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ABSTRACTFisher, Randall James. Ph.D., Purdue University, May, 2003. General-Purpose SIMDWithin A Register: Parallel Pro
essing On Consumer Mi
ropro
essors. MajorProfessors: Henry G. Dietz and Leah H. Jamieson.Re
ent extensions to mi
ropro
essor instru
tion sets are intended to speed-upmultimedia algorithms by allowing SIMD parallel pro
essing over multiple data �eldswithin ea
h pro
essor register. These extensions, while e�e
tively supporting hand-
oding of some multimedia tasks, do not dire
tly support a high-level parallel pro-gramming model. Unfortunately, the extensions vary widely a
ross di�erent pro
essorfamilies, making portability diÆ
ult to a
hieve. Even within one set of extensions,ea
h operation is supported only for 
ertain �eld widths, and the widths supportedare di�erent for di�erent operations. This thesis will de�ne a general-purpose SWAR(SIMD Within A Register) programming model. This model will be implementedfor multiple target ar
hite
tures: initially as 
ompatible libraries, then as optimizing
ompilers a

epting a simple high-level parallel language. The new SWAR librariesand 
ompiler te
hnology should enable a mu
h wider range of appli
ations to a
hievespeed-up through SIMD exe
ution using COTS mi
ropro
essors.
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1. INTRODUCTION1.1 MotivationModern 
ommodity mi
ropro
essors employ a limited form of parallel pro
essingin order to speed up multimedia algorithms. While these modi�ed ar
hite
tures aresimilar to 
ertain traditional parallel pro
essing models, they have unique and varied
onstraints on how they 
an be used. Traditional models of parallel pro
essing arebased on more powerful ar
hite
tures and thus do not a

ount for these 
onstraints.To better re
e
t the 
apabilities and limitations of these new ar
hite
tures, and tobridge the gaps between them, a new abstra
t model is required. We 
all this newpro
essing model SWAR (SIMD Within A Register).1.1.1 A Brief Introdu
tion to Pro
essing ModelsTo understand why previous abstra
t models are not suÆ
ient, we need to havean understanding of these models and their purposes. Flynn's 
lassi�
ation of pro-
essing systems [1℄ is useful in this endeavor, and we will use it to help denote thevarious pro
essing models in this dis
ussion. While we will often treat them as be-ing inter
hangeable, 
omputer ar
hite
tures and the languages used to program themmay a
tually be based on di�erent pro
essing models. In this dis
ussion, we will dif-ferentiate between ar
hite
tural and programming models as ne
essary. Also, thesemodels are presented in an order that is not ne
essarily 
hronologi
al, but shouldhighlight their salient properties.Sequential pro
essors exe
ute a single instru
tion on a single set of s
alar operandsat any given time. To re
e
t this fa
t, Flynn named this pro
essing model SISD(Single Instru
tion stream, Single Data stream). This model is the basis for most
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omputers in
luding the �rst mi
ropro
essor systems. While SISD systems are suf-�
ient for many of the 
omputing problems we en
ounter on a daily basis, they aretoo slow to be used to solve very large problems in a reasonable amount of time. Adesire to improve upon this situation led to the development of new ar
hite
tures andpro
essing models.Pipelined pro
essors are SISD ma
hines in whi
h ea
h instru
tion is exe
uted in asingle pro
essing unit with multiple stages. The pro
essor is set up like an assemblyline with ea
h stage performing one part of the total work needed to 
omplete theinstru
tion. An instru
tion 
an o

upy only one stage of the pipeline at any giventime, leaving the remaining stages available to other instru
tions. Thus, multipleinstru
tions from an instru
tion stream 
an be in the pipeline simultaneously.In mathemati
s, a ve
tor is a single-dimensional, multi-element obje
t. Ve
torprogramming models help programmers express operations on ve
tors more 
on
iselythan do s
alar models. Many of these operations are applied to ea
h of the ve
tor'selements independently or 
umulatively. For example, adding two ve
tors is equiv-alent to adding their elements in a pairwise manner. Ve
tor programming modelsallow su
h operations to be expressed as a single operation on a ve
tor rather thanas a series of s
alar operations on the ve
tor's elements.Ve
tor pro
essors were developed to minimize the 
osts asso
iated with perform-ing ve
tor operations. They 
apitalize on the fa
t that most ve
tor operations arerepeated over many elements. For these operations, some of the pipeline exe
utionstages need only be performed on
e for the entire ve
tor. Thus, ve
tor pro
essorsredu
e exe
ution time by removing redundan
y in the exe
ution of identi
al element-wise operations.The simplest ve
tor pro
essors exe
ute repetitive ve
tor operations by sequentiallyrunning the ve
tor elements through an ALU whi
h performs an identi
al operation onea
h element. Pipelined ve
tor pro
essors allow multiple ALUs to be 
hained togetherto form an exe
ution pipeline similar to that of a pipelined SISD pro
essor. This
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reases the performan
e of the pro
essor by allowing multiple ve
tor operations tonot only share 
ontrol stages but also to overlap in time.While these ve
tor pro
essors 
an a
hieve signi�
ant speedup, they fail to fullyexploit the available parallelism of ve
tor 
ode. This is be
ause they perform ea
hoperation on only one set of 
orresponding elements at a time. Thus, in some sense,they are a
tually just improved SISD ma
hines. To obtain better performan
e, pro-
essing models were developed in whi
h work is performed on multiple parts of aproblem simultaneously (i.e. in parallel). This is known as parallel pro
essing.These new pro
essing models were more 
losely mat
hed to the large, s
ienti�
problems whi
h high-performan
e systems were intended to address than were thes
alar models upon whi
h sequential and simple ve
tor pro
essors were based. Theseproblems in
luded the modeling of physi
al phenomena su
h as weather and nu
learrea
tions and the analysis of observed data su
h as satellite photographs.In these problems, physi
al environments or entities are represented by large datasets. For example, ea
h datum may represent the value of some physi
al property atone of thousands of points within an environment at some given time. At ea
h point,the predi
ted future value of this property is a fun
tion of its 
urrent value and itsvalue at ea
h of the neighboring points in multiple dire
tions. Thus, solving theseproblems typi
ally requires not only large amounts of 
omputational power but alsotimely a

ess to both lo
al and neighboring point data.Parallel pro
essors are systems whi
h are based on parallel pro
essing models.These systems 
onsist of multiple pro
essing units whi
h operate on multiple instru
-tion streams simultaneously. Typi
ally, these pro
essing units are 
onne
ted to forman array via one or more 
ommuni
ations networks. These inter
onne
tion networks,whi
h are sometimes referred to simply as the inter
onne
t, allow point data to bepassed between neighboring pro
essing units in one or more dimensions. Thus, thesesystems were designed to be appropriate targets for large-s
ale s
ienti�
 problems.There are two major forms of parallelism whi
h these systems exploit. Controlparallelism refers to the separation of a problem into multiple independent se
tions
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h 
an be exe
uted simultaneously. Data parallelism refers to problems with aregular nature in whi
h the same series of operations must be applied to multiplesets of data. Di�erent pro
essing models and ar
hite
tures were developed to exploitthese di�ering forms of parallelism.MIMD (Multiple Instru
tion stream, Multiple Data stream) is a parallel pro
ess-ing model that was developed as a means of exploiting 
ontrol parallelism in largeproblems. The 
omputational nodes of a MIMD pro
essor ea
h exe
ute a series ofinstru
tions whi
h may di�er from that of the other nodes. This allows ea
h node toexe
ute an independent se
tion of the problem.MIMD pro
essors 
an simultaneously run multiple unrelated se
tions of 
ode ormultiple 
opies of identi
al 
ode. This allows various programming models to be usedto program these systems. For example, the MIMD programming model is basedon the assumption that the problem is divided into pie
es that may need to besyn
hronized o

asionally, but are otherwise 
ompletely independent. The SPMDprogramming model (Single Program, Multiple Data) is similar, but is based on theassumption that the independent pie
es are identi
al.While MIMD pro
essing is quite versatile, there is a 
ost asso
iated with this
exibility due to the repli
ation of both 
omputational and 
ontrol hardware. Thismakes MIMD relatively expensive. Other pro
essing models were developed as ameans of avoiding this 
ost while still bene�tting from some form of parallelism.One su
h model was SIMD (Single Instru
tion stream, Multiple Data stream),whi
h was developed as a relatively inexpensive means of exploiting data parallelism.This is done by applying ea
h operation simultaneously to as many data points aspossible. Thus, a single instru
tion stream is exe
uted on multiple data streams.SIMD systems 
an be divided into ve
tor-based and array-based systems. Ve
torSIMD pro
essors, also 
alled ve
tor parallel pro
essors, are single-dimensional SIMDpro
essors designed to operate on ve
tor data obje
ts. SIMD array pro
essors areSIMD ar
hite
tures whose PEs are 
onne
ted in shapes of two or more dimensions.
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tor SIMD pro
essors exe
ute repetitive ve
tor element operations in a simul-taneous fashion. With these pro
essors, data is loaded into a set of ve
tor registerswhi
h hold some �xed number of elements. Operations are then performed on someor all of these elements simultaneously. This allows the pro
essor to take advantageof the data parallelism inherent in ve
tor pro
essing to a
hieve higher performan
ethan non-parallel ve
tor pro
essors.While ve
tor pro
essors shorten the time required to solve 
ertain 
lasses of prob-lems, they are not well-adapted to solving large multi-dimensional problems eÆ
iently.Array pro
essors are better suited to these problems be
ause they allow arrays to bepro
essed with their 
oordinate systems inta
t. That is, these pro
essors allow datafrom neighboring points in spa
e to be stored in neighboring pro
essing units.A typi
al SIMD system has a single 
ontrol unit, usually abbreviated CU, and anarray of multiple pro
essing units whi
h are often 
alled pro
essing elements (PEs).The CU is responsible for reading a single stream of instru
tions from memory, de-
oding these instru
tions into 
ontrol signals, and issuing the 
ontrol signals to thePE array. Ea
h PE exe
utes the operation de�ned by the 
ontrol signals on its owndata stream. This data stream may be from a shared memory, but is usually from amemory whi
h the PE holds privately.Using a single 
ontroller makes SIMD systems inexpensive 
ompared to the moregeneral MIMD ar
hite
tures in whi
h the 
ontrol unit is repli
ated for ea
h of thePEs. Yet, for data parallel problems, SIMD retains the bene�ts of parallel pro
essingasso
iated with MIMD, thus giving it a higher performan
e to 
ost ratio.One drawba
k of SIMD programming models is that they are severely limitedwhen 
ompared to MIMD models be
ause every pro
essor must exe
ute exa
tly thesame instru
tion simultaneously. This limits them to SPMD-style programs whi
hare exe
uted with every instru
tion syn
hronized.This also makes the handling of high-level language 
ontrol 
onstru
ts, su
h as ifstatements, diÆ
ult. Typi
al SIMD systems have spe
ial hardware to turn PEs onand o� (or equivalently, to blo
k the side-e�e
ts of exe
ution) depending on the lo
al
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onditions of the PE. If this hardware is not present, the exe
uted program must bemodi�ed to nullify the e�e
ts of 
ode that should not have been exe
uted.1.1.2 Multimedia ExtensionsSeveral programming and ma
hine models have been developed to improve per-forman
e over traditional SISD 
omputers. These were well-developed by the 1990swhen manufa
turers of 
ommodity SISD mi
ropro
essors began experimenting withnon-SISD ar
hite
tures for multimedia pro
essing.Early work in this area fo
used on enhan
ing pro
essors with on-
hip graphi
alhardware. This was typi
ally in the form of a handful of instru
tions for speeding
ommon graphi
s operations. This in
luded operations su
h as interpolating theposition of non-end points on a line when only the endpoints were known and testingfor the visibility of obje
ts to determine if they should be drawn on the s
reen. Thesee�orts were very limited, and not intended for general-purpose 
omputing. However,they used methods that were later employed in implementingmore general multimediaextensions.In the 1990s, several manufa
turers of 
ommodity mi
ropro
essors began expand-ing their instru
tion set ar
hite
tures with multimedia extensions. These were in-tended to speedup data parallel algorithms used in graphi
al and audio pro
essingwhile keeping the amount of ar
hite
tural modi�
ation required to implement themat a minimum. Of the pro
essing models mentioned, the 
losest mat
h to these goalswas the ve
tor parallel subset of SIMD. Thus, the designers of these multimediaextensions implemented them as sets of SIMD-like instru
tions.When exe
uted, these instru
tions are performed on multiple streams of dataresiding in a single CPU register. Thus, these extended ar
hite
tures implement aform of SIMD pro
essing. However, they di�er from previous SIMD ar
hite
turesbe
ause they have only one 
entral pro
essing unit (CPU) whose operation has been



- 7 -altered to a
t like a CU with a set of PEs, rather than an a
tual set of PEs driven bya single, separate 
ontrol unit.This means that the entire set of PEs shares the CPU's single data path. Data
an only be moved in and out of the PEs in the equivalent of blo
k form from a singleshared memory. Thus, a memory a

ess moves a blo
k of 
onse
utive bits between aset of neighboring PEs and a single word in memory. This restri
tion is a signi�
antlimitation 
ompared with typi
al SIMD ar
hite
tures, whi
h 
ould load data fromindependent addresses or from private memories.Data 
ommuni
ation is also signi�
antly di�erent be
ause there is often no equiv-alent to the 
ommuni
ations networks employed in typi
al SIMD systems. OftenSHIFT and ROTATE instru
tions are the only means available to move data betweenthese pseudo-PEs. One 
ommuni
ation type used in later SIMD ar
hite
tures is ave
tor-indexed 
ommuni
ation. This allows ea
h PE to a

ess data stored by someother PE, independent of the a
tions of the remaining PEs. Few multimedia ar
hi-te
tures 
an perform su
h a generalized 
ommuni
ation.While not exa
tly SIMD, these SIMD-like extensions serve their intended purposeby allowing assembly language programmers to 
apture some of the potential speedupdue to the data parallel nature of the targeted algorithms. Unfortunately, few ofthese extensions were designed with the intention of developing a 
omplete pro
essingmodel.Usually, the registers and 
ontrol logi
 used to implement these extensions neededto be enhan
ed to allow SIMD-like pro
essing. This required 
onsiderable investmentin the redesign and modi�
ation of the existing ar
hite
ture. To minimize this in-vestment while maximizing its per
eived bene�ts, ea
h of the extension sets has beentargeted to support the multimedia algorithms that are believed to be most oftenused on its host platform. Thus, these extensions have limited fun
tionality and tendto support only those data types and sizes whi
h are normally used in multimedia.Be
ause of the variation in the ar
hite
tures and the algorithms whi
h are typi
allyrun on them, the instru
tions and data sizes supported often di�er substantially



- 8 -between extension sets. Even within a single extension set, an instru
tion may existto perform a parti
ular operation on one size of data, but not on another size. Thiswas intentionally done, based on the assumption that some operations are performedoften on 
ertain types of multimedia data, but rarely on others.These variations and limitations are the primary problem with multimedia ex-tensions, and limit their usefulness substantially. As a result, these extensions aresuÆ
ient for hand-
oding ar
hite
ture-spe
i�
, SIMD-parallel, multimedia operationsat the assembly level, but are less useful beyond this s
ope. Variations between exten-sion sets make 
ode portability diÆ
ult, and the la
k of 
onsistent support for di�eringdata sizes often for
es format 
onversions between su

essive parallel operations. Fi-nally, these extensions simply do not support 
ertain data sizes and operations whi
hmay be useful to appli
ations programmers in the future.1.1.3 My ThesisI believe that the set of appli
ations whi
h 
an bene�t from these extensions isunknown and not limited to multimedia algorithms and data types. Also, that itis likely that multimedia extensions will 
ontinue to evolve, with some growing intomore general systems and others dying out. Thus, not only will programmers needto be able to port 
ode from one ar
hite
ture to another, they will also want their
ode to take advantage of future 
apabilities without having to be rewritten for ea
hnew ar
hite
ture.Current programming models are either target-spe
i�
, based dire
tly on sometarget's multimedia extensions, or based on programming models whi
h do not mat
hthe 
apabilities of these ar
hite
tures. These models are also unne
essarily limitedto 
urrently 
ommon data types and sizes. This ultimately limits their usefulnessto those types of appli
ations whi
h we are able to foresee in the near future, andalso prevents programmers from expressing algorithms whi
h are best suited to non-standard data pre
isions. To move beyond the 
urrent situation, a general-purpose
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essing des
ribed above should bedeveloped.This form of parallelism, in whi
h a single CPU register holds multiple data itemsthat are operated on in a SIMD manner, is referred to as \mi
roparallelism" byAlpern, Carter, and Gatlin [2℄, and belongs to a 
lass of operation known as \sub-wordpro
essing." We will reserve the former term for any form of parallelism performedwithin a single register, in
luding 
on
epts su
h as single-register VLIW, and thelatter term to mean any form of pro
essing data whi
h resides in less than a fullma
hine word (e.g. byte operations on a 32-bit ma
hine).Thus, we shall 
onsider the SIMD form of parallelism that this thesis addresses tobe a subset of both mi
roparallelism and sub-word pro
essing. We refer to this formof pro
essing as SWAR (SIMD Within A Register) [3℄.While the limitations of multimedia extensions make it diÆ
ult to develop a 
on-sistent, portable, general-purpose SWAR programming model, they are not fatal. Infa
t, a generalized programming model 
an be developed whi
h 
an target standardpro
essor families with no SWAR-like extensions whatsoever.It is my goal in this resear
h to 
reate a SWAR pro
essing model whi
h extendsbeyond the limits of 
urrent models, and to lay the groundwork for 
ontinued devel-opment of this form of parallel pro
essing.1.2 Related WorkWhen this work was �rst proposed in 1997 [4℄, we were unaware of any othergroups pursuing a high-level approa
h to general-purpose SWAR pro
essing. Knownsupport for SWAR pro
essing was limited to assembly-level programming tools andhigh-level multimedia libraries. Sin
e then, the situation has 
hanged with variousgroups now performing related work.While some of this work is similar to that presented in this thesis, to our knowledgethere are still no other groups whi
h take as broad an approa
h to SWAR pro
essing



- 10 -as the one presented here. In this se
tion, we dis
uss related work in the 
ontext ofthe pursuit of a general-purpose SWAR pro
essing model.These e�orts 
an be separated into four primary types: software-only methodsfor SWAR pro
essing, non-
ompiler tools whi
h assist the programmer in the use ofmultimedia instru
tions, pre-written libraries whi
h make use of multimedia instru
-tions, and 
ompiler support for SWAR pro
essing. Some of this support was dis
ussedin [5℄. That work is updated and expanded here.1.2.1 Software-only MethodsIn his Do
toral Dissertation to the Royal Melbourne Institute of Te
hnology [6℄,Mark Spieth presented the Single Pro
essor Single Instru
tion Multiple Data pro
ess-ing model. This model is similar to that of SWAR, but is limited in several ways.The primary goal of the resear
h was to \explore the feasibility of the software onlysolution to the parallel implementation of arithmeti
 operations in single pro
essors."This was a less ambitious goal than that proposed here whi
h in
ludes the use ofSWAR hardware, expansion of the model to arbitrary data sizes, and the developmentof a fully portable programming model and related 
ompiler te
hnology.The work by Spieth is a more 
omplete theoreti
al treatment of the subset of theSWAR work dealing with the pro
essing of pa
ked standard integer data using soft-ware te
hniques on unenhan
ed hardware, primarily as it relates to image pro
essing.In his thesis, Spieth explored various representations of numeri
 information andprovided a mathemati
al framework of pa
ked number representations. The primarymethod explored was aliasing, in whi
h the sign bit of ea
h register data �eld is
on
eptually extended into the upper �elds of the register and 
ombined with thedata in those �elds. This 
auses the lower �eld data to a�e
t the bit patterns storedin the upper �elds. An unaliasing step is required to extra
t individual �eld datafrom the register.



- 11 -Algorithms were provided for performing the operations Spieth 
onsidered to bevalid for SPSIMD pro
essing. These in
lude addition, subtra
tion, 
onstant multipli-
ation and division, bit shifts, Boolean (i.e. bitwise logi
al), and 
onditionals withinwhi
h are in
luded minimum, maximum, and absolute value operations. This is alimited set 
ompared to that of the SWAR model.These algorithms were evaluated mathemati
ally to determine the e�e
ts of alias-ing on their operation and performan
e. It was found that aliasing pla
es limits on thedomains of the operands of these operations. Cal
ulations of the theoreti
al speedupof these algorithms were also provided. These appear to be 
ompared to software im-plementations of the same operation on unpa
ked data rather than against possiblehardware implementations.Spieth also examined the removal of the restri
tions of the SPSIMD paradigm.These are the restri
tion of operation domains to prevent over
ow from o

urringand the restri
tion of result pre
isions to those of the sour
e operands. Removal ofthe �rst restri
tion would allow the operand domain to en
ompass a larger range ofvalues. Removal of the se
ond restri
tion would allow intermediate 
al
ulations toin
rease in pre
ision.In the dis
ussion of this examination, Spieth des
ribed split word pro
essing wherepa
ked data is \split" into multiple pa
ked words whi
h ea
h 
ontain a subset of thepa
ked data. This in
ludes te
hniques that were dis
ussed early in 1997 by ProfessorDietz [3℄ and whi
h are used extensively within the S

 
ompiler dis
ussed later inthis thesis. One of these te
hniques is the virtual spa
er te
hnique for implementingarithmeti
 operations that may over
ow. Another is the general method of temporar-ily promoting pa
ked data to a greater intermediate pre
ision, performing operationsat this pre
ision, then repa
king the data into its original pre
ision.Spieth found that removing the restri
tions of the SPSIMD model using split wordpro
essing was e�e
tive, but subje
t to overhead, memory interfa
e speed, and theset of assumptions one 
ould make about the operands.
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tiveness of the SPSIMD model were performed on several hand-
oded image pro
essing algorithms. This was done by 
omparing the results obtainedusing the SPSIMD version with those obtained for rolled and unrolled looped, sequen-tial implementations as baselines. This was done on �ve di�erent ma
hines, runningfour di�erent operating systems, and 
ompiled with GCC or Borland C using theirfull set of optimizations.Spieth also brie
y dis
ussed other 
riteria for evaluating SPSIMD pro
essing in-
luding 
ost, 
onvenien
e, and suitability. He spe
i�
ally mentioned that he believedthat the development of 
ompiler extensions would improve the situation by providingpa
ked data stru
tures and parallel operations. This is one of the goals of my workand is beyond the s
ope of Spieth's.A performan
e 
omparison of the methods used by Spieth versus those used inthe 
ompiler implementation des
ribed in this resear
h would be an interesting futurework. Also, Spieth's work should be further explored for possible alternative 
ompilerimplementations of SWAR operations whi
h are not supported by hardware.1.2.2 Non-
ompiler ToolsThe lowest level of support for the use of multimedia extensions in
ludes toolssu
h as pro�lers and debuggers. Neither of these is in the realm of a programmingmodel and 
an safely be ignored, but we will brie
y mention some examples to 
onveya sense of their utility.The VTune optimization pa
kage from Intel [7℄ provides programmers with per-forman
e tuning tools whi
h analyze sour
e 
ode and o�er advi
e for using Intel'smultimedia extensions to improve it. This would typi
ally be used in an ad ho
manner with programmers performing a 
oding 
y
le of writing 
ode, pro�ling, thenrewriting the 
ode to try to get better performan
e. For some time, this was the onlysigni�
ant means of support provided by Intel for its multimedia extensions.



- 13 -NuMega Te
hnologies' SoftICE for Windows 95 and SoftICE for Windows NT [8℄are debuggers whi
h allow the disassembly of MMX instru
tions. These allow theprogrammer to use any available method of generating 
ode whi
h 
ontains multime-dia instru
tions, then debug or pro�le the resulting assembly 
ode. It is likely thatmost multimedia-aware C/C++ 
ompilation pa
kages now in
lude a debugger and/orintegrated disassembler.1.2.3 LibrariesPre-written libraries provide a high-level interfa
e to a target's multimedia in-stru
tions. These libraries are usually both appli
ation- and target- spe
i�
, andperform 
ommon high-level operations whi
h are 
omprised of multiple hardware in-stru
tions. They provide a means for appli
ations programmers to exploit a target'smultimedia extensions without being 
on
erned with the details of the ar
hite
ture;however, they typi
ally do not address the issues of generality or portability.Several appli
ation-spe
i�
 libraries have been developed for MMX, in
luding sig-nal pro
essing [9℄, image pro
essing [10℄, spee
h re
ognition [11℄, and spee
h to textlibraries[12℄. A set of \Performan
e Libraries", to whi
h the above libraries may be-long, are in
luded with Intel's Fortran and C++ 
ompilers. These libraries are notintended to provide a general-purpose programming model, and support only spe
i�
data sizes.Apple has adapted its 
ore math libraries to make use of Motorola's AltiVe
 [13℄extensions. They plan to rewrite their other libraries for this purpose in the future.Sun Mi
rosystems provides a C library 
alled \mediaLib" [14℄ for the VIS ex-tension set. mediaLib 
an be freely downloaded in binary form for 
ertain platformsafter a required li
ensing and non-dis
losure agreement [15℄ is ele
troni
ally a

epted.Do
umentation for mediaLib is freely downloadable, and indi
ates that mediaLib isa high-level library whi
h o�ers support for basi
 8-, 16-, and 32-bit operations, aswell as advan
ed fun
tions su
h as FFTs.
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t [16℄ is an attempt to de�ne a portable math library for\
ommonly-used algorithms" a
ross SIMD-enhan
ed and unenhan
ed ar
hite
tures.The goal is to support \trigonometri
, 
omplex number, quaternion and FFT oper-ations" on s
alar, ve
tor, and matrix obje
ts. Fun
tions are expe
ted to be imple-mented using inline assembly 
ode to a

ess multimedia instru
tions and C 
ode forportability to unenhan
ed ar
hite
tures.While plans for libSIMD are broad, its fun
tionality is 
urrently limited, 
onsistingprimarily of 
oating-point operations. Ve
tors and matri
es appear to be limited tosingle fragment or sub-fragment lengths. The fun
tion listings in the do
umentationrefer to 2-ve
tors, 3-ve
tors, and 4-ve
tors, while matrix fun
tions operate on 2x2,3x3, and 4x4 matri
es.libSIMD fun
tion arguments are obje
ts in memory and results are stored tomemory. Unless the 
ompiler is able to perform optimizations a
ross these pro
edures,possibly via inlining, then the memory a

ess overhead will be too great to a
hievesigni�
ant speedup. Our de
ision to 
on
entrate on a 
ompiler rather than a generallibrary was partially due to this fa
t.The primary bene�t of the libSIMD library would be portability of 
ode betweenvarious multimedia-enhan
ed and unenhan
ed targets. However, this aspe
t seemsto be insuÆ
iently developed at this time as libSIMD is 
urrently targeted only toAMD's 3DNow! extension set. This should 
hange in the future as the author targetsother multimedia extensions.1.2.4 Compiler Support for SWARCurrent 
ompiler support for SWAR pro
essing 
onsists primarily of various meth-ods for exploiting multimedia extensions. This support falls into �ve major 
ategories:� Inline assembly and 
ompiler intrinsi
s. This type of support gives the pro-grammer low-level a

ess to the instru
tions in the target's multimedia exten-sion set. This allows the programmer to use multimedia instru
tions, but with
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ompiler support. Programmers must maintain type and parti-tioning information themselves and 
hoose the 
orre
t intrinsi
 to use based onthis knowledge. In some 
ases, the 
ompiler is able to optimize the resultinglow-level 
ode.� Classes or types whi
h represent a fragment. Compiler support of this type isalso limited to low-level a

ess, but type and partitioning information is tra
kedfor the programmer via the type or 
lass system of the sour
e language. Thisinformation may be used by the 
ompiler to ensure that the 
orre
t assemblyinstru
tion is exe
uted based on the partitioning of the fragment operands.� Automati
 ve
torization of loops. This type of support provides an abstra
tmodel whi
h hides the use of extended instru
tions. With this type of support,well-known te
hniques are used to parallelize loops in existing 
ode. The pri-mary disadvantage is that loops must 
onform to 
ertain forms for the 
ompilerto re
ognize that they are parallelizable.� Automati
 ve
torization of basi
 blo
ks. This type of support also provides anabstra
t model whi
h hides the use of extended instru
tions. Here, 
ode in abasi
 blo
k is 
ombined into operations on fragments. This is a more generalapproa
h than ve
torization of loops be
ause the 
ode does not have to be inloop form to be ve
torized. The primary disadvantage is the amount of workand spa
e required to 
ombine the 
ode into ve
tor operations.� Languages with �rst-
lass ve
tor obje
ts. This type of support also provides anabstra
t model whi
h hides the use of extended instru
tions. Here, the stru
tureand semanti
s of the language indi
ate whi
h operations 
an be automati
allyparallelized. This is more restri
tive than automati
 parallelization of basi
blo
ks, but provides a 
on
ise method for des
ribing ve
tor operations.We will now look at ea
h of these 
ategories in turn, and des
ribe some of the relatedwork whi
h has been, or is being, 
ondu
ted along these lines.



- 16 -Inline Assembly and Compiler Intrinsi
sInline assembly is low-level 
ode for the target ma
hine whi
h is inserted intohigh-level language sour
e 
ode. This 
ode is typi
ally emitted dire
tly into theassembly 
ode generated by the high-level language 
ompiler. This lets programmersuse assembly language instru
tions of whose existen
e the 
ompiler is unaware. Inmany 
ases this is the only form of support that the 
ompiler provides for the use ofextended instru
tion sets.Compiler intrinsi
s are built-in fun
tions whi
h provide a fun
tion-
all-like high-level interfa
e to the target's ma
hine instru
tions. Generally, these are trivial toimplement and are usually just prepro
essor ma
ros whi
h hide inlined assembly 
odewhi
h is used to exe
ute a single instru
tion. These intrinsi
s are intended to providea

ess to instru
tions that the programmer would not otherwise be able to use, butgenerally do not provide fun
tionality beyond the limits of the extended instru
tionset.Inline assembly and 
ompiler intrinsi
s operate at too low a level to be 
onsid-ered for a portable general-purpose SWAR pro
essing model. However, this is oftenthe starting point for other forms of support, so we will brie
y survey some of the
ommer
ial 
ompilers whi
h support the use of multimedia instru
tions via intrinsi
sand/or ma
ros.Both Intel's Fortran [17℄ and C++ [18℄ 
ompilers supply a set of intrinsi
s fortheir MMX, SSE, and SSE2 instru
tion sets. These intrinsi
s provide a means ofdes
ribing the appli
ation of these instru
tions to obje
ts in memory. The 
ompileris then responsible for register allo
ation and optimization of the resulting 
ode.Mi
rosoft's Visual C++ version 5.0 
ompiler [19℄ also provides inline assemblysupport for MMX instru
tions as well the ability to disassemble 
ode 
ontainingthese instru
tions.Metrowerks' CodeWarrior [20, 21℄ 
ompiler provides inline assembly support forboth MMX and AMD's 3DNow! instru
tions. This is one of several 
ompilers of
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t line whi
h are targeted to di�erent ar
hite
tures. At least one version,CodeWarrior for Ma
 OS Professional Edition [22℄, supports AltiVe
, although it isn't
lear how.Q Software Solutions LCC-Win32 
ompiler [23℄ also provides intrinsi
 support forMMX and 3DNow!. This 
ompiler is an extension of the l

 
ompiler 
reated byFraser and Hanson for their text on 
ompiler design [24℄.The Ve
torCfPCg [25℄ C/C++ 
ompiler by 
odeplay, Ltd., provides inline as-sembly support and intrinsi
s for the MMX, 3DNow!, and SSE extension sets. This
ompiler is intended primarily for the development of graphi
s-intensive games.Green Hills Software makes an optimizing C/C++ 
ompiler [26℄ whi
h supportsMotorola's AltiVe
 via a set of high-level intrinsi
s.The VIS Software Developer's Kit (VSDK) [27℄ in
ludes a set of ma
ros for usingSun's VIS extensions. VSDK 
an be freely downloaded in binary form for 
ertainplatforms after a required li
ensing and non-dis
losure agreement [28℄ is ele
troni
allya

epted. The do
umentation for VSDK is part of the li
ensed pa
kage.A

ording to [29℄, C 
ompilers whi
h provide a

ess via ma
ros for Hewlett-Pa
kard's MAX-2 extensions, Sun's VIS extensions, and the multimedia instru
tionsof the Mi
roUnity and and Philips' Trimedia ar
hite
tures have been available sin
ethe mid-1990's. The authors had suggested that a set of industry standard ma
rosbe developed. To the best of my knowledge, this has never been done.Classes or Types whi
h Represent a FragmentA ve
tor fragment is the amount of parallel data than 
an reside in a singlemultimedia-enhan
ed register. Con
eptually, long ve
tors of data 
an be broken intomultiple smaller ve
tors whi
h �t into a register. It is these small ve
tors that werefer to as a fragment.Obje
t-oriented 
lasses or simple type de�nitions whi
h represent a fragment 
anprovide a �rst-
lass feel to these obje
ts and the operations on them. To do this, 
lass
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lude fun
tions whi
h overload 
ommon operators with parallel versionsof the operation. Conversely, the use of non-
lass type de�nitions generally requires amodi�
ation to both the high-level language and the asso
iated 
ompiler to supportparallel operations on these obje
ts.Several 
ompilers support the use of multimedia extensions via 
lass or type def-initions. Usually, these fragment-based models are built on top of a set of intrinsi
sand support only the operations and partitionings native to the target's multimediaextension set. The following is a brief survey of a few of the 
ompilers that providethis form of support.The Intel C++ 
ompiler in
ludes 
lass libraries for operating on MMX, SSE, andSSE2 fragments.Free Pas
al [30, 31℄ in
ludes prede�ned array types for MMX and 3DNow!, andextends Pas
al through what are essentially 
ompiler dire
tives to allow some �rst-
lass operations on these types.Oxford Mi
ro Devi
es' C 
ompiler for its A236 Parallel Video DSP 
hip [32℄, whi
hhas instru
tions similar to MMX, provides prede�ned stru
t types for des
ribingfragments. Arithmeti
 and 
omparison operations on these types are performed on asingle fragment of data.Motorola has developed an extension of the C programming language whi
h in-
ludes a new \ve
tor" type to represent a single AltiVe
 fragment. This extension isnot intended to be portable to other ar
hite
tures, and requires a modi�ed versionof the GNU C 
ompiler [33℄, GCC, whi
h generates AltiVe
 instru
tions to performoperations on these \ve
tor" obje
ts.Green Hills Software's optimizing C/C++ 
ompiler [26℄ also supports AltiVe
 viaMotorola's \ve
tor" extensions.



