will be passed to a higher
level user exception handler

In most cases (and this applies also to the SSE and SSE2 instructions), there will be three main
components of a low-level floating-point exception handler: a “prologue”, a “body”, and an “ep-
ilogue”.

The prologue performs functions that must be protected from possible interruption by higher-
priority sources - typically saving registers and transferring diagnostic information from the pro-
cessor to memory. When the critical processing has been completed, the prologue may re-enable
interrupts to allow higher-priority interrupt handlers to preempt the exception handler (assuming
that the interrupt handler was called through an interrupt gate, meaning that the processor
cleared the interrupt enable (IF) flag in the EFLAGS register - refer to Section 6.4.1., “Call and
Return Operation for Interrupt or Exception Handling Procedures”).

The body of the exception handler examines the diagnostic information and makes a response
that is application-dependent. It may range from halting execution, to displaying a message, to
attempting to fix the problem and then proceeding with normal execution, to setting up a data
structure, calling a higher-level user exception handler and continuing execution upon return
from it. This latter case will be assumed in Section E.4., “SIMD Floating-Point Exceptions and
the IEEE Standard 754 for Binary Floating-Point Arithmetic” below.

Finally, the epilogue essentially reverses the actions of the prologue, restoring the processor
state so that normal execution can be resumed.

The following example represents a typical exception handler. To link it with Example E-2 that
will follow in Section E.4.3., “SIMD Floating-Point Emulation Implementation Example”, as-
sume that the body of the handler (not shown here in detail) passes the saved state to a routine
that will examine in turn all the sub-operands of the excepting instruction, invoking a user float-
ing-point exception handler if a particular set of sub-operands raises an unmasked (enabled) ex-
ception, or emulating the instruction otherwise.
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Example E-1.  SIMD Floating-Point Exception Handler

SIMD_FP_EXC_HANDLER PROC
;
;;; PROLOGUE
; SAVE REGISTERS
    PUSH EBP ; SAVE EBP
    PUSH EAX ; SAVE EAX
    ...
    MOV EBP, ESP ; SAVE ESP in EBP
    SUB ESP, 512 ; ALLOCATE 512 BYTES
    AND ESP, 0fffffff0h ; MAKE THE ADDRESS 16-BYTE ALIGNED
    FXSAVE [ESP] ; SAVE FP, MMX, AND SIMD FP STATE
    PUSH [EBP+EFLAGS_OFFSET] ; COPY OLD EFLAGS TO STACK TOP
    POPD ;RESTORE THE INTERRUPT ENABLE FLAG IF

;TO VALUE BEFORE SIMD FP EXCEPTION
;
;;; BODY
; APPLICATION-DEPENDENT EXCEPTION HANDLING CODE GOES HERE
    LDMXCSR LOCAL_MXCSR ; LOAD LOCAL x87 FPU CW IF NEEDED
    ...
    ...
;
;;; EPILOGUE
    FXRSTOR [ESP] ; RESTORE MODIFIED STATE IMAGE
    MOV ESP, EBP ; DE-ALLOCATE STACK SPACE
    ...
    POP EAX ; RESTORE EAX
    POP EBP ; RESTORE EBP
    IRET ; RETURN TO INTERRUPTED CALCULATION
SIMD_FP_EXC_HANDLER ENDP

E.3. EXCEPTION SYNCHRONIZATION

An SSE or SSE2 instruction can execute in parallel with other similar instructions, with integer
instructions, and with floating-point or MMX instructions. Exception synchronization may
therefore be necessary, similarly to the situation described in Section D.3.3., “Synchronization
Required for Use of x87 FPU Exception Handlers”. Careful coding will ensure proper syn-
chronization in case a floating-point exception handler is invoked, and will lead to reliable per-
formance.
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E.4. SIMD FLOATING-POINT EXCEPTIONS AND THE IEEE 
STANDARD 754 FOR BINARY FLOATING-POINT 
ARITHMETIC

The SSE and SSE2 extensions are 100% compatible with the IEEE Standard 754 for Binary
Floating-Point Arithmetic, satisfying all of its mandatory requirements (when the flush-to-zero
or denormals-are-zeros mode is not enabled). But a programming environment that includes the
SSE and SSE2 instructions will comply with both the obligatory and the strongly recommended
requirements of the IEEE Standard 754 regarding floating-point exception handling, only as a
combination of hardware and software (which is acceptable). The standard states that a user
should be able to request a trap on any of the five floating-point exceptions (note that the denor-
mal exception is an IA-32 addition), and it also specifies the values (operands or result) to be
delivered to the exception handler. 

The main issue is that for the SSE and SSE2 instructions that raise post-computation exceptions
(traps: overflow, underflow, or inexact), unlike for x87 FPU instructions, the processor does not
provide the result recommended by IEEE Standard 754 to the user handler. If a user program
needs the result of an instruction that generated a post-computation exception, it is the respon-
sibility of the software to produce this result by emulating the faulting SSE or SSE2 instruction.
Another issue is that the standard does not specify explicitly how to handle multiple floating-
point exceptions that occur simultaneously. For packed operations, a logical OR of the flags that
would be set by each sub-operation is used to set the exception flags in the MXCSR. The fol-
lowing subsections present one possible way to solve these problems.

