
Description: P ersonaliz ed Turnke y Super cluster s (PeTS)

In comparison to traditional supercomputers, systems built by cluster ing PC hardware are more
accessible and offer a significantly wider range of hardware and software configuration options.
Since Febr uary 1994, when we built the first parallel processing Linux PC cluster, we have
been explor ing the full range of these system-design choices. Unfor tunately, to achieve the full
benefits from many of the new technologies that we have been developing, application codes
must be radically restructured and the cluster design must be tuned to the application. This
proposal seeks to build Personaliz ed Turnke y Super cluster s (PeTS) that will demonstrate the
new technologies by restr uctur ing impor tant scientific or engineering applications and creating
optimized system configurations that can be easily replicated.

To its users, a PeTS system will appear as an inexpensive dedicated piece of “laborator y
equipment” that directly solves their most important computational problems, providing
supercomputer perfor mance for those problems with minimal user effor t. The proposed project
will design, build, and user-test PeTS systems for one or two scientific or engineering
applications each year. These PeTS designs will be cheap to replicate, and the design and all
software (packaged as a turnkey distr ibution) will be widely disseminated, qualitatively
improving the effectiveness of scientific research in each field for which a PeTS system is
created. The success of these systems will help to establish our new technologies as standard
tools that can and should be used in implementing other applications.

The team we have assembled is uniquely qualified to accomplish the proposed wor k. Our team
combines some of the most exper ienced systems-level PC cluster researchers with the
scientific and engineering user base, application support, and administrative resources of the
well-established University of Kentucky Center f or Computational Science .

1. What Is A PeTS System And Whom Will It Help?

Physically, a PeTS system is a computing system built using a combination of COTS (cheaply
available Commercial Off-The-Shelf components) and openly available computer hardware and
software. In general, it is a Linux PC cluster with hardware and software designed to optimize
perfor mance for a par ticular application. As a scientific user sees it, a PeTS system is literally a
piece of lab equipment. It must:

1. Physically fit within a lab. We expect that each PeTS configuration will be fully contained
(including I/O devices and/or interfaces to other instruments in the lab) within the space of a
single standard 4-foot by 2-foot shelving unit and will not exceed the typical minimum ceiling
height of 8 feet. Thus, a PeTS system will have a total volume of less than 64 cubic feet.

2. Use ordinar y AC pow er and wiring. Typical US power is 110VAC with at least 15A per
circuit. A PeTS system should use no more than two such circuits (ideally, just one circuit).

3. Be compatible with other uses of a lab or office. For example, it must operate at a
comfor table room temperature and run reasonably quietly.

4. Have no “system administration” visible to the user. All regular system-maintenance tasks
must be able to be perfor med remotely, and securely, via a wired or wireless link to the
Inter net.

5. Make the primar y user-visible interface be the application, not an operating system. The
user should only need to know the scientific problem to be solved and how to specify that
problem using the application interface.

6. Yield perfor mance comparable to or better than that available by remotely accessing a
general-pur pose shared supercomputer. While supercomputers that are faster for the

page 1 of 15

par ticular application may exist, the PeTS system is dedicated rather than shared, so it
should be at least comparably fast for solving typical problems — and it will be far more
responsive to the scientist.

From a computer-engineering point of view, PeTS systems are even more valuable. Por tability
and standard interfaces are a good thing at the user level, but can block the introduction of
impor tant new technologies at the system-design level. Because each PeTS system is a “black
box” to its users and the turnkey design removes por tability from being a concern, we have full
freedom to employ radically new system hardware and software approaches. If a PeTS system
delivers exceptionally good perfor mance, it validates the new technologies that were employed
in producing the system and makes them far more likely to be adopted by others.

2. What Are The Radical Ne w PeTS Technologies?

We do not yet know what new technologies will prove to be most important, nor do we claim to
know the full set of technologies that we will use in PeTS systems. Par t of this proposal’s goal
is to derive new technologies by examining PeTS applications. How ever, we already have
developed a number of technologies that offer potentially huge benefits, but cannot be fully
utilized without the systems-level design freedom a PeTS system provides.

2.1. New Interpr ocessor Comm unication T echnology

One of the most important character istics of any parallel machine is the way in which
processing elements communicate. In this proposal, rather than simply using a conventional
cluster networ k and software interface, we will use a wide var iety of techniques, including
multiple networ ks and pruned exhaustive and/or genetic searches of the design space, to
optimize both the networ k hardware structures and the application software interface to that
hardware. This level of application-dr iven customization of the interconnection networ k
hardware and software represents a fundamental advance beyond the current state of the art.

2.1.1. Aggregate Function Netw orks

In a conventional cluster networ k, the networ k hardware consists of NICs (networ k interface
cards), physical media (cables or fiber), and switches. The purpose of the networ k is to send
data from one processing element to another, implementing point-to-point message (unicast)
communication. Some networ ks also support broadcast or multicast communications, which
allow a processing element to use a single networ k operation to send data to an entire group of
processing elements. The primar y perfor mance cr iter ia are point-to-point bandwidth and
latency. These metrics are properly applied to the Internet. However, a parallel program is not
equivalent to multiple independent sequential programs that sometimes interact, and thus
different types of networ k operations are required.