- 19 -Automati
 Ve
torization of LoopsUnder stri
t 
onditions, and usually with hints from the programmer, some 
om-pilers are able to ve
torize simple data-parallel loops. This support is in the earlystages and is limited in the data types and operations that 
an o

ur in the body of theloop, although more advan
e te
hniques are under development. This development
an be expe
ted to follow that of Fortran loop manipulation and ve
torization.Intel's Fortran and C++ 
ompilers provide automati
 loop ve
torization targetingthe MMX, SSE [34℄, and SSE2 extension sets.Metrowerks' CodeWarrior 
ompiler provides ve
torization for Intel's MMX andalso for AMD's 3DNow! extensions [20℄. Metrowerks is now owned by Motorola, so onewould expe
t that support for Motorola's AltiVe
 extensions would be forth
oming.A

ording to [13℄ this support is 
urrently under development.Green Hills Software's [26℄ C/C++ 
ompiler supports AltiVe
 via automati
 ve
-torization of loops.Codeplay's Ve
torCfPCg C/C++ 
ompiler performs automati
 ve
torization forMMX, 3DNow!, Enhan
ed 3DNow!, SSE, and SSE2 targets [35℄. A separate versionof this 
ompiler targets the ve
tor units of the Sony PlayStation2 [25℄.The Portland Group's Workstation 
ompilers for Fortran 77 [36℄, Fortran 90, C,and C++ [37℄ use a 
ommon 
ore whi
h supports automati
 ve
torization of loopsfor SSE-based targets.Veridian Systems VAST/Parallel restru
turing Fortran and C/C++ prepro
es-sors [38℄ perform automati
 loop ve
torization and reordering as a front-end to anative 
ompiler. Currently, these prepro
essors only target the AltiVe
 multimediaextension set.The VAST prepro
essors have a long history, dating ba
k to the mid-1980s whenthe Ve
tor and Array Syntax Translator by Pa
i�
 Sierra Resear
h Corporation wasused to ve
torize Fortran 200 
ode for the CDC Cyber 205 [39℄.



- 20 -The VAST-F/AltiVe
 Fortran Prepro
essor [40℄ \repla
es ve
torized Fortran loopswith 
alls to VAST-generated C fun
tions 
ontaining ve
tor instru
tions." The VAST-C/AltiVe
 C Prepro
essor [41℄ \automati
ally repla
es loops in C programs with inlineve
tor extensions (as de�ned by Motorola)."These prepro
essors generate C 
ode in a manner similar to that of the S

SWARC 
ompiler dis
ussed later in this work, but depend on Motorola's modi�edversion of the GNU C 
ompiler dis
ussed previously.A

ording to [13℄, Absoft is also working on automati
 ve
torization of loops forApple's Velo
ity Engine implementation of AltiVe
. Their Pro Fortran 
ompilersfor Ma
 O/S 9 [42℄ and PPC/Linux [43℄, however, support AltiVe
 via pre
ompiledFortran 90/95 intrinsi
s and optimized ben
hmark and appli
ation-spe
i�
 libraries.Automati
 ve
torization is only supported for the PPC/Linux version, and seems tobe supported via Veridian's VAST-F/Ve
tor prepro
essors.The VSUIF proje
t at the University of Toronto [44℄ was 
ondu
ted in the mid-to-late 1990's to add support for ve
tor mi
ropro
essors to the SUIF 
ompiler [45℄.The goal of this proje
t was to provide a high-level language programming model forusing these ar
hite
tures.This 
ompiler ve
torizes loop-oriented, high-level language 
ode into assembly
ode for the target ar
hite
ture. The original target was the Torrent ar
hite
ture [46,47℄ whi
h was then under development at the University of California at Berkeley. Thedesigners planned to target Sun's UltraSPARC with VIS afterward, and a separateresear
h e�ort was underway to 
reate a SPARC 
ode generator for SUIF [48℄. Thiswas intended to provide the ba
k-end for VIS targets.At the time [44℄ was written, DeVries and Lee had a
hieved some su

ess ve
toriz-ing moderately 
omplex 
ode. They were still working on the handling of breaks anda method of 
lassifying fun
tions to determine if they would a�e
t the ve
torizabilityof loops when 
alled. This work was to be validated using the UCB Torrent simulatorbefore work to target the UltraSPARC was to begin.



- 21 -We are unaware of the ultimate disposition of this work, although DeVries' Mas-ter's thesis is based on its implementation and performan
e [49℄. While this proje
twas intended to provide high-level support for ve
tor pro
essing, in
luding SWAR tar-gets, it takes the loop ve
torization approa
h and does not treat ve
tors as �rst-
lassobje
ts.Automati
 Ve
torization of Basi
 Blo
ksA more general approa
h to automati
 ve
torization is to sear
h basi
 blo
ks for
ode whi
h 
an be parallelized via the use of multimedia extensions. This allows notonly loops to be ve
torized, but also unrelated s
alar 
ode. This approa
h is also moregeneral than parallelizing 
ode based on �rst-
lass ve
tor obje
ts, be
ause the state-ments whi
h are automati
ally 
ombined into ve
tor fragments are not ne
essarilyrelated.Thus, this method is able to exploit a larger amount of parallelism than any otherdis
ussed. However, as with loop-ve
torizing 
ompilers, a 
ompiler whi
h ve
torizesbasi
 blo
ks is pla
ed in the position of having to dete
t parallelism whi
h is not ex-pli
itly des
ribed in the high-level language. This 
omplex task requires a signi�
antamount of time and spa
e, more so than any other method of parallelization dis
ussedhere.There are two groups known to be performing resear
h in this area. The �rst is atthe Massa
husetts Institute of Te
hnology's Laboratory for Computer S
ien
e. Theother is at the University of Dortmund.Work at MIT's Laboratory for Computer S
ien
e 
enters around what they termSuperword Level Parallelism (SLP) [50℄. This is de�ned as \short SIMD parallelismin whi
h the operands and results of SIMD operations are pa
ked in a storage lo
a-tion" [51℄.The goal is to ve
torize high-level sequential 
ode throughout a basi
 blo
k by de-te
ting sets of single-valued isomorphi
 statements (statements whi
h have the same



- 22 -expression stru
ture) and 
olle
ting them into a series of ve
tor fragment operations.This \SLP algorithm" is proposed as an alternative to the ve
torization of looped
ode. In fa
t, the SLP 
ompiler unrolls loops in order to generate isomorphi
 sequen-tial 
ode that 
an be parallelized in this manner. The SLP dete
tion algorithm isdes
ribed in [51℄ and elaborated on in [52℄.A later report [53℄ presents a simpli�ed alternative to the SLP ve
torizing algo-rithm; however, this algorithm exploits only a subset of the parallelism that the SLPdete
tion algorithm 
an. Results presented in this report were based on the per-
entage of dynami
 instru
tions eliminated from sequential ben
hmarks. These were
al
ulated for the 128-bit AltiVe
 ar
hite
ture and for larger hypotheti
al ar
hite
-tures via SUIF. Apparently, no a
tual timing information was gathered.This proje
t is based on the ve
torization of pre-existing sequential 
ode whi
hmay be marked-up with 
ompiler hints to indi
ate the presen
e of hard-to-dete
tparallelism. As su
h, it does not 
onform to the SWAR ve
tor programming model.However, it is probably a good 
omplement to the SWAR model in that it seeks to �ndparallelizable expressions whi
h are more general than SWAR ve
tors. Con
eptually,one 
ould fragment ve
tor and array 
ode, and apply the SLP dete
tion algorithm toextra
t parallelism from the remaining s
alar 
ode.Work at the University of Dortmund 
enters around \
ode sele
tion" for mediaand embedded pro
essors. The goal of this work is similar to that of the MIT group.A 
ompiler te
hnique introdu
ed in [54℄ and brie
y des
ribed in [55℄ uses a data-
ow graph (DFG) as an ar
hite
ture-independent intermediate representation of ahigh-level language (i.e. C) sour
e. This DFG is then walked using a pattern-mat
hingalgorithm whi
h pre-assigns instru
tions to the parts of the tree. Bran
hes whi
h 
anbe 
overed by a single one of the target's SWAR instru
tions are tra
ked. Whenthe entire graph is 
overed, instru
tions are a
tually assigned with the use of SWARinstru
tions maximized.The authors seem to be unaware of similar work performed in the parallel pro
ess-ing area. In [54℄ it is 
laimed that \SIMD instru
tions are so far not really exploited



- 23 -by 
ompilers for media pro
essors. Taking advantage of su
h instru
tions is only pos-sible, if pro
essor-spe
i�
 assembly routines or 
ompiler intrinsi
s are used, resultingin low portability of software." This is despite the fa
t that the S

 
ompiler for thetarget-independent SWARC language was freely available for about two years beforethese papers were published and 
ontemporary 
ompilers su
h as Metrowerks' Code-Warrior [20℄ were 
apable of performing automati
 ve
torization of simple C languageloops for multimedia-based targets.Languages with First-Class Ve
tor Obje
tsLanguages whi
h provide �rst-
lass ve
tor obje
ts allow multi-fragment obje
ts tobe de�ned and operated on as a single entity. This has several bene�ts. First, it allowsthe programmer to express ve
tor operations in a more 
on
ise manner than inlineassembly, fragment-based types and 
lasses, or automati
ally ve
torized s
alar 
ode.Se
ond, it allows portability between ar
hite
tures by hiding their di�eren
es, su
has supported partitionings and register sizes, from the programmer. Third, it allowsthe 
ompiler to deal with issues su
h as 
ode optimization rather than parallelismdete
tion.Existing 
ompilers for languages whi
h support �rst-
lass ve
tor and array ob-je
ts, su
h as Fortran 90, have been targeted to ar
hite
tures whi
h have multimediaextensions, but it is not 
lear that any of these 
onvert �rst-
lass ve
tor or arrayoperations into multimedia instru
tions. For example, the literature for the VeridianSystems VAST-F/AltiVe
 Fortran prepro
essor [40℄ never mentions any su
h supportalthough loop ve
torization is dis
ussed.We are aware of only one other resear
h e�ort whi
h spe
i�
ally takes this ap-proa
h to supporting SWAR ar
hite
tures. This is the Ve
tor Pas
al proje
t at theUniversity of Glasgow. Ve
tor Pas
al [56℄ is an extension of the Pas
al language tosupport �rst-
lass operations on ve
tor and array obje
ts targeted to multimedia-enhan
ed ar
hite
tures.



- 24 -In Ve
tor Pas
al, unary and binary operations 
an be performed on 
ompletearrays or their subse
tions. Certain higher-level fun
tions, su
h as sqrt, abs, andsin, are intrinsi
 to the language and 
an also operate on these obje
ts.Binary operations in
lude modular and saturated addition and subtra
tion, othermodular arithmeti
 operations su
h as multipli
ation, division, and exponentiation,and various other types of operations su
h as 
omparisons, shifts, and logi
als. Theseoperations assume an implied identity value if one is not given. This applies tooperations on set expressions as well as numeri
 ones. For example, the Ve
tor Pas
alexpression /a is equivalent in meaning to the expression 1/a for any value a.For ea
h of the binary operators there is an asso
iated redu
tion operator. Thisapplies the binary operation along the last dimension of its operand. These redu
tionsredu
e the rank of the operand by one with the ex
eption of the s
alar 
ase in whi
hthey have no e�e
t.Obje
ts of di�erent rank 
an be operated on in mixed expressions with the re-stri
tion that, ex
ept for redu
tions, ea
h variable in the expression must have rankless than or equal to that of the lvalue to whi
h the expression's value will be as-signed. Operands whi
h have lower rank are repli
ated to mat
h the rank of thelvalue. Operands of higher rank must be redu
ed in rank via one or more redu
tionoperations.User-de�ned fun
tions whi
h operate on a s
alar obje
t are automati
ally ex-tended to apply to an array obje
t of the same type in an element-wise manner. Thisme
hanism allows the programmer to write fun
tions that operate on both s
alars andarrays of various sizes without having to parameterize the dimensions of its formalparameters.One important aspe
t of SIMD programming that appears to be missing fromVe
tor Pas
al is the proper handling of parallel obje
ts in the language's 
ontrol
onstru
ts. No mention is made 
on
erning if, or how, 
onditional 
onstru
ts su
has if statements and loops are handled when their 
onditional expressions are non-



- 25 -s
alar. This is a signi�
ant issue whi
h should be addressed in the design of a high-level SIMD language.The Ve
tor Pas
al 
ompiler uses the ILCG [57℄ 
ode generation system in whi
h atarget des
ription language is used to denote the spe
i�
s of the target ar
hite
ture.The initial targets were the Intel 486 and Pentium with MMX. Currently Ve
torPas
al targets the \Intel 486, Pentium with MMX, and P3 and also the AMDK6." [56℄It should be noted that these are all IA32-based ar
hite
tures.1.2.5 SummarySoftware-only methods, su
h as Spieth's, 
annot 
ompete with those whi
h takeadvantage of available SIMD instru
tion set extensions and 
an thus be reje
ted inmost 
ases. These methods do, however, provide a level of portability between targetswhi
h 
annot 
urrently be obtained using multimedia extension sets only.Low-level, high-performan
e libraries are 
losely related to their target ar
hite
-tures. These are often written to be inlined by a 
ompiler and 
an thus be easilyoptimized. However, they do not provide portability between ar
hite
tures and arethus insuÆ
ient for our model.High-level libraries tend to be appli
ation-spe
i�
, intended to perform parti
ularalgorithms or operations for well-known problems. While typi
ally having reason-ably portable interfa
es, these libraries are not intended for use in general-purposealgorithms and are usually too spe
ialized for our purposes.As a general rule, high-performan
e in library 
ode 
omes at the pri
e of non-portability. Thus, it is diÆ
ult, but not impossible, to develop a portable, high-performan
e, general-purpose library. Developing su
h a library would entail makinga trade-o� between these two 
ompeting fa
tors.Inline assembly and 
ompiler intrinsi
s are dire
tly related to their asso
iatedar
hite
tures, and thus operate at too low a level to be 
onsidered for a portablegeneral-purpose programming model. However, they 
an be useful for 
ode genera-



- 26 -tion as they tend to ease the integration of unsupported hardware instru
tions intopreexisting 
ompilers.Classes and types whi
h represent a word-sized fragment of ve
tor data also op-erate at too low a level to be 
onsidered for a general-purpose programming model.These are dire
tly related to their asso
iated hardware ar
hite
tures, en
oding thesize of their registers, and often only provide a

ess to the available hardware instru
-tions. Thus, they generally do not present a portable programming model. This isnot to say that 
lasses and new types 
annot provide a portable level of abstra
tion,only that 
urrent systems tend not to use these methods to their best advantage.Compilers whi
h perform automati
 ve
torization of s
alar loops and basi
 blo
kstend to be overly limited in their 
urrent 
apabilities. Most of the 
urrent set ofve
torizing 
ompilers are only 
apable of ve
torizing simple loops that would be moresu

in
tly expressed as �rst-
lass ve
tor operations. More 
omplex loops, those that
annot be expressed as ve
tor operations, are typi
ally too 
omplex for these 
ompilersto handle.As 
urrent 
ompiler writers learn more about, or reinvent, the work done in thehigh performan
e 
omputing 
ommunity over the last few de
ades, these 
ompilerswill be
ome better at generating ve
torized 
ode from s
alar sour
es. However, weshould be developing programming models that make it easier to express 
omplexoperations, not high-performan
e 
ompilers whi
h optimize sour
e 
ode based on thewrong ar
hite
tural model.As part of the development of a new general-purpose SWAR programming model,the subje
t of this thesis, we have 
hosen to design a language with �rst-
lass ve
torobje
ts be
ause we believe this o�ers the best opportunity for performan
e gains overa large range of appli
ations and target ar
hite
tures.Unlike any of the related work, this language allows both the pre
ision of thedata and the number of elements to di�er from those supported by the hardware. Italso provides a full, portable set of ve
tor operations whi
h are independent of theextended instru
tions available on any parti
ular target. This language, SWARC,



- 27 -will be dis
ussed later in this work, and is, to the best of my knowledge, the onlylanguage whi
h adheres to this generalized model.1.3 S
ope of WorkIn this thesis, a new abstra
t model of parallel 
omputation is developed whi
hbetter re
e
ts the 
apabilities and limitations of modern SWAR ar
hite
tures thando 
urrent 
omputational models. An example language based on this model is pre-sented, as is a 
ompiler for this language whi
h uses various te
hniques to optimize
ode for these ar
hite
tures. Performan
e metri
s are also developed and employedto evaluate these implementations. This work should provide a starting point forfuture resear
h and the development of pra
ti
al programming languages for SWARpro
essing.1.4 Thesis OrganizationThis thesis is organized as follows. Chapter 2 is a study of the multimedia exten-sion sets available in 
ommodity general-purpose mi
ropro
essors. Chapter 3 presentsthe general-purpose SWAR pro
essing model. Chapter 4 des
ribes the SWARC lan-guage whi
h is based on the SWAR pro
essing model and a proof-of-
on
ept imple-mentation of a SWARC 
ompiler 
alled S

. Chapter 5 presents various evaluationsof the de�ned SWAR model, the SWARC language, and the S

 
ompiler.
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2. ANALYSIS OF CURRENT MULTIMEDIAEXTENSION SETSA new abstra
t model of parallel 
omputation is needed whi
h will better re
e
t the
apabilities and limitations of modern SWAR ar
hite
tures than do 
urrent 
ompu-tational models. In order to develop a new model whi
h adequately a

ounts for the
apabilities and limitations of 
urrent SWAR ar
hite
tures, it is ne
essary to have anunderstanding of the range of fun
tionality whi
h they support.These ar
hite
tures were 
reated when 
ommer
ial developers of mi
ropro
essorsredesigned them to improve their performan
e on multimedia appli
ations. Thiswas done by extending their standard instru
tion sets with new sets of \multimediainstru
tions" whi
h operate in a SIMD manner on parallel se
tions of their systemdata paths.Ea
h extension set was tailored to support the algorithms and appli
ations whi
hits designers believed to be most important to their 
lientele. Early extensions tendedto be limited to instru
tions whi
h perform operations that are frequently used in theirparti
ular target appli
ations, and were not intended to present a 
omplete parallelprogramming model to their users. Thus they failed to provide suÆ
ient support fora viable SWAR pro
essing model.Be
ause of the variation in their appli
ations, the extensions meant to supportthem varied widely. However, some of these appli
ations di�er only in s
ope or quality,with the underlying algorithms being equivalent. Consequently, while ea
h extensionset is unique, its fun
tionality may have aspe
ts whi
h are similar or equivalent tothose of other extensions.Later extensions are more 
omplete, often in
luding improvements whi
h addressproblems with their an
estors' designs. Thus, a type of evolution is in play whi
h



- 30 -may ultimately lead to relatively stable and 
omplete sets of multimedia instru
tions.Unfortunately, 
urrent extension sets still have limitations.The range of support provided by these extensions still varies widely. The s
ope ofthese extensions also di�ers, with some in
luding a large number of SWAR operations,while others in
lude only a few. Support is still limited to data of standard sizes, andis still not 
onsistent a
ross these sizes. Also, instru
tions ne
essary for proper SIMDoperation are often la
king or limited.The primary goal of this phase of resear
h was to determine the 
apabilities andlimitations of the multimedia extension families whi
h are available on 
urrent COTS(
ommodity, o�-the-shelf) pro
essors [4℄. This analysis will be used as a basis forthe design and implementation of the general-purpose SWAR programming modelundertaken in later phases of the resear
h. This is ne
essary to ensure that thedeveloped model fairly re
e
ts the 
ommon 
apabilities of 
urrent ar
hite
tures.This analysis should also be useful when de
iding how an ar
hite
ture's enhan
e-ments will be used within an implementation of the generalized model, and shouldfoster insight into the possibility of 
ode optimization based on a target ar
hite
ture'senhan
ed features.Data 
olle
tion and organization was 
arried out over the last few years by myself.The data is derived primarily from programming manuals pertaining to the variousextension sets and their related ar
hite
tures. Other sour
es of information in
ludedjournal arti
les and promotional literature, but manuals were used whenever possibleas they are generally the most reliable sour
es.An early survey of multimedia extensions was presented by Kelley and Posti� in[58℄. That paper also dis
usses issues related to the 
ir
uit implementation of multi-media extensions. A limited table of multimedia extensions was presented by Dubeyin [59℄. This was apparently developed at about the time of my thesis proposal [4℄,but I was unaware of it until re
ently. Unless noted, neither of these was used as asour
e of information for the following analysis.



- 31 -In this se
tion, several 
urrent extension sets are brie
y introdu
ed, along withsome older ones whi
h have interesting features. In the following se
tion, a set oftables is presented whi
h des
ribe the SWAR instru
tions available to programmersusing these extension sets.The multimedia extension sets analyzed in this 
hapter are: Digital EquipmentCorporation's Motion Video Instru
tions (MVI) [60℄; Hewlett-Pa
kard Company'sPA-RISC 1.1 Multimedia A

eleration Extensions (MAX-1) [61℄, and PA-RISC 2.0Multimedia A

eleration Extensions (MAX-2) [62, 63℄; Sili
on Graphi
s MIPS-V [64℄and MIPS Digital Media Extension (MDMX) [65, 66℄; Motorola, In
orporated's Al-tiVe
 [67, 68℄; Sun Mi
rosystems, In
orporated's Visual Instru
tion Set (VIS) [69, 70℄;Intel Corporation's [71, 72℄ MMX, whi
h is also implemented by Advan
ed Mi
ro De-vi
es, In
orporated [73℄ and Cyrix Corporation [74℄; AMD's 3DNow! [75℄, Enhan
ed3DNow! (E3DNow!) [76℄, and 3DNow! Professional (3DNow!Pro); Cyrix's ExtendedMMX (EMMX) [77℄; and Intel's Streaming SIMD Extensions (SSE) [78℄ and Stream-ing SIMD Extensions 2 (SSE2) [78℄.MVIThe Motion Video Instru
tions (MVI) were originally developed by Digital Equip-ment Corporation for their Alpha mi
ropro
essor ar
hite
ture in about 1996. Thiswas \motivated by the desire to perform high quality software motion video en
odingusing the prevalent ISO/ITU video 
ompression standards." [79℄.MVI was 
learly not an attempt to develop a high-level SWAR programmingmodel, and is in fa
t more 
losely related to the graphi
al extensions in
luded in theIntel i860 or Motorola 88110 pro
essors than to other extensions studied.MVI 
onsists of a minimal set of instru
tions that perform graphi
al operationssu
h as 
al
ulating pixel di�eren
es and �nding the larger or smaller of two values.These instru
tions operate on data residing in the Alpha's standard 64-bit integer



- 32 -register set. This makes the standard integer instru
tions available to the SWARprogrammer.Digital was bought by Compaq Computer Corporation, whi
h was subsequentlybought-out by Hewlett-Pa
kard. The Alpha ar
hite
ture and the MVI extensionshave been passed along as well.PA-RISC MAX-1.0The original version of Hewlett Pa
kard's Multimedia A

eleration eXtensions(MAX-1.0) were intended to a

elerate the de
ompression of video data for real-timedisplay without resorting to spe
ial-purpose hardware.The basi
 design pro
ess was des
ribed by 
hief ar
hite
t Ruby Lee as \...�nd-ing the most frequent operations, breaking them down into simple primitives, anda

elerating their exe
ution." [61℄ This pro
ess resulted in a small set of general-purpose instru
tions whi
h performed basi
 arithmeti
 operations, and allowed theseextensions to be used for purposes beyond those for whi
h they were designed.MAX-1.0 was originally implemented on the 32-bit PA-RISC 1.1 ar
hite
ture PA-7100LC [80, 61℄ whi
h was introdu
ed in 1994. Primitive arithmeti
 and shift-and-arithmeti
 operations were performed by the 7100LC's two integer ALUs on the16-bit subwords of the pro
essor's 32-bit integer registers. This allowed two MAXinstru
tions to be exe
uted with every 
lo
k 
y
le at peak speed.MAX-1.0 was superseded by the MAX-2.0 extension set with the introdu
tion ofthe PA-RISC 2.0 ar
hite
ture. In ea
h of the tables, these are 
ombined under theMAX heading unless there are instru
tions whi
h are only in MAX-2.0. In this 
ase,the there is a 
olumn for ea
h of the two versions, and those listed in MAX-1.0 areavailable in both.



- 33 -PA-RISC MAX-2.0As with MAX-1.0, Hewlett-Pa
kard Company's MAX-2.0 extensions [62℄ were de-signed to a

elerate multimedia pro
essing without using spe
ial-purpose hardware.MAX-2.0 was developed with the goal of introdu
ing \instru
tions that provide sig-ni�
ant performan
e improvement with insigni�
ant impa
t on the area, 
y
le-time,and design time of the PA-RISC pro
essor." [81℄ A good des
ription of the thoughtsof the HP designers 
an be found on page 1-6 of [82℄.MAX-2 was �rst implemented on the 64-bit PA-8000 mi
ropro
essor [83, 84℄ in1995 and is 
onsidered to be an integral part of the PA-RISC 2.0 ar
hite
ture [82℄. It isa superset of MAX-1 whi
h it extends to support 64-bit ar
hite
tures and instru
tionsfor 
ontrolling data alignment and layout. These in
lude simple parallel shifts, \mix"instru
tions whi
h interleave the �elds of two operands, and an instru
tion whi
hpermutes the �elds of a register. These instru
tions were 
hosen to signi�
antlya

elerate media pro
essing while still being useful for general-purpose pro
essing [63℄.MAX-2 uses the integer general registers, integer ALUs, and shift merge units(SMUs) of the PA-8000. The two integer ALUs are similar to those of the 7100LC.The two SMUs perform basi
 parallel shifting operations, the merging fun
tions whi
hinterleave two operands, and the generalized permute operation. This allows upto four MAX-2 instru
tions to be exe
uted simultaneously. The integer pathwayswere 
hosen to minimize the amount of modi�
ation required and allow the use ofpreexisting integer instru
tions su
h as extra
tions.MAX-2 is 
urrently available in PA-RISC 2.0-based servers su
h as HP's rp8400series. With Hewlett-Pa
kard's a
quisitions of Compaq and Digital, and the re
entmove toward support for Intel-based systems, the future of the PA-RISC ar
hite
ture,and thus MAX, is in question. It remains to be seen if they will 
ontinue to besupported.



- 34 -MIPS-V Paired-SingleThe MIPS-V instru
tion set adds support for partitioned operations on pairs ofsingle-pre
ision 
oating-point data to the MIPS-IV instru
tion set. Pages 7-10 of [66℄
ontain an overview of these extensions, and detailed des
riptions of the instru
tionsare provided in [64℄.This extension set was intended to support appli
ations related to graphi
s andsignal pro
essing, su
h as \3D [si
℄ geometry pro
essing, oil and gas, and manufa
-turing appli
ations." [85℄ It does this via a reasonable set of 
oating-point arithmeti
instru
tions, a ri
h set of 
onditional tests, and data alignment and layout operations.This makes the MIPS-V \paired-single" extensions useful for a variety of appli
ations.MIPS-V was announ
ed in 1996 [86℄, and was to be introdu
ed with the H1 gen-eration of pro
essors following the R12000. These were s
heduled for produ
tion inthe �rst half of 1999 [85℄. At some point, MIPS 
hanged its fo
us to the develop-ment of pro
essor 
ores for appli
ation spe
i�
 markets, and the ar
hite
tures werereorganized. It is not 
lear to me if MIPS-V was ever a
tually implemented as a stand-alone entity. The 
urrent MIPS64 ar
hite
ture is MIPS-V 
ompatible; however, thepaired-single extensions are an optional feature [87℄.MDMXThe MIPS Digital Media Extension (MDMX) was announ
ed at the same timeas the MIPS-V paired-single extensions [86℄. It was intended to provide support for\video, audio, and graphi
s pixel pro
essing by introdu
ing ve
tors of small integers."Pages 11-19 of [66℄ 
ontain an overview of these extensions and detailed des
riptionsof the instru
tions are provided in [65℄. MDMX is one of several \Appli
ation Spe
i�
Extensions" to the MIPS-V ar
hite
ture. Its presen
e implies availability of the MIPS-V paired-single extensions.In regards to general-purpose parallel pro
essing, a paragraph from the MIPSDigital Media Extension de�nition [65℄ is telling:



- 35 -The MIPS MDMX is not intended for general purpose 
omputing. Soft-ware support for the MDMX is via shared libraries (DSOs) and assemblylanguage only. Compiler support is neither implied nor planned.One of the unique features of MDMX is a 192-bit \a

umulator", whi
h is pri-marily used as the target for repetitive appli
ations of 
umulative instru
tions. It isdivided into �elds whi
h are three times as wide as the data being operated on. Forexample, for a data size of 16-bits the a

umulator 
onsists of four �elds of 48-bitsea
h.Another of MDMX's strengths lies in the variation it allows for the se
ond sour
eve
tor of its instru
tions. Almost all MDMX instru
tions allow this sour
e to be apartitioned register, an immediate value, or a s
alar whi
h the instru
tion repli
ates.This allows a single immediate or �eld value to be \broad
ast" to ea
h of the �elds,and also allows mixed operations between partitioned values and s
alars. Thus, thisfeature makes MDMX quite versatile.As with the MIPS-V paired-single extensions, MDMX was to be implemented inthe H1 generation of MIPS pro
essors [85℄. However, it is not 
lear to me that MDMXever was a
tually implemented, although similar instru
tions exist in the MIPS-64 [87℄and MIPS-3D [88℄ ar
hite
tures. Its unique qualities make MDMX worth studyingin any 
ase.MIPS-3DThe MIPS-3D graphi
s extension to the MIPS64 ar
hite
ture was introdu
edsometime around the year 2000. It is an appli
ation-spe
i�
 extension \intended for64-bit 
onsumer appli
ations that need three-dimensional graphi
s but require mini-mal implementation 
osts for low-power or System-on-Chip (SOC) solutions." [88℄ Asan extension, MIPS-3D is implemented as an optional 
ore that 
an be in
orporatedinto an appli
ation-spe
i�
 pro
essor design.



- 36 -MIPS-3D uses the MIPS64 
oating-point unit and operates on \paired-single"
oating-point data. It 
onsists of 13 instru
tions for absolute value 
al
ulation, ad-van
ed arithmeti
 operations su
h as re
ipro
al approximation, redu
tions, data 
on-version, and aggregate 
onditionals.Having only learned of this extension re
ently, I have de
ided not to dis
uss it toany signi�
ant depth at this time. However, by adding support for redu
tions andaggregate 
onditionals, it address two of the primary de�
ien
ies in 
urrent SWARextensions.AltiVe
Motorola In
orporated's AltiVe
 [68℄ extension to the PowerPC ar
hite
ture wasdeveloped in the late 1990s and in
orporated into the MPC7400 pro
essor [89℄ in 1999.It was developed to support high-performan
e 
omputing and high-bandwidth net-working appli
ations su
h as array pro
essing, Internet routers, and video pro
essingsystems [67℄.AltiVe
 in
ludes integer and 
oating-point SWAR instru
tions. These are exe-
uted by a spe
ial-purpose ve
tor pro
essing unit whi
h operates on data stored ina set of 32 128-bit ve
tor registers. Its 
ompleteness and ability to operate on bothinteger and 
oating-point data make AltiVe
 one of the better designed extension setsfrom a parallel pro
essing stand-point.The PowerPC ar
hite
ture was jointly developed by Motorola, Apple ComputerIn
orporated and International Business Ma
hines Corporation. However, Motorolahas been the primary developer of AltiVe
, with Apple a major 
onsumer, and IBMde
lining to parti
ipate in the e�ort. AltiVe
 is a well-de�ned, general-purpose set ofextensions whi
h is likely to have 
ontinued use in high-performan
e and embeddedsystems in the future.



- 37 -VISSun's VIS [70, 69, 90℄ instru
tion set was intended to support networked appli-
ations su
h as video 
onferen
ing, data en
ryption, and 
ollaborative software andalso s
ienti�
 appli
ations su
h as systems modeling and image pro
essing.VIS is best suited to handling 16- and 32-bit data, with some support for 8-bit pixel data. The instru
tions in
luded tend to be spe
ial-purpose and limited inthe data pre
isions supported. For example, a fairly large set of multipli
ations isavailable, but these are all mixed-pre
ision operations that operate on 8- and 16-bitoperands. By 
ontrast, there is no support for the addition or subtra
tion of 8-bitdata at all.One of the design goals for VIS was allow good data 
ow between memory and the
oating-point registers. This is supported with a reasonable set of loads and storesin
luding blo
k a

esses and masked stores. These improve throughput and supportSIMD pro
essing. This may be VIS's greatest strength.VIS was implemented in 1995 with the 64-bit, �rst-generation V9 ar
hite
tureUltraSPARC-I pro
essor TrGrNo:95. The UltraSPARC-I had a single pair of fully-pipelined graphi
s add and multiply units. VIS was subsequently implemented in theUltraSPARC-II, a se
ond-generation V9 pro
essor with two 
oating-point/graphi
sunits [91℄.A somewhat extended version, referred to as VIS 2.0 is available in 
urrent pro-
essors su
h as the UltraSPARC III Cu [92℄. The version dis
ussed in this thesis isnow 
alled VIS 1.0.MMXThe MMX extension set, was designed by Intel Corporation and introdu
ed in1996 in later Pentium (Pentium with MMX) pro
essors [93, 71℄. MMX was 
loned byAdvan
ed Mi
ro Devi
es, In
orporated [73℄, Cyrix Corporation [74℄, and others su
has Rise Te
hnology Company [94℄.