E.4.1. Floating-Point Emulation

Every operating system must provide a kernel level floating-point exception handler (a template
was presented in Section E.2., “Software Exception Handling” above). In the following, assume
that a user mode floating-point exception filter is supplied for SIMD floating-point exceptions
(for example as part of a library of C functions), that a user program can invoke in order to han-
dle unmasked exceptions. The user mode floating-point exception filter (not shown here) has to
be able to emulate the subset of SSE and SSE2 instructions that can generate numeric excep-
tions, and has to be able to invoke a user provided floating-point exception handler for floating-
point exceptions. When a floating-point exception that is not masked is raised by an SSE or
SSE2 instruction, the low-level floating-point exception handler will be called. This low-level
handler may in turn call the user mode floating-point exception filter. The filter function receives
the original operands of the excepting instruction, as no results are provided by the hardware,
whether a pre-computation or a post-computation exception has occurred. The filter will unpack
the operands into up to four sets of sub-operands, and will submit them one set at a time to an
emulation function (See Example E-2 in Section E.4.3., “SIMD Floating-Point Emulation Im-
plementation Example”.). The emulation function will examine the sub-operands, and will pos-
sibly redo the necessary calculation. 
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Two cases are possible:

• If an unmasked (enabled) exception occurs in this process, the emulation function will
return to its caller (the filter function) with the appropriate information. The filter will
invoke a (previously registered) user floating-point exception handler for this set of sub-
operands, and will record the result upon return from the user handler (provided the user
handler allows continuation of the execution). 

• If no unmasked (enabled) exception occurs, the emulation function will determine and will
return to its caller the result of the operation for the current set of sub-operands (it has to be
IEEE Standard 754 compliant). The filter function will record the result (plus any new flag
settings).

The user level filter function will then call the emulation function for the next set of sub-operands
(if any). When done, the partial results will be packed (if the excepting instruction has a packed
floating-point result, which is true for most SSE and SSE2 numeric instructions) and the filter
will return to the low-level exception handler, which in turn will return from the interruption, al-
lowing execution to continue. Note that the instruction pointer (EIP) has to be altered to point to
the instruction following the excepting instruction, in order to continue execution correctly.

If a user mode floating-point exception filter is not provided, then all the work for decoding the
excepting instruction, reading its operands, emulating the instruction for the components of the
result that do not correspond to unmasked floating-point exceptions, and providing the com-
pounded result will have to be performed by the user provided floating-point exception handler.

Actual emulation might have to take place for one operand or pair of operands for scalar opera-
tions, and for all sub-operands or pairs of sub-operands for packed operations. The steps to per-
form are the following:

• The excepting instruction has to be decoded and the operands have to be read from the
saved context.

• The instruction has to be emulated for each (pair of) sub-operand(s); if no floating-point
exception occurs, the partial result has to be saved; if a masked floating-point exception
occurs, the masked result has to be produced through emulation and saved, and the
appropriate status flags have to be set; if an unmasked floating-point exception occurs, the
result has to be generated by the user provided floating-point exception handler, and the
appropriate status flags have to be set.

• The partial results have to be combined and written to the context that will be restored
upon application program resumption.
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A diagram of the control flow in handling an unmasked floating-point exception is presented
below.

From the user level floating-point filter, Example E-2 in Section E.4.3., “SIMD Floating-Point
Emulation Implementation Example”will present only the floating-point emulation part. In or-
der to understand the actions involved, the expected response to exceptions has to be known for
all the SSE and SSE2 numeric instructions in two situations: with exceptions enabled (unmasked
result), and with exceptions disabled (masked result). The latter can be found in Section 6.4.,
“Interrupts and Exceptions”. The response to NaN operands that do not raise an exception is
specified in Section 4.8.3.4., “NaNs”. Operations on NaNs are explained in the same source. It
is also given in more detail in the next subsection, along with the unmasked and masked respons-
es to floating-point exceptions.

E.4.2. SSE and SSE2 Response To Floating-Point Exceptions

This subsection specifies the unmasked response expected from the SSE and SSE2 instructions
that raise floating-point exceptions. The masked response is given in parallel, as it is necessary
in the emulation process of the instructions that raise unmasked floating-point exceptions. The
response to NaN operands is also included in more detail than in Section 4.8.3.4., “NaNs”. For
floating-point exception priority, refer to ”Priority Among Simultaneous Exceptions and Inter-
rupts” in Chapter 5, Interrupt and Exception Handling, of IA-32 Software Developer’s Manual,
Volume 3.

Figure E-1.  Control Flow for Handling Unmasked Floating-Point Exceptions

User Application

User Level Floating-Point Exception Filter 

Low-Level Floating-Point Exception Handler

User Floating-Point Exception Handler
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E.4.2.1. NUMERIC EXCEPTIONS

There are six classes of numeric (floating-point) exception conditions that can occur: Invalid op-
eration (#I), Divide-by-Zero (#Z), Denormal Operand (#D), Numeric Overflow (#O), Numeric
Underflow (#U), and Inexact Result (precision) (#P). #I, #Z, #D are pre-computation exceptions
(floating-point faults), detected before the arithmetic operation. #O, #U, #P are post-computa-
tion exceptions (floating-point traps). 

Users can control how the exceptions are handled by setting the mask/unmask bits in MXCSR.
Masked exceptions are handled by the processor or by software if they are combined with un-
masked exceptions occurring in the same instruction. Unmasked exceptions are usually handled
by the low-level exception handler, in conjunction with user-level software.

E.4.2.2. RESULTS OF OPERATIONS WITH NAN OPERANDS OR A NAN 
RESULT FOR SSE AND SSE2 NUMERIC INSTRUCTIONS

The tables below (E-1 through E-10) specify the response of the SSE and SSE2 instructions to
NaN inputs, or to other inputs that lead to NaN results.

These results will be referenced by subsequent tables (e.g. E-10). Most operations do not raise
an invalid exception for quiet NaN operands, but even so, they will have higher precedence over
raising floating-point exceptions other than invalid operation. 