The distinguishing feature of a parallel program is that all parts of the program wor k to create a
desired global state. Consequently, it is natural for the processing elements to operate on the
global state of the computation. Throughout the history of parallel computing, efficient access
to global state infor mation has been viewed as an unachievable ideal. Most parallel codes
have been carefully designed to minimize the need for such access, usually at the expense of
significantly more complex program logic, redundant computations and data, and poorer load
balance. Rather than suffer those costs, we have created a new communication model to make
access to global state cheap: aggregate function communication.

The aggregate function communication model and its efficient hardware implementation are
rooted in VLIW (Ver y Long Instruction Word) architecture and compiler code scheduling. In
1987, while trying to find a way to add a VLIW execution mode to the then-new PASM

page 2 of 15

(Par titionable SIMD MIMD) prototype supercomputer, we realized that the hardware that
enabled PASM to implement SIMD was really a type of hardware barrier synchronization unit,
and that such a barrier unit also could be used to support VLIW-style compile-time code
scheduling (see http://garage.ecn.purdue.edu/˜papers/PLCPC90/paper.html).
Unfor tunately, the fully generalized barrier mechanism seemed to lead to a fair ly complex
hardware implementation employing some for m of associative memor y for matching barriers.
Although machines like the Thinking Machines CM5 and Cray T3D implemented a subset of
the barrier synchronization mechanism that we descr ibed, a fully general high-perfor mance
barr ier mechanism was not implemented until much later.

In late 1993 we discovered a way to build the fully general barrier mechanism using multiple
AND trees and an unusual, but ver y simple, communication mechanism designed to allow
processors to rapidly agree on which processors should participate in each barrier. In Febr uary
1994, we built the first Linux PC cluster for the purpose of testing this new barr ier hardware:
PAPERS, Purdue’s Adapter for Parallel Execution and Rapid Synchronization. Although we
also had Ethernet connections between the PCs, Ether net perfor mance was ver y poor, so we
tr ied using the barrier mask communication hardware for general communication. It worked
stunningly well. Since that time, through 18 generations of PAPERS hardware, we have
generalized and refined this new communication model in which each processor gives the
networ k a datum and an opcode, the networ k computes the desired function on data
aggregated from an entire group of processors, and the computed result is returned to the
requesting processor(s).

Aggregate functions directly implement a var iety of familiar operations, such as barrier
synchronization, SIMD any and all, broadcast, reductions, and scans (parallel prefix). For
example, consider perfor ming an add reduction (summation) on a conventional networ k versus
using an aggregate function networ k:

1.

2.

3.

4.

1.

2.

�����������
	 ���
�
����������	 �������������
��	 ��� �!�"	#�$�
�&%�'"($)*����+,��- .!+
+��&��+��"	 �0/��
�
��	 ���
��'"($)21�-

PE1 PE2PE0 PE3

PE1 PE2PE0 PE3

PE0: b PE2: d

PE0: c+d

PE1 PE2PE0 PE3

PE1 PE2PE0 PE3

PE2: (a+b)+(c+d)

PE1: (a+b)+(c+d) PE3: (a+b)+(c+d)

PE1 PE2PE0 PE3

PE1 PE2PE0 PE3

a+b+c+d

sum: a sum: b sum: c sum: d

Beyond these familiar operations, aggregate functions include many new operations on global
state. For example:

• Putget is an aggregate operation, implemented using multiplexors, in which each processor
outputs a datum and specifies from which processor it would like to read the datum; this
“backward” routing means that a single putget operation can implement any per mutation
(or permutation with replication) without any contention. Personalized all-to-all can be
implemented optimally as a series of putget operations.

• A new class of aggregate operations allows processors to vote for the resources they wish to
use. Perfect global data summarize the relevant resource requests, so operations on these
resources can be statically scheduled at runtime, thereby achieving contention-free peak

page 3 of 15

perfor mance for use of these resources. Thus, voting operations can dramatically improve
access speed for shared resources ranging from data structures to message-passing
networ k por ts.

• Aggregate signals allow an individual processor to cause a group of processors to perfor m a
specified action. Generalizing the Cray T3D’s “Eureka” operation, these signals can be used
to infor m a group of processors of any type of unanticipated change in the global state of the
program.

This model has been used by dozens of institutions wor ldwide, but only in ver y limited ways.
Although we have implemented an MPI 2.0 that uses aggregate function communications, MPI
includes only a few aggregate functions and conventional wisdom is that they are expensive...
so applications rarely use them. In fact, our simple public-domain hardware makes many
aggregate-function operations cheaper than sending a single minimum-length point-to-point
message on a high-perfor mance message-passing networ k, such as Myricom Myrinet, Giganet
CLAN, or Dolphin SCI.

Aggregate function communication has not found more widespread use because it is a radically
new model. Most application codes m ust be entirel y restructured so that, instead of
using con voluted tec hniques to make do without global state , they take full ad vantage of
cheap, perf ect, global state inf ormation. We believe that rewr iting various important
applications will not only deliver better perfor mance for these applications, but also will
establish the aggregate function model as a key component of the design of future parallel
algor ithms.

We expect each PeTS system to incorporate at least two networ ks: a fair ly conventional point-
to-point networ k for sending blocks of data from one PE to another and an aggregate function
networ k for N-way access to global state.

2.1.2. Interpr ocessor Har dware/Software Interface

Another key issue in obtaining good communication perfor mance is the minimization of
software overhead in perfor ming networ k operations.

