
Quantum Circuits

EE599-001 & EE699-010, Spring 2026

Hank Dietz

http://aggregate.org/hankd/

http://aggregate.org/hankd

Why Quantum Algorithms?

• Find a solution faster:
• Exponentially parallel execution
• Quantum operations reduce O() complexity

• Reduce memory size required:
Holding 2n n-bit values in n qubits

• Reduce power consumed per computation:
• Parallel computation without parallel HW
• Reduced O() complexity reduces operations

Why Quantum Algorithms?

• Find a solution faster:
• Exponentially parallel execution
• Quantum operations reduce O() complexity

• Reduce memory size required:
Holding 2n n-bit values in n qubits

• Reduce power consumed per computation:
• Parallel computation without parallel HW
• Reduced O() complexity, fewer operations

Parallel Evaluation

• Perform operation on all data values
• Measure a randomly-selected result
• MuqcsCraft Random 4-bit value

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[%22H%22,%22H%22,%22H%22,%22H%22]]%7D

Parallel Evaluation

• Perform operation on all data values
• Report a randomly-selected result
• MuqcsCraft FA

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,1,1,1,%22X%22],[%22H%22,%22H%22,%22H%22],[%22%E2%80%A2%22,1,1,%22Swap%22,%22Swap%22],[1,%22%E2%80%A2%22,1,%22Swap%22,%22Swap%22],[1,1,%22%E2%80%A2%22,%22Swap%22,%22Swap%22],[1,1,%22Swap%22,%22%E2%80%A2%22,%22Swap%22],[1,%22%E2%80%A2%22,%22Swap%22,1,%22Swap%22]]%7D

Query Model of Computation

• Input isn’t data, but a function
• Goal is finding a property of the function by

making queries against it
• Function is treated as an oracle
• Function is computable using binary logic

• The function is mapped into a unitary gate Uf

• Uf inputs |x>|y> and outputs |x>|y^f(x)>
• f(x) can be 0 or 1; not necessarily entangled
• Uf does not have to be simple...

Deutsch’s Problem

• Data isn’t the input; a function f(a) is

• There are 4 possible functions of one qubit:

• A function f(a) can be:
• Constant: always same output: f0(a), f3(a)
• Balanced: {0,1} equiprobable: f1(a), f2(a)
• Neither: well, not in this case...

a f0(a) f1(a) f2(a) f3(a)

0 0 0 1 1
1 0 1 0 1

Conventional Solution

• Query f(a) twice: f(0) and f(1)
that is testing all possible values...

• Is f(0) == f(1)?
• Yes: function is Constant
• No: function is Balanced

Deutsch’s Algorithm

• X input passes through Uf unchanged
(generally necessary to make Uf reversible)

• Y input is XORed with f(X) in Uf,
but Y is 180º out of phase with X (due to |1>)

• Final H(X) completes phase kickback

Deutsch’s Algorithm

• Uf0 inputs |x>|y> and outputs |x>|y^f0(x)>
• f0(x) is 0
• Uf0 is |x>|y^0> which is just |x>|y>
• Thus, Uf0 is no gates at all!

• MuqcsCraft Uf0, entangled MuqcsCraft Uf0

a f0(a) f1(a) f2(a) f3(a)

0 0 0 1 1
1 0 1 0 1

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,%22X%22],[%22H%22,%22H%22],[%22H%22]]%7D

Deutsch’s Algorithm

• Uf1 inputs |x>|y> and outputs |x>|y^f1(x)>
• f1(x) is x
• Uf1 is |x>|y^x>
• Thus, Uf1 is a CNOT x, y gate

• MuqcsCraft Uf1

a f0(a) f1(a) f2(a) f3(a)

0 0 0 1 1
1 0 1 0 1

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,%22X%22],[%22H%22,%22H%22],[%22%E2%80%A2%22,%22X%22],[%22H%22]]%7D

Deutsch’s Algorithm

• Uf2 inputs |x>|y> and outputs |x>|y^f2(x)>
• f2(x) is ~x
• Uf2 is |x>|y^~x> which is just |x>|~(y^x)>
• Thus, Uf2 is a CNOT x, y , NOT y gate

• MuqcsCraft Uf2

a f0(a) f1(a) f2(a) f3(a)

0 0 0 1 1
1 0 1 0 1

• Uf2 inputs |x>|y> and outputs |x>|y^f2(x)>
• f2(x) is ~x
• Uf2 is |x>|y^~x> which is just |x>|~(y^x)>
• Thus, Uf2 is a CNOT x, y , NOT y gate

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,%22X%22],[%22H%22,%22H%22],[%22%E2%80%A2%22,%22X%22],[1,%22X%22],[%22H%22]]%7D

Deutsch’s Algorithm

• Uf3 inputs |x>|y> and outputs |x>|y^f3(x)>
• f3(x) is 1
• Uf3 is |x>|y^1> which is just |x>|~y>
• Thus, Uf3 is a NOT y gate

• MuqcsCraft Uf3

a f0(a) f1(a) f2(a) f3(a)