Note that the single-precision QNaN Indefinite value is 0xffc00000, and the Integer Indefinite
value is 0x80000000 (not a floating-point number, but it can be the result of a conversion in-
struction from floating-point to integer).

For an unmasked exception, no result will be provided to the user handler. If a user registered
floating-point exception handler is invoked, it may provide a result for the excepting instruction,
that will be used if execution of the application code is continued after returning from the inter-
ruption.

In Tables E-1 through E-10, the specified operands cause an invalid exception, unless the un-
masked result is marked with ‘(not an exception)’. In this latter case, the unmasked and masked
results are the same.
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Note 1. SNaN | 0x00400000 is a quiet NaN obtained from the signaling NaN given as input
Note 2. Operations involving only quiet NaNs do not raise a floating-point exception

Table E-1.  ADDPS, ADDSS, SUBPS, SUBSS, MULPS, MULSS, DIVPS, DIVSS

Source Operands Masked Result Unmasked Result

SNaN1 op SNaN2 SNaN1 | 00400000H None

SNaN1 op QNaN2 SNaN1 | 00400000H None

QNaN1 op SNaN2 QNaN1 None

QNaN1 op QNaN2 QNaN1 QNaN1 (not an exception)

SNaN op real value SNaN | 00400000H None

Real value op SNaN SNaN | 00400000H None

QNaN op real value QNaN QNaN (not an exception)

Real value op QNaN QNaN QNaN (not an exception)

Neither source operand is SNaN,
but #I is signaled (e.g. for Inf - Inf, 

    Inf ∗ 0, Inf / Inf, 0/0) 

Single-Precision QNaN Indefinite None

Table E-2.  CMPPS.EQ, CMPSS.EQ, CMPPS.ORD, CMPSS.ORD

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) 00000000H 00000000H (not an exception)

Opd1 op NaN (any Opd1) 00000000H 00000000H (not an exception)

Table E-3.  CMPPS.NEQ, CMPSS.NEQ, CMPPS.UNORD, CMPSS.UNORD

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) 11111111H 11111111H (not an exception)

Opd1 op NaN (any Opd1) 11111111H 11111111H (not an exception)

Table E-4.  CMPPS.LT, CMPSS.LT, CMPPS.LE, CMPSS.LE

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) 00000000H None

Opd1 op NaN (any Opd1) 00000000H None

Table E-5.  CMPPS.NLT, CMPSS.NLT, CMPSS.NLT, CMPSS.NLE

Source Operands Masked Result Unmasked Result

NaN op Opd2 (any Opd2) 11111111H None

Opd1 op NaN (any Opd1) 11111111H None
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Note: SNaN and QNaN operands raise an Invalid Operation fault

Note: SNaN | 00400000H is a quiet NaN obtained from the signaling NaN given as input

Table E-6.  COMISS

Source Operands Masked Result Unmasked Result

SNaN op Opd2 (any Opd2) OF,SF,AF=000  ZF,PF,CF=111 None

Opd1 op SNaN (any Opd1) OF,SF,AF=000  ZF,PF,CF=111 None

QNaN op Opd2 (any Opd2) OF,SF,AF=000  ZF,PF,CF=111 None

Opd1 op QNaN (any Opd1) OF,SF,AF=000  ZF,PF,CF=111 None

Table E-7.  UCOMISS

Source Operands Masked Result Unmasked Result

SNaN op Opd2 (any Opd2) OF,SF,AF=000  ZF,PF,CF=111 None

Opd1 op SNaN (any Opd1) OF,SF,AF=000  ZF,PF,CF=111 None

QNaN op Opd2 

(any Opd2 ≠ SNaN) OF,SF,AF=000  ZF,PF,CF=111 OF,SF,AF=000  ZF,PF,CF=111 
(not an exception)

Opd1 op QNaN 

(any Opd1 ≠ SNaN) OF,SF,AF=000  ZF,PF,CF=111 OF,SF,AF=000  ZF,PF,CF=111 
(not an exception)

Table E-8.  CVTPS2PI, CVTSS2SI, CVTTPS2PI, CVTTSS2SI

Source Operand Masked Result Unmasked Result

SNaN 80000000H (Integer Indefinite) None

QNaN 80000000H (Integer Indefinite) None

Table E-9.  MAXPS, MAXSS, MINPS, MINSS

Source Operands Masked Result Unmasked Result

Opd1 op NaN2 (any Opd1) NaN2 None

NaN1 op Opd2 (any Opd2) Opd2 None

Table E-10.  SQRTPS, SQRTSS

Source Operand Masked Result Unmasked Result

QnaN QNaN QNaN (not an exception)

SNaN SNaN | 00400000H None

Source operand is not SNaN, but

    #I is signaled 

    (e.g. for sqrt (-1.0)) Single-Precision QNaN Indefinite None
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E.4.2.3. CONDITION CODES, EXCEPTION FLAGS, AND RESPONSE FOR 
MASKED AND UNMASKED NUMERIC EXCEPTIONS

In the following, the masked response is what the processor provides when a masked exception
is raised by an SSE or SSE2 numeric instruction. The same response is provided by the floating-
point emulator for SSE and SSE2 numeric instructions, when certain components of the quadru-
ple input operands generate exceptions that are masked (the emulator also generates the correct
answer, as specified by IEEE Standard 754 wherever applicable, in the case when no floating-
point exception occurs). The unmasked response is what the emulator provides to the user han-
dler for those components of the packed operands of the SSE and SSE2 instructions that raise
unmasked exceptions. Note that for pre-computation exceptions (floating-point faults), no result
is provided to the user handler. For post-computation exceptions (floating-point traps), a result
is also provided to the user handler, as specified below.