Librar y interfaces such as PVM and MPI generally use multiple layers of software to provide
their relatively high-level abstractions. It can be argued that these abstractions are wor th the
overhead because they greatly simplify the task of coding complex parallel algorithms, but the
overhead is substantial. If you would not accept multi-layer software for talking to a floating
point coprocessor within your system, why are you willing to accept these layers when talking to
another processor that is wor king on the same program?

For example, using most versions of PAPERS, a complete barrier synchronization takes about
3 microseconds. That time includes all hardware and software overhead. An operating-system
call typically takes an order of magnitude longer than that; even a subroutine call introduces
over a microsecond of delay unless the subroutine is fully contained in cache. We expect to
use single-layer direct I/O accesses for nearly all interprocessor communications.

2.1.3. Global Comm unication Optimization

As suggested in our discussion of aggregate function networ ks, it is possible to use low-latency,
low-bandwidth, aggregate function communications to obtain global infor mation with which to
schedule accesses to be made through a high-latency, high-bandwidth, conventional switched
networ k. Beyond that, an exciting possibility is that even the optimal basic structure of the high-
bandwidth networ k can be derived directly from the communication behavior of an application.

page 4 of 15

Our first exper iments with manipulating conventional networ k proper ties to meet a set of
application-specific optimization criter ia were in 1994. The global router networ k in MasPar’s
MP1 and MP2 supercomputers used an unspecified hardware algorithm to resolve routing
conflicts among the 16,384 processing elements. Although the hardware generally wor ked
well, tests showed that the hardware router scheduling required 70 router cycles to implement
bit-reversal permutation communication. Using a genetic search program, we were able to
explicitly regroup the router cycles so that the same operation could complete in just 23 router
cycles.

Just in the past month, we have dev eloped a similar technology for designing a new class of
cluster networ ks, called “flat neighborhood networ ks,” that offer single-switch latency for small
messages while providing virtually the same bisection bandwidth as a full crossbar, using
multiple NICs per PC and switches that are only a fraction of the width of the full cluster. Again,
a genetic search program optimizes the networ k to maximize bandwidth for specific
communication patterns.

Our newest 64-PC cluster, KLAT2 (Kentucky Linux Athlon Testbed 2), is the first machine ever
built with a flat neighborhood networ k. The 64 machines each contain four 100Mb/s NICs that
are wired to nine 31-way color-coded switches (subnets) in the following pattern.

K
00

K
01

K
02

K
03

K
04

K
05

K
06

K
07

K
08

K
09

K
10

K
11

K
12

K
13

K
14

K
15

K
32

K
33

K
34

K
35

K
36

K
37

K
38

K
39

K
40

K
41

K
42

K
43

K
44

K
45

K
46

K
47

K
48

K
49

K
50

K
51

K
52

K
53

K
54

K
55

K
56

K
57

K
58

K
59

K
60

K
61

K
62

K
63

K
16

K
17

K
18

K
19

K
20

K
21

K
22

K
23

K
24

K
25

K
26

K
27

K
28

K
29

K
30

K
31

KLAT2’s flat neighborhood network
Above: physical wiring
Left: neighborhood pattern

No switch is connected to another switch (except in that all nine switches are connected to a
tenth switch used only for multicast and hosting two “hot spare” PCs). This random-looking
wir ing patter n was genetically designed so that (1) every pair of PCs shares at least one switch
and (2) bandwidth is maximized for PC pairs that share the same row or column in an 8x8
arrangement. The result is over 25Gb/s bisection bandwidth for less than $8,000 spent on
networ k hardware, whereas $250,000 spent on Giganet CLAN hardware would have yielded
only 9Gb/s bisection bandwidth.

To take full advantage of the optimized networ k, our genetic networ k design programs also
create customized routing infor mation for each PC pair. In compar ison, the channel bonding
developed for Linux under the original Beowulf effor t requires that all NICs within each PC be
connected by separate, but identical, topology. Our technique does not require that NICs go to

page 5 of 15

separate switches, nor does it require that the topology be identical (or even similar). Further,
although channel bonding is essentially invisible to the user, it is done at a ver y low lev el by
duplicating the same MAC address for all the NICs in each PC; the result is that application
code cannot schedule the use of specific NICs. Even if we have switches that are the full width
of the cluster, this scheduling ability can make a huge difference in the perfor mance of the
networ k.

We expect each PeTS system to have a networ k that is optimized, both in structure and in
scheduling of accesses, to meet the communication needs of the target application.

2.2. New Compiler T echnology For SW AR

Over the past five years, near ly ev ery microprocessor design has added instruction-set
extensions intended to provide vector-like parallel processing without requiring major
modifications to the processor architecture. First, there were a var iety of integer extensions
aimed primar ily at software MPEG decoding: Hewlett-Packard’s PA-RISC MAX; Digital
Equipment Corporation’s Alpha MAX (now called MVP); Intel Corporation, Advanced Micro
Devices (AMD), and Cryr ix Cor poration’s x86 MMX; Silicon Graphics MIPS MDMX; and Sun
Microsystem’s SPARC V9 VIS. With the increasing popularity of 3D games like Doom and
Quake, vector floating-point support was added to PC processors: AMD’s 3DNow!, Intel’s KNI
(now called SSE), and Motorola’s Pow erPC AltaVec (also known as the Apple Pow erPC G4
Velocity Engine). Gener ically, we call all these extensions SWAR (SIMD Within A Register).