- 38 -It was originally \...designed to enhan
e performan
e of advan
ed media and 
om-muni
ation appli
ations" [72℄ while retaining \full 
ompatibility with existing oper-ating systems and software." [93℄ An overview of the MMX extensions is providedin [72℄, and detailed des
riptions of the instru
tions are available in [95℄. A shortsummary, in
luding 
y
le 
ounts, is available in [93℄.MMX operates on integer data stored in the CPU's 
oating-point (FP) registers.These 
annot be used for 
oating-point operations while MMX is in use. Also, the IA-32's standard integer instru
tions 
annot be used on the data stored in these registers.In this sense, MMX is less useful than extensions whi
h operate on their standardinteger registers.The MMX extensions provide a fairly wide range of support for a high-level par-allel programming model; however, they are limited to 8-, 16-, and 32- bit SWARoperations whi
h are not implemented 
onsistently a
ross these �eld sizes. There arealso no redu
tion operations nor minimum or maximum instru
tions whi
h 
ould beused for emulating unsupported saturation arithmeti
 operations. Despite these lim-itations, MMX is one of the more 
omplete sets of SWAR extensions and has be
omea permanent feature of Intel IA-32 ar
hite
ture pro
essors with a large number ofother extensions built on top of it.SSEIntel's Streaming SIMD Extensions (SSE) [78℄ serve two purposes. First, they�ll in some of the missing pie
es of MMX. Se
ond, they add a set of 32-bit 
oating-point SWAR instru
tions whi
h operate on a new set of eight 128-bit registers. Withthese extensions, the Intel ar
hite
ture is divided into three se
tions: the basi
 IA32ar
hite
ture, the integer SWAR MMX, and the 
oating-point SWAR SSE.SSE is very 
omplete, but la
ks 64-bit support and leaves the Intel IA-32 ar
hite
-ture with two di�erent SWAR register sets for di�erent types of data. In this respe
t



- 39 -AltiVe
 is better, and has more registers to work with. However, SSE has bettermemory handling and the ability to move data between registers.SSE was introdu
ed with the Pentium III ar
hite
ture in 1999 and 
ontinues tobe part of the IA-32 ar
hite
ture.SSE2Intel's Streaming SIMD Extensions 2 (SSE2) is a set of integer instru
tions primar-ily intended to provide MMX equivalent fun
tionality to data stored in the 128-bitSSE register set. SSE2 also in
ludes 64-bit 
oating-point extensions to SSE andvarious integer extensions to MMX. These are intended to �ll-in gaps in the earlierextension sets to make them more 
omplete.Combined, SSE and SSE2 form the most powerful set of SWAR extensions 
ur-rently available. They allow both integer and 
oating-point data to be stored andoperated on in the same register set. This, and their 
omprehensive support fordata of standard pre
ision, pla
es the SSE/SSE2 pair on par with Motorola's AltiVe
extensions.SSE2 was implemented with Intel's Pentium 4 (previously 
ode-named Willamette[96℄), and is now a permanent feature of the IA-32 ar
hite
tural line. The future ofSSE2 depends on whether this 32-bit line of pro
essors remains viable given Intel'sdevelopment of the IA-64 ar
hite
ture and on the extent to whi
h its fun
tionality isin
orporated into this newer ar
hite
ture.3DNow!AMD's 3DNow! [75℄ expands the MMX instru
tion set by �lling in some of itsgaps and by in
luding a set of 32-bit 
oating-point instru
tions. This was intended tosupport \
oating-point-intensive and multimedia appli
ations", and was expe
ted toimprove frame rates for high-resolution graphi
s, modeling of physi
al environments,three-dimensional imaging, and video and audio playba
k quality.



- 40 -3DNow! uses the same registers as MMX. This allows mixed-mode expressions tobe evaluated easily. It also allows the MMX polymorphi
 operations to be applied to
oating-point data for masking or extra
tion purposes.3DNow! adds basi
 arithmeti
, 
omparison, and maximum/minimum operationsfor 
oating-point data, as well as more advan
ed mathemati
al operations su
h asre
ipro
als and square roots. It also in
ludes instru
tions for 
onverting betweeninteger and 
oating-point formats and instru
tions for 
a
he prefet
hing.3DNow! was �rst implemented on the K6-2 pro
essor in 1998, a two-pipelinepro
essor with separate MMX ALU units, but shared 3DNow! resour
es. It hassubsequently been implemented on the K6-III and 
urrent Athlon pro
essors.Enhan
ed 3DNow!AMD's Athlon extensions to 3DNow! and MMX [76℄, whi
h we will refer to asEnhan
ed 3DNow! or E3DNow!, was intended to provide better support for DVD-quality audio and video streaming and digital signal pro
essing than did these earlierextension sets.E3DNow! �lls gaps in the MMX and 3DNow! extension sets. It extends 3DNow!with a few instru
tions for 
oating-point a

umulation, type 
onversion, and double-word swaps. It extends MMX with a large set of instru
tions. These perform variousarithmeti
 operations, 
a
he-bypassing stores for streaming purposes, and store syn-
hronization, word layout manipulation, and advan
ed prefet
hing operations.E3DNow! was �rst implemented on the Athlon pro
essor [97℄ in 1999 and 
ontinuesto be implemented on 
urrent AMD ar
hite
tures.3DNow! ProfessionalAMD's 3DNow! Professional [98℄ was designed primarily to syn
hronize AMD'smultimedia extensions with Intel's SSE, and thus ease 
ode migration between these
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ompeting ar
hite
tures. As with AMD's other multimedia extensions, 3DNow! Pro-fessional is implemented on the MMX registers and data path.The use of the Athlon's MMX register set means that, unlike the Intel IA32 ar
hi-te
ture, the AMD ar
hite
ture does not require support for the same set of operationsto be implemented for two separate register sets. All of the SWAR instru
tions addedto the AMD ar
hite
ture are available for use with its single enhan
ed register set.On the other hand, the AMD ar
hite
ture does not have the potential for par-allelism that the Intel ar
hite
ture has with its separate MMX and SSE data pathsand register sets. Thus, while it may be more diÆ
ult to program the Intel ar
hite
-ture for optimal performan
e, the potential pay-o� may be higher, depending on thenumber of pipelines available.3DNow! Professional was to be implemented in 
ertain Palomino-
ore Athlon pro-
essors starting in 2001. These in
luded the desktop Athlon MP, but apparently notearlier mobile Athlon 4 pro
essors (or at least, not the one in my notebook 
om-puter). 3DNow! Professional is 
urrently implemented in Thoroughbred-
ore AthlonXP pro
essors [99℄ released starting in the �rst half of 2002. 3DNow! Professional 
anbe expe
ted to be in
luded in Athlon MP and XP line pro
essors for the foreseeablefuture.Extended MMXCyrix's Extended MMX (EMMX) [77℄ was intended to extend the MMX exten-sion set in two ways. First, it extended MMX's fun
tionality by in
luding arithmeti
instru
tions su
h as average, magnitude, and multiply high in order to make it moregenerally useful. Se
ond, it added 
exibility by in
luding \implied destination" in-stru
tions.Implied destination instru
tions target a register whose use is not expli
itly in-di
ated in the instru
tion, but rather implied by the use of its sequentially pairedregister. Ea
h pair 
onsists of the registers whose numbers di�er in only the least
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ant bit position. E�e
tively, these instru
tions are three register instru
tionsrather than the IA32 standard of two. This allows the instru
tion to avoid overwritingone of its sour
es.A

ording to [77℄, EMMX was implemented on the MII pro
essor. The GXm wasalso intended to support EMMX a

ording to a preliminary version of the Cyrix CPUDete
tion Guide [100℄. Unfortunately, EMMX was phased out at about the time ofCyrix's a
quisition by National Semi
ondu
tor Corporation.In 1999, Cyrix was sold to VIA Te
hnologies, In
orporated. The Cyrix MII islisted as a 
urrent VIA produ
t [101℄; however, it apparently has been supplantedby the VIA C3, a 1GHz pro
essor whi
h supports MMX and 3DNow! [102℄. Thispro
essor was formerly known as the VIA Cyrix MIII [103℄.2.1 Tables of Multimedia Extension Support for SWARThe following tables 
ontain information about the extension sets studied. Thisinformation was gathered from various sour
es, but was primarily taken from spe
i-�
ations in ar
hite
tural and programming manuals.In general, the des
ription and tabulation of ea
h extension set in
ludes onlythose instru
tions that are part of that extension set and not those that are partof the underlying ar
hite
ture or extension sets. For example, instru
tions that arein
luded in MMX are not listed as being part of SSE, although in 
urrent ar
hite
turessupport for SSE implies support for MMX.Ex
eptions have been made for extensions whi
h operate on data that resides inthe general register set of the underlying ar
hite
ture. In this 
ase, existing instru
-tions that may be useful for SWAR pro
essing have been in
luded. Spe
i�
ally, thedes
riptions for DEC's MVI and HP's MAX-1 and MAX-2 extensions in
lude stan-dard integer instru
tions whi
h 
an be usefully applied to partitioned data stored inthe integer registers on whi
h these extensions operate.



- 43 -For this analysis, the instru
tions have been 
ategorized into groups whi
h performrelated types of operations. These in
lude arithmeti
 instru
tions, shifts and rota-tions, bitwise-logi
al and bitwise-redu
tion instru
tions, various types of 
onditionalinstru
tions and instru
tions whi
h support 
ontrol 
ow, data movement, repli
ation,and type 
onversion instru
tions, various types of data layout instru
tions, memorya

esses, and 
a
he management instru
tions.Some explanation of the notational 
onventions used within the tables is requiredbefore the tables themselves are presented. These 
onventions are intended to allowthe data in these tables to be des
ribed 
on
isely. Periods have been left o� from theabbreviations used in order to minimize the amount of spa
e used.In the row headings of the tables, the abbreviation \Part" indi
ates a partitionedoperand, \S
alar" indi
ates a partitioned operand with identi
al �eld values, \Ele-ment" indi
ates one �eld of a partitioned operand, \Single" indi
ates a partitionableregister taken as a single unpartitioned value, and \Immed" indi
ates an immediateoperand 
ontained in the instru
tion itself.Also in the row headings, the abbreviation \A

" denotes the use of a separatea

umulator, with \A

 Init" indi
ating that the operation will 
lear the a

umulator�rst. \A

" by itself indi
ates that the result of the operation will be added tothe value in the a

umulator. \A

 Di�" indi
ates that the operation will �nd thedi�eren
es between the operands, then add these di�eren
es to the a

umulator. Thenotation \A

 Sub" indi
ates that the result of the operation will be subtra
ted fromthe a

umulator.Within the body of the tables, the notation \NxB" indi
ates an operand or resultpartitioned into N �elds of B-bit integers whi
h may be signed or unsigned. A trailing\u" indi
ates that the �eld data is treated as unsigned, and a trailing \s" indi
atesthat it is treated as signed.Where su
h an entry is listed by itself or in a 
omma-separated list of values,it indi
ates that a form of the operation where both the operands and result havethe listed partitioning is supported by the extension set. Where an entry 
ontains



- 44 -an arrow, the notation shows the form of the operands separated by an operator,followed by the arrow and then the form of the result.The �rst table 
ontains ar
hite
tural information about representative CPUs whi
himplement these extensions. The remaining tables des
ribe the forms of the instru
-tions 
ontained in ea
h set. In most 
ases, separate entries have been made for ea
hinstru
tion. These tables are keyed to the similarly numbered tables in Appendix Cwhi
h list the 
orresponding instru
tion mnemoni
 for ea
h entry.2.1.1 Sour
es and Ar
hite
tural FeaturesTable 2.1 lists the primary sour
es of information and the ar
hite
tural parametersof a representative pro
essor for ea
h of the enhan
ed ar
hite
tures.For ea
h extension set, the primary sour
e of information 
ontained in this andthe following tables is indi
ated in the row labeled \Primary Sour
e". Data for ea
hextension set was taken from the listed primary sour
e unless otherwise noted.The rows labeled \# R/W MM Registers" indi
ate the number of read/writeregisters available for use by the 
orresponding multimedia extension set. Thoselabeled \# R/O MM Registers" indi
ate the number of read-only registers availablefor use. Some ar
hite
tures reserve register 0 for use as a fast means of obtaining a
onstant zero value and do not allow this register to be written to.The rows labeled \# Bits/MM Register" indi
ate the total number of bits that
an be stored in a single register used by the 
orresponding extension set. Thisultimately limits the amount of SWAR parallelism that 
an be obtained within asingle multimedia pipeline.The next row indi
ates whi
h of the 
orresponding ar
hite
ture's register setsare used by the multimedia extension set. Multimedia extensions usually operate ondata in modi�ed existing pro
essor registers, but some use register sets that have beenadded expressly for use by the resident extension set. Those that are implementedusing existing registers have the advantage of being able to make use of existing
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tions, while those that are implemented using dedi
ated register sets typi
allyhave fewer restri
tions on their individual use.In some 
ases, multiple sets of registers are used, depending on the spe
i�
 in-stru
tion applied. For example, SSE in
ludes instru
tions that operate on data in theSSE-spe
i�
 register set, and also instru
tions that operate on the MMX-spe
i�
 set.Note that only DEC's MVI and HP's MAX extensions are applied to their respe
tivegeneral integer register sets.The next row indi
ates the maximum number of memory operands that may bea

essed by instru
tions that are not spe
i�
ally intended for memory a

ess purposes.Note that the extensions based on the Intel IA32 ar
hite
ture allow memory operandsfor most instru
tions while those based on RISC ar
hite
tures do not. Be
ause of this,we will not di�erentiate between register and memory operands when dis
ussing IntelIA32-based extension sets unless ne
essary. Also note that any parti
ular instru
tionmay use a di�erent number of memory operands than the maximum.The row marked \Maximum Sour
e Operands" indi
ates the maximum number ofsour
e operands that may be used by an instru
tion in the 
orresponding extensionset. This is generally inherited from the underlying ar
hite
ture. Any parti
ularinstru
tion may have a di�erent number of sour
e operands than the maximum.The next row indi
ates whether or not one of the sour
e operands will be over-written by the result of a typi
al instru
tion in the extension set. If reused, theseoperands will have to be 
opied before the overwriting instru
tion is applied. Ar-
hite
tures whi
h allow non-sour
e destinations help the programmer to avoid thisproblem as long as there are available registers.2.1.2 Arithmeti
 Instru
tionsTables 2.2 through 2.7 show groups of arithmeti
 SWAR operations in
ludingaddition, subtra
tion, minimum, maximum, multipli
ation, 
ombined operations, di-vision, and more advan
ed arithmeti
 operations. Ea
h table is des
ribed in turn.
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Table 2.1Comparison of Multimedia Instru
tion Set ExtensionsAr
hite
tural Feature DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
Primary Sour
e [60℄ [61℄ [82℄ [64℄ [65℄ [104℄# R/W MM Registers 31 31 31 32 32 / 11 32# R/O MM Registers 12 12 12 0 01 0# Bits/ MM register 64 32 643 64 64 / 1921 128Whi
h registers? Integer Integer Integer Float Float or AltiVe
 Ve
torA

umulator1Maximum MemoryOperands4 0 0 0 0 01 0Maximum Sour
eOperands5 2 2 2 3 3 3Sour
e Overwrittenas Destination? No No No No No NoAr
hite
tural Feature Sun Intel Intel IntelVIS MMX SSE SSE2Primary Sour
e [90℄ [95℄ [95℄ [95℄# R/W MM Registers 32 86 8 8# R/O MM Registers 0 06 0 0# Bits/ MM register 64 646 128 128Whi
h registers? Float Float6 SSE-spe
i�
 SSE-spe
i�
or Float or FloatMaximum MemoryOperands4 0 1 1 1Maximum Sour
eOperands5 2 2 2 2Sour
e Overwrittenas Destination? No Yes Yes YesAr
hite
tural Feature AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMX[75℄ [76℄ [98℄ [77℄# R/W MM Registers 8 8 8 8# R/O MM Registers 0 0 0 0# Bits/ MM register 64 64 64 64Whi
h registers? Float Float Float FloatMaximum MemoryOperands4 1 1 1 1Maximum Sour
eOperands5 2 2 2 2Sour
e Overwrittenas Destination? Yes Yes Yes No for implied1From [66℄.2Reads as 0.3From [61℄.4Does not in
lude load and store instru
tions.5Does not in
lude unique destination operand.6From [105℄.



- 47 -Addition OperationsTable 2.2 
ontains information on the various forms of addition available in thestudied extension sets. These in
lude modular and saturations addition, high-wordresults, and various redu
tions.Modular addition, also known as wrap-around addition, is \normal" 
omputeraddition in whi
h the stored result is the low n bits of the a
tual result, where n isthe size of the spa
e in whi
h the result is to be stored. This is equivalent to takingthe a
tual result modulo the maximum value storable in the available spa
e. Ea
hextension set in
ludes some form of modular addition ex
ept for MVI, whi
h doesnot, and the extensions to MMX, whi
h use the MMX instru
tions for this purpose.Most extension sets only allow the modular addition of two partitioned registers;although, as already indi
ated, those based on the Intel IA32 ar
hite
ture also allow amemory lo
ation to be used as an operand. SSE, 3DNow!Pro, and SSE2 also 
ontaininstru
tions whi
h modularly add together only the lowest element from ea
h of twooperands. By 
ontrast, MDMX only allows modular addition to the a

umulator |all other addition is saturated.Be
ause of its ubiquity and familiarity, modular addition should be in
luded inany general-purpose SWAR programming model.Saturation addition is a form of 
omputer addition in whi
h the result is set tothe maximum storable value of the same sign when an over
ow o

urs. This formof addition is used primarily for multimedia appli
ations in whi
h the data valuerepresents some physi
al parameter whose value should not wrap with in
remental
hanges. For example, the volume level on an audio mixer should not suddenly dropto 0 when the user attempts to in
rease the volume above the maximum.Again, most of the families support some form of saturation addition, but MVI,MIPS-V, VIS, E3DNow!, and SSE do not. On those ar
hite
tures whi
h do notsupport them, these operations 
an be often be emulated. One possibly method is
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ision addition, then limit the result to the values representable inthe lower-pre
ision form.Saturation arithmeti
 is seldom used for numeri
 
omputation, but the saturationform of result is often more attuned to the needs of a numeri
 programmer thanone might realize, and may be used more often in the future. Be
ause it is reason-ably available and 
an be relatively easily emulated on most ar
hite
tures, saturationarithmeti
 should be in
luded in any general-purpose SWAR programming model.An NxB \modular addition high" (also known as \addition 
arry-out") zero-extends the 
arry bits that would result from a partitioned addition of the NxBaddends and stores them in an NxB result. Only AltiVe
 has this operation, andthus it is not a good 
hoi
e for in
lusion in a portable model; however, it is useful foremulating other operations su
h as saturation addition.\Saturation redu
e-add with an element" (Sat. RedAdd with El.) performs asaturation addition of all of the �elds of one partitioned register and the low �eld ofa se
ond partitioned register. That is it performs a redu
tion addition on the �rstpartitioned register and also adds in the low �eld of the se
ond. The result is storedin the low �eld of a third partitioned register whose other �elds are zeroed.Only AltiVe
 in
ludes this operation. This is unfortunate be
ause it 
an be usedto optimize the implementation of redu
tions, whi
h o

ur fairly frequently in SIMDalgorithms and are often 
ostly to emulate. Be
ause of this, and despite the la
k ofsupport for redu
tions by other extension families, redu
tions should be in
luded ina generalized SWAR model to fa
ilitate traditional SIMD pro
essing.\Saturation partial redu
e-add with even elements" (Sat. Part. RedAdd w/Even)performs a saturation addition on the N/2 sets of two neighboring �elds of one parti-tioned register and the even element of the 
orresponding set of elements of a se
ondpartitioned register. The result is then stored in the even element of the 
orrespondingset of elements of a third partitioned register whose odd elements are zeroed.\Saturation partial redu
e-add with a partitioned value" (Sat. Part. RedAddw/Part) performs a saturation addition on the N/2 (or N/4) sets of two (or four)



- 49 -neighboring �elds of one partitioned register and with the 
orresponding element ina se
ond partitioned register. The result is then stored in the 
orresponding elementof a third partitioned register.The previous two instru
tions are only in
luded in AltiVe
, and are a bit tooesoteri
 for general-purpose work. They are most likely to be used, if at all, asoptimizations in the implementation of other operations.\Saturation redu
e-add and pa
k" (Sat. RedAdd and Pa
k) performs separatesaturated redu
tion additions on the elements of ea
h of the sour
es, then pa
ks thesums into a partitioned result. This instru
tion is only in
luded in 3DNow!, andwould be most useful for optimizing the implementation of redu
tion operations.\Saturation redu
e-add/subtra
t and pa
k" (Sat. RedAdd/Sub and Pa
k) per-forms a saturated redu
tion addition on the elements of one of the sour
es and a re-du
tion subtra
tion on the elements of a se
ond sour
e, then pa
ks the di�eren
es intoa partitioned result. These two instru
tions are only in
luded in Enhan
ed 3DNow!,but may be useful for implementing redu
tion operations, depending on how they arede�ned in the programming model.Subtra
tion OperationsTable 2.3 
ontains information of the various forms of subtra
tion available in thestudied extension sets. These in
lude modular and saturation subtra
tion, high-wordresults, and sums and redu
ed sums of absolute di�eren
es.As with addition, modular subtra
tion is \normal" 
omputer subtra
tion, in whi
hthe stored result is the a
tual result modulo the maximum value storable in theregister. Ea
h of the extension families in
lude some form of modular subtra
tionex
ept for MVI and the extensions to MMX, whi
h again use the MMX instru
tions.For ea
h family, the supported forms 
orrespond to the supported forms of modularaddition.
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Table 2.2SWAR Addition OperationsOperation Types DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
Modular Addition1Part/Part - - - 16x8,2x16 4x16 8x16,2x32f2;3 4x32Immd/Part - - - - - -Part/Part w/A

 - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sS
alar/Part w/A

 - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sImmd/Part w/A

 - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sElement/Element - - - - - -Saturation AdditionPart/Part - 2x16s, 4x16s, - 8x8u,4x16s 16x8s,16x8u,2x16u+2x16s 4x16u+4x16s 8x16s,8x16u,!2x16u !4x16u 4x32s,4x32u,4x32f4S
alar/Part - - - - 8x8u,4x16s -Immd/Part - - - - 8x8u,4x16s -Modular Add. HighPart/Part - - - - - 4x32uSat. RedAdd w/El. - - - - - 4x32s+low 1x32s!low 1x32sSat. Part. RedAdd - - - - - 4x32sw/EvenSat. Part. RedAdd 16x8s+4x32s!4x32s,w/Part - - - - - 16x8u+4x32u!4x32u,8x16s+4x32s!4x32sSat. RedAdd - - - - - -and Pa
kSat. RedAdd/Sub - - - - - -and Pa
k1Modular signed and unsigned addition are equivalent.2Cal
ulated to in�nite pre
ision, then rounded a

ording to 
urrent rounding mode in FCSR.3Generates ex
eption on over
ow or under
ow.4Rounds to nearest.
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Table 2.2 
ont'd.SWAR Addition OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Modular Addition1Part/Part 8x8, 16x82x16,4x16, 4x16, 8x161x32,2x32 2x32 4x32f2 4x322x64,2x64fImmd/Part - - - -Part/Part w/A

 - - - -(w/ or w/o Init)S
alar/Part w/A

 - - - -(w/ or w/o Init)Immd/Part w/A

 - - - -(w/ or w/o Init)Element/Element - - low 1x32f2 low 1x64fSaturation AdditionPart/Part - 8x8s,8x8u, - 16x8s,16x8u,4x16s,4x16u 8x16s,8x16uS
alar/Part - - - -Immd/Part - - - -Modular Add. HighPart/Part - - - -Sat. RedAdd w/El. - - - -Sat. Part. RedAdd - - - -w/EvenSat. Part. RedAdd - - - -w/PartSat. RedAdd - - - -and Pa
kSat. RedAdd/Sub - - - -and Pa
k1Modular signed and unsigned addition are equivalent.2Generates ex
eption on over
ow or under
ow.



- 52 -
Table 2.2 
ont'd.SWAR Addition OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXModular Addition1Part/Part - - -2x32fImmd/Part - - - -Part/Part w/A

 - - - -(w/ or w/o Init)S
alar/Part w/A

 - - - -(w/ or w/o Init)Immd/Part w/A

 - - - -(w/ or w/o Init)Element/Element - - low 1x32f -Saturation AdditionPart/Part - - 4x16s22x32fS
alar/Part - - - -Immd/Part - - - -Modular Add. HighPart/Part - - - -Sat. RedAdd w/El. - - - -Sat. Part. RedAdd - - - -w/EvenSat. Part. RedAddw/Part - - - -Sat. RedAdd 2-2x32f! - - -and Pa
k 2x32fSat. RedAdd/Sub - 2-2x32f! - -and Pa
k 2x32f1Modular signed and unsigned addition are equivalent.2Stores result to implied destination register.
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ause of its ubiquity and utility, and be
ause it is the 
omplement of modu-lar addition, modular subtra
tion should be in
luded in any general-purpose SWARprogramming model.As with modular subtra
tion, ea
h family supports the forms of saturation sub-tra
tion whi
h 
orrespond to the supported forms of saturation addition. For 
om-pleteness, and for the same reasons that saturation addition should be in
luded, sat-uration subtra
tion should be in
luded in any general-purpose SWAR programmingmodel.An NxB \subtra
tion high" (also known as \subtra
tion 
arry-out") zero-extendsthe 
omplement of the 
arry bits that would result from a subtra
tion of the NxBoperands and stores them into an NxB result. As with the addition high, only AltiVe
in
ludes this operation. Thus, it is not an operation that should be required in ageneral-purpose model.\Saturation redu
e-subtra
t and pa
k" (Sat. RedSub and Pa
k) performs separatesaturated redu
tion subtra
tions on the elements of ea
h of the sour
es, then pa
ksthe subresults into a partitioned result.\Redu
e-add of absolute di�eren
es" (RedAdd of Abs. Di�s) takes the parallelabsolute di�eren
es of the operands, then performs a redu
tion addition on thesesubresults. This operation is supported by several of the extension families, and isused primarily for �nding pixel di�eren
es in graphi
s appli
ations.Extended MMX in
ludes an instru
tion whi
h performs a \sum of absolute dif-feren
es and saturation a

umulate" (Sum of Abs. Di�s; Sat A

.) operation whi
his similar to the above operation but a

umulates with an operand in memory ratherthan performing a redu
tion. These instru
tions are probably too appli
ation-spe
i�
to be in
luded in a general-purpose SWAR programming model, but may be usefulfor optimization purposes.
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Table 2.3SWAR Subtra
tion OperationsOperation Types DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
Modular Subtra
tion1Part/Part - - - 16x8,2x16 4x16 8x16,2x32f2;3 4x32Part/Part w/A

 Di� - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sS
alar/Part w/A

 Di� - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sImmd/Part w/A

 Di� - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sElement/Element - - - - - -Saturation Subtra
tionPart/Part - 2x16s, 2x16s, - 8x8u,4x16s 16x8s,16x8u,2x16u-2x16s 2x16u-2x16s 8x16s,8x16u,!2x16u !2x16u 4x32s,4x32u,4x32f4S
alar/Part - - - - 8x8u,4x16s -Immd/Part - - - - 8x8u,4x16s -Subtra
tion HighPart/Part - - - - - 4x32uSat. RedSub - - - - - -and Pa
kRedAdd of Abs. Di�s 8x8u!1x64u - - - - -Sum Abs Di�s; Sat A

. - - - - - -1Modular signed and unsigned subtra
tion are equivalent.2Cal
ulated to in�nite pre
ision, then rounded a

ording to 
urrent rounding mode in FCSR.3Generates ex
eption on over
ow or under
ow.4Rounds to nearest.
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Table 2.3 
ont'd.SWAR Subtra
tion OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Modular Subtra
tion1Part/Part 8x8, 16x8,2x16,4x16, 4x16, 8x16,1x32,2x32 2x32 4x32f2 4x32,1x64,2x64,2x64fPart/Part w/A

 Di� - - - -(w/ or w/o Init)S
alar/Part w/A

 Di� - - - -(w/ or w/o Init)Immd/Part w/A

 Di� - - - -(w/ or w/o Init)Element/Element - - low 1x32f2 low 1x64fSaturation Subtra
tionPart/Part - 8x8s,8x8u, - 16x8s,16x8u,4x16s,4x16u 8x16s,8x16uS
alar/Part - - - -Immd/Part - - - -Subtra
tion HighPart/Part - - - -Sat. RedSub - - - -and Pa
kRedAdd of Abs. Di�s 8x8u!1x64 - 8x8u!1x16u3 16x8u!2x16u4Sum Abs Di�s; Sat A

. - - -1Modular signed and unsigned subtra
tion are equivalent.2Generates ex
eption on over
ow or under
ow.3Upper 3x16 is zeroed. There is no possibility of over
ow.4Ea
h 64-bit quadword is redu
ed to a 16 bit sum. The remaining �elds are zeroed.
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Table 2.3 
ont'd.SWAR Subtra
tion OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXModular Subtra
tion1Part/Part - - -2x32fPart/Part w/A

 Di� - - - -(w/ or w/o Init)S
alar/Part w/A

 Di� - - - -(w/ or w/o Init)Immd/Part w/A

 Di� - - - -(w/ or w/o Init)Element/Element - - low 1x32f -Saturation Subtra
tionPart/Part - - 4x16s22x32fS
alar/Part - - - -Immd/Part - - - -Subtra
tion HighPart/Part - - - -Sat. RedSub - 2-2x32f! - -and Pa
k 2x32fRedAdd of Abs. Di�s - 8x8!1x16u3 ;4 - -Sum Abs Di�s; Sat A

. - - - 8x8u51Modular signed and unsigned subtra
tion are equivalent.2Stores result to implied destination register.3Upper 3x16 is zeroed. There is no possibility of over
ow.4I was not able to 
on�rm the (un)signedness of this.5One operand must be memory. Result is stored in implied register.
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ontains information on the various forms of maximum and minimumoperations and operations pertaining to the sign or magnitude of the �eld data whi
hare in
luded in the studied extension sets.Most of the families have some form of 
omplementary maximum and minimuminstru
tions. These are both ubiquitous and basi
 enough to be in
luded in a general-purpose model. They are normally used to obtain the larger or smaller value of the
orresponding elements from two partitioned operands. However, they 
an also beused in the emulation of unsupported saturation operations to limit result values tothe required storable range.Extended MMX in
ludes a partitioned binary \magnitude" instru
tion whi
h,for ea
h pair of 
orresponding elements, stores the value with the larger absolutemagnitude without 
hanging its sign. However, EMMX is the only family whi
hin
ludes su
h an instru
tion; and it is un
lear if any 
urrent CPU implements theEMMX extensions. Thus, this type of operation probably should not be in
luded ina general-purpose model at this time.MIPS-V in
ludes \absolute value" and \negate" instru
tions for operating onsingle-pre
ision 
oating-point data. While absolute value would be a useful instru
-tion to in
lude in a programming model, none of the families support it for integerdata. Thus, it also should probably not be in
luded in a general-purpose model atthis time. In 
ontrast, negation is easily emulated on almost all ar
hite
tures, so itprobably should be in
luded.Enhan
ed 3DNow!, 3DNow!Pro, SSE, and SSE2 ea
h in
lude a instru
tions to gen-erate a zero-extended bitmasks from the sign bits of the �elds of a partitioned register.These instru
tions are not parti
ularly useful ex
ept for implementing 
onditional op-erations. Be
ause of this, they should not be in
luded as individual operations in ageneral-purpose programming model, but may be useful in the implementation ofothers.
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 VIS MMXMaximumPart/Part 8x8s,8x8u, - - 8x8u, 16x8s,16x8u, - -4x16s,4x16u 4x16s 8x16s,8x16u,4x32s,4x32u,4x32f1S
alar/Part - - - 8x8u, - - -4x16sImmd/Part 8x8s,8x8u, - - 8x8u, - - -4x16s,4x16u 4x16sElement/Element - - - - - - -MinimumPart/Part 8x8s,8x8u, - - 8x8u, 16x8s,16x8u, - -4x16s,4x16u 4x16s 8x16s,8x16u,4x32s,4x32u,4x32f1S
alar/Part - - - 8x8u, - - -4x16sImmd/Part 8x8s,8x8u, - - 8x8u, - - -4x16s,4x16u 4x16sElement/Element - - - - - - -Magnitude Part/Part - - - - - - -Abs. Value Part/Part - - 2x32f - - - -Negate Part/Part - - 2x32f - - - -Generate Sign Mask - - - - - - -Operation Types Intel Intel AMD AMD AMD CyrixSSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXMaximumPart/Part 8x8u, 16x8u, 8x8u, -4x16s, 8x16s, 4x16s4x32f 2x32f 2x32f2x64fS
alar/Part - - - - - -Immd/Part - - - - - -Element/Element low 1x32f - - low 1x32f -low 1x64fMinimumPart/Part 8x8u, 16x8u, 8x8u, -4x16s, 8x16s, 4x16s4x32f 2x32f 2x32f2x64fS
alar/Part - - - - - -Immd/Part - - - - - -Element/Element low 1x32f - - low 1x32f -low 1x64fMagnitude Part/Part - - - - - 4x16sAbs. Value Part/Part - - - - - -Negate Part/Part - - - - - -Generate Sign Mask 8x8s!1x32, 16x8s!1x32, - 8x8s!1x32 -4x32f!1x32 2x32f!1x322x64f!1x321+0.0 > -0.0, and max(NaN, anything) = QNaN.
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ation OperationsTable 2.5 
ontains information on the various forms of multipli
ation instru
tionsavailable in the studied extensions. These in
lude modular and saturated multipli-
ation, multipli
ations produ
ing the upper word of their results, multipli
ation bysign bits, and averages.MDMX, AltiVe
, VIS, and MMX ea
h in
lude some form of modular integermultipli
ation. MDMX's multiplies ea
h generate a result in the a

umulator, whi
his large enough to maintain the full pre
ision of the result. On the other ar
hite
turesmultiplies only operate on some of the sour
e �elds or store only part of ea
h resultin a spa
e that is smaller than that ne
essary to hold the entire result.Integer multipli
ations supported by AltiVe
 operate on the even or odd �elds oftheir sour
e registers and 
reate a result with �elds that have twi
e the pre
ision oftheir sour
e �elds. SSE2 has a set of similar instru
tions whi
h operate on the even�elds of their operands, but these are limited to unsigned data. VIS in
ludes severaltypes, with results of various forms, ea
h of whi
h multiplies an 8-bit partitionedregister by a 16-bit register. MMX and SSE2 in
lude 16-bit versions whi
h generatethe lower 16-bits of their results.Some of these instru
tions 
an be used to perform multipli
ations on data whi
his of smaller pre
ision than that supported. They 
an also be used to perform partialmultipli
ations of larger-pre
ision data. Thus, the multipli
ation of unsupported datapre
isions 
an usually be emulated, but not always easily or inexpensively.MIPS-V, SSE, and 3DNow!Pro ea
h in
lude partitioned 32-bit modular 
oating-point multiplies, while SSE2 in
ludes a 64-bit version. SSE and 3DNow!Pro alsoin
lude an instru
tion whi
h multiplies the low elements of a register whi
h is parti-tioned into 32-bit 
oats. Again, SSE2 in
ludes a 64-bit version.Be
ause multipli
ations often o

ur in numeri
 pro
essing, they should be in
ludedin a general-purpose programming model. Multiplies are fairly easy to emulate if someform is available, and 
an be emulated by a shift-add sequen
e otherwise. The VIS
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, having been designed to be used primarily through a setof intrinsi
s. Thus, they would not be good models for operations in
luded within ageneral-purpose programming model. However, they 
an be used to support su
h amodel with some 
are.The \multiply high" instru
tion stores the upper part of the result of a modularmultipli
ation. It is used to 
omplement multipli
ation instru
tions in whi
h thestored value is the lower part of the full result. In ea
h 
ase, the stored part of theresult resides in the same number of bits as the sour
e data. Thus, there is no 
hangeof partitioning when using this type of instru
tion. These instru
tions are useful foremulating saturation multipli
ation, but are probably not useful enough on their ownto make visible as part of a high-level programming model.MDMX in
ludes a few forms of saturated integer multipli
ation, while 3DNow! in-
ludes a saturating 32-bit 
oating-point multiply. Saturation multipli
ation is gener-ally used for multimedia algorithms, but not for numeri
 
omputation. The extensionfamilies whi
h in
lude multiplies usually support either modular multipli
ation formsor saturating forms, but not both.Integer saturation multipli
ation often 
an be emulated with other operations.However, 
oating-point saturation multipli
ation may be impossible to emulate onsome targets, and modular 
oating-point multipli
ation may be impossible or ex-pensive to emulate if the target only supports saturation multipli
ation. For thesereasons, one may argue either way on the point of whether or not saturation multi-pli
ation should be in
luded in a general-purpose model.It is only on over
ow that saturation operations di�er from the 
orrespondingmodular operation, so one might argue that it should be a

eptable to ignore theproblem. However, the purpose of saturation math is to guarantee that the resultdoes not over
ow; thus, it should always work properly.For the sake of 
ompleteness, both modular and saturation operation should bein
luded, for both integer and 
oating-point data, but without any guarantee that thetarget 
an support both forms. This is similar to how 
oating-point multipli
ation
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h there is no guarantee of the
orre
tness of the result on over
ow.\Multiply by sign" is supported only by MDMX. This instru
tion multiplies animmediate value, a single-valued partitioned operand, or a partitioned value by thesign bits of the 
orresponding �elds of a partitioned register. If a �eld in this registeris 0, the 
orresponding result will also be 0. Be
ause it is a spe
ial-purpose instru
tionwhi
h is only supported by one target, it should not be in
luded as part of a portableprogramming model.Some form of average instru
tion is supported by most of the extension families.This operation is 
ommonly used in image and video pro
essing but may be less usefulin a general-purpose environment. Be
ause of this, it is also arguable as to whetheror not an averaging operation should be in
luded in a general-purpose SWAR model,although it is relatively easy to emulate and widely supported.Combined Arithmeti
 OperationsSeveral of the extension families 
ontain instru
tions whi
h are 
ombinations ofmultipli
ations and other operations. These instru
tions are intended for use in im-plementing spe
i�
 algorithms su
h as FFTs. Few are implemented by more thanone family, and none should be used as the basis for operations in a general-purposeprogramming model. For this reason, these instru
tions are not dis
ussed in detail;however, an entry in table 2.6 is provided whi
h may be useful for optimization pur-poses.Division and Advan
ed Arithmeti
 OperationsTable 2.7 lists arithmeti
 instru
tions useful for performing division and more
omplex arithmeti
 operations su
h as square roots and exponentials.
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ation OperationsOperation Types DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
Modular Multipli
ation 1Part/Part - - - 2x32f2;3 - odd 16x8s!8x16s,odd 16x8u!8x16u,even 16x8s!8x16s,even 16x8u!8x16u,odd 8x16s!4x32s,odd 8x16u!4x32u,even 8x16s!4x32s,even 8x16u!4x32uImmd/Part - - - - - -Part/Part w/A

 - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sS
alar/Part w/A

 - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sImmd/Part w/A

 - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sPart/Part w/A

 Sub - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sS
alar/Part w/A

 Sub - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sImmd/Part w/A

 Sub - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sPart/Element - - - - - -Element/Element - - - - - -Modular Mul. HighPt/Pt Store in Enh. - - - - - -Pt/Pt Store in Implied - - - - - -Pt/Pt A

. w/Implied - - - - - -Sat. Multipli
ationPart/Part - - - - 8x8u,4x16s -S
alar/Part - - - - 8x8u,4x16s -Immd/Part - - - - 8x8u,4x16s -Mult. by Sign (-,0,+)Part/Part - - - - 4x16s -S
alar/Part - - - - 4x16s -Immd/Part - - - - 4x16s -Average - - - - 16x8s,16x8u,42x16u5 4x16u5 8x16s,8x16u,4x32s,4x32u1AltiVe
 byte numbering is the reverse of the �eld numbering used in this do
ument.2Generates ex
eption on over
ow or under
ow.3Cal
ulated to in�nite pre
ision, then rounded a

ording to 
urrent rounding mode in FCSR.4Ea
h of these performs (sum+1)/2.5Round to odd : NewLSB <- sum(bit1) j sum(bit0). Sum before shift.
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ont'd.Multipli
ation OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Modular Multipli
ation 1Part/Part (4x8u)x(4x16s) 4x16 8x16,!4x24s!4x16s2,(odd 8x8s)x(4x16s)!4x24s!4x16s3,(even 8x8u)x(4x16s)!4x24s!4x32s4!4x16s3,(odd 4x8s)x(2x16s)!2x24s!2x32s5, even 2x32u!1x64u,(even 4x8u)x(2x16s) even 4x32u!2x64u,!2x24s!2x32s4 4x32f 2x64fImmd/Part - - - -Part/Part w/A

 - - - -(w/ or w/o Init)S
alar/Part w/A

 - - - -(w/ or w/o Init)Immd/Part w/A

 - - - -(w/ or w/o Init)Part/Part w/A

 Sub - - - -(w/ or w/o Init)S
alar/Part w/A

 Sub - - - -(w/ or w/o Init)Immd/Part w/A

 Sub - - - -(w/ or w/o Init)Part/Element (4x8u)x(upper 2x16s) - - -!4x24s!4x16s2,(4x8u)x(lower 2x16s)!4x24s!4x16s2Element/Element - - low 1x32f low 1x64fModular Mul. HighPt/Pt Store in Enh. - 4x16s 4x16u 8x16u,8x16sPt/Pt Store in Implied - - - -Pt/Pt A

. w/Implied - - - -Sat. Multipli
ationPart/Part - - - -S
alar/Part - - - -Immd/Part - - - -Mult. by Sign (-,0,+)Part/Part - - - -S
alar/Part - - - -Immd/Part - - - -Average - - 8x8u6 , 16x8u,4x16u6 8x16u1Cal
ulated to in�nite pre
ision, then rounded a

ording to 
urrent rounding mode in FCSR.2Most signi�
ant 16 bits of 24 are stored after rounding to nearest value.3Rounds to nearest by adding 1/2 of lowest in
luded position, then trun
ating lower bits.4Sign-extended.5Left-shifted logi
al by 8 bits.6Performs (sum+1)/2.
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ont'd.Multipli
ation OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXModular Multipli
ationPart/Part - - -
2x32fImmd/Part - - - -Part/Part w/A

 - - - -(w/ or w/o Init)S
alar/Part w/A

 - - - -(w/ or w/o Init)Immd/Part w/A

 - - - -(w/ or w/o Init)Part/Part w/A

 Sub - - - -(w/ or w/o Init)S
alar/Part w/A

 Sub - - - -(w/ or w/o Init)Immd/Part w/A

 Sub - - - -(w/ or w/o Init)Part/Element - - - -Element/Element - - low 1x32f -Modular Mul. HighPt/Pt Store in Enh. 4x16s1 4x16u - 4x16s2Pt/Pt Store in Implied - - - 4x16s2Pt/Pt A

. w/Implied - - - 4x16s2Sat. Multipli
ationPart/Part 2x32f - - -S
alar/Part - - - -Immd/Part - - - -Mult. by Sign (-,0,+)Part/Part - - - -S
alar/Part - - - -Immd/Part - - - -Average 8x8u3 8x8u3, - 8x8u or4x16u3 8x841Rounds to nearest, then trun
ates low 16 bits.2Adds 0x4000 (bit 14) to produ
t, then takes bits 30-15 as result.3Performs (sum+1)/2.4M2 versions prior to v1.3 perform 8x8; after v1.3 perform 8x8u. Both perform sum/2.
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Table 2.6Combined Arithmeti
 OperationsOperation Types DEC HP SGI SGI MotorolaMVI MAX MIPS-V MDMX AltiVe
Multiply, then Add - - - - -Neighboring FieldsMultiply/Mod. Add - - 2x32f1 - 4x32f2,2-8x16!8x32+38x16!8x16Negated - - 2x32f1 - -Multiply/Mod. AddMultiply/Sat. Add - - - - 2-8x16s!8x32s!8x17s4+8x16s5!8x16sMultiply(w/Rnd)/Sat. Add - - - - 2-8x16s!8x32s!8x18s6+8x16s7+(8x18s)"1"!8x16sMultiply/Mod. Subtra
t - - 2-2x32f!2x32f - -{2x32f!2x32f1Negated - - 2-2x32f!2x32f - 4x32f8Multiply/Mod. Subtra
t {2x32f!2x32f1Multiply, then Modular - - - - 2-16x8u!16x16uAdd Neighbor w/Part +4x32u!4x32u,2-8x16s!8x32s+4x32s!4x32s,2-8x16u!8x32u+4x32u!4x32u,(16x8s)x(16x8u)!16x16s+4x32s!4x32sMultiply, then Saturate - - - - 2-8x16s!8x32sAdd Neighbor w/Part +4x32s!4x32s,2-8x16u!8x32u+4x32u!4x32u1Partitioned multiply of two operands, followed by partitioned addition with a third operand. Sum(or di�eren
e) 
al
ulated to in�nite pre
ision, then rounded a

ording to FCSR mode.2Partitioned multiply of two operands, followed by partitioned addition with a third operand, thenrounded to nearest.38x16 modular add. The lower half of ea
h 32-bit �eld is dis
arded.4High 17 bits of �eld.5Sign-extended to 17 bits.6High 18 bits of �eld.7Sign-extended to 17 bits, then shifted left logi
ally to 18 bits.8Partitioned multiply of two operands, followed by partitioned subtra
t of third operand, negated,then rounded to nearest.
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Table 2.6 
ont'd.Combined Arithmeti
 OperationsOperation Types Sun Intel Intel Intel AMD CyrixVIS MMX SSE SSE2 3DNow! (All families) EMMXMultiply, then Add - 2-(4x16s) - 2-(8x16s) - -Neighboring Fields !4x32s !8x32s!2x32s !4x32sMultiply/Mod. Add - - - - - -Negated - - - - - -Multiply/Mod. AddMultiply/Sat. Add - - - - - -Multiply(w/Rnd)/Sat. Add - - - - - -Multiply/Mod. Subtra
t - - - - - -Negated - - - - - -Multiply/Mod. Subtra
tMultiply, then Modular - - - - - -Add Neighbor w/Part
Multiply, then Saturate - - - - - -Add Neighbor w/Part
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lude 32-bit 
oating-point divide and square root instru
-tions whi
h operate on two partitioned registers or on the low elements of two parti-tioned registers. SSE2 provides the same fun
tionality for 64-bit elements.AltiVe
, SSE, and 3DNow!Pro ea
h in
lude instru
tions whi
h approximate 32-bit partitioned 
oating-point re
ipro
als and re
ipro
al square roots. SSE, 3DNow!,and 3DNow!Pro also support low element forms of these instru
tions, although the3DNow! versions are implemented as a series of three instru
tions rather than justone.AltiVe
 also in
ludes a set of instru
tions whi
h perform partitioned 32-bit 
oating-point base-2 logarithmi
 (log2x) and exponential (2x) approximations.Be
ause ea
h of these instru
tions is supported by a few targets at most, theyshould not be in
orporated into a portable programming model. One may 
hoose tomake an ex
eption for division be
ause it is the inverse of multipli
ation. While it 
anbe an expensive operation for targets whi
h do not support it, division 
an usually beserialized without too mu
h of a penalty 
ompared to its typi
ally long 
lo
k 
ount.2.1.3 Shift and Rotate Instru
tionsTable 2.8 lists forms of shift and rotate instru
tions whi
h are available in theextension sets studied. These in
lude logi
al and arithmeti
 shifts, shift-and-add andshift-and-subtra
t instru
tions, and simple rotations.Logi
al shifts are a basi
 operation that should be in
luded in any general-purposeprogramming model whi
h allows bit manipulation. MDMX and AltiVe
 in
ludeinteger shifts by partitioned and repli
ated s
alar values. Using partitioned registerssimpli�es the use of general expressions as shift 
ounts by allowing ea
h element tobe shifted by a di�erent amount. Using a repli
ated s
alar shift 
ount requires thatthe same 
ount be used for ea
h, although it 
an be a dynami
 value.AltiVe
 also in
ludes full-register shifts in whi
h the 
ount is stored as a singlevalue in a ve
tor register. The Alpha ar
hite
ture's full-width integer shifts 
an also
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Table 2.7Division and Advan
ed Arithmeti
 OperationsOperation Types DEC HP SGI SGI Motorola Sun IntelMVI MAX MIPS-V MDMX AltiVe
 VIS MMXDividePart/Part - - - - - - -Element/Element - - - - - - -Square RootPart/Part - - - - - - -Element/Element - - - - - - -Re
ipro
al Approx.Part - - - - 4x32f - -Element - - - - - - -Re
ip. Sq. Rt. Approx.Part - - - - 4x32f - -Element - - - - - - -Log2(x) Approx.Part - - - - 4x32f - -2x Approx.Part - - - - 4x32f - -Operation Types Intel Intel AMD AMD AMD CyrixSSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXDividePart/Part 4x32f - - 2x32f -2x64fElement/Element low 1x32f - - low 1x32f -low 1x64fSquare RootPart/Part 4x32f - - 2x32f -2x64fElement/Element low 1x32f - - low 1x32f -low 1x64fRe
ipro
al Approx.Part 4x32f - - - 2x32f -Element low 1x32f - low 1x32f1 - low 1x32f -Re
ip. Sq. Rt. Approx.Part 4x32f - - - 2x32f -Element low 1x32f - low 1x32f1 - low 1x32f -Log2(x) Approx.Part - - - - - -2x Approx.Part - - - - - -1Performed using three instru
tions: the �rst is a

urate to 14 bits, the se
ond is an intermediatestep, and the third is a

urate to 24 bits.
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onsiders the register to be partitionedinto a single �eld. Full-register logi
al shifts 
an be used to emulate partitioned shifts,and are very important for the emulation of many other unsupported operations.MMX and SSE2 go one step further by in
luding shifts by a single-valued registerwhi
h operate on a partitioned operand. This eliminates the need to emulate theseparti
ular instru
tions with a series of full-register shifts.MVI, MAX-2, MDMX, MMX, and SSE2 also in
lude shifts by immediates. Theseare useful for implementing 
ommon operations su
h as multipli
ation by a 
onstant.However, they have limited usefulness in an environment where the shift 
ount willoften be an expression rather than a stati
 
onstant. These shifts are still quite usefulas they 
an be used internally by a 
ompiler to emulate unsupported operations.Arithmeti
 right shifts are typi
ally supported in the same forms as logi
al rightshifts or in a subset of these forms. For example, in MDMX 8-bit data is 
onsideredto be unsigned pixels, so signed (i.e. arithmeti
) shifts are not in
luded for use withthis �eld size. These instru
tions are basi
 to many numeri
 algorithms and shouldbe in
luded in a general-purpose model both for their utility and for the sake of
ompleteness.MVI also in
ludes full-register \shift-and-add" and \shift-and-subtra
t" instru
-tions whi
h are intended for use in emulating multipli
ation and division for theseRISC systems. These instru
tions are not as useful in a SWAR environment be-
ause the arithmeti
 parts of these operations are not partitioned. HP's MAX-1in
ludes partitioned \shift-and-saturation-add" instru
tions whi
h are limited to 16-bit operands. These instru
tions are more general than simple shifts, and 
an be usedwherever simple shifts 
an be. However, shift-and-add and shift-and-subtra
t are notoperations that should be in
luded in a general-purpose model be
ause of their la
kof portability.Only AltiVe
 in
ludes a \rotate" instru
tion, whi
h is partitioned and indexed bya partitioned register. Even though only one target supports rotations, they are fairlyeasy to implement using shifts, so they 
ould be in
luded in a general-purpose model.
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h allows multi-word lengthed ve
tors, a rotationwould a
tually 
onsist of a series of shift instru
tions, with some masking, rather thanbeing 
omprised of rotate instru
tions. Thus, rotate instru
tions are a
tually onlyuseful in 
ertain spe
ial 
ases.2.1.4 Bitwise-Logi
al and Bit-Redu
tion Instru
tionsBitwise-logi
al operations are extremely important for SWAR pro
essing. Theseoperations make enable masking for 
onditional 
onstru
ts possible, as well as ve
-tor element a

esses and the masking of non-data bits. By de�nition, all one-bitpartitioned operations are bitwise operations. Also, many operations whi
h are un-supported for some �eld size 
an be emulated by using bitwise operations.We refer to these operations as being polymorphi
 be
ause they perform exa
tlythe same fun
tion regardless of the partitioning or signedness of their operands [106℄.That is, they 
an assume the form of any partitioning of the data.Polymorphi
s 
an form the basi
 building blo
ks for more advan
ed operations.Basi
 digital logi
 gates perform bitwise-logi
al operations. These, in turn, formthe basis of more 
omplex digital logi
 in
luding the pro
essors whose attributes aredis
ussed in this 
hapter. Similarly, 
omplex SWAR operations 
an be implementedas series of polymorphi
s. Be
ause of their simple utility, these operations should bein
luded in any general-purpose programming model.Many of these operations are a
tually 
ombinations of others, and thus not all ofthem need be supported. However, it is important that a working set from whi
hne
essary operations 
an be derived is supported. For example, MMX in
ludes theinstru
tions AND, ANDN, OR, and XOR, but not a simple one's 
omplement oper-ation. This basi
 operation, whi
h is used to generate PE enable masks for if-else
onditional exe
ution, must be derived from the available polymorphi
 instru
tions.MMX's ANDN, whi
h 
omplements one of its arguments then ANDs it with the other,
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Table 2.8Shift and Rotate OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
 VISShift Left Logi
al1Part by Part - - - - 8x8, 16x8, -4x16 8x16,4x32Part by S
alar - - - - 8x8, -4x16 1x128 by 16x82Part by Single 1x64 - - - - -1x1283Part by Immd 1x64 - 4x16 - 8x8, - -4x16Shift Right Logi
al4Part by Part - - - - 8x8u, 16x8u, -4x16u 8x16u,4x32uPart by S
alar - - - - 8x8u, - -4x16uPart by Single 1x64u - - - - 1x1283 -Part by Immd 1x64u - 4x16u - 8x8u, - -4x16uShift Right Arithmeti
4Part by Part - - - - 4x16s 16x8, -8x16,4x32Part by S
alar - - - - 4x16s - -Part by Single 1x64s - - - - - -Part by Immd 1x64s - 4x16s - 4x16s - -Shift Left and Addby 1 bit - - - - - - -by 2 bits 1x64u - - - - - -by 3 bits 1x64u - - - - - -Shift Left and Sat. Add5by 1,2, or 3 bits - 2x16s - - - - -Shift Left and Subtra
t6by 2 bits 1x64u - - - - - -by 3 bits 1x64u - - - - - -Shift Right and Sat. Addby 1,2, or 3 bits - 2x16s - - - - -Rotate7Part by Part - - - - - 16x8, -8x16,4x321Shift left logi
al and shift left arithmeti
 are equivalent.2Shift 
ount is s
alar value mod 8.3Shifted by number of bytes en
oded in bits 6 through 3 (121-124 in AltiVe
 notation) of the single.4Shift right logi
al is indi
ated as being unsigned. Shift right arithmeti
 is indi
ated as being signed.5Shifts are signed saturated, then signed saturating addition is performed.6Shifts the minuend then subtra
ts the unshifted subtrahend from it.7Rotating left by x bits is equivalent to rotating right by B-x bits in an NxB register.
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Table 2.8 
ont'd.Shift and Rotate OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXShift Left Logi
al1Part by Part - - - - - - -Part by S
alar - - - - - - -Part by Single 4x16, - 8x16, - - - -2x32, 4x32,1x64 2x64Part by Immd 4x16, - 8x16, - - - -2x32, 4x32,1x64 2x64,1x1282Shift Right Logi
al3Part by Part - - - - - - -Part by S
alar - - - - - - -Part by Single 4x16u, - 8x16u, - - - -2x32u, 4x32u,1x64u 2x64uPart by Immd 4x16u, - 8x16u, - - - -2x32u, 4x32u,1x64u 2x64u,1x128u2Shift Right Arithmeti
3Part by Part - - - - - - -Part by S
alar - - - - - - -Part by Single 4x16s, - 8x16s, - - - -2x32s 4x32sPart by Immd 4x16s, - 8x16s, - - - -2x32s 4x32sShift Left and Addby 1 bit - - - - - - -by 2 bits - - - - - - -by 3 bits - - - - - - -Shift Left and Sat. Add4by 1,2, or 3 bits - - - - - - -Shift Left and Subtra
t5by 2 bits - - - - - - -by 3 bits - - - - - - -Shift Right and Addby 1,2, or 3 bits - - - - - - -Rotate6Part by Part - - - - - - -1Shift left logi
al and shift left arithmeti
 are equivalent.2Shifted by number of bytes en
oded in 8-bit unsigned immediate.3Shift right logi
al is indi
ated as being unsigned. Shift right arithmeti
 is indi
ated as being signed.4Shifts are signed saturated, then signed saturating addition is performed.5Shifts the minuend then subtra
ts the unshifted subtrahend from it.6Rotating left by x bits is equivalent to rotating right by B-x bits in an NxB register.
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an be used to do just that by ANDing the 
omplement of the enable mask with all'1's. This generates the enable mask for the else body from that for the if body.All of the families in
lude a working set of these instru
tions or reuse those oftheir base family or underlying ar
hite
ture. For example, AMD's 3DNow! reusesthe MMX polymorphi
 instru
tions, while MVI uses those of the underlying Alphaar
hite
ture.A general-purpose model need only in
lude a working set of polymorphi
s. What-ever set is 
hosen should be easy to emulate on any given target using the availableinstru
tions. Be
ause of this, a small, limited set should be 
hosen. For example, one
ould 
hoose to in
orporate in the model only those operations supported by the Cprogramming language: AND, OR, XOR, and one's 
omplement.Certain instru
tions perform what are essentially redu
tion operations on the in-dividual bits of an operand. We will refer to these as bit-redu
tion operations. Thesein
lude instru
tions whi
h produ
e a 
ount of the '1' bits or leading or trailing '0' bitsin their operands. These 
an be used to gather information about the aggregate stateof the data elements stored in a partitioned register. Note that only DEC's MVI hasthese instru
tions and these are a
tually part of the underlying Alpha ar
hite
ture.Table 2.9 lists the polymorphi
 and bitwise-redu
tion operations supported byea
h of the extension families studied.2.1.5 ConditionalsSupported 
onditional instru
tions fall into three basi
 
ategories: those whi
hgenerate result masks or 
ondition 
odes, those whi
h modify the 
ow of 
ontrol, andthose whi
h manipulate data.Result masks in
lude bitmasks and �eldmasks. A bitmask 
ontains one bit per �eldindi
ating if the 
ondition is true or false for that �eld. These are usually stored ina general-purpose integer register. A �eldmask is a partitioned value in whi
h all thebits of ea
h �eld are set if the 
ondition is true, or 
leared if the 
ondition is false, for
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Table 2.9Polymorphi
 OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
 VISANDPart/Part 1x64 1x321 1x641 - 8x8,4x16 1x128 1x32,1x64Part/Imm 1x64 - - - 8x8,4x16 - -Part/S
alar - - - - 8x8,4x16 - -ANDN (AB or AB)2Part/Part 1x64 1x321 1x641 - - 1x128 1x32,1x64Part/Imm 1x64 - - - - - -NAND (AB)Part/Part - - - - - - 1x32,1x64Part/Imm - - - - - - -ORPart/Part 1x64 1x321 1x641 - 8x8,4x16 1x128 1x32,1x64Part/Imm 1x64 - - - 8x8,4x16 - -Part/S
alar - - - - 8x8,4x16 - -ORN (A+ B or A+B)2Part/Part 1x64 - - - - - 1x32,1x64Part/Imm 1x64 - - - - - -NORPart/Part - - - - 8x8,4x16 1x128 1x32,1x64Part/Imm - - - - 8x8,4x16 - -Part/S
alar - - - - 8x8,4x16 - -XORPart/Part 1x64 1x321 1x641 - 8x8,4x16 1x128 1x32,1x64Part/Imm 1x64 - - - 8x8,4x16 - -Part/S
alar - - - - 8x8,4x16 - -XORN (A� B)Part/Part 1x64 - - - - - -Part/Imm 1x64 - - - - - -NXOR (A�B)Part/Part - - - - - - 1x32,1x64Part/Imm - - - - - - -Population 1x64 - - - - - -Leading 0 bits 1x64 - - - - - -Trailing 0 bits 1x64 - - - - - -1Also nulli�es the next instru
tion on 
ondition.2Not simultaneously.
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Table 2.9 
ont'd.Polymorphi
 OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXANDPart/Part 1x64 4x32f 1x128,2x64f - - 2x32f -Part/Imm - - - - - - -Part/S
alar - - - - - - -ANDN (AB or AB)1Part/Part 1x64 4x32f 1x128,2x64f - - 2x32f -Part/Imm - - - - - - -NAND (AB)Part/Part - - - - - - -Part/Imm - - - - - - -ORPart/Part 1x64 4x32f 1x128,2x64f - - 2x32f -Part/Imm - - - - - - -Part/S
alar - - - - - - -ORN (A+B or A+ B)1Part/Part - - - - - - -Part/Imm - - - - - - -NORPart/Part - - - - - - -Part/Imm - - - - - - -Part/S
alar - - - - - - -XORPart/Part 1x64 4x32f 1x128,2x64f - - 2x32f -Part/Imm - - - - - - -Part/S
alar - - - - - - -XORN (A� B)Part/Part - - - - - - -Part/Imm - - - - - - -NXOR (A�B)Part/Part - - - - - - -Part/Imm - - - - - - -Population - - - - - - -Leading 0 bits - - - - - - -Trailing 0 bits - - - - - - -1Not simultaneously.
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orresponding �eld(s) of the operand(s). Fieldmasks are normally stored in thesame register set as their operands and are intended for use as SIMD enable masks.Be
ause of the nature of SWAR pro
essing, enable masking must be used to limitthe e�e
ts of 
onditionally exe
uted 
ode to those register �elds for whi
h the 
on-dition holds. Though some partitioned instru
tions 
an use bitmasks and 
ondition
odes dire
tly; generally, they must be 
onverted to �eldmasks for use in enablemasking.Condition 
odes represent the status or relationship of the operand(s) of a 
on-ditional operation. There may be one set per register �eld, in whi
h 
ase ea
h setrepresents the 
ondition of the 
orresponding �eld(s) of the operand(s), or one setper register, in whi
h 
ase they represent the aggregate 
ondition of the �elds in theregister. Control 
odes are usually implemented as a bitmask whi
h is stored in a\
ontrol register".Control 
ow modi�
ation in
ludes 
onditional instru
tion nulli�
ation and bran
h-es. Instru
tion nulli�
ation skips the instru
tion whi
h follows the test or blo
ks anye�e
ts it might have. This instru
tion is usually a jump whi
h is used to skip thefollowing se
tion of 
ode. Similarly, bran
hing instru
tions may jump if the 
onditionis true or 
ontinue to the next instru
tion if not.Be
ause the e�e
ts of a nullifying or bran
hing instru
tion 
annot be separatedon a per-�eld basis, the usefulness of these instru
tions is limited to aggregate tests,su
h as ANYs or ALLs, or to situations when the �eld tests 
an be serialized.Data manipulation in
ludes 
onditional moves, 
lears, and loads. Normally, theseinstru
tions are used to 
onditionally generate parti
ular values or to sele
t data fromone of two exe
ution paths. Again, the usefulness of these instru
tions is generallylimited to aggregate or serialized tests.
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tions whi
h test 
onditions and generate masks or
ondition 
odes as a result. It also in
ludes 
ertain instru
tions whi
h manipulatedata based on the values of these obje
ts.Ea
h of the families ex
ept HP's MAX has a set of instru
tions whi
h 
onditionallyset a �eldmask or a bitmask, or are extensions of families whi
h do. The basi
 
om-parison tests in
lude \equality", \inequality", \greater than", \less than", \greaterthan or equal", and \less than or equal". Generally, an ar
hite
ture supports a subsetof these tests whi
h allows the others to be emulated. This holds true for the studiedextension families. Thus, a general-purpose programming model should not ex
ludeany of these basi
 tests.SSE, SSE2, and 3DNow!Pro in
lude tests for 
he
king if IEEE-
ompliant 
oating-point data 
an be ordered (i.e. that it does not 
onsist of NANs). NANs (not anumbers) are bit patterns that do not represent valid 
oating-point values. Compar-isons whi
h operate on 
oating-point numbers may allow for one or both operandsto be NANs. In this 
ase, the operands may not be 
omparable, and are said tobe unordered. If both operands are valid numbers, they are said to be ordered ororderable.These extension families also in
lude 
oating-point \not less nor equal" and \notless than" tests whi
h a

ount for unorderedness, while MIPS-V in
ludes these anda large set of variations on the basi
 tests for 
oating-point data. These tests areeither 
ombinations of the basi
 tests, or tests for situations whi
h should not o

uror should be hidden from the programmer. Thus, these tests should be internal orused as optimizations; they should not be a visible part of a high-level programmingmodel.AltiVe
 in
ludes a \
ompare bounds" instru
tion whi
h tests if the magnitude ofone operand is less or equal to the magnitude of the other. This is equivalent to
omparing the absolute values of two operands, and is essentially a 
ombination of
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h of the AltiVe
 tests also have a form in whi
h the CR6 �eld ofthe pro
essor's 
ondition register is modi�ed if the 
ondition holds for all or none ofthe �elds. This allows aggregate tests to be performed on partitioned register data.SSE also in
ludes instru
tions whi
h 
ompare two 
oating-point �elds and setthe pro
essor's 
ondition 
odes a