In the following tables, the result is denoted by ’res’, with the understanding that for the actual
instruction, the destination coincides with the first source operand (except for COMISS and
UCOMISS, whose destination is the EFLAGS register).

Table E-11.  #I - Invalid Operations

Instruction Condition Masked Response Unmasked 
Response and 

Exception Code

ADDPS src1 or src2 = SNaN Refer to Table E-1 for NaN 
operands, #IA=1

src1, src2 
unchanged, #IA=1

ADDSS src1=+Inf, src2 = -Inf or
src1=-Inf, src2 = +Inf

res = QNaN Indefinite, 
#IA=1

SUBPS src1 or src2 = SNaN Refer to Table E-1 for NaN 
operands, #IA=1

src1, src2 
unchanged, #IA=1

SUBSS src1=+Inf, src2 = +Inf or
src1=-Inf, src2 = -Inf

res = QNaN Indefinite, 
#IA=1

MULPS src1 or src2 = SNaN Refer to Table E-1 for NaN 
operands, #IA=1

src1, src2 
unchanged, #IA=1

MULSS src1=±Inf, src2 = ±0 or
src1=±0, src2 = ±Inf

res = QNaN Indefinite, 
#IA=1

DIVPS src1 or src2 = SNaN Refer to Table E-1 for NaN 
operands, #IA=1

src1, src2 
unchanged, #IA=1

DIVSS src1=±Inf, src2 = ±Inf or
src1=±0, src2 = ±0

res = QNaN Indefinite, 
#IA=1
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Note 1. rnd signifies the user rounding mode from MXCSR, and rz signifies the rounding mode toward zero
(truncate), when rounding a floating-point value to an integer. For more information, refer to Table 4-8.

Note 2. For NAN encodings, see Table 4-3.

SQRTPS src = SNaN Refer to Table E-10 for NaN 
operands, #IA=1

src unchanged, 
#IA=1

SQRTSS src < 0 
(note that -0 < 0 is false)

res = QNaN Indefinite, 
#IA=1

MAXPS
MAXSS

src1 = NaN or src2 = NaN res = src2, #IA=1 src1, src2 
unchanged, #IA=1

MINP
MINSS 

src1 = NaN or src2 = NaN res = src2, #IA=1 src1, src2 
unchanged, #IA=1

CMPPS.LT
CMPPS.LE
CMPPS.NLT
CMPPS.NLE
CMPSS.LT
CMPSS.LE
CMPSS.NLT
CMPSS.NLE

src1 = NaN or src2 = NaN Refer to Table E-4 and 
Table E-5 for NaN 
operands, #IA=1

src1, src2 
unchanged, #IA=1

COMISS      src1 = NaN or src2 = NaN Refer to Table E-6 for NaN 
operands

src1, src2, EFLAGS 
unchanged,#IA=1

UCOMISS   src1 = SNaN or src2 = SNaN Refer to Table E-7 for NaN 
operands

src1, src2, EFLAGS 
unchanged,#IA=1

CVTPS2PI
CVTSS2SI 

src = NaN, ±Inf, or
|(src)rnd | > 7FFFFFFFH and 
(src)rnd ≠ 80000000H

res = Integer Indefinite
#IA=1

src unchanged, 
#IA=1

CVTTPS2PI
CVTTSS2SI 

src = NaN, ±Inf, or
|(src)rz | > 7FFFFFFFH and 
(src)rz ≠ 80000000H

res = Integer Indefinite
#IA=1

src unchanged, 
#IA=1

Table E-12.  #Z - Divide-by-Zero

Instruction Condition Masked Response Unmasked 
Response and 

Exception Code

DIVPS
DIVSS

src1 = finite non-zero (normal, or 
denormal)
src2 = ±0

res = ±Inf
#ZE=1

src1, src2 
unchanged, #ZE=1

Table E-11.  #I - Invalid Operations

Instruction Condition Masked Response Unmasked 
Response and 

Exception Code
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Note: For denormal encodings, see Section 4.8.3.2., “Normalized and Denormalized Finite Numbers”

Table E-13.  #D - Denormal Operand

Instruction Condition Masked Response Unmasked Response and 
Exception Code

ADDPS
SUBPS
MULPS
DIVPS
SQRTPS
MAXPS
MINPS
CMPPS
ADDSS
SUBSS
MULSS
DIVSS
SQRTSS
MAXSS
MINSS
CMPSS
COMISS
UCOMISS

src1 = denormal or 
src2 = denormal,
and the DAZ bit in 
MXCSR is 0

res = result rounded to the 
destination precision and 
using the bounded 
exponent, but only if no 
unmasked post-
computation exception 
occurs

src1, src2 unchanged, 
#DE=1

(SQRT has only 1 src)

Table E-14.  #O - Numeric Overflow

Instruction Condition Masked Response Unmasked Response and 
Exception Code

ADDPS
SUBPS
MULPS
DIVPS
ADDSS
SUBSS
MULSS
DIVSS

rounded result 
> largest single-
precision finite 
normal value 

Rounding Sign Result & Status Flags res = (result calculated with 
unbounded exponent and 
rounded to the destination 
precision) / 2192