The basic concept of SWAR is that operations on relatively wide k-bit registers can be used to
speed up computations by perfor ming SIMD parallel operations on n field values, each k/n-bits
long. New instr uctions par tition data paths and function units for specific operations. For
example, MMX supports operations on 8, 16, and 32-bit fields within 64-bit registers; 3DNow!
also manages two 32-bit floating-point fields within the same 64-bit data paths. Thus, in
processors like AMD’s K6-2 or Athlon, using two pipelines, MMX and 3DNow! offer 16x
improvement in integer speed and 4x improvement in floating-point speed. However, because
SWAR extensions are ver y machine dependent, have many restr ictions, and are primar ily
focussed on hand-coding a few specific applications, making good use of SWAR technology
can be ver y awkward.

Since 1996, with help from both Intel and AMD, we have been developing compiler technology
that can effectively manage the complexities of generating good code for SWAR targets. The
result, publically available since 1998, is a compiler for a SIMD-parallel extension of C called
SWARC (see http://shay.ecn.purdue.edu/˜swar/). The Scc compiler uses a var iety
of new compiler techniques, including simultaneous optimization of register allocation, code
scheduling, and addressing-mode selection. Local optimization uses a detailed, nearly cycle-
accurate, model of the target processor pipelines to drive a pruned exhaustive search (that can
be truncated after a user-specified period of time). This extremely aggressive compiler
technology is needed primar ily because SWAR places even greater demands on the
processor/memor y interface, which often is the limiting factor on processor perfor mance ev en
without using SWAR. Botching ev en a single SWAR register assignment can yield slowdown
rather than speedup.

Even with the Scc compiler, SWAR is not trivial to use. Relevant portions of the application
must be rewr itten in a SIMD style, with relatively short vectors. Fur ther, SWAR floating-point
suppor t gives 32-bit single-precision arithmetic a substantial perfor mance edge over the usual
64-bit (or, for x86, 80-bit) double-precision arithmetic. Thus, it becomes necessary to carefully
analyze the precision required throughout an application, perhaps replacing some algorithms
with others that can better utilize low er-precision operations.

page 6 of 15

We expect to re-tool at least some portions of each PeTS system’s application code to take
advantage of the SWARC compiler and SWAR technology.

2.3. New Attac hed-Pr ocessor T echnology

Although people often focus on PCs as the compute engines within a cluster, a wide range of
attached processors now can be purchased as relatively cheap PCI-bus cards. Some of these
cards offer remarkably good perfor mance for specific tasks, but typically lack the generality of
the PC’s main processor. Examples include:

• Audio and video cards with custom processors to accelerate typical tasks. For example,
some high-end video cards are capable of surpr isingly fast single-precision floating-point
matr ix operations... because these operations are needed to accelerate the same games
that inspired the development of 3DNow!, SSE, and AltaVec.

• Cards with multiple DSP (Digital Signal Processor) chips. Due to the difficulty of upgrades
and the relatively poor perfor mance of these processors compared to PC processors like the
Athlon, these cards are not as much of a bargain as they once were.

• Specialized attached processors, such as programmable logic devices and content
addressable memory (CAM).

Of these, specialized attached processors offer the largest potential perfor mance boost, so our
effor ts will focus on these. In par ticular, wor king with Aeroflex
(http://www.aeroflex.com/), we have star ted to develop compiler technology and Linux
interface software for using the UTMC eCard “Distributed Query Processor” CAM hardware.

On a single PCI card, with an estimated retail cost under $1,000, the eCard contains a 500
MFLOPS MIPS processor and two CAM engines. Each of these CAM engines can perfor m an
associative access in as little as 100 nanoseconds. Search keys can be from 1 to 32 bytes in
length, and a var iety of match types are supported: exact, prefix, and proximity (by Manhattan
or Euclidean distance).

Although the value of these cards as database accelerators is obvious, we also will be
developing compiler support for using them as applicative caches. Applicative caching, also
known as “memoizing,” can be applied to any function that has the property that the return
value is always the same for the same set of function arguments. Each time the function is
called, the argument tuple is looked up to see if the value has been computed before; if so, it is
retur ned from a software-managed cache rather than recomputed. Although the cost of looking
up argument tuples often outweighs the benefit on conventional processors, these CAM units
dramatically reduce the cost of argument-tuple lookup. There is still a relatively high cost in
communicating between the host PC processor and the eCard, but we can minimize the impact
of this by vector izing the argument tuples and pipelining the CAM execution. Our compiler
technology will perfor m this transfor mation on any functions marked by the programmer.

The result is that applicative caching might be productively used for functions as simple as
arctangent. Further, simple interpolation techniques can be used to allow similar speedups for
imprecise lookups. Thus, we might be able to use CAM to significantly accelerate a far wider
range of computations than one might initially suspect.

We expect that each target application will be scrutinized to see whether specialized attached
processors can improve computational efficiency; where such processors are beneficial, we will
provide compiler and software interface technology to support their use.

page 7 of 15

3. The Research Focus

Although building PC clusters has become ver y popular, the sad truth is that ver y fe w PC
clusters take advantage of any of the configuration options and technologies that could improve
the perfor mance beyond that of a traditional supercomputer. A typical “Beowulf,” trivially
assembled as PCs + high-bandwidth networ k + MPI, is effective only on a relatively small range
of applications and, even for those, primar ily yields good perfor mance per unit price rather than
the best perfor mance.