ordingly. These are most likely to be used in
onjun
tion with the underlying IA32 instru
tions for 
ontrol 
ow. Be
ause they donot set a �eld or bitmask, they are less useful for SWAR enable masking.Conditional Flow Control OperationsTable 2.11 lists instru
tions whi
h 
an modify the 
ow of a program based onsome 
ondition. This may be done by bran
hing or nullifying subsequent instru
tionswhi
h would normally 
ause 
hange in 
ow.MVI and MAX ea
h 
ontain 
onditional bran
h instru
tions whi
h 
an be used astests for 
ontrol stru
tures that must be able to handle parallel data. For example,a \while" loop exe
utes as long as the 
onditional expression is non-zero. One wayto 
onvert this 
onstru
t for use with SWAR data is to modify the test to be true aslong as the expression is true for any �eld. This is equivalent to performing an ANYtest on the partitioned 
onditional expression before entering the loop body, whi
h isexe
uted under an enable mask of the �elds for whi
h the 
ondition holds. Conditionalbran
h instru
tions make it easier to implement this type of parallel 
onstru
t.MAX in
ludes a set of instru
tions whi
h perform a logi
al or arithmeti
 operationthen nullify the next instru
tion if an aggregate 
ondition holds. These are typi
allyused with a subsequent un
onditional jump whi
h is nulli�ed, and therefore not taken,if the 
ondition holds. This allows a se
tion of 
ode to be exe
uted only if theaggregate 
ondition holds.Full-width (i.e. 1xN) bran
h or null-next instru
tions are not generally usefulfor parallel 
onditionals be
ause they 
annot take a di�erent a
tion for ea
h �eld.It may be possible to 
onstru
t a jump table to handle ea
h 
ombination of �eld
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Table 2.10Condition Testing OperationsOperation Types DEC HP SGI SGI MotorolaMVI MAX MIPS-V MDMX AltiVe
Forms of Result Bitmask - FP CC Bits FP CC Bits Field Mask orAll/None BitsEquality1Part/Part - 8x8, 16x8,1x64 4x16 8x16,2x32f 4x32,4x32fPart/Imm 1x64 - - 8x8,4x16 -Part/S
alar - - - 8x8,4x16 -El/El - - - - -Inequality1Part/Part - - - -2x32fPart/Imm - - - - -Part/S
alar - - - - -El/El - - - - -Greater ThanPart/Part - - - 16x8s,16x8u,8x16s,8x16u,2x32f 4x32s,4x32u,4x32fEl/El - - - - -Less ThanPart/Part - - 8x8u, -4x16s2x32fPart/Imm - - - 8x8u,4x16s -Part/S
alar - - - 8x8u,4x16s -El/El - - - - -Greater or EqualPart/Part 8x8u - 2x32f - 4x32fPart/Imm 8x8u - - - -Part/S
alar - - - - -Less or EqualPart/Part - - 8x8u, -4x16s2x32fPart/Imm - - - 8x8u,4x16s -Part/S
alar - - - 8x8u,4x16s -El/El - - - - -Not Less nor EqualPart/Part - - 2x32f - -Element/Element - - - - -Not Less ThanPart/Part - - 2x32f - -Element/Element - - - - -1Compare for (in)equality signed and unsigned are equivalent.
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Table 2.10 
ont'd.Condition Testing OperationsOperation Types Sun Intel Intel Intel AMD AMD AMD CyrixVIS MMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXForms of Result Bitmask1 Field Field Field Field - Field -Mask Mask Mask Mask MaskEquality2Part/Part 8x8, 16x8, - -4x16, 4x16, 8x16,2x32 2x32 4x32f 4x32, 2x32f 2x32f2x64fPart/Imm - - - - - - - -Part/S
alar - - - - - - - -El/El - - 1x32f 1x64f - - 1x32f -Inequality2Part/Part 4x16, - - - -2x32 4x32f 2x64f 2x32fPart/Imm - - - - - - - -Part/S
alar - - - - - - - -El/El - - 1x32f 1x64f - - 1x32f -Greater Than 3Part/Part 8x8s, - 16x8, - - -4x16, 4x16s, 8x16,2x32 2x32s 4x32 2x32fEl/El - - - - - - - -Less ThanPart/Part - - - - -4x32f 2x64f 2x32fPart/Imm - - - - - - - -Part/S
alar - - - - - - - -El/El - - 1x32f 1x64f - - 1x32f -Greater or EqualPart/Part - - - - 2x32f - - -Part/Imm - - - - - - - -Part/S
alar - - - - - - - -Less or Equal 3Part/Part - - - -4x16,2x32 4x32f 2x64f 2x32fPart/Imm - - - - - - - -Part/S
alar - - - - - - - -El/El - - 1x32f 1x64f - - 1x32f -Not Less nor EqualPart/Part - - 4x32f 2x64f - - 2x32f -Element/Element - - 1x32f 1x64f - - 1x32f -Not Less ThanPart/Part - - 4x32f 2x64f - - 2x32f -Element/Element - - 1x32f 1x64f - - 1x32f -1Bitmask stored in an integer register.2Compare for (in)equality signed and unsigned are equivalent.3I was never able to 
on�rm (un)signedness of these, but assume signed as per �xed point format.
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Table 2.10 
ont'd.Condition Testing OperationsOperation Types DEC HP SGI SGI Motorola SunMVI MAX MIPS-V MDMX AltiVe
 VISForms of Result Bitmask - FP CC FP CC Field Mask or Bitmask1Bits Bits All/None BitsNot (Greater or Equal) Pt/Pt - - 2x32f - - -Greater or Less Than Pt/Pt - - 2x32f - - -Not (Greater or Less) Pt/Pt - - 2x32f - - -Not Greater Than Pt/Pt - - 2x32f - - -Greater, Less, or Equal Pt/Pt - - 2x32f - - -Not (Gr., Less, or Eq.) Pt/Pt - - 2x32f - - -OrderedPart/Part - - 2x32f - - -Element/Element - - - - - -UnorderedPart/Part - - 2x32f - - -Element/Element - - - - - -Unordered or Equal Pt/Pt - - 2x32f - - -Signaling Equal Pt/Pt - - 2x32f - - -Signaling Not Equal Pt/Pt - - 2x32f - - -Ordered or Greater Than Pt/Pt - - 2x32f - - -Unordered or Greater Pt/Pt - - 2x32f - - -Ord. or Greater or Eq. Pt/Pt - - 2x32f - - -Unord. or Grtr. or Eq. Pt/Pt - - 2x32f - - -Ordered or Less Than Pt/Pt - - 2x32f - - -Unordered or Less Than Pt/Pt - - 2x32f - - -Ordered or Less or Eq. Pt/Pt - - 2x32f - - -Unord. or Less or Eq. Pt/Pt - - 2x32f - - -Ord. or Greater or Less Pt/Pt - - 2x32f - - -Compare Bounds2Pt/Pt - - - - 4x32f -Set Cond. CodesOrdered El/El - - - - - -Unord. El/El - - - - - -1Bitmask stored in an integer register. This 
an be used for masked stores.2Clears bit 0 of result �eld if vA <= vB, and 
lears bit 1 if vA >=-(vB). In either 
ase, the remainingbits are 
leared.
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Table 2.10 
ont'd.Condition Testing OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXForms of Result Field Field Field Field - Field -Mask Mask Mask Mask MaskNot (Greater or Equal) Pt/Pt - - - - - - -Greater or Less Than Pt/Pt - - - - - - -Not (Greater or Less) Pt/Pt - - - - - - -Not Greater Than Pt/Pt - - - - - - -Greater, Less, or Equal Pt/Pt - - - - - - -Not (Gr., Less, or Eq.) Pt/Pt - - - - - - -OrderedPart/Part - 4x32f 2x64f - - 2x32f -Element/Element - 1x32f 1x64f - - 1x32f -UnorderedPart/Part - 4x32f 2x64f - - 2x32f -Element/Element - 1x32f 1x64f - - 1x32f -Unordered or Equal Pt/Pt - - - - - - -Signaling Equal Pt/Pt - - - - - - -Signaling Not Equal Pt/Pt - - - - - - -Ordered or Greater Than Pt/Pt - - - - - - -Unordered or Greater Pt/Pt - - - - - - -Ord. or Greater or Eq. Pt/Pt - - - - - - -Unord. or Grtr. or Eq. Pt/Pt - - - - - - -Ordered or Less Than Pt/Pt - - - - - - -Unordered or Less Than Pt/Pt - - - - - - -Ordered or Less or Eq. Pt/Pt - - - - - - -Unord. or Less or Eq. Pt/Pt - - - - - - -Ord. or Greater or Less Pt/Pt - - - - - - -Compare Bounds1Pt/Pt - - - - - - -Set Cond. CodesOrdered El/El - 1x32f 1x64f - - 1x32f -Unord. El/El - 1x32f 1x64f - - 1x32f -1Clears bit 0 of result �eld if vA <= vB, and 
lears bit 1 if vA >=-(vB). In either 
ase, the remainingbits are 
leared.
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 VISBran
h On...None True 1x64 - - - - - -Any True 1x64 - - - - - -All Equal (Part/Part) - 1x32 1x64 - - - -All Equal (Part/Immed) - 1x32 1x64 - - - -All Inequal (Part/Part) - 1x32 1x64 - - - -All Inequal (Part/Immed) - 1x32 1x64 - - - -Operate and Null Next On...AND/Any True? - 1x32 1x64 - - - -AND/None True? - 1x32 1x64 - - - -ANDN/Any True? - 1x32 1x64 - - - -ANDN/None True? - 1x32 1x64 - - - -OR/Any True? - 1x32 1x64 - - - -OR/None True? - 1x32 1x64 - - - -XOR/Any True? - 1x32 1x64 - - - -XOR/None True? - 1x32 1x64 - - - -XOR/Any False? - 2x32 - - - -2x16 4x164x8 8x8XOR/None False? - 2x32 - - - -2x16 4x164x8 8x8Add Complement/Any False? - 2x32 - - - -(A+B) 2x16 4x164x8 8x8Add Complement/None False? - 2x32 - - - -(A+B) 2x16 4x164x8 8x8result, but this would be an O(2N)-sized table for an NxB partitioning. For thisreason, these instru
tions are not in
luded in table 2.11. Full-width bran
hes or null-next instru
tions based on 
onditions that are equivalent to a redu
tion of the �eld
onditions (su
h as an unpartitioned equality test whi
h is equivalent to a partitionedALL-equal test) are useful, and are in
luded in the table.Conditional Data Manipulation OperationsTable 2.12 lists instru
tions whi
h manipulate data based the results of some
onditional test. These in
lude instru
tions whi
h move data or 
lear or load registerswhen some 
ondition is met. They also in
lude instru
tions whi
h sele
t a set of valuesfrom a set of operands depending on some 
ondition.
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Table 2.11 
ont'd.Conditional Flow Control OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXBran
h On...None True - - - - - - -Any True - - - - - - -All Equal (Part/Part) - - - - - - -All Equal (Part/Immed) - - - - - - -Any Inequal (Part/Part) - - - - - - -Any Inequal (Part/Immed) - - - - - - -Operate and Null Next On...AND/Any True? - - - - - - -AND/None True? - - - - - - -ANDN/Any True? - - - - - - -ANDN/None True? - - - - - - -OR/Any True? - - - - - - -OR/None True? - - - - - - -XOR/Any True? - - - - - - -XOR/None True? - - - - - - -XOR/Any False? - - - - - - -XOR/None False? - - - - - - -Add Complement/Any False? - - - - - - -(A+ B)Add Complement/None False? - - - - - - -(A+ B)



- 85 -MVI in
ludes instru
tions whi
h will move a register or load an immediate valuebased on the equivalent of an ANY or NONE test. It also in
ludes instru
tions that
onditionally zero (
lear) the �elds of an 8x8 partitioned register based on the valueof a bitmask, whi
h is usually generated by one of the MVI testing instru
tions.HP's MAX in
ludes instru
tions whi
h 
lear a register to generate a \false" value,then perform a 
omparison for equality or inequality, and 
onditionally nullify thefollowing instru
tion based on the result. The possibly nulli�ed instru
tion is usuallyused to load an immediate value whi
h represents \true" into the 
leared register.These instru
tions 
an be used to implement or optimize aggregate tests for SIMD-style loops and 
onditionals.Extended MMX in
ludes instru
tions whi
h load the �elds of a register based onthe value of the 
orresponding �elds of a partitioned register. These 
an be used toimplement or optimize 
ertain 
onditional or trinary operations.The MIPS-V extension family in
ludes instru
tions whi
h move the �elds of aregister based on the value of the 
orresponding 
ontrol 
ode bit. These also 
an beused to implement or optimize 
ertain 
onditional or trinary operations.Full-width (i.e. 1xN) 
onditional move instru
tions are not generally useful forparallel 
onditionals be
ause they 
annot take a di�erent a
tion for ea
h �eld. Forthis reason, these instru
tions are not in
luded in table 2.12. Full-width 
onditionalmoves based on 
onditions that are equivalent to a redu
tion of the �eld 
onditionsare in
luded in the table.MDMX and AltiVe
 in
lude partitioned \pi
k" or \sele
t" instru
tions whi
h se-le
t between one of two operands for ea
h �eld based on the truth of the 
orrespondingbit in a bitmask. In MDMX this bitmask is in an integer register and in AltiVe
 thisbitmask is in a third ve
tor register. These instru
tions are useful for implementingtrinary operators or for sele
ting between the results of two 
onditional instru
tionstreams. The 
hoi
e of a 128x1 sele
t for AltiVe
 is very good as it allows it to beused polymorphi
ally.
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Table 2.12Conditional Data Manipulation OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
 VISMove Reg/Imm On...None True 1x64 - - - - - -Any True 1x64 - - - - - -Zero Masked Bytes 8x8bm - - - - - -Zero UnMasked Bytes 8x8bm - - - - - -Clear Reg & Null Next/AllPart/Part - 1x32 1x64 - - - -Part/Imm - 1x32 1x64 - - - -Part/S
alar - - - - - - -Clear Reg & Null Next/Not AllPart/Part - 1x32 1x64 - - - -Part/Imm - 1x32 1x64 - - - -Part/S
alar - - - - - - -Load Reg. On...Zero - - - - - - -Non-Zero - - - - - - -Negative - - - - - - -Non-Negative - - - - - - -Move Reg. On...CC bit TRUE - - - 2x32f - - -CC bit FALSE - - - 2x32f - - -Pi
k True 1 2Part/Part - - - - 8x8,4x16 128x1 -Part/Imm - - - - 8x8,4x16 - -Part/S
alar - - - - 8x8,4x16 - -Pi
k False 1 2Part/Part - - - - 8x8,4x16 128x1 -Part/Imm - - - - 8x8,4x16 - -Part/S
alar - - - - 8x8,4x16 - -1Chooses destination �eld from sour
e vs or vt based on value of 
ondition 
ode bit 
orrespondingto that �eld.2Chooses destination bit from sour
e ve
tor A or B based on value of 
orresponding bit in sour
eve
tor C. This is more general, but possibly harder to generate than MDMX 
ondition 
ode bits.
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Table 2.12 
ont'd.Conditional Data Manipulation OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXMove Reg/Imm On...None True - - - - - - -Any True - - - - - - -Zero Masked Bytes - - - - - - -Zero UnMasked Bytes - - - - - - -Clear Reg & Null Next/AllPart/Part - - - - - - -Part/Imm - - - - - - -Part/S
alar - - - - - - -Clear Reg & Null Next/Not AllPart/Part - - - - - - -Part/Imm - - - - - - -Part/S
alar - - - - - - -Load Reg. On...Zero - - - - - - 8x8Non-Zero - - - - - - 8x8Negative - - - - - - 8x8sNon-Negative - - - - - - 8x8sMove Reg. On...CC bit TRUE - - - - - - -CC bit FALSE - - - - - - -Pi
k TruePart/Part - - - - - - -Part/Imm - - - - - - -Part/S
alar - - - - - - -Pi
k FalsePart/Part - - - - - - -Part/Imm - - - - - - -Part/S
alar - - - - - - -
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ation, and Type Conversion OperationsTable 2.13 lists the instru
tions available in ea
h of the extension families forsupporting data movement, repli
ation, and type 
onversion operations.MMX in
ludes instru
tions to move data between its enhan
ed (i.e. partition-able) registers and also between these and the underlying IA32 ar
hite
ture's general-purpose integer registers. SSE in
ludes instru
tions to move unaltered data betweenthe SSE registers, but not between the MMX and SSE registers. SSE2 in
ludesinstru
tions to 
orre
t this problem, and also in
ludes instru
tions to move data be-tween the SSE registers and the integer register set, and to allow data to be movedin various ways between the SSE registers.Su
h instru
tions are not ne
essary in DEC's MVI or HP's MAX extensions be-
ause these extensions use the general-purpose registers of the underlying ar
hite
ture.For example, MAX-2 has an instru
tion for moving a full-width (64-bit) obje
t be-tween the general registers that is a
tually part of the PA-RISC 2.0 instru
tion setar
hite
ture.Neither MDMX nor AltiVe
 in
lude instru
tions whi
h are used solely for movingdata between their enhan
ed registers or between these and their general registers.Similarly, MVI does not in
lude instru
tions used solely for moving data within itsgeneral register set. Moving data between registers within the same register set 
anusually be emulated. For example, in AltiVe
, a register 
an be bitwise-ORed withitself and the result stored in the target register. However, writing data betweendi�erent register sets usually 
annot be emulated. In these 
ases, data must bemoved via the ar
hite
ture's memory subsystem.This is the 
ase for AltiVe
. Unfortunately, memory addresses for AltiVe
 areheld in the PowerPC's general-purpose integer registers. This 
auses some addressingforms to be very expensive to exe
ute. For example, when an array or ve
tor elementis indexed using ve
tor indexing, the index must be moved from a ve
tor register tomemory, then from memory to an integer register where it 
an be used in an indexed
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esses required for ea
h ve
tor indexedelement a

ess.MIPS-V in
ludes an instru
tion for moving data between registers in \pa
kedsingle" (2x32f) format, and another to 
reate this format by pa
king two single-pre
ision values, taken from two 
oating-point registers, into a single 
oating-pointregister.VIS in
ludes instru
tions for moving either 32 or 64 bits of data between itsenhan
ed registers. It also has a set of 
omplementary instru
tions whi
h allow themoved data to be stored in 
omplemented form. This e�e
tively performs a one's
omplement operation on the data.While MDMX does not in
lude instru
tions for moving partitioned data betweenits enhan
ed registers, it does in
lude multiple instru
tions for moving data betweenthe 
oating-point registers and the a

umulator. These are not useful as part of aportable model, as none of the other extension families has a separate a

umulator.However, they would be ne
essary for using the a

umulator to operate on 
oating-point data if in
luded in su
h a model.AltiVe
 has a set of \splat" instru
tions whi
h repli
ate either a �eld of the sour
eregister or an immediate value into all of the �elds of the target register. This is theonly instru
tion in any of the families whi
h performs an a
tual repli
ation, althoughMDMX and SSE ea
h in
lude instru
tions whi
h e�e
tively repli
ate one operand. Ageneral-purpose model should in
lude the �eld repli
ation to 
onvert s
alar data topartitioned data for mixed-mode operations.MDMX also in
ludes instru
tions for s
aling data within the a

umulator. Theseinstru
tions shift ea
h �eld of the a

umulator right by the number of bits spe
i�ed bya se
ondary sour
e, round these values to an integer value by trun
ation or roundingupward or downward with half values, then saturate these values to �t in the �elds ofthe destination register. The se
ondary sour
e may be a partitioned register, a s
alar,or an immediate value. These instru
tions may be useful for implementing varioustype 
onversions.
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, 3DNow!, E3DNow!, and SSE in
lude instru
tions to 
onvert data in theirenhan
ed registers between integer and 
oating-point type. The SSE 
onversionsa
tually move data between the SSE registers and the MMX or IA32 register sets, si-multaneously making the 
onversion. AltiVe
 also in
ludes instru
tions whi
h round
oating-point data to integer-valued 
oating-point data. SSE2 in
ludes instru
tionsfor 
onverting between 
oating-point formats within the SSE registers. These instru
-tions may be used for visible type 
asting by a programmer or for internal operationsby a 
ompiler.2.1.7 Data Extra
tion, Insertion, and Permutation OperationsTable 2.14 lists the instru
tions available within ea
h of the extension families forsupporting �eld extra
tion, insertion, and permutation operations.In general, insertions take a bit or byte �eld from a sour
e and pla
e it in a
ontiguous se
tion of the destination. Extra
tions typi
ally take data from a se
tionof the sour
e, align it with the least signi�
ant bit of the destination, and zero- orsign- extend it to �ll that destination. These instru
tions 
ould be used in a ve
torpro
essing model to implement ve
tor element a

esses.Enhan
ed 3DNow!, SSE, and SSE2 ea
h in
lude instru
tions to allow a �eld tobe extra
ted from an enhan
ed register to an integer register. The 
omplementaryinstru
tions whi
h allow a �eld to be inserted from an integer register or from memorywithout altering the remaining �elds are likewise in
luded. SSE also in
ludes aninstru
tion whi
h takes the low �eld of a 4x32f operand from an SSE register ormemory and inserts it into the low �eld of a se
ond SSE register. 3DNow!Pro hasan instru
tion that performs the same operation on a 2x32f operand, while SSE2 hasone for 64-bit operands.MVI, AltiVe
, and VIS in
lude \byte shift right and extra
t" instru
tions whi
hshift the sour
e data right by n bytes, then 
lear the upper �elds to leave the data in
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ation, and Type Conversion OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
 VISMove Reg.!Enh. Reg. N/A N/A N/A - - - -Move Enh. Reg.!Reg. N/A N/A N/A - - - -Move Enh. Reg. - - - 1x32,!Enh. Reg. 1x321 1x641 1x642x32fMove Comp. Enh. Reg. - - - - - - 1x32,!Enh. Reg. 1x64Pa
k Singles to Part - - - 2-32f!2x32f - - -Modular Move A

!RegLow Third of A

. - - - - 3x64!8x8u, - -3x64!4x16sMiddle Third of A

. - - - - 3x64!8x8u, - -3x64!4x16sHigh Third of A

. - - - - 3x64!8x8u, - -3x64!4x16sMove Regs. to Low A

. - - - - 2-8x8u!3x642, - -2-4x16s!3x64Move Reg. to High A

. - - - - 8x8u!3x64, - -4x16s!3x64Repli
ate Field - - - - - 16x8, -(Element/Part)3 8x16,4x32Repli
ate Sign-Extended - - - - - 16x8, -Immediate to Part4 8x16,4x32Shift Rt, Rnd, & Sat A

toward 0 - - - - 8x8u, - -4x16s,4x16uto nearest away from 0 - - - - 8x8u, - -4x16s,4x16uto nearest toward even - - - - 8x8u, - -4x16s,4x16uConvert int. to 
t. - - - - - 4x32u!4x32f5 -4x32s!4x32f5Convert 
t. to int. - - - - - 4x32f!4x32u6 -4x32f!4x32s6Round 
t. value to int.to nearest - - - - - 4x32f -toward zero - - - - - 4x32f -toward +in�nity - - - - - 4x32f -toward -in�nity - - - - - 4x32f -1Also bran
hes if 
ondition is met.2Moves sour
e register Vt to low third, sour
e register Vs to middle third, and a set of�elds 
onsisting of the sign bits of the �elds of Vs to the upper third.3Field sele
ted is indi
ated by unsigned immediate.4Sign-extends 5-bit immediate to size of �elds, then repli
ates.5Converts to nearest, then divides by 2uimm5, where uimm5 is a 5-bit unsigned immediate.6Shifts left by a 5-bit unsigned immediate, 
onverts and rounds toward zero, then saturates.
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ont'd.Data Movement, Repli
ation, and Type Conversion OperationsOperation Types Intel Intel IntelMMX SSE SSE2Move Reg!Enh. Reg. 1x32u!1x64u1 - 1x32u!1x128u1Move Enh. Reg!Reg. 1x64!1x322 - 1x128!1x322Move Enh. Reg!Enh. Reg. 1x64 low 2x64!low 2x64,low 2x64!1x64,1x64!low 2x643,1x128 (un)aligned,4x32f (un)aligned 2x64f (un)alignedMove Comp. Enh. Reg. - - -!Enh. Reg.Pa
k Singles to Part - - -Modular Move A

!RegLow Third of A

. - - -Middle Third of A

. - - -High Third of A

. - - -Move Regs. to Low A

. - - -Move Reg. to High A

. - - -Repli
ate Field - - -Repli
ate Sign-Extended - - -Immediate to Part4Shift Rt, Rnd, & Sat A

toward 0 - - -to nearest away from 0 - - -to nearest toward even - - -Convert int. to 
t. - 2x32s!low 2x32f5, 2x32s!low 2x64f6,1x32s!low 1x32f7 1x32s!low 1x64f7,4x32s!4x32f,low 2x32s!2x64fConvert 
t. to int. - low 2x32f!2x328 ;9, 2x64f!2x328 ;9,2x64f!low 2x3210,low 1x32f!1x3211 ;9 low 1x64f!1x328;9,4x32f!4x32sConvert 
t. to 
t. - - 2x64f!low 2x32f10,low 2x32f!2x64f12,low 1x64f!low 1x32f12,low 1x32f!low 1x64f12Round 
t. value to int.to nearest - - -toward zero - - -toward +in�nity - - -toward -in�nity - - -1Zero-extended.2Trun
ated.3Upper quadword 
leared.4Sign-extends 5-bit immediate to size of �elds, then repli
ates.5Sour
e is MMX register or memory. Destination is SSE register. High �elds are left un
hanged.6Sour
e is MMX register or memory. Destination is SSE register.7Sour
e is integer register or memory. Destination is SSE register. High �elds are left un
hanged.8Sour
e is SSE register. Destination is MMX register or memory.9Cvt* uses rounding mode spe
i�ed in MXCSR. Cvtt* trun
ates the fra
tional part.10Sour
e is SSE register or memory. Destination is SSE register with upper half 
leared.11Sour
e is SSE register. Destination is integer register or memory.12Sour
e is SSE register or memory. Destination is SSE register.
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Table 2.13 
ont'd.Data Movement, Repli
ation, and Type Conversion OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXMove Reg!Enh. Reg. - - - -Move Enh. Reg!Reg. - - - -Move Enh. Reg!Enh. Reg. - - -2x32 (un)alignedMove Comp. Enh. Reg. - - - -!Enh. Reg.Pa
k Singles to Part - - - -Modular Move A

!RegLow Third of A

. - - - -Middle Third of A

. - - - -High Third of A

. - - - -Move Regs. to Low A

. - - - -Move Reg. to High A

. - - - -Repli
ate Field - - - -Repli
ate Sign-Extended - - - -Immediate to Part1Shift Rt, Rnd, & Sat A

toward 0 - - - -to nearest away from 0 - - - -to nearest toward even - - - -Convert int. to 
t. 2x32s!2x32f even 4x16s 2x32s!2x32f, -!2x32f 1x32s!low 1x32fConvert 
t. to int. 2x32f!2x32s 2x32f 2x32f!2x322 , -!2x32s3 low 1x32f!1x322Convert 
t. to 
t. - - - -Round 
t. value to int.to nearest - - - -toward zero - - - -toward +in�nity - - - -toward -in�nity - - - -1Sign-extends 5-bit immediate to size of �elds, then repli
ates.2Cvt* uses rounding mode spe
i�ed in MXCSR. Cvtt* trun
ates the fra
tional part.3Sign saturated to 16 bits, then sign-extended to 32.
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lude \byte shift left and extra
t"instru
tions whi
h shift the data left before 
learing the upper �elds.MVI's byte extra
tion instru
tions operate on a single sour
e obje
t and are well-suited for �eld extra
tion. Those of the other extension families operate on a pair ofsour
e obje
ts and are best suited to handling unaligned memory a

esses, althoughthey also 
an be used for �eld extra
tion.MVI also in
ludes \byte shift and insert" instru
tions whi
h shift the sour
e dataleft or right by n bytes, then 
lear all but the byte, word, doubleword, or quadwordstarting at the nth byte and going upwards through the register. The byte 
ount nmay be stored in a register or may be an immediate value. These instru
tions allowthe programmer to sele
t a set of 
ontiguous bytes from the right end of the sour
eand pla
e them in any set of bytes in the destination with the other bytes 
leared.MAX in
ludes \bit shift left and extra
t" instru
tions whi
h take up to B bitsfrom the right-hand �eld of an NxB partitioned register, starting at any bit positionand extending to the left, then 
opy them into the target register, aligned with itsright end. The number of bits 
opied may be taken from an immediate or stored in ashift amount register (SAR). If the 
ount is from the SAR, the 
opied segment is sign-or zero- extended to �ll the target �eld. The left-hand �eld (if N>1) is unde�ned. Ifthe 
ount is an immediate, it is an unde�ned operation if the 
opied segment extendsbeyond the end of the sour
e �eld.MAX also in
ludes \merge, bit shift right and extra
t" instru
tions. In these,the rightmost �elds of two NxB sour
es are 
on
atenated and the resulting value isshifted right. The lower B bits of the 2B-bit 
on
atenation are then extra
ted. Again,the shift 
ount 
an be an immediate value or from the SAR, and the left-hand �eldof the destination register is unde�ned.Complementing these extra
tion instru
tions, MAX also 
ontains \deposit" in-stru
tions whi
h perform \bit shift left and insert" operations. In an NxB partitionedoperation, these take up to B bits from the right end of the sour
e and 
opy theminto the target register. Writing begins at any of the rightmost B bit positions in the
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opy. Again, the number of bits 
opied may be from an immediatevalue or the shift 
ount register. If the 
ount is from the SAR, the 
opied segmentis trun
ated to prevent it from extending beyond the target �eld. If the 
ount isan immediate, the operation is unde�ned if the 
opied segment extends beyond thetarget �eld.Any of the above instru
tions would be useful in implementing register �eld orve
tor element a

esses in a general-purpose model. Be
ause of their wide variety, itis probably best to hide their di�eren
es beneath a layer of abstra
tion.Usually, when one inserts a �eld of data into a register, one needs to ensure thatthe surrounding data is not modi�ed. As we have seen, MAX has bit shift andinsert instru
tions whi
h perform this operation on various sizes of data. However,MVI's extra
t and insert instru
tions always 
lear the surrounding data. To deal withthis issue, MVI has a set of instru
tions whi
h 
lear a segment of data in a registerwithout a�e
ting the surrounding data. The result 
an then be logi
ally ORed withthe result of an insertion instru
tion thus inserting the sele
ted �eld without a�e
tingthe surrounding data.Two types of segment-
learing instru
tions are available in the MVI extensions.A \
lear segment low" instru
tion 
lears the byte, word, doubleword, or quadwordstarting at a given byte (0 to 7, stored in a register or as an immediate), and goingupwards through the register. A \
lear segment high" 
lears the remainder of thebytes in the word, doubleword, or quadword whi
h would have been 
hosen by the
lear-segment-low given the same arguments and assuming the target of the 
lear-segment-high was 
on
atenated to the high end of the target of the 
lear-segment-low.Permutations are typi
ally generalized to perform any of the possible rearrange-ments, with or without repetition, of the �elds of their sour
e operand(s). There aretwo primary methods in whi
h the applied permutation 
an be 
hosen. One is via animmediate value whi
h is spe
i�ed at 
ompile time. The other is via a variable ve
torindex whi
h may not be known until run time.
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tions whi
h use an im-mediate value to indi
ate whi
h �elds of the single sour
e to 
opy. SSE2 also hasinstru
tions whi
h permute the lower or upper �elds of a single sour
e operand basedon an immediate value. SSE, SSE2, and 3DNow!Pro also have permutations whi
hsele
t �elds from two operands based on immediate index values. In 
ontrast, Al-tiVe
's permute uses a ve
tor register to 
hoose �elds from two other ve
tor registersto be 
opied to the destination register.Permutes indexed via an immediate are useful for stati
 data layout and elementrepli
ation, but are not useful dynami
ally. Permutes indexed via a register 
an beused to implement dynami
 
onstru
ts. An example is the MPL router[exp1℄.exp2
onstru
t in whi
h exp2 is evaluated on the PE whose number is equal to the evaluatedvalue of exp1.In this 
onstru
t, exp1 is an arbitrary expression. The permute operation 
ouldbe quite useful here, but is mu
h less so if it 
annot be indexed by anything but a
ompile-time 
onstant. Be
ause so few of the extension families support any kindof permute at all, and be
ause only AltiVe
 supports a variably-indexed permute,
onstru
ts su
h as the MPL router should be avoided for now.Operations su
h as byte and word swaps are spe
ial 
ases of permutation. En-han
ed 3DNow! in
ludes an instru
tion to swap the two �elds of a 2x32f partitionedregister. Its operation is 
overed by E3DNow!'s more general permute instru
tion.Thus it is unne
essary, but may be temporally or spatially less expensive to exe
utethan the equivalent permute.2.1.8 Interleaving OperationsTable 2.15 lists the various instru
tions whi
h interleave �elds from two partitionedsour
es to form a 
ombined result. In general, these instru
tions 
ombine only 
ertain�elds from their sour
es to form their results.
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Table 2.14Data Extra
tion, Insertion, and Permutation OperationsOperation Types DEC HP HP SGI SGIMVI MAX-1 MAX-2 MIPS-V MDMXExtra
t Field to Reg. - - - - -Insert Sele
ted Field - - - - -Insert Low Field - - - - -Byte Shft Rt & Extra
tBy Immed. 8x8u!1x[8,16,32,64℄1 - - - -By Register 8x8u!1x[8,16,32,64℄1 - - - -Byte Shft Lt & Extra
tBy Immed. 8x8u!1x[16,32,64℄1 - - - 2-8x8u!8x8u,2-4x16s!4x16sBy Register 8x8u!1x[16,32,64℄1 - - 2-8x8u!8x8u,2-4x16s!4x16s2-2x32f!2x32fByte Shft Rt & Insert 1x[16,32,64℄!8x8u1 - - - -into Zeroed RegByte Shft Lt & Insert 1x[8,16,32,64℄!8x8u1 - - - -into Zeroed RegBit Shft Lt & Extra
t2 - 1x32s3, right 2x32s3, - -1x32u4 right 2x32u4- 1x64s3,- 1x64u4Merge, Bit Shft Rt - 2-1x32!1x32 2-1x32!1x32, - -& Extra
t 2-1x64!1x64Bit Shift Left & Insertinto Zeroed Reg5from Immed - 1x32 1x32, - -1x64from Reg - 1x32 1x32, - -1x64Bit Shift Left & Insertinto Un
hanged Reg5from Immed - 1x32 1x32, - -1x64from Reg - 1x32 1x32, - -1x64Clear Segment Low 1,2,4,or 8 bytes - - - -Clear Segment High 2,4, or 8 bytes - - - -PermutePart/Indexed by Part - - - - -Part/Indexed by Imm - - 4x16 - -Swap Fields - - - - -1[...℄ indi
ates that there are multiple separate instru
tions { one for ea
h of the values listed.2Also nulli�es next instru
tion if 
ondition is met.3Sign-extended.4Zero-extended.5Also nulli�es next instru
tion if 
ondition is met.
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ont'd.Data Extra
tion, Insertion, and Permutation OperationsOperation Types Motorola Sun Intel Intel IntelAltiVe
 VIS MMX SSE SSE2Extra
t Field to Reg. - - - 4x161!1x322 8x163!1x322Insert Sele
ted Field - - - low 2x164!4x161 low 2x164!8x163Insert Low Field - - - low 4x32f!4x32f low 2x64f!2x64fByte Shft Rt & Extra
tBy Immed. 2-16x8!16x8 - - - -By Register 2-8x8!8x8 - - -Byte Shft Lt & Extra
tBy Immed. - - - - -By Register - - - - -Byte Shft Rt & Insert - - - - -into Zeroed RegByte Shft Lt & Insert - - - - -into Zeroed RegBit Shft Lt & Extra
t5 - - - - -Merge, Bit Shft Rt - - - - -& Extra
tBit Shift Left & Insertinto Zeroed Reg6from Immed - - - - -from Reg - - - - -Bit Shift Left & Insertinto Un
hanged Reg6from Immed - - - - -from Reg - - - - -Clear Segment Low - - - - -Clear Segment High - - - - -PermutePart/Indexed by Part 2-16x8!16x8 - - - -Part/Indexed by Imm - - - 4x167, low 4x166,high 4x166,4x326,2-4x32f!4x32f6 2-2x64f!2x64f8Swap Fields - - - - -1Field sele
ted is (unsigned immediate mod 4).2Zero-extended.3Field sele
ted is (unsigned immediate mod 8).4From integer register5Also nulli�es next instru
tion if 
ondition is met.6Also nulli�es next instru
tion if 
ondition is met.7Sour
e �elds sele
ted by a 4x2 immediate.8Sour
e �elds sele
ted by a 2x1 immediate.
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ont'd.Data Extra
tion, Insertion, and Permutation OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXExtra
t Field to Reg. - 4x161!1x322 - -Insert Sele
ted Field - low 2x163!4x161 - -Insert Low Field - - low 2x32f!2x32f -Byte Shft Rt & Extra
tBy Immed. - - - -By Register - - - -Byte Shft Lt & Extra
tBy Immed. - - - -By Register - - - -Byte Shft Rt & Insert - - - -into Zeroed RegByte Shft Lt & Insert - - - -into Zeroed RegBit Shft Lt & Extra
t4 - - - -Merge, Bit Shft Rt - - - -& Extra
tBit Shift Left & Insertinto Zeroed Reg5from Immed - - - -from Reg - - - -Bit Shift Left & Insertinto Un
hanged Reg5from Immed - - - -from Reg - - - -Clear Segment Low - - - -Clear Segment High - - - -PermutePart/Indexed by Part - - - -Part/Indexed by Imm - 4x166 -2-4x32f!4x32f6Swap Fields - 2x32f - -1Field sele
ted is (unsigned immediate mod 4).2Zero-extended.3From integer register4Also nulli�es next instru
tion if 
ondition is met.5Also nulli�es next instru
tion if 
ondition is met.6Sour
e �elds sele
ted by a 4x2 immediate.
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ludes an instru
tion whi
h interleaves the �elds of two (N/2)xB sour
es toform a single NxB result. This is the only interleave in whi
h the result 
ontains allof the �elds of its original operands. These operands are stored as 32-bit \pixel" datain 4x8u format. The interleaved result is stored in a 64-bit 
oating-point register in\�xed" format.MAX-2 in
ludes instru
tions for interleaving the odd numbered �elds of the twosour
e operands into a result value and others for interleaving the even-numbered�elds.Several of the extension families have instru
tions whi
h interleave the upper(higher-numbered) �elds of the two sour
e operands into a single result and 
orre-sponding instru
tions whi
h interleave the lower �elds.VIS in
ludes an interleave instru
tion that s
ales (shifts), trun
ates, and 
lips(saturates) ea
h of the �elds of a 2x32 operand to a single byte. This is stored inthe low byte of the 
orresponding �eld of the result and is zero-extended to obtain a2x32u intermediate value. A se
ond 2x32 operand is parallel left shifted by one byteto obtain a 2x32u intermediate value in whi
h the low byte of ea
h �eld is zeroed.These intermediate values are then merged via a bitwise-OR operation to form an8x8u result.Both MIPS-V and MDMX in
lude instru
tions to interleave the even �elds of oneoperand with the odd �elds of the se
ond. In MDMX, the se
ond operand may bean immediate, a single-valued partitioned register, or a partitioned register. MDMXin
ludes alternate forms of these instru
tions in whi
h the order of the data �eldsin ea
h of the operands is reversed before the interleave is performed. MIPS-V alsoin
ludes an instru
tion to interleave the odd �elds of the �rst operand with the even�elds of the se
ond.While interleaves may be useful internally for implementing data layout, type 
ast,or ve
tor element a