#OE=1
#PE=1 if the result is 
inexact

To 
nearest +

-

#OE=1, #PE=1
res = 
res = 

Toward 
+
-

#OE=1, #PE=1
res = 1.11…1 * 2127

res = 

Toward 
+
-

#OE=1, #PE=1
res = 
res = -1.11…1 * 2127

Toward 
0 +

-

#OE=1, #PE=1
res = 1.11…1 * 2127

res = -1.11…1 * 2127

∞+
∞–

∞–
∞–

∞+ ∞+
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E.4.3. SIMD Floating-Point Emulation Implementation Example

The sample code listed below may be considered as being part of a user-level floating-point ex-
ception filter for the SSE and SSE2 numeric instructions. It is assumed that the filter function is
invoked by a low-level exception handler (reached via interrupt vector 19 when an unmasked
floating-point exception occurs), and that it operates as explained in Section E.4.1., “Floating-
Point Emulation” The sample code does the emulation for the add, subtract, multiply, and divide
operations. For this, it uses C code and x87 FPU operations (readability, and not efficiency was
the primary goal). Operations corresponding to other SSE and SSE2 numeric instructions have
to be emulated, but only place holders for them are included (the SSE2 instructions are not listed
in the example). The example assumes that the emulation function receives a pointer to a data
structure specifying a number of input parameters: the operation that caused the exception, a set
of two sub-operands (unpacked, of type float), the rounding mode (the precision is always sin-
gle), exception masks (having the same relative bit positions as in the MXCSR but starting from
bit 0 in an unsigned integer), and flush-to-zero and denormals-are-zeros indicators. 

Table E-15.  #U - Numeric Underflow

Instruction Condition Masked Response Unmasked Response 
and Exception Code

ADDPS
SUBPS
MULPS
DIVPS
ADDSS
SUBSS
MULSS
DIVSS

result calculated with 
unbounded exponent and 
rounded to the destination 
precision < smallest single-
precision finite normal value

#UE=1 and #PE=1,
but only if the result is
inexact

res = ±0, denormal, or 
normal

res = (result calculated with 
unbounded exponent and 
rounded to the destination 
precision) * 2192

#UE=1
#PE=1 if the result is 
inexact

Table E-16.  #P - Inexact Result (Precision)

Instruction Condition Masked Response Unmasked Response and Exception 
Code

ADDPS
SUBPS
MULPS
DIVPS
SQRTPS
CVTPI2PS
CVTPS2PI
CVTTPS2PI
ADDSS
SUBSS
MULSS
DIVSS
SQRTSS
CVTSI2SS
CVTSS2SI
CVTTSS2SI

the result is not 
exactly 
representable in the 
destination format

res = result rounded 
to the destination 
precision and using 
the bounded 
exponent, but only if 
no unmasked 
underflow or overflow 
conditions occur (This 
exception can occur 
in the presence of a 
masked underflow or 
overflow)
#PE=1

only if no underflow/overflow condition 
occurred, or if the corresponding 
exceptions are masked:
set #OE if masked overflow and set result 
as described above for masked overflow; 
set #UE if masked underflow and set 
result as described above for masked 
underflow;
if neither underflow nor overflow, res = the 
result rounded to the destination precision 
and using the bounded exponent
set #PE=1
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The output parameters are a floating-point result (of type float), the cause of the exception (iden-
tified by constants not explicitly defined below), and the exception status flags. The correspond-
ing C definition is:
typedef struct {
  unsigned int operation; // SSE or SSE2 operation: ADDPS, ADDSS, ...
  float operand1_fval; // first operand value
  float operand2_fval; // second operand value (if any)
  float result_fval; // result value (if any)
  unsigned int rounding_mode; // rounding mode
  unsigned int exc_masks; // exception masks, in the order P, U, O, Z, D, I
  unsigned int exception_cause; // exception cause
  unsigned int status_flag_inexact; // inexact status flag
  unsigned int status_flag_underflow; // underflow status flag
  unsigned int status_flag_overflow; // overflow status flag
  unsigned int status_flag_divide_by_zero; // divide by zero status flag
  unsigned int status_flag_denormal_operand; // denormal operand status flag
  unsigned int status_flag_invalid_operation; // invalid operation status flag
  unsigned int ftz; // flush-to-zero flag
unsigned int daz; // denormals-are-zeros flag
} EXC_ENV;

The arithmetic operations exemplified are emulated as follows:

1. If the denormals-are-zeros mode is enabled (the DAZ bit in MXCSR is set to 1), replace all
the denormal inputs with zeroes of the same sign (the denormal flag is not affected by this
change).

2. Perform the operation using x87 FPU instructions, with exceptions disabled, the original
user rounding mode, and single precision. This reveals invalid, denormal, or divide-by-
zero exceptions (if there are any) and stores the result in memory as a double precision
value (whose exponent range is large enough to look like “unbounded” to the result of the
single precision computation).

3. If no unmasked exceptions were detected, determine if the result is less than the smallest
normal number (tiny) that can be represented in single precision format, or greater than the
largest normal number that can be represented in single precision format (huge). If an
unmasked overflow or underflow occurs, calculate the scaled result that will be handed to
the user exception handler, as specified by IEEE Standard 754.

4. If no exception was raised, calculate the result with a “bounded” exponent. If the result is
tiny, it requires denormalization (shifting the significand right while incrementing the
exponent to bring it into the admissible range of [-126,+127] for single precision floating-
point numbers).

The result obtained in step 2 cannot be used because it might incur a double rounding error
(it was rounded to 24 bits in step 2, and might have to be rounded again in the denormal-
ization process). To overcome this is, calculate the result as a double precision value, and
store it to memory in single-precision format. 
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Rounding first to 53 bits in the significand, and then to 24 never causes a double rounding
error (exact properties exist that state when double-rounding error does not occur, but for
the elementary arithmetic operations, the rule of thumb is that if we round an infinitely
precise result to 2p+1 bits and then again to p bits, the result is the same as when rounding
directly to p bits, which means that no double rounding error occurs).