Even if a scientist has a problem that can run acceptably well on a conventional PC cluster, it is
very difficult for scientists to configure, use, and maintain such a system. They need to be ver y
computer literate and to spend a great deal of time wor king on computing rather than wor king
on their scientific research. Ever y aspect of a PeTS system must be designed to allow a
scientist to focus on science rather than on computing.

Thus, we must solve three major research problems:

1. How does each application wor k and how can it be radically restructured? We need to
know this to determine which new cluster technologies can be applied.

2. How should we configure a system using low-cost COTS and/or freely-available
components to get better-than-conventional-supercomputer perfor mance for the
application? Here, we will further develop and showcase our new cluster systems
technologies.

3. How can we make the resulting system truly be a turnkey solution, an apparently simple
piece of “laborator y equipment?” This includes simplification of the cluster construction
process so that building and installing a highly-tuned PeTS system will be no more complex
for the scientist than installing any other piece of laborator y equipment. It also includes
long-ter m system administration issues.

3.1. Working With The Applications

The University of Kentucky has a well-established Center f or Computational Sciences
(http://www.ccs.uky.edu/). This center, directed by Co-PI John Connolly, will be used to
identify scientific applications that are most appropriate for us to target with PeTS systems and
which scientists our group should wor k with in developing these systems. Every six months,
when a new list of the 500 fastest supercomputers in the wor ld (http://www.top500.org/)
is created, only about ten academic sites have supercomputers powerful enough to rank; the
University of Kentucky’s center has been listed in five of the last eight lists. By its charter, this
center provides free supercomputing facilities and consulting support to the entire university
(including the Chandler Medical Center) and to NCSA Alliance and NSF EPSCoR users
elsewhere. Connolly is also the director of the Kentucky Experimental Program to Stimulate
Competitive Research (EPSCoR). In addition, the PI also has ongoing research relationships
with several impor tant applications research groups at Purdue University. Thus, we have
access to a ver y wide application base, excellent long-term relationships with the scientists
developing and/or using these codes, and an administrative str ucture that can help manage the
placement and user testing of PeTS systems.

We expect each PeTS system to take about one year to create, but we will pipeline the process
to complete one or two PeTS designs each year. In addition to sharing a substantial pool of
systems-level dev elopment resources dedicated to this proposal, each PeTS design team will
include a post-doc, a graduate RA, and an undergraduate RA who will wor k directly with the
scientist or engineer selected to guide conversion of that application into a PeTS system. A
scientist who agrees to wor k with us not only receives a PeTS system about a year later, but

page 8 of 15

also gets the undivided attention of three team members. Fur ther, these three students receive
training that makes them exper ts in that application, greatly improving their future job
prospects.

The proposed research not only will produce PeTS systems for a var iety of scientific problems
at the University of Kentucky, its NCSA Alliance and NSF EPSCoR partners, and other
institutions, but also will make it trivial for others to duplicate those PeTS systems in their
laborator ies. The budget is designed to make this widespread impact possible: it includes a
secretar y to serve as a single point of contact for all the PeTS project participants and users,
money for travel to conferences and to make site visits to partners, and money to cover costs of
publishing and distributing the results of our wor k (such as journal page charges and replication
costs for PeTS software CDs and manuals).

3.1.1. Selection Of Applications

We already have identified a number of promising applications, ranging from the molecular
modeling of proteins being done by Carol Post at Purdue University (see
http://www.pharmacy.purdue.edu/mcmp/post/post.html) and Trevor Craemer at the
University of Kentucky (see http://www.uky.edu/Medicine/Biochemistry/
department/faculty/creamer.html) to the computational electromagnetics being done
by Stephen Gedney at the University of Kentucky (see
http://www.engr.uky.edu/˜gedney/). However, PeTS target applications will be
selected by a process of open invitation, followed by evaluation by the principals of this
proposal. Each potential PeTS application will be evaluated on the basis of:

• Potential of the application to be qualitatively improved through the use of our new
technologies.

• Ability of the application submitter to wor k with us in radically restructur ing the code. We
want to wor k with scientists and engineers who not only use their application code, but also
have taken an active role in the development of the code.

• Appropr iateness of the PeTS concept for the application. Many scientific and engineering
applications simply cannot use turnkey solutions because modifying the code is part of the
nor mal course of that research. We are looking for applications that, once implemented as
PeTS systems, can be widely used with little or no change to the hardware and software of
the PeTS system.

We anticipate accepting either one or two new PeTS target applications each year. Rather than
specifying a fixed starting date for new projects, we will pipeline the development process,
accepting a new PeTS target application as soon as the previous PeTS target has progressed
enough to allow us to move resources to a new target.

3.1.2. The First PeTS: The OVERSET Tools For CFD Anal ysis

So that PeTS development can begin immediately upon receipt of funding, and to ensure that
the first PeTS system will clearly demonstrate all the basic concepts and benefits of PeTS
technology, we have identified the OVERSET tools for CFD (Computational Fluid Dynamics)
analysis as the first PeTS target application. This code has many applications, a few of which
are shown here:

page 9 of 15

Some applications of OVERFLOW

Despite requiring extensive computing resources, CFD analysis has become a standard tool for
a wide range of engineering design tasks. For example, a complex vehicle flying at supersonic
speeds generally requires CFD analysis over sev eral million grid points to resolve shocks and
other flow str uctures correctly. Such a computation requires enormous computer resources,
beyond what any single scalar or vector computer can provide.