ess operations, it is not 
lear that they should be exposed at theprogramming layer. More importantly, the forms are not universally implemented or
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onsistent, and it may be diÆ
ult to emulate any parti
ular form 
hosen for su
h amodel.2.1.9 Catenating, Pa
king, and Unpa
king OperationsTable 2.16 lists the instru
tions available for 
atenating or unpa
king SWAR data.These terms are not used 
onsistently, so we will provide our own de�nitions here.To 
atenate two partitioned values means to 
opy a subset of the �elds of oneto the upper half of the result and a subset of the �elds of the other to the lowerhalf while maintaining the relative ordering of these �elds. Note that there is norequirement that the sele
ted �elds of either sour
e be 
ontiguous.To pa
k a sour
e operand means to 
ompa
t a subset of its �elds from 2B bits(or more generally, from some number of bits greater than B) to B bits, shifting the�elds as ne
essary, while maintaining their relative ordering.To unpa
k a sour
e operand means to expand a subset of its �elds from B bits to2B bits (or more generally, to some number of bits greater than B), shifting the �eldsas ne
essary, while maintaining their relative ordering.MDMX in
ludes instru
tions whi
h 
atenate either the odd �elds or the even�elds of two operands to form a partitioned result of the same layout. Ea
h of theseallow one of the operands to be an immediate value or repli
ated s
alar. AltiVe
in
ludes instru
tions to 
atenate the even �elds of two ve
tor operands, but nonefor odd �elds. MDMX also in
ludes instru
tions whi
h 
atenate either the upper orlower �elds of their operands. Again, one of these may be an immediate or repli
ateds
alar value. SSE in
ludes a similar pair of instru
tions whi
h operate on partitionedregister operands.Be
ause these forms of 
atenation are not universally implemented, one may wishto ex
lude 
atenations from a general-purpose programming model. However, multi-word length ve
tors would not normally be 
atenated on a per word basis, but by
opying the fragments of one operand after those of the other. Thus, the la
k of
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Table 2.15Interleaving OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
 VISInterleave (Merge) - - - - - - 2-4x8u!8x8uInterleave odd (left) - - 4x16, - - - -2x32Interleave even (right) - - 4x16, - - - -2x32Interleave upperPart/Part - - - 8x8, 16x8, -4x16 8x16,2x32f 4x32Part/Imm - - - - 8x8, - -4x16Part/S
alar - - - - 8x8, - -4x16Part/Zero - - - - 8x8 - -Interleave lowerPart/Part - - - 8x8, 16x8, -4x16 8x16,2x32f 4x32Part/Imm - - - - 8x8, - -4x16Part/S
alar - - - - 8x8, - -4x16Part/Zero - - - - 8x8 - -S
ale, Trun
, Clip & Merge1 - - - - - - 2-2x32!8x8uInterleave even w/oddForward or ReversePart/Part - - - 4x16 - -2x32fPart/Imm - - - - 4x16 - -Part/S
alar - - - - 4x16 - -Interleave odd w/evenForward or ReversePart/Part - - - 2x32f - - -Part/Imm - - - - - - -Part/S
alar - - - - - - -1Left shifts logi
ally by 8 bits an 8x8u, then takes a 2x32, left shifts it logi
ally by the GSR value,trun
ates the lower 23 bits of ea
h �eld to form a 2x24, then unsigned saturates it to a 2x8u whi
his then ORed with the 8x8u register.
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Table 2.15 
ont'd.Interleaving OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXInterleave (Merge) - - - - - - -Interleave odd (left) - - - - - - -Interleave even (right) - - - - - - -Interleave upperPart/Part 8x8, 16x8, - - - -4x16, 8x16,2x32 4x32f 4x32, 2x32f2x64,2x64fPart/Imm - - - - - - -Part/S
alar - - - - - - -Part/Zero - - - - - - -Interleave lowerPart/Part 8x8, 16x8, - - - -4x16, 8x16,2x32 4x32f 4x32, 2x32f2x64,2x64fPart/Imm - - - - - - -Part/S
alar - - - - - - -Part/Zero - - - - - - -S
ale, Trun
., Clip & Merge1 - - - - - - -Interleave even w/oddForward and ReversePart/Part - - - - - - -Part/Imm - - - - - - -Part/S
alar - - - - - - -Interleave odd w/evenForward and ReversePart/Part - - - - - - -Part/Imm - - - - - - -Part/S
alar - - - - - - -1Left shifts logi
ally by 8 bits an 8x8u, then takes a 2x32, left shifts it logi
ally by the GSR value,trun
ates the lower 23 bits of ea
h �eld to form a 2x24, then unsigned saturates it to a 2x8u whi
his then ORed with the 8x8u register.
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luding ve
tor 
atenations in ageneral-purpose model.Only a few types of instru
tions meet the above de�nition of a pa
k. These 
omein various forms. Some are general-purpose, while others are intended for spe
i�
operations su
h as 
onverting data to proprietary pixel formats. These instru
tionsare also probably best used internally, within the implementation of a model, andprobably should not be visible to a high-level programmer.AltiVe
 and MMX ea
h in
lude instru
tions whi
h pa
k the �elds of their twooperands to half-size using signed or unsigned saturation. These intermediate valuesare then 
atenated to form a single partitioned result. SSE2 extends the MMXinstru
tions for use on the SSE integer set.AltiVe
 also in
ludes an instru
tion whi
h 
onverts data from two partitionedoperands to a pixel format. The pixel data is then 
on
atenated and stored in apartitioned destination register. This proprietary operation should not be made partof a programming model whi
h is intended to be portable, but may be useful forimplementing type 
asts or other operations.MVI in
ludes instru
tions whi
h trun
ate the �elds of a register to a single byteby dis
arding the upper bits, then 
opy the resulting �elds into the low end of theresult register. These instru
tions maintain the relative ordering of the �elds and zeroany unused �elds.VIS in
ludes spe
ial-purpose instru
tions for s
aling and pa
king graphi
s data inpixel format. These instru
tions logi
ally shift ea
h �eld left by the s
ale fa
tor (0to 15 bits) in the UltraSPARC's Graphi
s Status Register (GSR). These values arethen rounded by trun
ating the bits lower than an impli
it binary point (bits 0-6 fora 16-bit �eld, bits 0-15 for a 32-bit �eld). Finally, they are saturated to �t in the�elds of the result. The GSR 
an be manipulated with the \rd" and \wr" instru
tionsto 
hange the applied s
aling fa
tor. The operation performed by this instru
tion isobviously too spe
ialized for general-purpose pro
essing.
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tions for unpa
king or expanding data �elds are also available inthe various extension families. These instru
tions are most likely to be useful forimplementing type 
asts in a general-purpose programming model or for internally
onverting unsupported data types to supported ones for emulation purposes.Both MDMX and AltiVe
 in
lude instru
tions whi
h 
opy the lower N/2 �elds ofan NxB partitioned register to a destination register, maintaining their relative order,then sign-extend the data to form an N/2xB result. Complementary instru
tionswhi
h unpa
k the upper �elds of their sour
es are also available in ea
h of theseextension families.MVI in
ludes unpa
ks whi
h 
omplement its \pa
k low byte" instru
tions. These
opy the data from the lower �elds (bytes) of the sour
e register to the destinationregister starting with the lowest numbered �eld. Data is zero-extending as needed to�ll the larger �elds of the destination register.Two instru
tions are in
luded in AltiVe
 whi
h 
omplement its pixel-pa
king in-stru
tion. These 
onvert pa
ked pixels ba
k to an unpa
ked form. One unpa
ks thelower �elds of the pa
ked pixel while the other unpa
ks its upper �elds. These propri-etary operations should not be made part of a programming model whi
h is intendedto be portable.VIS also in
ludes an instru
tion whi
h unpa
ks the lower �elds of one NxB operandto a Nx2B result in whi
h the original B data bits are 
entered in ea
h �eld and thesurrounding bits are 
leared. This instru
tion is intended to 
omplement VIS's pixel-pa
king instru
tion, but is more generally useful be
ause it leaves the data inta
t(although shifted).2.1.10 Memory A

ess Instru
tionsTable 2.17 lists memory a

ess instru
tions that may be useful for SWAR pro
ess-ing and are available for use by the various extension families. Ea
h of these familieshas some means of a

essing memory. Some in
lude new instru
tions for loads and
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Table 2.16Catenating, Pa
king, and Unpa
king OperationsOperation Types DEC HP SGI SGI MotorolaMVI MAX MIPS-V MDMX AltiVe
Catenate oddPart/Part - - - 8x8, -4x16Part/Imm - - - 8x8, -4x16Part/S
alar - - - 8x8, -4x16Catenate evenPart/Part - - - 8x8, 16x8,4x16 8x16Part/Imm - - - 8x8, -4x16Part/S
alar - - - 8x8, -4x16Catenate upperPart/Part - - - 4x16 -Part/Imm - - - 4x16 -Part/S
alar - - - 4x16 -Catenate lowerPart/Part - - - 4x16 -Part/Imm - - - 4x16 -Part/S
alar - - - 4x16 -Unsigned Saturate, - - - - 2-8x16s!16x8u,2-8x16u!16x8u,Pa
k, and Catenate 2-4x32s!8x16u,2-4x32u!8x16uSigned Saturate, - - - - 2-8x16s!16x8s,Pa
k, and Catenate 2-4x32s!8x16sPixel Pa
k - - - - 2-4x32!8x16and CatenateTrun
ate & Pa
k 2x32!8x8 - - - -Low Byte 4x16!8x8S
ale, Trun
ate, - - - - -& ClipUnpa
k Lower - - - 8x8u!4x16s 16x8s!8x16s,& Sign Extend 8x16s!4x32sUnpa
k Upper - - - 8x8u!4x16s 16x8s!8x16s,& Sign Extend 8x16s!4x32sUnpa
k Low Bytes 8x8u!2x32 - - - -& Zero Extend 8x8u!4x16Unpa
k Lower Pixel - - - - 8x16!16x8Unpa
k Upper Pixel - - - - 8x16!16x8Zero Expand - - - - -
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Table 2.16 
ont'd.Catenating, Pa
king, and Unpa
king OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Catenate oddPart/Part - - - -Part/Imm - - - -Part/S
alar - - - -Catenate evenPart/Part - - - -Part/Imm - - - -Part/S
alar - - - -Catenate upperPart/Part - - 4x32f -Part/Imm - - - -Part/S
alar - - - -Catenate lowerPart/Part - - 4x32f -Part/Imm - - - -Part/S
alar - - - -Unsigned Saturate, - 2-4x16s!8x8u - 2-8x16s!16x8uPa
k, and CatenateSigned Saturate, - 2-4x16s!8x8s, - 2-8x16s!16x8s,Pa
k, and Catenate 2-2x32s!4x16s 2-4x32s!8x16sPixel Pa
k - - - -and CatenateTrun
ate & Pa
k - - - -Low ByteS
ale, Trun
ate, 4x16!4x8u, - - -& Clip 2x32!2x16s1Unpa
k Lower - - - -& Sign ExtendUnpa
k Upper - - - -& Sign ExtendUnpa
k Low Bytes - - - -& Zero ExtendUnpa
k Lower Pixel - - - -Unpa
k Upper Pixel - - - -Zero Expand 4x8u!4x16u - - -1Takes a 2x32, left shifts it logi
ally by the GSR value, trun
ates the lower 16 bits to form a 2x31,then signed saturates it to a 2x16s.
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Table 2.16 
ont'd.Catenating, Pa
king, and Unpa
king OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXCatenate oddPart/Part - - - -Part/Imm - - - -Part/S
alar - - - -Catenate evenPart/Part - - - -Part/Imm - - - -Part/S
alar - - - -Catenate upperPart/Part - - 2x32f -Part/Imm - - - -Part/S
alar - - - -Catenate lowerPart/Part - - 2x32f -Part/Imm - - - -Part/S
alar - - - -Unsigned Saturate, - - - -Pa
k, and CatenateSigned Saturate, - - - -Pa
k, and CatenatePixel Pa
k - - - -and CatenateTrun
ate & Pa
k - - - -Low ByteS
ale, Trun
ate, - - - -& ClipUnpa
k Lower - - - -& Sign ExtendUnpa
k Upper - - - -& Sign ExtendUnpa
k Low Bytes - - - -& Zero ExtendUnpa
k Lower Pixel - - - -Unpa
k Upper Pixel - - - -Zero Expand - - - -
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ess instru
tions, and still others allow memoryoperands to their instru
tions.The alignment of data in memory may have to be a

ounted for as some ar
hi-te
tures 
annot perform unaligned a

esses while others prevent unaligned a

essesby auto-aligning them. An aligned a

ess is one in whi
h the address is divisible bythe number of bytes a

essed, N. Su
h an a

ess is referred to as being \aligned onan N-byte boundary". An unaligned a

ess is one in whi
h the address is not on anN-byte boundary. An auto-aligned a

ess is one in whi
h the least signi�
ant bits ofthe address are ignored; thus, the e�e
tive address is aligned on some non-minimalboundary even if the requested address was not.When operating on long ve
tors of data, one would normally load as mu
h of theve
tor as possible in order to maximize parallelism. In this 
ase, one would performa load of a word-sized fragment of the ve
tor. The entire fragment would then beoperated on, then stored with a word-sized store. For long ve
tors, alignment needonly be an issue when a

essing the �rst and last fragments of the ve
tor.By 
ontrast, when loading a single element using a word-sized load, the entireen
losing memory fragment is loaded. The fragment may need to be shifted to justifythe proper element within the register. Then, the element must be zero- or sign-extended to �ll the register and 
lear out the surrounding data.When storing a single �eld value to a parti
ular ve
tor element in memory, thevalue must be aligned with the element's position in the 
orresponding memory frag-ment, then stored without a�e
ting the surrounding data. This is usually a

om-plished by loading the fragment from memory, masking out the old data in the ele-ment's position, shifting the new data to this position in another register, 
ombiningthese via a bitwise OR, and �nally storing the updated fragment ba
k to memory.When 
opying one element from a ve
tor in memory dire
tly into another, wewould like to load the element, shift it into position, then store it without a�e
tingthe surrounding data. In pra
ti
e, the element is typi
ally loaded, 
onverted to a
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ant bit (lsb), sign- or zero- extendedto �ll the register, then stored as in the previous paragraph.Element load and store instru
tions, whi
h move a single �eld of data, are onlyuseful if they eliminate some of the above masking or alignment steps. Otherwise, theyare not an improvement over full-sized load or stores ex
ept in spe
ial-
ase situations.Any implementation of a portable pro
essing model will have to be implementedon any of the target systems. Ea
h extension family has its own set of pe
uliaritieswith regards to memory a

esses. These are usually inherited from the memorysystem of the underlying ar
hite
ture either by ne
essity or by 
onvention.MVI uses the memory a

ess instru
tions of the underlying Alpha ar
hite
ture.These in
lude a set of 8-, 16-, 32- and 64- bit loads and stores whi
h require aligneda

esses, and 64-bit loads and stores whi
h do not.The MAX extension sets also use the memory a

esses of their underlying ar-
hite
tures. In ea
h 
ase, a set of 8-, 16-, and 32- bit aligned loads and stores arein
luded, as are instru
tions to store from one to four or one to eight bytes to anunaligned address. The 64-bit MAX-2 also in
ludes 64-bit aligned loads and stores.MIPS-V in
ludes 64-bit auto-aligned loads and stores whi
h are also used by theMDMX family of extensions. The underlying MIPS-IV memory-a

ess instru
tionsare also available to both MIPS-V and MDMX.AltiVe
 in
ludes 8-, 16-, and 32- bit aligned element loads and stores. The elementloads load the data into a ve
tor register in the same relative position that it o

upiesin the aligned memory quadword (128-bits) whi
h 
ontains it, making the surroundingbits unde�ned. The element stores store the data from a ve
tor register into thealigned memory quadword (128-bits) whi
h 
ontains the address in the same relativeposition that it o

upies in the ve
tor register, without a�e
ting the surrounding bits.The AltiVe
 Te
hnology Programming Environments Manual [68℄ is in
onsistentin its des
ription of ve
tor element loads (lvebx, lvehx, lvewx). In table 4-15, they aredes
ribed as loading the data into the low-order bits of the target ve
tor register, withthe remaining bits \set to boundedly unde�ned values". In the individual des
riptions
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tions (whi
h are usually more a

urate), they are des
ribed as loadingthe data into the same relative position within the target ve
tor register as its relativeposition in the quadword (128 bits) that it o

upies in memory.AltiVe
 also in
ludes 128-bit auto-aligning loads and stores and two \load ve
torindex" instru
tions whi
h are used for obtaining unaligned data. These instru
tionsload a prede�ned 
onstant ve
tor value into a register and rotate it left or right byzero to sixteen bytes, depending on the address requested. When the same address isused with a load, it is auto-aligned and returns the aligned fragment that 
ontains therequested address. The index ve
tor is then used as the index to a permute instru
tionwhi
h aligns the retrieved fragment. If the requested address was unaligned, thispro
ess must be repeated for an a

ess of the next aligned fragment in memory. Theresults are then 
ombined to form the intended unaligned a

ess.VIS in
ludes aligned 8- and 16- bit loads and stores. It also in
ludes blo
k loadsand stores whi
h move an aligned blo
k of 64 bytes between memory and an alignedset of eight 
onse
utive 
oating-point registers without altering the 
a
he. There isalso a variation of the blo
k store whi
h for
es a 
a
he 
ush.MMX in
ludes an unaligned 32-bit move instru
tion whi
h 
an also be used toload or store 32-bit data between the integer registers and the MMX registers. A64-bit unaligned move is also in
luded whi
h 
an load or store data between memoryand an MMX register or between two MMX registers. These same instru
tions areused by all IA32-based extension families.SSE in
ludes several memory a

ess instru
tions. One instru
tion moves 128-bitsof aligned data between memory and an SSE register or between two SSE registers as aset of 32-bit 
oats. There is also an unaligned version of this instru
tion. 3DNow!Prohas aligned and unaligned versions of this for the MMX register set, while SSE2 has64-bit aligned and unaligned 
oating-point versions.Another set of SSE instru
tions moves pairs of unaligned 32-bit 
oating-pointdata between memory and either the upper or lower halves of an SSE register with-out a�e
ting the surrounding data. In order to maintain 
ompatibility with SSE,
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tionality, although it isn't 
lear whatform this would take. SSE2 provides similar instru
tions for operating on 64-bit
oats.Another SSE instru
tion moves 32 bits of 
oat data between memory and the low�eld of an SSE register and also 
lears the upper �elds. This same instru
tion 
anstore data from the low 32-bit �eld of an SSE register to memory without a�e
tingsurrounding data. 3DNow! Professional 
ontains an equivalent instru
tion, whileSSE2 
ontains a set for 32-bit integer, 64-bit integer, and 64-bit 
oating-point data.SSE2 also has a 2x64 integer aligned load and a 
orresponding unaligned load.It also 
ontains 
omplementary stores and a 
omplementary store whi
h generates anon-temporal hint.Enhan
ed 3DNow! and SSE ea
h in
lude a 64-bit store whi
h is intended to min-imize 
a
he pollution when storing data from an MMX register. SSE also in
ludes anon-polluting partitioned 32-bit 
oating-point store from an SSE register. An MMXregister version of this instru
tion is available in 3DNow!Pro. SSE2 rounds theseout with a 64-bit 
oating-point SSE register version and a 32-bit instru
tion whi
hstores data from an integer register. Ea
h of these instru
tions generates a 
a
he-management hint that the data is \non-temporal".One instru
tion found in Enhan
ed 3DNow! and SSE loads a sele
ted 16-bit �eldin an MMX register from memory without a�e
ting the surrounding �elds. It 
an alsobe used as an insert instru
tion whi
h takes its sour
e data from an integer register.SSE2 extends this instru
tion for use with SSE registers.The loading of immediate values is often handled in interesting ways. For example,the MAX family of extensions use the PA-RISC \load o�set" instru
tions whi
h areprimarily intended for 
al
ulating and loading indexed addresses for memory a

esses.MAX also has available an instru
tion whi
h 
an load a 21-bit immediate, shifted by11 bits, into a 32-bit register. This instru
tion is intended for address generation,but 
an also be used to load immediate values for 
omputation. The MAX-2 versionsign-extends the loaded data to �ll a 64-bit register. VIS in
ludes instru
tions whi
h
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an load '0' or '1' bits into all of the bits of a 32- or 64- bit 
oating-point registerthus supplying a means of loading these 
ommonly-used values (0 and -1).Various extensions also in
lude \masked store" instru
tions. These store the �eldsof a partitioned register based on the value of a 
orresponding bit in a bitmask. VISin
ludes 8-, 16-, and 32- bit masked store instru
tions in whi
h this bitmask is storedin an integer register, typi
ally generated by a 
omparison instru
tion. Enhan
ed3DNow! and SSE in
lude an 8-bit instru
tion in whi
h this bitmask 
onsists of themost signi�
ant bits (MSbs) of ea
h byte of an 8x8 partitioned operand. A bytefrom the sour
e operand is stored if the MSb of the 
orresponding byte in the se
ondoperand is a `1'. SSE2 in
ludes a version of this for use with the SSE registers.MVI, Enhan
ed 3DNow!, and SSE ea
h in
lude a store syn
hronization (storesyn
) instru
tion whi
h ensures that stores pre
eding the syn
hronization point inprogram order 
omplete before stores whi
h follow. This is known as weak syn
hro-nization be
ause the order of every pair of stores is not ne
essarily maintained. Thatis, two stores whi
h are s
heduled before the syn
hronization point may be reordered.Only the order of stores o

urring before the syn
hronization point versus those o
-
urring after it are enfor
ed.SSE2 also in
ludes a load syn
hronization instru
tion whi
h ensures that loadswhi
h pre
ede the syn
hronization point 
omplete before loads whi
h follow it. Fur-thermore, SSE2 in
ludes a memory syn
hronization instru
tion whi
h ensures that allloads and stores whi
h pre
ede the syn
hronization point 
omplete before any loadsor stores whi
h follow it. MAX has a similar instru
tion whi
h weakly enfor
es theorder of all memory a

esses in
luding loads and stores and semaphore, 
a
he 
ush,and 
a
he purge instru
tions.Although it isn't really a memory a

ess instru
tion, SSE2 also in
ludes a spin-wait hint instru
tion that lets the pro
essor know that the pro
ess is exe
uting aspin-lo
k loop. These loops are typi
ally used to syn
hronize pro
esses that are in
ontention for some shared resour
e or to blo
k a pro
ess until some 
ondition ismet. The Pentium 4 pro
essor would normally dete
t su
h a loop and treat it as a
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essor that itignore the supposed violation.2.1.11 Ca
he Management Instru
tionsTable 2.18 lists the instru
tions available for supporting 
a
he management. Whilethese are not stri
tly SWAR operations, intelligent use of the memory subsystem isa ne
essity on 
urrent SWAR ar
hite
tures to a
hieve speedup. Generally, the pro-grammer should be unaware of these issues, so 
a
he management should be handledinternally by the 
ompiler. Ca
he management is also rarely portable between ar
hi-te
tures, so these operations should not be made visible by a portable programmingmodel.As a general rule, data prefet
hes are auto-aligned. That is, when a prefet
hspe
i�es a parti
ular address, the aligned line-sized memory blo
k is brought intothe 
a
he. Some older ar
hite
tures allow unaligned prefet
hes whi
h bring in thememory blo
k that starts at the requested address.HP's MAX-2 allows simple prefet
hing to be done using the standard load instru
-tions by targeting the read-only general register 0. The blo
k to be fet
hed lies atthe auto-aligned value of the requested address. For write a

esses, the blo
k may bemarked dirty upon being fet
hed. 3DNow! in
ludes similar instru
tions whi
h fet
h a32-byte blo
k, but whose address may or may not be auto-aligned, depending on theunderlying ar
hite
ture.The PA-RISC ar
hite
ture's load and store instru
tions also take a \
a
he hint
ompleter" (i.e. an op
ode extension) whi
h indi
ates a suggested a
tion to takerelating to the 
a
he. One hint indi
ates that the data will only be used on
e (i.e. hasthat it has spatial lo
ality, but not temporal lo
ality). Hen
e, the data 
an be loadedinto a bu�er rather than into the 
a
he, thus preventing the 
a
he from be
omingpolluted by the temporary data.
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Table 2.17Memory A

ess OperationsOperation Types DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
Load Aligned1 1x8u!1x64u, 1x8u!1x32u, 1x8u!1x64u, - 1x8,1x16u!1x64u, 1x16u!1x32u, 1x16u!1x64u, 1x16,1x32s!1x64s, 1x32u 1x32u!1x64u, 1x32,1x64, 1x64 1x642 1x1282Load Unaligned1 - - - - -1x64Load Field - - - - - -Load Immediate - 1x21!1x643 1x21!1x643 - - -Load Zeros - - - - - -Load All Ones - - - - - -Load Alignment - - - - - 1x128Ve
torStore Aligned 1x64!1x8, 1x32!1x8, 1x64!1x8, - 1x8,1x64!1x16, 1x32!1x16, 1x64!1x16, 1x16,1x64!1x32, 1x32 1x64!1x32, 1x32,1x64, 1x64 1x642 1x1282Store Unaligned 1to4x8 1to4x8 - - -1to8x81x64Store Aligned - - - - - -w/Ca
he FlushMasked Storeby Bitmask - - - - - -by MSb of Part - - - - - -Store Syn
 Weak - - - - -Load Syn
 - - - - - -Memory Syn
 - Weak - - - -Spin-wait Hint - - - - - -1Unsigned type implies zero-extension. Signed type implies sign-extension.2Auto-aligning.3Data shifted left by 11 bits, then sign extended to left into upper 32 bits.
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ont'd.Memory A

ess OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Load Aligned1 1x8u!1x64u, -1x16u!1x64u, 4x32f 2x64,2x64f64x8!8-1x64Load Unaligned1 - 1x32u!1x64u 1x32f!low 4x32f2, 1x32!low 4x322,1x64 1x64!low 2x642,1x64!low 2x64f2,2x32f!upper 4x32f3, 1x64f!high 2x64f3,2x32f!lower 4x32f4, 1x64f!low 2x64f4 ,4x32f 1x128,2x64fLoad Field - - 1x16!4x165 1x16!8x166Load Immediate - - - -Load Zeros 1x32, - - -1x64Load All Ones 1x32, - - -1x64Load Alignment - - - -Ve
torStore Aligned 1x64!1x8,1x64!1x16, 1x3271x648, 2x64,2x648,4x32f,4x32f8 2x64f,2x64f88-1x64!64x8Store Unaligned - low 2x32!1x32 low 4x32f!1x32f, low 4x32!1x32,1x64 low 2x64!1x64,low 2x64f!1x64,upper 4x32f!2x32f, high 2x64f!1x64f,lower 4x32f!2x32f, low 2x64f!1x64f,4x32f 2x64,2x64fStore Aligned 8-1x64!64x8 - - -w/Ca
he FlushMasked Storeby Bitmask 8x8, - - -4x16,2x32by MSb of Part - - 8x8 16x8Store Syn
 - - Weak -Load Syn
 - - - WeakMemory Syn
 - - - WeakSpin-wait Hint - - - Yes1Unsigned type implies zero-extension. Signed type implies sign-extension.2High �elds 
leared.3Low �eld(s) left un
hanged.4High �eld(s) left un
hanged.5Field sele
ted is (immediate mod 4).6Field sele
ted is (immediate mod 8).7Data from integer register is stored with a non-temporal hint.8With Non-temporal hint.
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Table 2.17 
ont'd.Memory A

ess OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXLoad Aligned - - -2x32fLoad Unaligned - - 1x32f!low 2x32f -1x64!1x32f1x64!1x32f2x32fLoad Field - 1x16!4x161 - -Load Immediate - - - -Load Zeros - - - -Load All Ones - - - -Load Alignment - - - -Ve
torStore Aligned - -1x642 2x32f,2x32f2Store Unaligned - - -low 2x32f!1x32f,2x32f!1x64,2x32f!1x64,2x32fStore Aligned - - - -w/Ca
he FlushMasked Storeby Bitmask - - - -by MSb of Part - 8x8 - -Store Syn
 - Weak - -Load Syn
 - - - -Memory Syn
 - - - -Spin-wait Hint - - - -1Field sele
ted is (immediate mod 4).2With Non-temporal hint.
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 in
lude instru
tions whi
h issue a \prefet
h hint" or \store hint"indi
ating that the data blo
k should be prefet
hed be
ause it probably will be loadedfrom or stored to, respe
tively. AltiVe
 also in
ludes versions of these instru
tionswhi
h hint that the data should not be 
a
hed be
ause it is expe
ted to be \transient".That is, that it won't be a

essed many times after the load or store is 
ompleted.MVI has a separate store hint for transient data.The AltiVe
 prefet
h instru
tions also asso
iate a strided data stream with anidentifying number. This identi�er, whi
h ranges from in value from 0 to 3, is usedto indi
ate from whi
h stream data should be prefet
hed. Whenever a stream isasso
iated with an identi�er, all asso
iations it has with other identi�ers are removed.A separate instru
tion is in
luded to disasso
iate an identi�er from its asso
iatedstream without asso
iating it with another. Another instru
tion disasso
iates allidenti�er/stream pairs. These are apparently the only instru
tions in any of theextension families whi
h take non-unit, variable, strided a

esses into a

ount.Enhan
ed 3DNow! and SSE ea
h in
lude a set of instru
tions whi
h hint that a32-byte blo
k should be prefet
hed and also to whi
h 
a
he level the data should besent. This allows the programmer to treat the memory system in a more hierar
hi
almanner than a simple hint would.MVI also in
ludes an \evi
t hint" whi
h indi
ates that a parti
ular 
a
he linewould be a good 
hoi
e for removal (evi
tion) from the 
a
he be
ause it will not bea

essed in the near future. This instru
tion may initiate a write-ba
k of the 
a
heline if it is dirty.SSE2 in
ludes a \
ush line" instru
tion whi
h 
auses the spe
i�ed 
a
he lineto be 
ushed to memory, thus 
leanly freeing it for future use. MAX-1 in
ludesinstru
tions for 
ushing the data and instru
tion 
a
hes if they are separate entitiesor the 
ombined 
a
he if not. These instru
tions write the 
ushed line ba
k to memoryif it is dirty.MAX-1 also in
ludes instru
tions whi
h will 
ush an entire 
a
he, writing linesba
k if they are dirty. It also in
ludes an instru
tion whi
h \purges" a data 
a
he
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he Management OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
 VISPrefet
h Data Line - - Yes - - - -Prefet
h Data Line for Write - - Yes - - - -Prefet
h Hint 512 bytes1 - - - - Yes2 -Prefet
h Hint Transient - - - - - Yes2 -Store Hint 512 bytes1 - - - - Yes2 -Store Hint Transient 64 bytes - - - - Yes2 -Disasso
iate ID and Stream(s) - - - - - Single or All -Evi
t Hint Yes - - - - - -Flush Line - Data,Instr. - - - - -Purge Line - Data - - - - -Flush Ca
he - Data,Instr. - - - - -Operation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXPrefet
h Data Line - - - 32 bytes3 - - -Prefet
h Data Line for Write - - - 32 bytes3 - - -Prefet
h Hint - 32 bytes4 - - 32 bytes4 - -Prefet
h Hint Transient - - - - - - -Store Hint - - - - - - -Store Hint Transient - - - - - - -Disasso
iate ID and Stream(s) - - - - - - -Evi
t Hint - - - - - - -Flush Line - - Yes - - - -Purge Line - - - - - - -Flush Ca
he - - - - - - -1A subset or superset of the requested blo
k may be moved.2De�nes the data stream by spe
ifying up to 256 units, of size up to 32 bytes, strided by up to 32768bytes. Also asso
iates an identi�er number between 0 and 3 with the data stream.3Unaligned on some ar
hite
tures.4Allows hint as to whi
h 
a
he level to prefet
h to: t0 = all 
a
he levels; t1 = all 
a
he levels ex
ept0th; t2 = all 
a
he levels ex
ept 0th and 1st; nta = non-temporal 
a
he stru
ture.

line. Depending on the implementation, this instru
tion may skip the write-ba
k ofa dirty line when exe
uted by a level-0 (i.e. a privileged) instru
tion.
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ropro
essorsIn this se
tion, the salient features of the studied extension families are reviewed.This should help us to understand the relative strengths and weaknesses of ea
h toallow for better design in the future.None of these extension families appears to be an attempt to develop a high-level SWAR pro
essing model. Support is usually limited to 8-, 16-, and 32-bit�eld sizes, and is usually not 
onsistently available a
ross these sizes. Instru
tionstailored to spe
i�
 algorithms are often available; however, instru
tions for inter�eld
ommuni
ation, 
onditional parallel exe
ution, and partial result 
ombination usuallyare not.The range of support provided by these families varies widely, with some in
ludinga large number of SWAR operations, while others in
lude only a few. There is usuallysome support for basi
 modular (wrap-around) and saturating arithmeti
, data layout,and data repa
kaging between integer and partitioned storage formats. Basi
 bitwise,
ondition testing, and 
ommuni
ation operations are sometimes supported, thoughsome families do so via standard integer operations rather than as part of the extensionfamily.2.2.1 MVIFrom a review of the Alpha Ar
hite
ture Handbook [60℄, it is obvious that thedesigners of MVI had a parti
ular set of target algorithms in mind when 
hoosingthe instru
tions to in
lude, and were not attempting to develop a high-level SWARprogramming model. In fa
t, the stated goal of Digital Equipment Corporation'sMVI extensions is to \...enable support for graphi
s and video algorithms".Be
ause MVI uses the Alpha's integer registers, its standard integer instru
tionsare available to the SWAR programmer. This means that the polymorphi
, shift,
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ess instru
tions are dire
tly usable and are available foremulating partitioned operations.MVI is weak in arithmeti
 instru
tions, having only a pixel error instru
tion whi
hperforms an 8x8u!1x64u redu
e-add of the absolute di�eren
es of the 
orrespondingelements of two sour
es. Other instru
tions must be emulated using the standardinteger arithmeti
 instru
tions.MVI in
ludes a reasonable set of partitioned maximum and minimum instru
tionswhi
h are useful for emulating saturation operations whi
h are not dire
tly supported.MVI does not in
lude partitioned multipli
ation or division operations, so thesemust be emulated using shifts, adds, and subtra
ts. A standard set of 64-bit integershifts are in
luded in the Alpha ar
hite
ture, in
luding shift-and-add and shift-and-subtra
ts. Partitioned shifts are not in
luded, but 
an be emulated using the standardshifts.A reasonable set of polymorphi
s is supported by the Alpha ar
hite
ture whi
hmakes it possible to emulate many unsupported instru
tions. Also, instru
tions whi
hperform a population 
ount, a 
ount of leading 0 bits, and a 
ount of trailing 0 bitseliminate the need to perform a redu
tion in software to test global 
onditions su
has ANY or ALL true.MVI is also weak in the number and type of 
omparison operations it in
ludes.The only partitioned 
omparison in
luded is an 8x8u greater than or equal test. Thisinstru
tion generates a bitmask with ones in the bits representing the �elds wherethe 
ondition is true, and zeroes in the others. The \zap" and \zapnot" instru
tions
an then be used to easily mask the set of true or false �elds as needed. This is areasonable solution to providing enable masks for 
onditionals, but the single testingtype is too restri
tive to be of mu
h value.The standard integer equality test 
an be used as a global test (ALL equal), butis only useful for emulating partitioned tests if they are serialized. The 64-bit \beq"and \bne" instru
tions 
an be used as bran
h on none- or any- true, respe
tively,as 
an the \
moveq" and \
movne" instru
tions. These may be useful for SWAR
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onstru
ts be
ause the de
ision on whether to enter the body is aggregateda
ross the �elds of a fragment rather than being separate for ea
h �eld.MVI 
ontains several shift instru
tions for inserting and extra
ting �elds from apartitioned register. Also in
luded are several instru
tions for 
learing the upper orlower se
tions of a register. These instru
tions are useful for several types of datalayout and rearrangement operations and allow data movement to or from a parti
ular�eld in a low number of steps.Operations for pa
king 16- and 32- bit �elds to 8-bit �elds are available, as areoperations for unpa
king 8-bit �elds to 16- and 32- bit �elds, but not between 16-and 32- bit �elds. Thus, pa
king 32-bit �elds to 16-bit �elds requires pa
king to 8bits, then unpa
king to 16 bits.The Alpha ar
hite
ture also in
ludes a set of load and store instru
tions whi
hallow 8-, 16-, 32-, and 64- bit operations. The loads always write into the leastsigni�
ant end of the register and zero- or sign- extend the data into the rest of theregister. This prevents dire
t loading of a �eld without disturbing the rest of thefragment, but allows �elds to be loaded individually then ORed together to form thepartitioned fragment. Stores always write the least signi�
ant end of the register tomemory without disturbing the remainder of the word, thus allowing nearly dire
t�eld stores. A store syn
hronization instru
tion is available to 
ush 
urrently pendingstores.A set of 
a
he prefet
h hints are also in
luded whi
h give the programmer some
ontrol over the operation of the 
a
he. This 
ontrol may be useful when operatingon long ve
tors.MVI is by far the weakest of the stand-alone extensions. Most general-purposeSWAR operations would have to be emulated if only MVI is available.