0 0 0 1 1
1 0 1 0 1

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,%22X%22],[%22H%22,%22H%22],[1,%22X%22],[%22H%22]]%7D

Deutsch-Jozsa Problem

• Extends Deutsch Problem to operate on a
function with k inputs and one output

• Distinguishes constant from balanced,
but “don’t care” about result if it is neither
(i.e., if promise is not kept)

• Random functions are unlikely to be either
constant or balanced; e.g., AND X0, X1

Conventional Solution

• Evaluate f() for 2 to 2k-1+1 random inputs

• If any two evals don’t return the same value,
it must be balanced and can stop early

• To get a statistical answer, can stop after
n evaluations that were all the same
• If f() is constant, answer is correct
• If f() is balanced, probability of error is 2-n+1

Deutsch-Jozsa Algorithm

• Output 0 for constant, 1 for balanced, but
1 is if ANY measurement is 1 (OR reduction)

• OR reduction takes O(k) operations, but
Uf is evaluated just once, with 2k parallelism

Deutsch-Jozsa Algorithm

• f(X1,X0)=0 is constant: MuqcsCraft DJ0

• f(X1,X0)=~X1 is balanced: MuqcsCraft DJNOT

• AND(X1,X0) is neither: MuqcsCraft DJAND

X1 X0 0 NOT X0 AND

0 0 0 1 0
0 1 0 0 0
1 0 0 1 0
1 1 0 0 1

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,1,%22X%22],[%22H%22,%22H%22,%22H%22],[%22H%22,%22H%22]]%7D
https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,1,%22X%22],[%22H%22,%22H%22,%22H%22],[%22X%22],[%22%E2%80%A2%22,1,%22X%22],[%22H%22,%22H%22]]%7D
https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,1,%22X%22],[%22H%22,%22H%22,%22H%22],[%22%E2%80%A2%22,%22%E2%80%A2%22,%22X%22],[%22H%22,%22H%22]]%7D

Bernstein-Vazirani Problem

• Sometimes called Fourier sampling problem

• Given the promise that there exists a vector s
such that f(x)=s·x for all x, find s

Note that: s·x = (s0&x0) ^ (s1&x1) ...

• Uses Deutsch-Jozsa Algorithm
• Measurements are weights for s
• No conventional postprocessing (no ANY)
• For example: MuqcsCraft DJNOT

https://mjmcguffin.github.io/MuqcsCraft/?circuit=%7B%22cols%22:[[1,1,%22X%22],[%22H%22,%22H%22,%22H%22],[%22X%22],[%22%E2%80%A2%22,1,%22X%22],[%22H%22,%22H%22]]%7D

Simon’s Problem

• For a function with n inputs and m outputs

• Find v such that f(x)==f(y) implies either:
• x^s==y
• x==y (in which case s=0n)

• Requires promise that s exists…

Simon’s Algorithm

• The n inputs are at the top and m outputs are
at the bottom – without phase kickback

• Measurement does not directly give s...

Simon’s Algorithm
• Each run of the quantum algorithm gives a

randomly-selected n-bit vector y; collect these
into a binary matrix M with n columns and
k rows (one for each quantum algorithm run)

• M s, for a column vector of s, should equal 0;
thus, classical Gaussian elimination can be
used to solve for s

• Classical queries only eliminate one possible s
per pair of queries producing different values,
so ≥2n/2-1-1 queries are generally needed

Qiskit

• Qiskit is the most popular quantum circuit SDK
• Open source software from IBM Quantum
• Python, but includes hardware interfaces
• Qiskit ecosystem collects related projects

https://www.ibm.com/quantum/ecosystem

• Install Qiskit on a local machine
https://quantum.cloud.ibm.com/docs/en/guides/install-qiskit#local

• IBM Quantum Experience was drag-and-drop,
WWW versions are now Jupyter Notebooks
https://quantum.cloud.ibm.com/docs/en/guides/online-lab-environments

https://www.ibm.com/quantum/ecosystem
https://quantum.cloud.ibm.com/docs/en/guides/install-qiskit#local
https://quantum.cloud.ibm.com/docs/en/guides/online-lab-environments

Transpilation

• Transpilation is compilation
• Allocating specific qubits
• Translating to supported primitive operations
• Applys optimization and scheduling passes

https://quantum.cloud.ibm.com/docs/en/guides/transpile

Qiskit philosophy

• Qiskit is a library in conventional python code

• Qiskit constructs a data structure representing
each quantum circuit and calls functions to
perform actions on that data structure

• IBM’s Qiskit in the classroom
https://quantum.cloud.ibm.com/learning/en/modules/quantum-mechanics/get-started-with-qiskit

• Let’s look at the “Hello World” example
https://quantum.cloud.ibm.com/docs/en/guides/hello-world

https://quantum.cloud.ibm.com/learning/en/modules/quantum-mechanics/get-started-with-qiskit
https://quantum.cloud.ibm.com/docs/en/guides/hello-world