5. If the result is inexact and the inexact exceptions are unmasked, the calculated result will
be delivered to the user floating-point exception handler.

6. The flush-to-zero case is dealt with if the result is tiny.

7. The emulation function returns RAISE_EXCEPTION to the filter function if an exception
has to be raised (the exception_cause field indicates the cause). Otherwise, the emulation
function returns DO_NOT_ RAISE_EXCEPTION. In the first case, the result is provided
by the user exception handler called by the filter function. In the second case, it is provided
by the emulation function. The filter function has to collect all the partial results, and to
assemble the scalar or packed result that is used if execution is to continue.

Example E-2.  SIMD Floating-Point Emulation

// masks for individual status word bits
#define PRECISION_MASK 0x20
#define UNDERFLOW_MASK 0x10
#define OVERFLOW_MASK 0x08
#define ZERODIVIDE_MASK 0x04
#define DENORMAL_MASK 0x02
#define INVALID_MASK 0x01

// 32-bit constants
static unsigned ZEROF_ARRAY[] = {0x00000000};
#define  ZEROF *(float *) ZEROF_ARRAY
    // +0.0
static unsigned NZEROF_ARRAY[] = {0x80000000};
#define  NZEROF *(float *) NZEROF_ARRAY
    // -0.0
static unsigned POSINFF_ARRAY[] = {0x7f800000};
#define POSINFF *(float *)POSINFF_ARRAY
    // +Inf
static unsigned NEGINFF_ARRAY[] = {0xff800000};
#define NEGINFF *(float *)NEGINFF_ARRAY
    // -Inf

// 64-bit constants
static unsigned MIN_SINGLE_NORMAL_ARRAY [] = {0x00000000, 0x38100000}; 
#define MIN_SINGLE_NORMAL *(double *)MIN_SINGLE_NORMAL_ARRAY
    // +1.0 * 2^-126
static unsigned MAX_SINGLE_NORMAL_ARRAY [] = {0x70000000, 0x47efffff}; 
#define MAX_SINGLE_NORMAL *(double *)MAX_SINGLE_NORMAL_ARRAY
    // +1.1...1*2^127
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static unsigned TWO_TO_192_ARRAY[] = {0x00000000, 0x4bf00000};
#define TWO_TO_192 *(double *)TWO_TO_192_ARRAY
    // +1.0 * 2^192
static unsigned TWO_TO_M192_ARRAY[] = {0x00000000, 0x33f00000};
#define TWO_TO_M192 *(double *)TWO_TO_M192_ARRAY
    // +1.0 * 2^-192

// auxiliary functions
static int isnanf (float f); // returns 1 if f is a NaN, and 0 otherwise
static float quietf (float f); // converts a signaling NaN to a quiet NaN, and
                               // leaves a quiet NaN unchanged
static float check_for_daz (float f); // converts denormals to zeroes of the same sign; 

// does not affect any status flags

// emulation of SSE and SSE2 instructions using
// C code and x87 FPU instructions

unsigned int
simd_fp_emulate (EXC_ENV *exc_env)

{

  float opd1; // first operand of the add, subtract, multiply, or divide
  float opd2; // second operand of the add, subtract, multiply, or divide
  float res; // result of the add, subtract, multiply, or divide
  double dbl_res24; // result with 24-bit significand, but "unbounded" exponent
      // (needed to check tininess, to provide a scaled result to
      // an underflow/overflow trap handler, and in flush-to-zero mode)
  double dbl_res;  // result in double precision format (needed to avoid a
     // double rounding error when denormalizing)
  unsigned int result_tiny;
  unsigned int result_huge;
  unsigned short int sw; // 16 bits
  unsigned short int cw; // 16 bits

  // have to check first for faults (V, D, Z), and then for traps (O, U, I)

  // initialize x87 FPU (floating-point exceptions are masked)
  _asm {
    fninit;
  }

  result_tiny = 0;
  result_huge = 0;

  switch (exc_env->operation) {
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    case ADDPS:
    case ADDSS:
    case SUBPS:
    case SUBSS:
    case MULPS:
    case MULSS:
    case DIVPS:
    case DIVSS:

      opd1 = exc_env->operand1_fval;
      opd2 = exc_env->operand2_fval;

opd1 = check_for_daz (opd1); // opd1 = +0.0 * opd1
      opd2 = check_for_daz (opd2); // opd2 = +0.0 * opd2

      // execute the operation and check whether the invalid, denormal, or 
      // divide by zero flags are set and the respective exceptions enabled

      // set control word with rounding mode set to exc_env->rounding_mode, 
      // single precision, and all exceptions disabled
      switch (exc_env->rounding_mode) {
        case ROUND_TO_NEAREST:
          cw = 0x003f; // round to nearest, single precision, exceptions masked
          break;
        case ROUND_DOWN:
          cw = 0x043f; // round down, single precision, exceptions masked
          break;
        case ROUND_UP:
          cw = 0x083f; // round up, single precision, exceptions masked
          break;
        case ROUND_TO_ZERO:
          cw = 0x0c3f; // round to zero, single precision, exceptions masked
          break;
        default:
          ; 
      }
      __asm {
        fldcw WORD PTR cw;
      }