- 123 -2.2.2 PA-RISC MAX-1MAX-1 arithmeti
 instru
tions in
lude 16-bit modular and signed saturating ad-dition and subtra
tion. Unsigned saturating addition and subtra
tion are also sup-ported, but these 
ombine a signed operand with an unsigned one to form an unsignedsaturated result. This makes pure unsigned saturation arithmeti
 diÆ
ult, be
ause itfor
es the programmer to o�set one operand and perform 
orre
tions to the saturationstep.The la
k of redu
tion operations makes a fundamental step in task-based SIMDarithmeti
 algorithms expensive be
ause it must be emulated. This is normally doneusing shifts and parallel instru
tions. These are supported to some extent, so emula-tion is possible for redu
tion operations, but will be expensive.Also la
king are instru
tions whi
h result in the upper half of the result of anaddition or subtra
tion. While this is not a problem in itself, these instru
tions aresometimes useful for emulating unsupported operations.MAX-1 does not 
ontain partitioned maximum or minimum operations. This hastwo 
onsequen
es. First, these operations must be emulated if they are in
luded ina SWAR programming model. Se
ond, they 
annot be used to emulate unsupportedsaturation operations. This 
ompounds the e�e
ts of not having pure unsigned satu-ration arithmeti
 instru
tions.Multipli
ation and division by integer or fra
tional 
onstants is supported usingshift-and-add instru
tions. These perform a left or right shift of one 16-bit operandfollowed by signed saturation addition with the other. Be
ause they are only intendedto support multipli
ation and division, these shifts are limited to one-, two-, or three-bit 
ounts, and are equivalent to performing a multipli
ation or division by a valueof two, four, or eight.These shift-and-operate instru
tions are more general than simple shifts, but theirlimitations make them less useful than they 
ould be. In general, high-level language
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onstru
ted as a series of these instru
tions. This mayrequire non-trivial 
ompiler te
hnology to implement.A 16-bit unsigned average instru
tion whi
h rounds its result to an odd value isalso available. This is intended to optimize graphi
s algorithms, su
h as smoothing,whi
h use this 
ommon operation. It is less useful for arithmeti
 algorithms.Be
ause MAX-1 instru
tions are performed on the integer register set, the PA-RISC's standard bitwise operations are available for use in SIMD masking and theemulation of more 
omplex operations. A suÆ
ient working set is provided to allowthe emulation of any required operation.MAX's bitwise instru
tions 
an also be used to test a 
ondition and nullify thenext instru
tion in the program. This instru
tion is usually an un
onditional jump.Thus, the 
onstru
t emulates a bran
h, and is likely to be most useful for tests onthe aggregate 
ondition of the �elds in a partitioned obje
t.Partitioned 
onditional instru
tions in MAX-1 are limited to a handful of \unit"tests whi
h perform an operation su
h as XOR or add-with-
omplement, then nullthe next instru
tion if an ANY or ALL test fails. There are no tests whi
h generatea bitmask or �eldmask that 
ould be used for SIMD enable masking. This is asigni�
ant disadvantage.However, MAX-1 does in
lude a fairly ri
h set of full-register test, bran
h, load,and null-next instru
tions. These are arguably more useful in a SWAR environmentthan the few unit operations whi
h are in
luded be
ause they test aggregate 
ondi-tional information. However, as aggregate tests, their useful operation often overlaps.Thus, from the stand-point of SWAR pro
essing, MAX-1's set of 
onditional instru
-tions is not as ri
h as is appears to be at �rst glan
e.The implementation of operations whi
h mix s
alar and partitioned data oftenrequires that the s
alar obje
t be repli
ated to form a partitioned obje
t upon whi
hthe a
tual operation is performed. MAX-1 does not provide any means of performingthis repli
ation step, so it would have to be emulated if mixed expressions are allowedin the high-level programming model.
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ludes shift-left-and-extra
t instru
tions whi
h allow an arbitrarynumber of bits to be extra
ted from a partitioned register starting at an arbitrarybit position in the register. This would be used to extra
t a �eld of data from withina partitioned register and thus to implement ve
tor element a

esses in a ve
torpro
essing model.MAX-1's bit shift-right-and-extra
t instru
tions shift the 
on
atenation of two n-bit registers by up to n bits, then extra
t the low n bits into the destination register.This is intended to be used for data alignment before or after an unaligned memorya

ess, but 
ould be used for ve
tor shifts, in whi
h elements are shifted between�elds.A set of bit-shift-left-and-insert instru
tions allow 32 or 64 bits to be extra
tedfrom a sour
e register and inserted into an arbitrary bit position in a target register.These 
an either 
lear the other �elds of the target register or leave them un
hanged.This is useful for altering single �eld values dire
tly, for extra
ting parti
ular �eldvalues based on 
onditional tests, or for gather and s
atter operations in whi
h a longve
tor may be 
ompressed to optimize exe
ution, then returned to its original state.Other than its shift-right-and-extra
t instru
tions, MAX-1 is 
ompletely bereft of
ombinatorial operations su
h as interleaves and 
atenations. It also la
ks pa
ks andunpa
ks. This makes it hard to perform type 
onversions or to emulate operationsby 
onverting data to a supported pre
ision (e.g. using 16-bit additions to implement8-bit additions).A full set of loads and stores is in
luded whi
h allow any multiple of a byte tobe a

essed dire
tly. Although it is intended for 
onstru
ting an e�e
tive address, aload immediate instru
tion is also available whi
h allows a 21-bit value to be loaded.Immediates are normally loaded using a \load o�set" instru
tion whi
h adds theimmediate to the 
ontents of a base register. By using register 0, whi
h alwaysgenerates 0, the immediate 
an be loaded. An instru
tion whi
h stores multiple bytesstarting at an unaligned position is also available. This is useful for optimizing thestoring of long data ve
tors.
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ludes a memory a

ess syn
hronization instru
tion. This weakly en-for
es the ordering of all memory a

esses in
luding semaphore tou
hes and 
a
he
ushes. MAX-1 also allows many of its instru
tions to provide 
a
he hints, andin
ludes a set of 
a
he management instru
tions for 
ushing 
a
he lines. These al-low separate data and instru
tion 
a
hes to be handled separately and also allow aprivileged pro
ess, or the operating system, to evi
t lines belonging to user pro
esses.While MAX-1 is more 
omplete than MVI, it is limited in s
ope. Be
ause ofthis, a large amount of emulation would be needed to be implement a full SWARprogramming model using MAX-1. Its limitation to 16-bit parallel obje
ts restri
tsits usefulness for 
hara
ter stream and standard integer pro
essing. However, it'sbiggest fault is probably the la
k of instru
tions that would support the emulation ofoperations on data of unsupported pre
isions. MAX-1 would be a diÆ
ult, but notimpossible, target for a SWAR ar
hite
ture.2.2.3 PA-RISC MAX-2MAX-2 extends the MAX-1 extension set in two major ways. First, it extendsthe existing MAX-1 instru
tions to make use of the 64-bit PA-RISC 2.0 ar
hite
ture.Se
ond, it adds support for data alignment and rearrangement operations.One of the limitations of MAX-1 was the la
k of a set of simple, generalizedshifts. This is resolved in MAX-2 with the addition of shift by immediate instru
tionswhi
h operate on 16-bit partitioned data. These instru
tions make the emulation ofunsupported operations easier to implement using MAX-2 than they would be usingMAX-1. They still su�er from the limitation that the index is not variable. This typeof operation is diÆ
ult to emulate using 
onstant-
ount shifts, so there is still roomfor improvement.A generalized permute by immediate instru
tion allows arbitrary reordering of the�elds of a partitioned register in
luding repli
ations. This instru
tion addresses one
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onverting s
alar data into apartitioned form for use in mixed expressions.Other problems addressed by the permute instru
tion are type 
onversion and theemulation operations on unsupported data sizes. Permute allows values to be pa
kedand unpa
ked, thus making it less 
ostly to 
onvert between sizes and to emulaten-bit operations with 2n-bit operations.Permute 
an also be used to perform a large number of operations whi
h resemble
ommuni
ations. For example, a single �eld value may be repli
ated su
h as in abroad
ast or ea
h �eld value may be passed to its neighbor su
h as in a nearestneighbor 
ommuni
ation operation.Unfortunately, the permute's index ve
tor is an immediate value. Thus, it must beknown at 
ompile-time. This limits the usefulness of the permute as a 
ommuni
ationoperation to �xed patterns. This is not a problem for type 
onversions and emulation,whi
h are de�ned at 
ompile-time anyway. Thus, MAX-2's permute is still very usefulfor implementing a generalized SWAR model.MAX-2 also has a reasonable set of interleaving \mix" instru
tions whi
h support16- and 32- bit �eld sizes. These are most useful for promoting and demoting datafor emulating operations on unsupported �eld sizes. These 
an be used to address thedata 
onversion problem. The operation of these instru
tions is a
tually 
overed bythe permute. Thus, these instru
tions are only useful if they provide a performan
eimprovement over using the permute instru
tion.MAX-2 also extends MAX-1's fun
tionality by supporting 
a
he prefet
hing. Thisis a

omplished by using the \ldd" or \ldw" instru
tions to \load" general register0, whi
h is a
tually read-only. The \ldd" instru
tion indi
ates a load for read, while\ldw" indi
ates a load for write.MAX-2 supports a reasonable range of SWAR operations; however, the supported�eld sizes for any given operation are often severely limited. Thus, a large amountof emulation would be required to implement a general-purpose model. While theadditions beyond MAX-1 are not as useful as they 
ould be, they do address some
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essing.2.2.4 MIPS-VThe MIPS-V extensions in
lude arithmeti
 instru
tions for modular addition, sub-tra
tion, and multipli
ation. Unary absolute value and negate instru
tions are alsoavailable. These instru
tions allow basi
 math operations to be performed on 
oating-point data.MIPS-V does not in
lude saturation operations, nor does it in
lude minimum ormaximum operations whi
h 
ould be used to emulate saturation operations.Various forms of multiply-add and multiply-subtra
t instru
tions are also in-
luded, but these are not parti
ularly useful for a generalized SWAR model. Theyare most likely to be used as optimizations for spe
ial situations.No divide or re
ipro
al instru
tions are in
luded in the MIPS-V extensions. Thus,
oating-point division will have to be serialized if it is in
luded in the general-purposemodel. MIPS-V also la
ks the square root, log, and exponential instru
tions in
ludedin some of the other 
oating-point extension families.MIPS-V's ri
h set of partitioned 
onditional tests is by far the largest of any ofthe extension families. These instru
tions allow tests for multiple 
ombinations of
onditions in
luding orderedness and unorderedness. These tests set 
ondition 
odebits whi
h represent the result of the test on ea
h �eld. Conditional move instru
tionsmerge ea
h �eld of the sour
e into the result based on the values of these bits.The \
vt.ps.s" instru
tion pa
ks two 
oating-point single values into a 2x32f par-titioned value. This allows two non-
onse
utive 32-bit values to be easily 
ombinedinto a partitioned register without involving extra masking steps.The \alnv.ps" instru
tion extra
ts either the low or middle 2x32f from the 4x32f
on
atenation of two 2x32f sour
es, and is usually used for data alignment. For the



- 129 -purposes of SWAR pro
essing, it is most useful for performing neighbor 
ommuni
a-tions on multi-fragment ve
tors or aligning unaligned memory a

esses.A set of instru
tions allow the upper, lower, or a mix of the even and odd �eldsof the two sour
es to be interleaved. These also may be used to fa
ilitate 
ertain
ommuni
ation operations.Auto-aligning instru
tions for loading and storing the 
oating point registers arein
luded whi
h are used by both the MIPS-V ISA and MDMX. These load the aligned64-bit blo
k whi
h 
ontains the given address rather than the 64-bit blo
k starting atthe address.As a 
oating-point extension supporting IEEE-
ompliant 
omputing, MIPS-Vdoes fairly well; however, the la
k of support for division is disturbing. Supportfor saturation arithmeti
 is non-existent; thus, a model whi
h in
ludes saturationmath will be diÆ
ult to implement on MIPS-V.2.2.5 MDMXData stored in the a

umulator is always signed, and operations whi
h target thea

umulator are always modular. Instru
tions whi
h target the a

umulator in
ludeaddition, subtra
tion, and multipli
ation.Data exists as a \bit array" until one of the partitioned operations is applied,at whi
h time the data is 
onverted into 8x8u or 4x16s form. From then on, theSHFL instru
tion must be used to 
onvert between 8x8u and 4x16s forms, otherwisethe data be
omes unde�ned. Conversion from 4x16s to 8x8u requires data to besaturated with MIN or MAX and rearranged via SHFL.MDMX instru
tions whi
h target the 
oating-point (FP) registers are always sat-urated, and are performed on either 8-bit unsigned or 16-bit signed data. Thesein
lude instru
tions for addition, subtra
tion, maximum, minimum, and multipli
a-tion. A 16-bit signed multiply by sign instru
tion is also available; however division,re
ipro
al, square root, log, and exponential are not.
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tions is also in
luded, as is a reasonable set of polymor-phi
s, both of whi
h operate on the data in the FP registers.A suÆ
ient set of 
onditional tests is in
luded for most SWAR operations. Theseinstru
tions set the 
oating-point 
ondition 
ode bits based on the result of the testin ea
h �eld. The \pi
k" instru
tions 
an then use these bit values to sele
t whi
h oftwo sour
es they will 
opy their �eld results from.Another interesting feature of MDMX is that 
ondition 
odes are used and 
anbe read or written in subsets. Most of the extension families avoid using 
ondition
odes, presumably to avoid their \side-e�e
t" status.Several instru
tions are in
luded for moving data between the a

umulator andthe FP registers and for pa
king the data in the a

umulator into the more 
ompa
tforms used in the FP registers.A set of instru
tions whi
h perform a byte-shift-left-and-extra
t operation on the
on
atenation of two sour
e registers are in
luded. These are most useful for multi-fragment 
ommuni
ation operations su
h as �eld shifts or rotates, and for aligningunaligned data a

esses.MDMX in
ludes a solid set of 
ombining operations for use with the FP regis-ters. Interleave upper, lower, and even-with-odd instru
tions are in
luded, as areseveral forms of 
on
atenation. These instru
tions are most useful for promoting anddemoting data for emulation.MDMX also in
ludes instru
tions for sign-extending 8-bit values to 16-bit values.These instru
tions 
an save several when promoting 8-bit data to 16-bit data. Be
auseof the relative 
ompleteness of the MDMX 8-bit instru
tion set, these instru
tions arenot as important to SWAR pro
essing using MDMX as they would be to extensionfamilies for whi
h more 8-bit operations must be emulated.Be
ause MDMX is limited to 8-bit unsigned and 16-bit signed data, a signi�
antamount of emulation would be ne
essary to implement a general-purpose model whi
hin
ludes 8-bit signed or 16-bit unsigned operations. This is not fatal, and MDMX'sversatility and range of operations make it a reasonable target for SWAR operations.
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Arithmeti
 operations 
onsist of modular and saturation addition and subtra
tionon 8-, 16-, and 32- bit integer data, and saturation addition and subtra
tion on 32-bit
oating-point data. A 32-bit unsigned addition high is also in
luded whi
h 
an beused to emulate 64-bit unsigned additions. The 
orresponding subtra
t high is alsoin
luded.A 32-bit signed redu
e-add-with-element 
an be used to qui
kly perform multi-word redu
tions. Partial redu
e-add instru
tions, whi
h redu
e subse
tions of a reg-ister into a partial result are also in
luded.Modular multipli
ations on 8- and 16- bit data multiply either the even or odd�elds of the sour
es, yielding a result with doubled �eld widths. This allows satu-ration multipli
ation to be easily emulated. An interesting set of multiply-add andmultiply-subtra
t instru
tions are available, but these are somewhat esoteri
, andwould probably only be used for optimizations.Maximum and minimum instru
tions operating on signed and unsigned integersand 
oats are in
luded, as are a full set of integer averages.A single-pre
ision 
oating-point re
ipro
al approximation instru
tion 
an be usedto perform 
oating-point division. Floating-point re
ipro
al square root, log basetwo, and exponential approximations are available, but also are likely only to be usedfor optimization.Partitioned shifts and rotates in
lude 8-, 16-, and 32- bit logi
al and arithmeti
operations, but 128-bit shifts must be performed in multiple steps by shifting bybytes, then by bits within the bytes. Full-width shifts are often used in emulation,and the la
k of these is a potential problem. However, a set of polymorphi
s suÆ
ientto perform enable masking and emulation is in
luded.Conditionals in
lude a full set of integer equality and greater than tests and a32-bit 
oating-point greater than or equal test as well. These yield a �eld maskwhi
h sets all the bits in ea
h �eld of the result to either '0's or '1's depending upon



- 132 -the result of the test. Su
h a mask is immediately usable for enable masking in aSWAR environment. This form of result is probably the best single 
hoi
e possiblefor partitioned tests.Pi
k true and false instru
tions are also in
luded whi
h 
an be used to performtrinary operations easily. A 32-bit 
ompare bounds instru
tion indi
ates the rela-tionship of two 
oating-point operands, but is likely to be used only in spe
ial 
asesituations.AltiVe
 in
ludes �eld repli
ation for 8-, 16-, and 32- bit �elds. This is most usefulfor 
onverting single-valued data to ve
tor form { an operation whi
h o

urs often inSIMD 
ode. This 
an also be used to optimize the repli
ation of other-sized �elds aswell. Field sele
tion is via an immediate value, whi
h limits the usefulness of theseinstru
tions to non-variable �eld indexing and internal emulation. Taking the �eldnumber from a register would allow variably-indexed �elds to be sele
ted for repli
a-tion; however, this fun
tionality is provided by a generalized permute instru
tion andwould thus be redundant.Repli
ation of a 5-bit immediate, sign-extended to the �eld size, is also in
luded.These 
an be used to load small magnitude 
onstants in one step or larger 
onstantsin two for the supported �eld sizes. They 
an also be used to load 
onstants intosmaller �elds in multiple steps.Instru
tions for 
onverting data between integer and 
oating-point type are alsoin
luded, as is an instru
tion for rounding 
oats to an integer 
oating-point value.These instru
tions are useful for type 
onversion and 
asting.The \vsldoi" instru
tion allows a 16-byte sequen
e to be extra
ted from the 
on-
atenation of two 16-byte values. It is intended for alignment purposes, but 
an beused for ve
tor shifts or 
ommuni
ation operations.AltiVe
's \vperm" instru
tion performs a general permutation on two sour
e regis-ters to form a single result, indexed via a third register. This allows it to be used bothstati
ally for data layout and type 
onversions, or dynami
ally to support variably-
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esses or data 
ommuni
ations su
h as a router operation inMPL [107℄.AltiVe
 in
ludes several forms of interleaves and unpa
ks in
luding saturatingforms whi
h 
an be used for type 
onversion and to emulate unsupported saturationoperations. The \unpa
k-and-sign-extend" instru
tions allow signed data to be 
on-verted to larger pre
isions easily. This would be an expensive operation otherwise,and is one whi
h o

urs often when emulating saturation operations. The pa
k andunpa
k pixel operations are less useful and unlikely to be used by a general-purpose
ompiler.AltiVe
 also in
ludes instru
tions to load or store aligned ve
tor elements and toload or store 128-bit blo
ks. These operate without 
hanging the relative position ofthe element in the en
losing 128-bit blo
k. Unfortunately, the loads are not as usefulas they 
ould be. When loading a single element, it needs to be aligned, thus requir-ing a shift operation. Also, the AltiVe
 loads leave the surrounding bits unde�ned,thus requiring a masking operation to 
lear them. When loading an element into apreviously loaded fragment, we would like the surrounding elements to be un
hanged,but AltiVe
 doesn't guarantee this, so again we must perform masking to insert theelement properly. AltiVe
's element stores are more useful in that they don't 
lobbersurrounding data. This allows element stores without performing masking; however,if the data to be stored is single-valued, alignment is still required.One problem with AltiVe
 is that data 
annot be moved dire
tly between theve
tor and general-purpose integer registers. Thus, array indi
es generated in theve
tor registers must be moved via memory to the integer registers for use in a loador store instru
tion.The load-ve
tor-for-shift instru
tions load a ve
tor value whi
h 
an be used as asthe index for a permute operation to extra
t a 16-byte sequen
e from the 
on
ate-nation of two 16-byte fragments. This 
an be used to implement ve
tor shifts androtates, but is intended for the alignment of unaligned memory a

esses.
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ludes instru
tions to provide hints about whether data should orshould not be prefet
hed for loads or stores. These de�ne a data stream whi
h 
an
ontain up to 256 units of up to 32 bytes ea
h, strided by up to 32768 bytes. Thisallows hints about data stored in various memory layouts to be easily indi
ated.AltiVe
 is a rather 
omplete set of extensions. As a general rule, support is broadand available for ea
h of the standard data sizes below 64 bits. Support for 64-bitdata is, however, la
king.Overall, AltiVe
 is a very good target for a general-purpose SWAR model, but thela
k of 64-bit operations in a 128-bit environment leaves a large gap. Also, the la
kof simple data moves between register sets and the medio
re memory a

ess systemmake generalized addressing diÆ
ult.2.2.7 VISA reasonable set of modular arithmeti
 instru
tions is in
luded for 16- and 32- bitoperations. Addition and subtra
tion instru
tions are in
luded, as is a redu
e-add ofthe absolute di�eren
es of 8-bit �eld values.A large number of multiply instru
tions are in
luded, ea
h of whi
h multipliesfour 8-bit values with one to four 16-bit signed values. These typi
ally produ
e a24-bit intermediate value whi
h is then 
onverted to the format of the �nal result.Few of these will be generated by a general-purpose 
ompiler ex
ept as a spe
ial 
aseoptimization.Minimum and maximum operations are not supported by VIS, nor are divide,re
ipro
al, square root, logarithmi
, or exponential instru
tions. The la
k of supportfor saturation arithmeti
 or for maximum and minimum operations will make theemulation of saturation operations diÆ
ult for anyone attempting to implement them.A large set of polymorphi
s is also in
luded in the VIS extensions and 
an be usedto fa
ilitate the emulation of unsupported operations.
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omparison operations are available whi
h operate on 16- and 32- bitpartitioned data. These set a bitmask in an integer register, whi
h 
an then be usedby a masked store instru
tion.VIS in
ludes an \faligndata" instru
tion whi
h performs a \byte shift right andextra
t" operation. It also in
ludes \fpa
k32", \fpa
k16", and \fpa
k�x" instru
tionswhi
h perform \s
ale, trun
ate, and 
lip" or \s
ale, trun
ate, 
lip, and merge" oper-ations and were intended to be used to 
onvert between VIS' pixel and �xed-pointformats. They are the only forms of shift instru
tion in
luded in VIS. Unfortunately,these forms are not parti
ularly useful for emulating those operations whi
h are notsupported by VIS. The la
k of simple bitwise shifts severely limits emulation possi-bilities.An interleave instru
tion allows two 4x8u partitioned registers to be merged intoa single 8x8u, and 
an be used for �eld size promotion, as 
an an unsigned expandinstru
tion whi
h zero-extends the �elds.VIS in
ludes 8- and 16- bit loads and stores, and blo
k loads and stores whi
hmove 64 bytes of data between memory and eight of the 64-bit 
oating-point registers.Instru
tions are also in
luded whi
h 
lear or set all the bits in a register.Masked store operations in whi
h the �elds to be stored are indexed via an integerbitmask are available to limit the e�e
ts of a store to a spe
i�
 set of �elds. These 
anbe used to implement SIMD enable masking for high-level 
onditional 
ode. Whilethe masked store is a good idea, it would be better if it was indexed by a �eld maskinstead of a bit mask. This would allow better integration with SIMD masking 
ode.Despite Sun's 
laim to the 
ontrary, VIS seems to be designed for spe
i�
 al-gorithms rather than for a general-purpose model. The sele
tion of esoteri
 instru
-tions over simple or generalized instru
tions makes supporting a truly general-purposemodel more diÆ
ult than is ne
essary.
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lonedby Advan
ed Mi
ro Devi
es, In
orporated [73℄, Cyrix Corporation [74℄, and otherssu
h as Rise Te
hnology Company [94℄, was originally \...designed to enhan
e per-forman
e of advan
ed media and 
ommuni
ation appli
ations" [72℄ while retaining\full 
ompatibility with existing operating systems and software." [93℄ An overviewof the MMX family is provided in [72℄, and detailed des
riptions of the instru
tionsare available in [95℄. A short summary, in
luding 
y
le 
ounts, is available in [93℄.The MMX extensions provide a fairly wide range of support for a high-level par-allel programming model; however, they are limited to 8-, 16-, and 32- bit SWARoperations whi
h are not implemented 
onsistently a
ross these �eld sizes.MMX operates on data stored in the 
oating-point (FP) registers. These registers
annot be used for 
oating-point operations while MMX is in use, and the standardinteger instru
tions 
annot be used on the data stored in these registers. In this sense,MMX is less useful than the families whi
h partition their standard integer registers.The supported arithmeti
 instru
tions in
lude a reasonably 
omplete set of modu-lar and saturated addition and subtra
tion instru
tions, 16-bit modular multiply andsigned multiply high instru
tions.A multiply-add instru
tion is useful for 
ertain algorithms, but is only likely to beused as a spe
ial-
ase optimization by a SWAR-based 
ompiler.Maximum and minimum instru
tions, whi
h are useful for emulating saturationoperations, are not in
luded in the MMX instru
tion set. This means that emulationof saturation operations is expensive using only MMX. Divide and re
ipro
al areex
luded, as are square root, log, and exponential instru
tions.Shifts on 16-, 32-, and 64- bit �elds are in
luded, and are suÆ
ient for most SWARneeds. A solid set of polymorphi
s is also in
luded. These make it possible to emulatemany SWAR operations whi
h are not supported dire
tly by MMX instru
tions.
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omparison instru
tions return a �eld mask whi
h is immediately us-able for enable masking in a SWAR environment.A full set of interleave upper, interleave lower, and 
atenate even instru
tionssupport data promotion and demotion for the emulation of unsupported SWAR op-erations.Memory a

ess instru
tions in
lude the \movq" and \movd" instru
tions whi
hare 
apable of moving data both between 
oating-point (FP) registers and betweenthese and memory. Also, most MMX instru
tions allow one of the sour
es to be inmemory, thus eliminating the need for a separate move in 
ertain 
ases.Despite its limitations, MMX is one of the more 
omplete families of SWARextensions. However there are enough gaps that Intel felt the need to address themas part of the SSE extensions (see se
tion 2.2.13).2.2.9 3DNow!3DNow! [75℄ in
ludes 32-bit saturated 
oating-point addition, subtra
tion, andmultipli
ation, and a saturating 32-bit 
oating-point redu
e-add-and-pa
k whi
h willsubstantially redu
e the number of instru
tions ne
essary to perform a ve
tor redu
-tion on 
oating-point data.Floating-point maximum and minimum instru
tions are also in
luded, as are in-stru
tions to approximate the re
ipro
al and re
ipro
al square root of a 
oating-pointelement. While the last of these is most likely to be used only in optimizations, there
ipro
al 
an be used to emulate divides whi
h are not dire
tly supported otherwise.Floating-point 
omparisons result in �eld masks as in MMX, whi
h, be
ause theyuse the same register set, 
an be used to mask integer or 
oating-point ve
tors.Instru
tions are in
luded for 
onverting between 32-bit signed integer and 
oating-point data, whi
h allow type 
onversion and 
asting to be performed easily.A limited set of 
a
he management instru
tions are also in
luded for prefet
hinga 32-bit data line and marking it dirty (written to) when useful.
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ause 3DNow! is an extension of MMX, MMX's shifts, polymorphi
s, loads,and stores 
an all be used with 3DNow!. To make MMX more 
omplete, 3DNow! alsoin
ludes a 16-bit signed modular multiply high and an 8-bit unsigned average instru
-tion.In summary, 3DNow! is a good �rst step toward adding 
oating-point SWAR
apabilities to MMX and improving its 
overage. There is still room for improvementwhi
h is addressed by the Athlon extensions to 3DNow! (see se
tion 2.2.10).2.2.10 Enhan
ed 3DNow! and MMXA 32-bit 
oating-point redu
e-subtra
t-and-pa
k performs a subtra
tion on theelements of two registers, then pa
ks the results. This is the 
omplementary operationto 3DNow!'s redu
e-add-and-pa
k. Another 
oating-point instru
tion performs anaddition on one register, a subtra
tion on another, and then pa
ks these results intothe destination. Depending on how a redu
e-subtra
t is de�ned in the programmingmodel, one or the other of these instru
tions 
ould be used to implement the operation.The \psadbw" instru
tion performs a redu
e-add on the di�eren
es of two 8x8integer values to form a 16-bit unsigned result. This 
an be used to optimize redu
tion
ode whi
h 
an be expensive without su
h support.E3DNow! also in
ludes 8-bit unsigned and 16-bit signed integer maximum andminimum instru
tions. These 
an also be used to emulate 8-bit signed and 16-bitunsigned maximum and minimum operations and saturation operations using largerdata sizes.The \pmovmskp" instru
tion is used to generate a bit mask 
onsisting of the signbits of the 8-bit elements of a partitioned register. This would be more useful if it
ould be used in dire
t 
onjun
tion with the \maskmovq" instru
tion whi
h performsa masked store of the bytes with a set sign bit. However, the bitmask forms do notmat
h; thus, pmovmskp is not parti
ularly useful.
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ed 3DNow! also in
ludes a 16-bit unsigned multiply high, and 8- and 16-bit unsigned average instru
tions whi
h �ll in missing parts of the MMX integerinstru
tion set.Instru
tions to 
onvert between 16-bit signed integers and 32-bit 
oating-pointelements are in
luded to 
omplement the 
onversions between 32-bit data types in-
luded in 3DNow!.A 16-bit �eld extra
tion operation 
an be used to qui
kly a

ess ve
tor elementswhi
h start on a 16-bit boundary, but is not as useful for others, as it would requireas many instru
tions as a mask and align operation using full-width operations. The
orresponding 16-bit insert instru
tion is also in
luded. These instru
tions 
an beused to move data between the integer and MMX register sets, and the insert 
analso move data from memory into an MMX register.A 16-bit permute, indexed via an immediate, 
an be useful for emulation anddata promotion, but is not as useful as a permute indexed via another register. Aninstru
tion for swapping 32-bit 
oating-point �elds is also in
luded. It 
an also beused to swap the upper and lower halves of the register when it holds integer data,but its operation 
an also be performed with a permute, so it is a
tually redundant.A 
a
he-bypassing store is in
luded, as is a store syn
hronization instru
tion whi
henfor
es the order of stores whi
h o

ur before the syn
hronization point versus thosethat o

ur afterward.Enhan
ed 3DNow! �lls in many of the gaps in MMX and 3DNow! and in
ludesinstru
tions whi
h will fa
ilitate the implementation of a general-purpose model onthe Athlon ar
hite
ture. With these extensions the Athlon has be
ome a matureSWAR ar
hite
ture.2.2.11 3DNow! ProfessionalAMD introdu
ed the 3DNow! Professional [98℄ extensions to the Athlon instru
-tion set in order to bring its various multimedia extensions to par with Intel's Stream-
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tion 2.2.13). This set of 52 instru
tions in
ludesthose found in SSE whi
h are not found in MMX, 3DNow!, or Enhan
ed 3DNow!.2.2.12 Extended MMXCyrix's Extended MMX (EMMX) [77℄ has two purposes. First, it extends theMMX extension set by a few instru
tions. Se
ond, it adds 
exibility by in
luding in-stru
tions whi
h target a register whose use is not expli
itly indi
ated in the instru
-tion, but rather implied by the use of its sequentially paired register whose numberdi�ers only in the least signi�
ant bit. E�e
tively, these instru
tions are three registerinstru
tions rather than the IA32 standard of two, and allow the instru
tion to avoidoverwriting one of its sour
es.16-bit signed saturation addition and subtra
tion are in
luded, both of whi
hrepeat the fun
tionality of an existing instru
tion, but target an implied register.Similarly, a set of 16-bit signed multiply high instru
tions allow the result to bestored or a

umulated with an implied register.One addition to MMX is an 8-bit unsigned saturating sum of absolute di�eren
esinstru
tion whi
h a

umulates with the partitioned value in the implied register.Another addition is a 16-bit signed magnitude instru
tion in whi
h ea
h element ofthe result is the element with the larger absolute value of the 
orresponding elementsof the sour
es. Neither of these is likely to be used as anything but an optimizationby a general-purpose 
ompiler.An 8-bit average is also in
luded, whi
h performs a signed operation for CPUsprior to version 1.3, and unsigned for versions after 1.3.A set of 8-bit partitioned 
onditional loads is also in
luded whi
h load ea
h �eldbased on the value of the 
orresponding �eld of a test register.To the best of my knowledge, EMMX has not been implemented on any publi
ly-available CPU, although a