National supercomputer centers have facilities that can support analysis of large-scale CFD
problems, but access to these facilities is limited, and organizations other than government
laborator ies and research universities might not have any access at all. Shared-memor y
supercomputers, such as the SGI Origin 2000 and HP-Convex SPP-2000, have become the
dominant choices for US industry to use in analysis of somewhat less complex CFD problems.
Unfor tunately, the cost of the these computers is still prohibitively high for most universities and
many companies; only large corporations, such as those in the aerospace, automobile, and
chemical industries, can afford to make use of these shared-memory parallel computers for
their CFD designs. Smaller companies, and researchers who wish to wor k on local machines,
have been struggling to perfor m their CFD analysis using high-perfor mance workstations that
are slow, but still not cheap.

The obvious solution is to port CFD codes to run on inexpensive PC clusters — “Beowulfs.”
Indeed, there are now highly portable CFD design codes that use PVM or MPI for
communication. Dr. Dennis Jespersen of NASA-Ames recently ported the OVERFLOW code
to wor kstation clusters using PVM or MPI. However, the use of either of these librar ies implies
significant unnecessary overhead. For example, CFD interprocessor communication tends to
follow specific patterns; using this infor mation, we can optimize the design of the networ k
hardware and use software to generate globally optimal schedules for networ k transmissions.
There also are numerous opportunities to take advantage of SWAR instructions. With
significant code restructur ing, it may even be possible to use content-addressable memory
(CAM) attached processors to speed-up the CFD code by caching partial results. In summar y,
por table CFD codes run slower on conventional PC clusters (even those using expensive
networ k hardware) than they do on traditional supercomputers, but there are a number of
aggressive systems-level optimizations that we can apply to make a cheap PeTS system
outperfor m a traditional supercomputer on CFD analysis.

It is not sufficient that the application be important and amenable to our techniques; we also
need an application user/developer who can wor k with us. That person is George Huang,
whom we have listed as a Co-PI to make clear his commitment to this project.

page 10 of 15

Huang has been a major contributor in the development of NASA’s highly-acclaimed OVERSET
tools for CFD analysis. In 1998, his wor k on this package was recognized by making him co-
winner of the “Software of the Year” Honorable Mention award (see
http://www.hq.nasa.gov/office/codei/swy98win.html). Development of the
OVERSET tools is currently supported by NASA and CHSSI (the DoD’s Common High
Perfor mance Computing Software Support Initiative, see
http://rotorcraft.arc.nasa.gov/cfd/CFD4/New_Page/Home.htm). However, the
PeTS effor t will be the first integrated attempt to restructure both the application code and
system hardware and software to optimize the perfor mance of this application.

The OVERSET Tools are a collection of overset grid CFD software programs developed at
NASA-Ames (under Dr. Pieter Buning of NASA-Langley), including Collar Grid Tools (grid
manipulation and surface grid generation), HYPERGEN (volume grid generations), PEGSUS
(overset grid hole cutting and boundary inter polations), DCF3D (an alternative to PEGSUS,
especially for moving grids), and FOMOCO (force and moment calculation for overset grids).
The solver of overset tools is OVERFLOW, which has been optimized to run efficiently on the
Cray C90; production versions also exist for the IBM SP2 and wor kstation clusters. Primar y
customers for the OVERFLOW flow solver and related software include major aerospace
companies, var ious DoD research centers, and NASA focused programs for Advanced
Subsonic Technology (AST) and High Speed Research (HSR).

OVERFLOW is a fair ly large code, combining 120,000 lines of For tran and 1,500 lines of C.
There are 1,200 subroutines and 1,100 files. It was written in a vector-or iented style, with the
preferred architecture for execution of the program being a vector supercomputer. A Cray C90
vector processor executes the code extremely well — over 400 MFLOPS. The IBM SP2, Cray
T3E, and SGI Origin 2000, achieves only 20 to 90 MFLOPS per processor. Our preliminary
results using a single Athlon PC were nearly twice as good, with the potential to surpass the
C90 per-processor perfor mance if 3DNow! can be used. Fur ther, our radical new approach to
networ k design should allow that perfor mance to scale ver y well using more PCs. It is clear
that a well-designed PeTS implementation could make of state-of-the-ar t CFD analysis
significantly more accessible.

Finally, because the OVERSET CFD Tools are widely available and run on several different
platfor ms, we have an excellent basis for comparison with PeTS perfor mance.

3.2. PeTS Configuration: Widening And Exploring The Design Space

The problem of configuring a computer to efficiently execute a particular application is
conceptually easier than that of creating a fast general-pur pose computer, but the design
search space must be significantly larger if low cost and high perfor mance are to be achieved
for applications that are not inherently well matched to conventional “Beowulf-class” clusters.
An extremely detailed understanding of the application also is necessary, since many of the
most important perfor mance improvements will require at least minor algorithm changes in
response to architectural changes in the computing system (such as restructur ing a matr ix
multiply or substituting a genetic search for simulated annealing).