      // compute result and round to the destination precision, with
      // "unbounded" exponent (first IEEE rounding)
      switch (exc_env->operation) {

        case ADDPS:
        case ADDSS:
          // perform the addition
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          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR opd1; // may set the denormal or invalid status flags
            fld DWORD PTR opd2; // may set the denormal or invalid status flags
            faddp st(1), st(0); // may set the inexact or invalid status flags
            // store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;

        case SUBPS:
        case SUBSS:
          // perform the subtraction
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR opd1; // may set the denormal or invalid status flags
            fld DWORD PTR opd2; // may set the denormal or invalid status flags
            fsubp st(1), st(0); // may set the inexact or invalid status flags
            // store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;

        case MULPS:
        case MULSS:
          // perform the multiplication
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR opd1; // may set the denormal or invalid status flags
            fld DWORD PTR opd2; // may set the denormal or invalid status flags
            fmulp st(1), st(0); // may set the inexact or invalid status flags
            // store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;

        case DIVPS:
        case DIVSS:
          // perform the division
          __asm {
            fnclex; 
            // load input operands
            fld DWORD PTR opd1; // may set the denormal or invalid status flags
            fld DWORD PTR opd2; // may set the denormal or invalid status flags
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            fdivp st(1), st(0); // may set the inexact, divide by zero, or 
                                // invalid status flags
            // store result
            fstp  QWORD PTR dbl_res24; // exact
          }
          break;

        default:
          ; // will never occur

      }

      // read status word
      __asm {
        fstsw WORD PTR sw;
}

if (sw & ZERODIVIDE_MASK)
sw = sw & ~DENORMAL_MASK; // clear D flag for (denormal / 0)

      // if invalid flag is set, and invalid exceptions are enabled, take trap
      if (!(exc_env->exc_masks & INVALID_MASK) && (sw & INVALID_MASK)) {
        exc_env->status_flag_invalid_operation = 1;
        exc_env->exception_cause = INVALID_OPERATION;
        return (RAISE_EXCEPTION);
      }

// checking for NaN operands has priority over denormal exceptions; also fix for the 
// differences in treating two NaN inputs between the SSE and SSE2 
// instructions and other IA-32 instructions
if (isnanf (opd1) || isnanf (opd2)) {

        if (isnanf (opd1) && isnanf (opd2))
            exc_env->result_fval = quietf (opd1);
        else
            exc_env->result_fval = (float)dbl_res24; // exact
 
        if (sw & INVALID_MASK) exc_env->status_flag_invalid_operation = 1;
        return (DO_NOT_RAISE_EXCEPTION);
      }

      // if denormal flag is set, and denormal exceptions are enabled, take trap
      if (!(exc_env->exc_masks & DENORMAL_MASK) && (sw & DENORMAL_MASK)) {
        exc_env->status_flag_denormal_operand = 1;
        exc_env->exception_cause = DENORMAL_OPERAND;
        return (RAISE_EXCEPTION);
      }
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      // if divide by zero flag is set, and divide by zero exceptions are 
      // enabled, take trap (for divide only)
      if (!(exc_env->exc_masks & ZERODIVIDE_MASK) && (sw & ZERODIVIDE_MASK)) {
        exc_env->status_flag_divide_by_zero = 1;
        exc_env->exception_cause = DIVIDE_BY_ZERO;
        return (RAISE_EXCEPTION);
      }

      // done if the result is a NaN (QNaN Indefinite)
      res = (float)dbl_res24;
      if (isnanf (res)) {
        exc_env->result_fval = res; // exact
        exc_env->status_flag_invalid_operation = 1;
        return (DO_NOT_RAISE_EXCEPTION);
      }

      // dbl_res24 is not a NaN at this point

      if (sw & DENORMAL_MASK) exc_env->status_flag_denormal_operand = 1;

      // Note: (dbl_res24 == 0.0 && sw & PRECISION_MASK) cannot occur
      if (-MIN_SINGLE_NORMAL < dbl_res24 && dbl_res24 < 0.0 ||
            0.0 < dbl_res24 && dbl_res24 < MIN_SINGLE_NORMAL) {
        result_tiny = 1;
      }

      // check if the result is huge
      if (NEGINFF < dbl_res24 && dbl_res24 < -MAX_SINGLE_NORMAL || 
          MAX_SINGLE_NORMAL < dbl_res24 && dbl_res24 < POSINFF) { 
        result_huge = 1;
      }

      // at this point, there are no enabled I, D, or Z exceptions to take; the instr.
      // might lead to an enabled underflow, enabled underflow and inexact, 
      // enabled overflow, enabled overflow and inexact, enabled inexact, or
      // none of these; if there are no U or O enabled exceptions, re-execute
      // the instruction using IA-32 double precision format, and the 
      // user’s rounding mode; exceptions must have been disabled before calling
      // this function; an inexact exception may be reported on the 53-bit
      // fsubp, fmulp, or on both the 53-bit and 24-bit conversions, while an 
      // overflow or underflow (with traps disabled) may be reported on the 
      // conversion from dbl_res to res

      // check whether there is an underflow, overflow, or inexact trap to be 
      // taken
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      // if the underflow traps are enabled and the result is tiny, take 
      // underflow trap
      if (!(exc_env->exc_masks & UNDERFLOW_MASK) && result_tiny) {
        dbl_res24 = TWO_TO_192 * dbl_res24; // exact
        exc_env->status_flag_underflow = 1;
        exc_env->exception_cause = UNDERFLOW;
        exc_env->result_fval = (float)dbl_res24; // exact
        if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;
        return (RAISE_EXCEPTION);
      } 

      // if overflow traps are enabled and the result is huge, take
      // overflow trap
      if (!(exc_env->exc_masks & OVERFLOW_MASK) &&  result_huge) {
        dbl_res24 = TWO_TO_M192 * dbl_res24; // exact
        exc_env->status_flag_overflow = 1;
        exc_env->exception_cause = OVERFLOW;
        exc_env->result_fval = (float)dbl_res24; // exact 
        if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;
        return (RAISE_EXCEPTION);
      } 