3.2.1. Widening The Design Space

Hank Dietz, the PI, has a long history of modifying and/or creating system software and
hardware to expand the range of problems that computing systems can execute efficiently. In
Febr uary 1994, his group built the first parallel processing Linux PC cluster — 8 months before
“Beowulf ” — and this cluster augmented the purely COTS PCs and Ethernet hardware with a
secondar y networ k that his group designed and released. He also has played a major role in

page 11 of 15

popular izing Linux PC-based parallel processing through his authoring of the Linux
Documentation Project (LDP) Parallel Pr ocessing HO WTO, which covers all aspects of
parallel process using Linux PCs, including shared memory, cluster, SWAR (SIMD Within A
Register), and attached-processor systems.

Dietz’s group, based at Purdue University until he moved to a chaired position at the University
of Kentucky in Fall 1999, has produced many widely used research products. Fully public-
domain complete hardware designs and source-code releases from his group include:

• The Purdue’s Adapter f or Parallel Ex ecution and Rapid Sync hronization (P APERS)
aggregate-function netw ork har dware, which implements a var iety of operations on global
state (barrier synchronization, reductions, scheduling/load balancing, etc.) across a Linux PC
cluster with latency as low as a few microseconds and less than $100/PC additional cost:
http://garage.ecn.purdue.edu/˜papers/Hardware/

• The Aggregate Function Application Pr ogram Interface (AF API), a highly-por table
aggregate-function communication software interface and optimized implementations for
target systems ranging from PAPERS clusters to generic SMP UNIX systems:
http://garage.ecn.purdue.edu/˜papers/AFAPI/

• VWLib , the Video Wall Librar y designed for driving computational video walls (e.g., for
scalable scientific visualization) using Linux PC clusters with aggregate function networ ks.
http://aggregate.org/

• The Purdue Compiler -Construction T ool Set (PCCTS, Antlr , etc.) , which greatly simplifies
creation of specialized optimizing compilers and other user interfaces:
comp.compilers.tools.pccts

• The SIMD Within A Register pr ogramming model (SW AR), C langua ge d ialect
(SWARC), and optimizing compiler (SCC) , which allow scientific applications to take
advantage of MMX and 3DNow! to achieve up to 16X integer speed and over 4X single-
precision floating point speed on unmodified PC hardware:
http://shay.ecn.purdue.edu/˜swar/

In this proposal, Dietz, and Co-PIs Raphael Finkel and Jim Lumpp, one graduate RA, and one
undergraduate RA, will continue to significantly broaden the range of application parallelism
that can be effectively used by improving and/or creating system software (mostly compilers
and drivers) and hardware. This effor t will focus primar ily on four of the weakest points in
current cluster perfor mance:

1. Compiler technology for better utilizing new processor features (such as the SWAR support
and future 64-bit extensions)

2. Hardware and software to improve communication perfor mance for the key operations found
in the applications

3. Hardware and software to utilize low-cost attached processors (DSP coprocessors, Content-
Addressable Memories, FPGA-based circuits)

4. Application-specific algor ithm design for PC clusters

The PI’s previous PC-cluster development wor k has been supported by a number of key
industr ial par tners, including major contributions from Intel, AMD, and Microsoft. In this
proposal, in addition to conducting our own development wor k, we expect to be directly wor king
with at least two industr ial par tners: AMD and Aeroflex.

AMD (Ad vanced Micr o Devices http://www.amd.com/) has incorporated a number of
mechanisms in their processor designs that can significantly improve both cost and

page 12 of 15

perfor mance of PC hardware for use in PeTS. The most obvious of these features is the
suppor t for var ious types of SWAR parallelism within the processor chip. In Apr il 1997, about a
month before Intel released the Pentium II, AMD released the K6 with MMX (MultiMedia
eXtensions) integer SWAR instructions. Although AMD’s processors had poorer scalar
floating-point perfor mance than Intel’s, the AMD K6-2, released in mid-1998, added 3DNow!
floating-point SWAR support that gave up to 4 times the perfor mance of Intel’s still-more-
expensive processors. Intel’s Pentium III SSE (Streaming SIMD Extensions) not only came out
half a year later than AMD’s 3DNow!, but also suffers from a var iety of secondary problems
that, in our tests, make perfor mance harder to get from SSE on a Pentium III than from 3DNow!
on a K6-2. AMD’s Athlon improves a number of secondary features, fills a few gaps in the
MMX and 3DNow! instruction set, and upgrades the double-precision floating-point support to
easily surpass Intel’s best offer ings. AMD plans for their future processors to add an enhanced
“Technical Floating P oint” mechanism and full 64-bit suppor t. In summar y, to gain an edge
against Intel, AMD has been pursuing features that give their processors a significant edge in
scientific computing applications — and AMD has directly supported our wor k toward making it
easier for the new features to be used in that way. For example, AMD donated a cluster of
Athlons to us in Fall 1999 and also supplied us with the Athlons for KLAT2 (assembled April
11-15, 2000).

As discussed earlier in this proposal, Aerofle x (http://www.aeroflex.com/) will be
helping us to apply a new Content Addressable Memory (CAM) system as an attached parallel
processing engine for each node in a PC cluster. These CAMs, which will be available as
inexpensive COTS devices, can apply a var iety of fuzzy matching mechanisms to large (up to
2GByte) data sets. The unique capabilities of this CAM might make it possible to speed up not
only search-oriented applications, but also more general computations that can use applicative
caching (“memoizing”) or table lookup and interpolation. To facilitate our development of both a
low-latency Linux device interface and application-level CAM software, Aeroflex will build and
donate an appropriate number of PCI-interface CAM systems and will provide us with technical
help including detailed technical specifications, a CAM simulator, and access to their
engineer ing staff. They also plan to make the PCI CAM cards available as under-$1,000 COTS
units so that others will be be able to use the CAM software that we dev elop.

3.2.2. Exploring The Design Space

While the above section discusses how we will develop a wide range of additional abilities for
use in PC-based computing in general and PeTS in particular, the problem of selecting which
features to include in each PeTS system must also be solved. Picking the best configuration for
each application also requires extensive exper imental ev aluation of possible PeTS system
designs.

Dietz and Lumpp will oversee the process of character izing the range of cluster architectures
and finding the best match for each application. There will be one graduate RA and one
undergrad RAs dedicated to this process; these students will wor k with the application teams to
create an optimized pairing of application coding and PeTS system configuration.

Configuration var iables include PC processor type, use of instruction-set extensions, use of
attached processors, memor y size, disk size and quantity, type(s) of interconnection between
processors, and I/O devices. In contrast to earlier effor ts of var ious groups to benchmark
different motherboards, compatible NICs, etc., our focus is on higher-level (often architectural)
differences that have significant perfor mance implications that last well beyond the next board
revision. We also will design and build simple custom hardware if an application has a
perfor mance issue that cannot be solved in any other way — as we did in developing PAPERS.

page 13 of 15

To exper imentally ev aluate the possible PeTS system designs for each application, we need to
have a development c luster that is capable of emulating any of the possible designs, which
essentially means that it will contain the union of all viable components and must be easily
reconfigurable to selectively disable the components that will not appear in a particular
emulated system. Although our industrial partners are expected to donate some of the most
expensive computer hardware components, it will be necessary to purchase other portions of
the hardware ranging from traditional PC components like pow er supplies, cases, and disk
dr ives to shelving units and mounting hardware. We have budgeted $100K/year for
components of the development system and one half-time technical staff member for its
constr uction and maintenance.

As portions of the development system hardware become impossible to duplicate with new
purchases (i.e., become obsolete), where appropriate, those por tions will be “recycled” by
making them into more PeTS systems. These additional PeTS systems will use configurations
developed earlier in the project and will be given to additional scientists at the University of
Kentucky or its NCSA Alliance and NSF EPSCoR partners. Thus, ver y fe w resources are
wasted in frequently upgrading the development cluster.

3.3. Making A PeTS Configuration Into A T urnke y System

Although it is our final step in the development of any PeTS system design, the most important
character istic of a PeTS system for its scientific user is probably how easy it is to use:

• The user should interact only with an application interface that expresses problems and
answers in the scientist’s idiom

• There should be no regular system administration visible to the user; system administration
should be minimal and should be able to be conducted remotely via the Internet (e.g., by the
staff of this project)

• The system set-up and installation should be as effor tless as possible — installed by a half-
time technical staff member for the first system, but also documented and distributed with
“cookbook” simplicity for others to build clones of the first system

Co-PI Raphael Finkel, a systems researcher with an outstanding record in the automation of
system administration for groups of machines (e.g., clusters), will lead the effor t in making the
application all that the scientist needs to think about. To w ard this, he will supervise one
graduate RA and one undergraduate RA, as well as wor king with the application teams to
integrate their application interface into the system. Thus, Finkel and his students will be
responsible for operating-system issues, including both the automation of system administration
and the general packaging of the software as a turnkey environment and PeTS software
distr ibutions.

4. Development Timeline

All the PeTS systems to be developed under this proposal will share much of the systems-level
research, which will be progressing continuously throughout the five-year period of the wor k.
We expect that the aggressive use of new technologies and radical restructur ing of applications
in producing PeTS systems will result in dramatic var iations in the time to produce each PeTS
design. However, it is useful to examine the process that a typical PeTS design will go through:

page 14 of 15

Study current code

1-2 months

Select next app

1 month

Call for applications

2 months

Acceptance test

1 month

PeTS Release

1-2 months

Order Parts & Build

1 month

Final App + FE

2 months

Final Sys SW & HW

1 month

Evaluate PeTS system on prototype

Restructure app System HW & SW

Build turnkey FE

1-2 months

Design turnkey FE

1 month
Process repeats...

approximately
1 week to 4 months
per iteration

From call for applications to release of the final system, we expect a typical PeTS system to
require a development period of just over one year. Typically, there would be between two and
four PeTS systems under development simultaneously, each at a different stage in the
development pipeline. We have “pr imed the pipe” by wor king-out the first few stages of the
CFD PeTS system beforehand, so the delay in reaching our desired steady state should be no
more than six months.

The pipeline stages are fair ly straightforward. Whenever we see a gap in the pipeline that
would allow us to star t a new project, we will issue an open invitation for scientists and
engineers to propose applications for PeTS implementation. After selecting the most
appropr iate application, we will begin a detailed analysis of the current code versions. From
that point, development of a turnkey front end can begin. Likewise, we can begin the iterative
process of restructur ing the application and system software and hardware, evaluating the
resulting potential PeTS design using our development cluster, and then revising the design to
improve perfor mance. We expect this iterative process to continue for about 4 months on
average, but expect substantial var iation. The next steps finalize the design and construct the
actual PeTS system, which is then put through acceptance tests that compare it to other
implementations of the same application. Finally, the complete application and system design
will be released as a finished product, easily replicated by other potential users. It is in this last
stage that we also will publish on the techniques used.

page 15 of 15