      // set control word with rounding mode set to exc_env->rounding_mode, 
      // double precision, and all exceptions disabled
      cw = cw | 0x0200; // set precision to double
      __asm {
        fldcw WORD PTR cw;
      }

      switch (exc_env->operation) {

        case ADDPS:
        case ADDSS:
          // perform the addition
          __asm {
            // load input operands
            fld DWORD PTR opd1; // may set the denormal status flag
            fld DWORD PTR opd2; // may set the denormal status flag
            faddp st(1), st(0); // rounded to 53 bits, may set the inexact 
                                // status flag
            // store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        case SUBPS:
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        case SUBSS:
          // perform the subtraction
          __asm {
            // load input operands
            fld DWORD PTR opd1; // may set the denormal status flag
            fld DWORD PTR opd2; // may set the denormal status flag
            fsubp st(1), st(0); // rounded to 53 bits, may set the inexact
                                //  status flag
            // store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        case MULPS:
        case MULSS:
          // perform the multiplication
          __asm {
            // load input operands
            fld DWORD PTR opd1; // may set the denormal status flag
            fld DWORD PTR opd2; // may set the denormal status flag
            fmulp st(1), st(0); // rounded to 53 bits, exact
            // store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        case DIVPS:
        case DIVSS:
          // perform the division
          __asm {
            // load input operands
            fld DWORD PTR opd1; // may set the denormal status flag
            fld DWORD PTR opd2; // may set the denormal status flag
            fdivp st(1), st(0); // rounded to 53 bits, may set the inexact
                                // status flag
            // store result
            fstp  QWORD PTR dbl_res; // exact, will not set any flag
          }
          break;

        default:
          ; // will never occur

      }

      // calculate result for the case an inexact trap has to be taken, or
      // when no trap occurs (second IEEE rounding)
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      res = (float)dbl_res; 
          // may set P, U or O; may also involve denormalizing the result

      // read status word
      __asm {
        fstsw WORD PTR sw;
      }

      // if inexact traps are enabled and result is inexact, take inexact trap
      if (!(exc_env->exc_masks & PRECISION_MASK) && 
          ((sw & PRECISION_MASK) || (exc_env->ftz && result_tiny))) {
        exc_env->status_flag_inexact = 1;
        exc_env->exception_cause = INEXACT;
        if (result_tiny) {
          exc_env->status_flag_underflow = 1;

          // if ftz = 1 and result is tiny, result = 0.0
          // (no need to check for underflow traps disabled: result tiny and
          // underflow traps enabled would have caused taking an underflow
          // trap above)
          if (exc_env->ftz) {
            if (res > 0.0)
              res = ZEROF;
            else if (res < 0.0)
              res = NZEROF;
            // else leave res unchanged
          }
        }
        if (result_huge) exc_env->status_flag_overflow = 1;
        exc_env->result_fval = res; 
        return (RAISE_EXCEPTION);
      } 

      // if it got here, then there is no trap to be taken; the following must
      // hold: ((the MXCSR U exceptions are disabled  or
      //
      // the MXCSR underflow exceptions are enabled and the underflow flag is
      // clear and (the inexact flag is set or the inexact flag is clear and
      // the 24-bit result with unbounded exponent is not tiny)))
      // and (the MXCSR overflow traps are disabled or the overflow flag is
      // clear) and (the MXCSR inexact traps are disabled or the inexact flag
      // is clear)
      //
      // in this case, the result has to be delivered (the status flags are 
      // sticky, so they are all set correctly already)

      // read status word to see if result is inexact
E-23



GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION 
      __asm {
        fstsw WORD PTR sw;
      }
 
      if (sw & UNDERFLOW_MASK) exc_env->status_flag_underflow = 1;
      if (sw & OVERFLOW_MASK) exc_env->status_flag_overflow = 1;
      if (sw & PRECISION_MASK) exc_env->status_flag_inexact = 1;

      // if ftz = 1, and result is tiny (underflow traps must be disabled),
      // result = 0.0
      if (exc_env->ftz && result_tiny) {
        if (res > 0.0)
          res = ZEROF;
        else if (res < 0.0)
          res = NZEROF;
        // else leave res unchanged

        exc_env->status_flag_inexact = 1;
        exc_env->status_flag_underflow = 1;
      }

      exc_env->result_fval = res; 
      if (sw & ZERODIVIDE_MASK) exc_env->status_flag_divide_by_zero = 1;
      if (sw & DENORMAL_MASK) exc_env->status_flag_denormal= 1;
      if (sw & INVALID_MASK) exc_env->status_flag_invalid_operation = 1;
      return (DO_NOT_RAISE_EXCEPTION);

      break;

    case CMPPS:
    case CMPSS:

      ...

      break;

    case COMISS:
    case UCOMISS:

      ...

      break;

    case CVTPI2PS:
    case CVTSI2SS:

      ...
E-24



GUIDELINES FOR WRITING SIMD FLOATING-POINT EXCEPTION
      break;

    case CVTPS2PI:
    case CVTSS2SI:
    case CVTTPS2PI:
    case CVTTSS2SI:

      ...

      break;

    case MAXPS:
    case MAXSS:
    case MINPS:
    case MINSS:

      ...

      break;

    case SQRTPS:
    case SQRTSS:

      ...

      break;

    case UNSPEC:

      ...

      break;

    default:
      ...

  }

}
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