ording to a preliminary version of the Cyrix CPU Dete
-tion Guide [100℄, the GXm was intended to support EMMX.
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on
ept is interesting, but it is unlikely that EMMX will beimplemented (if it hasn't already been) be
ause it has been overtaken by the moreadvan
ed extensions from AMD and Intel.2.2.13 SSEExtensions to MMX in
lude an 8-bit unsigned redu
e-sum of absolute di�eren
es,8-bit unsigned and 16-bit signed maximum and minimum operations, and an instru
-tion to generate a bit mask of the sign bits of an 8x8 partitioned register. A 16-bitunsigned modular multiply high is also in
luded, as are 8- and 16- bit unsigned aver-ages.Instru
tions to insert or extra
t 16-bit �elds into or out of an MMX register arein
luded. These are the equivalent of the E3DNow! instru
tions of the same name.Similarly, a 16-bit permutation operation is in
luded and su�ers the same limitationsas its E3DNow! 
ounterpart.The \pinsrw" instru
tion 
an be used to load a sele
ted 16-bit �eld into an MMXregister. The \movntq" instru
tion 
an be used to store the 
ontents of an MMXregister while minimizing 
a
he pollution, and the \maskmovq" instru
tion performsan 8-bit masked store based on the sign bits of the register �elds. A store syn
hroniza-tion instru
tion ensures the ordering of stores o

urring before the syn
hronizationpoint versus those that o

ur afterward.The 
oating-point extensions in SSE in
lude partitioned and low element formsof basi
 modular arithmeti
. These in
lude addition, subtra
tion, multipli
ation,maximum, and minimum instru
tions. They also in
lude division and square root,and re
ipro
al and re
ipro
al square root approximations.A basi
 set of polymorphi
s is also in
luded whi
h would be useful for emulation,but a la
k of shifts tends to limit any su
h hopes.Several partitioned and single element forms of 
onditional operations are in
ludedwhi
h result in a �eld mask usable for SIMD enable masking. These test basi
 
on-
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oating-point data. Instru
tions to setthe 
ondition 
odes based on the value of the low element are also in
luded.32-bit interleaves and 
on
atenates operate on the SSE registers and allow for
hanges in data layout, type promotion, and ve
tor shifts. A permutation instru
tionwhi
h is indexed via an immediate is also in
luded. It 
an be used internally by a
ompiler, but is not as useful as a ve
tor-indexed permute would be.Instru
tions to load or store SSE registers either in their entirety or by subse
tionare available, as are instru
tions to move data between SSE registers or between SSEand MMX registers. Also in
luded are instru
tions to 
onvert data between integerand 
oating-point formats.2.2.14 SSE2SSE2 in
ludes instru
tions for performing basi
 64-bit 
oating-point partitionedand element operations in
luding addition, subtra
tion, multipli
ation, division, max-imum, minimum, and square root.The MMX set of polymorphi
s are also in
luded for use with the SSE registers,as are several forms of 
omparisons. A relatively large set of type 
onversions is alsosupported. New moves, shu�es, and unpa
ks are in
luded to make handling 64-bit
oating-point data easier.With this set of instru
tions, the Pentium 4 ar
hite
ture is a mature SWAR ar-
hite
ture. Emulation of unsupported operations is reasonably well-supported, andnumeri
al analysts are able to use SWAR instru
tions for 64-bit 
oating-point 
om-putation.2.3 Other SWAR ar
hite
turesThis dissertation fo
uses on 
ommodity mi
ropro
essors that are likely to be usedas the primary pro
essor in a desktop 
omputing system. However, there are several
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ial-purpose pro
essors with SWAR ar
hite
tures that I wish to a
knowledge atthis time.These ar
hite
tures range from 
ommuni
ations pro
essors to digital signal pro-
essors (DSPs), and were not intended for general-purpose 
omputation. For thisreason, they were not in
luded in the earlier analysis although a properly designedSWAR model should be appli
able.This se
tion 
ontains a brief survey of these spe
ial-purpose SWAR ar
hite
tures.Mi
roUnity MediaPro
essorThe MediaPro
essor [108℄ by Mi
roUnity Systems Engineering, In
orporated isa 128-bit \broadband pro
essor" whi
h was designed to \
ommuni
ate and pro
essdigital video, audio, data, and radio frequen
y signals at broadband rates...."The MediaPro
essor supports \SIGD" (Single Instru
tion on Groups of Data)parallelism \over data types of all sizes." This is done by dividing its 128-bit data pathinto 64-, 32-, 16-, 8-, 4-, 2-, and 1-bit se
tions. Integer operations 
an be performedon any of these data sizes. Single- and double-pre
ision 
oating point operations arealso supported. In terms of supported �eld sizes, this makes the MediaPro
essor themost 
exible of any of the ar
hite
tures dis
ussed.Analog Devi
es ADSP-2116x SHARCAnalog Devi
es' ADSP-2116x Super Harvard ARChite
ture (SHARC) [109, 110℄family of pro
essors are 32-bit system-on-a-
hip digital signal pro
essors used primar-ily for embedded appli
ations.These pro
essors have two pro
essing elements whi
h 
an be used in SIMD mode.Ea
h of these 
onsists of an ALU, a shifter, and a multiplier, and operates on its ownset of registers. When operated in SIMD mode, the se
ond pro
essor is driven by thesame instru
tion stream as the �rst, otherwise it is idle.
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an be operated on in 16-bit 
oating-point format, 32-bit �xed or 
oating-point format, or 40-bit extended 
oating-point format. A wide range of relativelypowerful instru
tions are supported as is saturation arithmeti
.Analog Devi
es ADSP-TS101S TigerSHARCAnalog Devi
es ADSP-TS101S TigerSHARC DSP [111℄ is the �rst of a new line ofembedded pro
essors derived from the SHARC family. This new family is intended foruse in tele
ommuni
ations systems and multipro
essor signal-pro
essing appli
ations.The TigerSHARC's 
omputational blo
ks have two SIMD-driven 64-bit pro
essingelements similar to those of the SHARC family. The pro
essor 
an read and exe
uteup to four instru
tions at a time in a VLIW manner using a 128-bit memory bus.Supported data types in
lude 8-, 16-, and 32-bit �xed-point and 
oating-point formatsand an extended 40-bit 
oating-point format.Equator Te
hnologies MAP-CAEquator Te
hnologies, In
orporated's MAP-CA Broadband Signal Pro
essor [112℄is a VLIW ar
hite
ture with pro
essing units whi
h 
an operate in a SWAR manneron 8-, 16-, 32-, and 64-bit data obje
ts.The MAP-CA is intended to support \broadband multimedia appli
ations" as anembedded system in \infrastru
ture and end-point produ
ts." These in
lude produ
tssu
h as set-top systems, video surveillan
e systems, and 
opiers. Another importantappli
ation is real-time software-based data 
ompression and de
ompression.3DSP UniPHY3DSP Corporation's UniPHY (Universal Physi
al Layer Signal Pro
essor) [113℄ isan embedded DSP with SWAR-like SIMD operation intended for broadband network-ing and signal pro
essing. The UniPHY pro
essor has a set of twelve SIMD exe
ution
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h operate on 8-, 16-, and 32-bit data obje
ts. These are 
onne
ted to a32-word, 32-bit register �le and 
an be exe
uted in parallel using a set of \expansioninstru
tions".Philips TriMedia CPU64Philips Resear
h's TriMedia CPU64 pro
essor [114℄ is intended for use in appli-
ations supporting 
onne
tivity between 
onsumer ele
troni
 devi
es su
h as videore
orders and personal 
omputing systems. The CPU64 is a VLIW pro
essor whi
hsupports SWAR-like pro
essing in ea
h of its fun
tion units. These operations 
anbe performed on 8-, 16-, and 32-bit data obje
ts in a 64-bit data spa
e.Texas Instruments TMS320
8x FamilyTexas Instruments's TMS320 [115℄ family of DSPs are MIMD pro
essors designedfor video and image pro
essing as well as tele
ommuni
ations. These pro
essors havebetween two and four 32-bit parallel pro
essing elements, ea
h of whi
h 
an performSWAR \multiple-byte arithmeti
" on 8- or 16-bit data.Texas Instruments MVPTexas Instruments' Multimedia Video Pro
essor (MVP) [116℄ is a digital signaland graphi
s pro
essor based on the TMS320 and TMS340 pro
essor families. Itwas intended to support appli
ations su
h as image generation and pro
essing, data
ompression for network transmission, and integrated multimedia-based 
omputingenvironments.The MVP 
onsists of between one and eight pro
essing elements whi
h 
an operatein MIMD fashion. Ea
h of these is a 32-bit pro
essor 
apable of performing arithmeti
SWAR operations on 8- and 16-bit data. These were intended to support digitalsignal, pixel, integer, and �xed-point pro
essing.
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3. DEFINITION OF A GENERAL-PURPOSESWAR PROGRAMMING MODELHaving studied and reje
ted previously-de�ned programming models, we turn to thetask of developing a new publi
-domain, high-level model to allow general-purposeprogrammers to more fully exploit the data parallelism of their appli
ations whentargeting 
urrent COTS SWAR pro
essors.A well-designed model should be familiar, yet should more 
losely re
e
t the
apabilities of 
urrent SWAR ar
hite
tures than do 
urrent programming models.It should expand upon these 
apabilities when this 
an be done reasonably whilepromoting 
ode portability between these and other ar
hite
tures. It should also avoidthe imposition of arbitrary limits whi
h would pre
lude its future appli
ation. Su
ha model should remain viable beyond the lifetimes of 
urrent SWAR ar
hite
tures.The most salient aspe
t of these ar
hite
tures is their ve
tor SIMD nature. Thishas several impli
ations for the design of a programming model in
luding the expres-sion of data parallelism and the exe
ution of multiple 
ontrol paths. A large numberof programming languages have been developed in the past for use with SIMD andve
tor systems. The study of these languages presented in appendix A was under-taken to determine how these issues were addressed in these earlier languages. Wewill use and build upon these ideas during the development of the new model.To be viable, this new programming model must allow the programmer to a
hievehis or her goals eÆ
iently. It should allow the programmer to express data parallelismin a manner whi
h is natural. It should also allow the programmer to use familiarprogramming methods whi
h have been logi
ally extended for SIMD-style pro
essing.Thus, this model should be based on older, more established models, but must be
onsistent with the operation of 
urrent SWAR ar
hite
tures.
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essors are not as versatile as traditional SIMD array pro
essors. Be-
ause of this, the programming models developed for these earlier systems promotethe use of features and 
apabilities whi
h are not available on 
urrent SWAR systems.Care must be taken to limit the new model to those fa
ilities whi
h have a SWAR
ounterpart and to avoid those whi
h do not. The study of previous ar
hite
turespresented in appendix A was undertaken to determine the similarities and di�eren
esbetween 
urrent SWAR systems and earlier ve
tor and SIMD ar
hite
tures.One of the purposes of a general-purpose programming model is to provide ameans for expressing the use of 
ommonly available fun
tionality. If the model doesnot provide the expressiveness needed by programmers, then they will be for
ed touse a di�erent model. Toward this end, the model should in
orporate and allow theuse of features whi
h are 
ommon to a majority of its intended targets.While the model should allow expressiveness, it should not in
orporate esoteri
operations whi
h 
annot be easily 
onstru
ted of more 
ommon ones. To be portable,every part of the model must be implemented for every target. Any operation in
ludedas part of the model will have to be emulated on all targets that do not support it asa hardware operation. Highly spe
ialized operations are likely to require emulationon multiple targets and will be 
orrespondingly diÆ
ult to port. Thus, they shouldbe avoided.Having said that, the model should not be limited to the 
apabilities of the leastpowerful ar
hite
ture. It must be 
omplete enough to allow a programmer to des
ribethe algorithms to be employed, and should be self-
onsistent so that a programmermay have a reasonable expe
tation that its fun
tionality is not arbitrarily limited.These properties should hold even if the support provided by some target ar
hite
tureis la
king.Thus, in de�ning this new model, a balan
e must be stru
k between promoting
ode portability by reje
ting esoteri
 
apabilities and providing fun
tionality that isreasonably 
omplete and exploitative of the advan
ed 
apabilities of various targets.
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essing de�ned by ea
h extension, to identify 
ommonly supportedoperations, and to determine whi
h advan
ed features may be useful in the imple-mentation of the �nal model. This analysis was presented in the previous 
hapterand now provides a basis for the design of a new SWAR programming model.3.1 Relationship to Previous Ar
hite
turesMultimedia extensions perform parallel operations on identi
ally-typed data storedin a single pro
essor register. Ea
h instru
tion 
auses an identi
al operation to besimultaneously applied to ea
h pie
e of data in the register. Thus, this new 
lass ofar
hite
ture is a limited form of SIMD in whi
h data parallel 
omputation is imple-mented within a single pro
essor. We refer to this 
lass of ar
hite
ture as \SIMDWithin A Register" (SWAR) to highlight the fa
t that SIMD-like pro
essing is per-formed on sets of data stored in individual pro
essor registers.The parallel data exploited by these extensions is stored in �elds whi
h are laid-out linearly a
ross individual CPU registers. Generally, no provision is made forarranging these �elds in other geometries. Thus, the natural layout for data on thesesystems is one-dimensional ve
tors rather than multi-dimensional arrays. Be
ausethe instru
tions performed by these pro
essors treat their registers as linear arrays,they are ve
tor pro
essors. Thus, the most natural model for an ar
hite
ture whi
hin
orporates multimedia extensions is a ve
tor parallel SIMD model.This is in 
ontrast to SIMD array pro
essors su
h as Westinghouse's SOLOMONprototypes [117, 118℄, the University of Illinois' ILLIAC IV [119℄, the ICL DAP [120,121℄, and the Goodyear MPP [122, 123℄. These systems were designed to operate onmulti-dimensional arrays for appli
ations su
h as image pro
essing and the simulationof pro
esses in physi
al environments. They had inter
onne
tion networks that 
ouldperform regular 
ommuni
ations operations in multiple dire
tions. These allowed
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ts on whi
h they operated. Thus, they werewell-suited to an array pro
essing model while SWAR ar
hite
tures are not.Later SIMD array pro
essors had more advan
ed inter
onne
tion networks. TheIBM GF11 [124, 125, 126℄ had a set of 576 pipelined PEs that were fully 
onne
ted viaa non-blo
king Bene�s network [127℄. The Thinking Ma
hines' CM-1 [128, 129, 130℄and CM-2 [131, 130℄ had multiple networks in
luding a pa
ket-swit
hed hyper
uberouter network whi
h allowed any two PEs to 
ommuni
ate dire
tly. The MasPar MP-1 [132, 133, 134℄ and MP-2, whi
h were developed slightly later, had similar networksand also an \X-net" whi
h 
ould perform a large number of regular 
ommuni
ationspatterns. These networks are beyond the 
apabilities of all but the most advan
ed ofthe 
urrent SWAR ar
hite
tures.SWAR ar
hite
tures are a 
ross between purely pipelined SIMD pro
essors su
has the CRAY-1 [135℄ and SIMD parallel ve
tor pro
essors su
h as the CDC Cyber205 [136, 126℄ or NEC SX-2 [137, 138℄. The modern mi
ropro
essors upon whi
hSWAR ar
hite
tures are based are pipelined pro
essors whi
h overlap multiple in-stru
tions in stages. SWAR instru
tions are also overlapped in this manner; however,they perform in SIMD mode when exe
uted. Thus, SWAR pro
essors are similar topipelined ve
tor pro
essors whi
h have multiple identi
al fun
tional units.Several histori
 ve
tor pro
essors fall into this last 
ategory. For example, the TI-ASC [139℄ 
ould support up to four identi
al ve
tor pipelines whi
h 
ould be operatedin a SIMD manner [140℄. The NEC SX-2, Fujitsu VP200 [141℄ and VP2600 [142, 141℄,and Hita
hi S810/20 [141℄ and S820/80 [143℄ are all examples of this 
ategory ofar
hite
ture.The CDC STAR-100 [144, 125℄ was also 
losely related. It was a pipelined ve
torpro
essor with SWAR 
apabilities. Ea
h of its two ve
tor pipelines 
ould pro
essone 64-bit operation or two simultaneous 32-bit operations. Spe
ial logi
 insertedbetween the two halves of the 64-bit datapath broke the 
arry 
hains between them.This e�e
tively separated the datapath into two independent parts whi
h performed
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al operations. This method of partitioning the pro
essor is essentially the samemethod used in modern SWAR ar
hite
tures.Spe
ial-purpose single-IC SIMD pro
essors su
h as the NCR GAPP [145, 146, 147℄and BLITZEN from the Mi
roele
troni
s Resear
h Center of North Carolina [148℄ arealso related to SWAR ar
hite
tures. They are also single-
hip pro
essors, but are moreadvan
ed in the sense that they are array pro
essors. Future COTS SWAR pro
essorsare likely to be single-
hip array pro
essors su
h as these with bit-sli
e or word-sli
efeatures similar to those of the MPP [122, 123℄ or the ILLIAC IV [119℄.3.2 Relationship to Previous Programming ModelsAs a SIMD model, we would expe
t the new model to be similar to the program-ming models developed for previous SIMD ar
hite
tures. Thus, if possible, 
on
eptstraditionally asso
iated with SIMD pro
essing should be in
orporated into the SWARmodel. In this se
tion, some of the various programming models and languages usedfor parallel pro
essing are dis
ussed.Most early programming languages su
h as FORTRAN and Algol were based ons
alar programming models. Operations in these languages applied to single-valuedobje
ts and not to multi-valued obje
ts su
h as ve
tors and arrays. As SIMD ar
hi-te
tures were developed, parallel languages were derived from these s
alar languages.Later programming models treated ve
tors and arrays as single entities ratherthan a 
olle
tion of s
alar data. These models more 
losely 
aptured the essen
e ofve
tor and array pro
essing. Other models were also developed whi
h treated more
omplex, irregular 
olle
tions of data as single entities. Ea
h of these types of modelswill be dis
ussed in turn.S
alar ModelsSo-
alled \ve
torizing" 
ompilers analyze 
ode written in a s
alar sour
e languageto �nd operations and fun
tions whi
h 
an be parallelized. These are then translated
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tor- or array-based parallel 
ode for the target ar
hite
ture. Thus, the pro-gramming model is a s
alar one, but the target ar
hite
ture is based on a ve
tor orarray model.There have been a number of ve
torizing 
ompilers developed over the years for usewith standard s
alar languages su
h as Fortran and, more re
ently, C. The NX Fortran
ompiler [149℄ was a fully ve
torizing 
ompiler for Fortran 66. Other ve
torizing
ompilers for s
alar languages in
lude Cray's CFT, Fujitsu's Fortran 77, IBM's VSFortran, Alliant FX/8 Fortran, NEC SX Fortran, and Intel's C/C++.With the goal of developing a model that 
losely mat
hes the intended targetar
hite
tures in mind, we will reje
t s
alar programming models as being in
onsistentwith 
urrent 
ommodity SWAR ar
hite
tures, whi
h are ve
tor-based.
Modi�ed S
alar ModelsSome programming languages use s
alar models whi
h have been modi�ed tooperate on all elements of a ve
tor or array simultaneously. Operations are denotedas indexed ve
tor or array element operations whi
h are similar or identi
al to s
alarelemental operations. In some 
ases, spe
ial forms of indexing are used to indi
atethat the operation should be applied 
on
urrently to multiple elements. In other 
ases,high-level language 
onstru
ts are used to sele
t indi
es and embody statements thatoperate on the elements indexed.Generally, these me
hanisms denote what should be �rst-
lass ve
tor or array op-erations as a set of s
alar operations. Thus, they allow parallelism while maintaininga s
alar model. Some of these me
hanisms allow 
exible a

ess to subsets of an ob-je
t's elements and 
an be useful even in a ve
tor or array model. Be
ause of this,we will dis
uss a number of them brie
y.
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ard IndexingILLIAC IV FORTRAN [150℄ used wild
ard indexing to indi
ate that a parti
ulardimension of an array was to take on all possible values. This was denoted using asyntax that mat
hed a s
alar array element a

ess, but with an asterisk as the indexfor the parallelized dimension.CFD [151, 152℄ used an extended form of wild
ard indexing whi
h allowed rota-tions to be de�ned by adding or subtra
ting an o�set from the wild
ard.Wild
ard indexing presents ve
tor and array operations as a 
olle
tion of s
alaroperations over the mat
hing elements of the parallelized obje
t. This should beunne
essary in a ve
tor model, as this would represent an operation applied to theentire ve
tor. That is, it would indi
ate a �rst-
lass ve
tor operation whi
h shouldbe expressed more su

in
tly in a ve
tor model.Control Ve
tor IndexingParallel 
onditionals in ILLIAC IV FORTRAN were handled using 
ontrol ve
torindexing. This allows a ve
tor to be used as an index whose values indi
ate whetheror not an operation should be applied to the 
orresponding element of the indexedmulti-valued obje
t.Control ve
tors must be generated by some 
onditional means, so their fun
-tionality 
an be impli
itly performed by 
onditional language 
onstru
ts su
h as aparallelized if statement. Thus, they should be unne
essary.Index SetsIndex sets are used to spe
ify whi
h elements within a parallel obje
t that anoperation would be applied to. They are essentially lists of indi
es and/or ranges ofindi
es whi
h should be in
luded. Thus, they de�ne a subspa
e of the parallel obje
tto whi
h they are applied.
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tus [153℄ employed a form of index sets whi
h were treated as �rst-
lass obje
tsthat 
ould be operated on to form more 
omplex sets of indi
es.Index sets are useful as notational devi
es, but are probably unne
essary as �rst-
lass obje
ts be
ause their fun
tionality, like that of 
ontrol ve
tors, 
an be performedby 
onditional language 
onstru
ts and parallel variables.Ve
tor IndexingSome languages allow ve
tor obje
ts to be used as indi
es to ve
tor or arraya

esses. These have a notation similar to s
alar array element a

esses, but used ave
tor name as the index. This is sometimes referred to as ve
tor subs
ripting. A
tuswas also one of the �rst languages to allow ve
tor subs
ripting.Ve
tor indexing is a useful 
on
ept, but requires a level of data movement un-available on most SWAR ar
hite
tures. They 
an be used to represent a permutationof the data in a parallel obje
t, an operation that is only well-supported on highly-
onne
ted ar
hite
tures su
h as the Conne
tion Ma
hine or the MP-1.Extent of ParallelismA
tus introdu
ed the 
on
ept of an extent of parallelism. This was the parallelismwidth applied to a ve
tor or array obje
t along a parti
ular axis. It was intended tobe independent of the size of the target ar
hite
ture.The maximum extent of parallelism and the axis along whi
h it 
ould be appliedwere spe
i�ed when an obje
t was de
lared. When the obje
t was a

essed in anexpression, the extent of parallelism used for that a

ess was spe
i�ed using an indexnotation. This 
ould be smaller than the de
lared maximum, to allow tailoring to thetarget ar
hite
ture, but had to run along the same axis.To simplify the expression of a series of statements whi
h use the same extent ofparallelism, A
tus introdu
ed the within 
onstru
t. This spe
i�ed an default extentof parallelism to be used by all statements within its body, and was similar to Pas
al's
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onstru
t. The default was indi
ated within the body by a sharp symbol (#)used as an index.The extent of parallelism, like index sets, is most useful as a notational devi
ewhi
h allows a subspa
e of a parallel obje
t to be spe
i�ed for operation.Triplet NotationTriplets were a 
on
ise notation that de�ned the �rst and last elements of a ve
toror array to be a

essed in parallel along a parti
ular dimension and, optionally, thestride between them. This allowed parallel operations on regularly-spa
ed s
alarelements to be spe
i�ed without the use of looping 
onstru
ts.Triplets are most useful for non-unit stride a

esses. Be
ause 
urrent SWARar
hite
tures are not parti
ularly well-suited to this type of a

ess, triplets wouldtend to promote ineÆ
ient use of the target ar
hite
ture.A

ording to [154℄, triplets were introdu
ed in VECTRAN [155℄ and BSP For-tran [156℄. Various forms of triplet notation have been used in later languages, in-
luding Fortran 90 [157℄ and High Performan
e Fortran (HPF) [158℄The DO FOR ALL Constru
tIVTRAN [159℄ introdu
ed a DO FOR ALL 
onstru
t whi
h was used to indi
ate that
ertain array element assignments and intrinsi
 fun
tion 
alls within its body 
ouldbe exe
uted in parallel. The elements operated on 
ould be limited to a subarrayusing an index set notation whi
h allowed a subrange of indi
es along ea
h axis to besele
ted.DO FOR ALL should be unne
essary in �rst-
lass ve
tor and array models be
auseit simply denotes the parallel appli
ation of an operation or fun
tion to a subset ofthe obje
t's elements 
hosen a priori or via a 
onditional test. This 
an be done usingparallelized standard 
ondition 
onstru
ts.



- 156 -The where/otherwise Constru
tVECTRAN introdu
ed a 
onditional where/otherwise 
onstru
t whi
h is similarto a parallelized if/else. This 
onstru
t applied impli
it enable masking to arrayelement assignments in its s
alar bodies. The where se
tion was enabled only for thoseelements whi
h passed the test, while the otherwise se
tion applied the oppositeenable mask within its body.This 
onstru
t appears in later languages in various forms. For example, Fortran90's WHERE and ELSEWHERE statements have bodies whi
h 
onsist of �rst-
lass arrayassignments that are 
onformable to, and masked by, the 
onstru
t's test expression.In this form, the where 
onstru
t is useful for ve
tor- and array-based models.The identify StatementVECTRAN also had an identify statement whi
h allowed irregularly-shapedsubarrays to be aliased (i.e. named) for later parallel operations. This separated thesele
tion of a subset of elements from the use of this sele
tion in parallel assignments.This is essentially equivalent to storing the result of a parallel 
onditional test ina variable for later use, and is thus unne
essary in a language whi
h supports thisfun
tionality.The FORALL Constru
tCM Fortran [160, 131℄ in
luded a FORALL statement [161℄ whi
h was essentiallyequivalent to a FOR loop in whi
h the iterations were known to be parallelizable. Toensure this, the body of a FORALL was restri
ted to single array element or se
tionassignment.The FORALL was equivalent to VECTRAN's identify, ex
ept that it 
ombined theseparate aliasing and assignment statements into a single 
onstru
t. It also allowed
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e sele
tion by value or position. FORALL is notationally 
onvenient, but shouldbe unne
essary if parallelized standard 
onditional 
onstru
ts are available.Parallelized Conditional Constru
tsMany s
alar-based languages provide parallelized versions of their standard 
on-ditional 
onstru
ts. For example, A
tus had parallel if, while, for, and 
ase 
on-stru
ts whi
h embodied s
alar element a

ess statements.These 
onstru
ts require that the 
onditional test be evaluated for ea
h PE, ele-ment, or individual index, and that the 
orre
t set of statements be exe
uted for ea
hone, depending on whether or not it passed the test.Be
ause they are more general than many of the subspa
e sele
tion me
hanismsdis
ussed above, these 
onstru
ts 
an be used to emulate or repla
e them. This sug-gests that it may be a better strategy to use parallelized 
onditional 
onstru
ts ratherthan to use less general sele
tion me
hanisms. This translates to ve
tor and arraymodels as well as s
alar models, and is a 
ommon method for handling 
onditionalexe
ution in ea
h 
ase.Array ModelsThe most 
ommonly used non-s
alar models in parallel pro
essing are multi-dimensional array models. Some of these treat arrays as �rst-
lass obje
ts, meaningthat they 
an be operated on as a single aggregate obje
t rather than as a set ofs
alar elements via looping or parallelizing 
onstru
ts. Other models treat arrays aspseudo-�rst-
lass obje
ts via modi�ed intrinsi
 fun
tions or operator overloading.Current SWAR ar
hite
tures are ve
tor parallel pro
essors and are thus not par-ti
ularly good at array pro
essing. In parti
ular, they la
k the memory a

ess and
ommuni
ations me
hanisms ne
essary to 
arry out array pro
essing eÆ
iently. Thus,an array model is not the best 
hoi
e for supporting these ar
hite
tures. However,



- 158 -it is instru
tive to look at languages based on array models to see how they havein
orporated parallel operations on aggregate data.First-
lass ArraysTruly �rst-
lass operation on arrays are written using array names as operandswithout the need for indexing or spe
ial language 
onstru
ts. Operations des
ribedin this manner are applied to the aggregate obje
t as a single transa
tion and maytherefore be parallelized. Normally, unary operations are applied to ea
h element ofthe operand while binary operations are applied in an element-wise manner to a pairof 
onformable operands.A fair number of languages are based on �rst-
lass array models. Several of thesewhi
h are dis
ussed below.The �rst signi�
ant programming language to in
orporate ve
tors and arrays as�rst-
lass obje
ts was APL [162℄. It had a mathemati
ally-oriented notation in whi
halgorithms where essentially des
riptions of expressions to be evaluated. APL allowedve
tor and array operations to be des
ribed in a high-level, portable manner. Itintrodu
ed a large number of intrinsi
 fun
tions whi
h 
ould be performed on s
alars,ve
tors, and arrays, in
luding redu
tions and s
ans. Many of its features have beenabsorbed by later parallel languages.GLYPNIR [163℄ was an early SIMD language for programming the ILLIAC IV. Itwas based on ALGOL 60 [164, 165℄, an early s
alar language whose primary 
ontribu-tions were blo
k stru
ture, dynami
ally-allo
ated variables, and re
ursion. GLYPNIRintrodu
ed separate CU and PE data types. These were essentially storage 
lass spe
i-�ers whi
h indi
ated where the data should be stored, and thus exposed the separate
ontrol and parallel units of the ILLIAC IV.GLYPNIR's PE variables were �rst-
lass parallel obje
ts. They were stored andoperated on in parallel a
ross the entire PE array. These variables represented asword of data residing at the same address on ea
h of the PEs. PE variables 
ould



- 159 -also be used to index a ve
tor of swords. This allowed a sli
e of data residing atvarious address on the set of PEs to be a

essed.GLYPNIR also introdu
ed parallelized 
onditional 
onstru
ts in
luding IF, ELSE,FOR, DO, WHILE, and FOR ALL. These used impli
it PE masking to limit operations tothose PEs for whi
h the 
ondition held.NX Fortran [149℄ was a version of Fortran 66 with �rst-
lass ve
tors and arrays.It allowed array assignments if the shape of the data to be assigned 
onformed to theshape of the destination obje
t. It also allowed promotion of s
alars to multi-valuedobje
ts via repli
ation. The NX Fortran 
ompiler was a fully ve
torizing 
ompiler forFortran 66, and 
ould thus parallelize s
alar 
ode as well as array 
ode.C* was a parallel language for the Thinking Ma
hine's Conne
tion Ma
hines.It evolved through three models of parallelism, ea
h of whi
h was based on multi-dimensional arrays.The original version of C* [166℄ had mono and poly storage 
lasses whi
h weresimilar to GLYPNIR's CU and PE data types. A poly obje
t was one whi
h wasallo
ated on ea
h of the PEs in the Conne
tion Ma
hine's three-dimensional PEarray. Operations performed on these obje
ts were parallelized.C* allowed the standard C assignment operators to be used as unary redu
tions.These operated under the \as if serial" rule, whi
h required that their results beequivalent to exe
uting the elemental operations in some undetermined order.A subset of PEs 
ould be sele
ted for pro
essing based on the 
on
ept of the a
tiveset of PEs. All parallel operations were performed on the 
urrent a
tive set of PEs.This set 
ould be expli
itly sele
ted using a sele
tion statement or impli
itly set via
onditional 
onstru
ts.The format of the sele
tion statement was [sele
tor℄.statement. The sele
tor
ould be a pro
essor variable, an array of pro
essors, an indexed value represent-ing a 
onse
utive series of pro
essors, or a list of any of the above. This allowedany subset of pro
essors to be 
hosen at any time to exe
ute a statement, and thusprovided a great deal of 
exibility.
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tive set 
ould also be sele
ted using standard C 
onditional 
onstru
ts. Theif, else, and while 
onstru
ts performed their tests on the 
urrent a
tive set, andredu
ed that set during the exe
ution of their bodies by eliminating the PEs forwhi
h the 
ondition did not hold. These 
onstru
ts 
ould be nested and operatedunder the \rule of lo
al support". This required that the body was exe
uted only ifthe 
ondition held for at least one a
tive PE.C* also introdu
ed the notion of a lo
al pro
essor and provided for inter-pro
essor
ommuni
ation. The this keyword represented a pointer to data stored on the lo
alpro
essor. It 
ould be indexed to indi
ate a di�erent pro
essor in a linear ordering ofthe PEs. For example, this[i℄!x represented the variable x on the PE i steps fromthe lo
al PE. This provided an expli
it means of linear 
ommuni
ation between PEswhi
h allowed the lo
al PE to a

ess data on others.The se
ond version of C*, des
ribed in [167℄ and [168℄, was based on a C++ 
lass-like 
onstru
t 
alled a domain. A domain de�ned both a data stru
ture and a setof fun
tions whi
h 
ould operate on it. An array of domain instan
es represented a�rst-
lass parallel. Exe
ution of a member fun
tion 
aused parallel exe
ution overthe instan
es of the domain.Choosing a set of a
tive PEs was now done by exe
uting one of the memberfun
tions of a given domain. Synta
ti
ally, this was similar to the sele
tion operatorin the original C*, ex
ept that the sele
tor was now a domain name and the statementapplied was now a member fun
tion. This fun
tion was exe
uted by a PE if, and onlyif, it 
ontained an instan
e of the domain.The third version of C* [169, 131℄ was developed based on �rst-
lass shapes.Shapes are n-dimensional arrays of various sizes. They 
ould be independently de-s
ribed and asso
iated with obje
ts as ne
essary. A default 
urrent shape 
ould beset using a with statement. In general, obje
ts had to be of the 
urrent shape inorder to be operated on in parallel.Conditional sele
tion was de�ned in terms of an a
tive set of data positions in the
urrent shape. This was set by the language's 
onditional 
onstru
ts. A VECTRAN-
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tive position set to those for whi
h a 
onditionaltest held. A related else 
lause 
ould be used to limit the a
tive position set to thosefor whi
h the 
ondition failed. C* also provided an everywhere statement to allowall positions to be made a
tive during a single statement.Other 
hanges in
luded the repla
ement of this with p
oord whi
h indi
atedthe lo
al PE's index along a given axis in the 
urrent shape, the 
on
ept of \leftindexing" whi
h allowed assignment to obje
ts residing on other (non-lo
al) PEs,and the addition of a Boolean data type.Fortran 90 [157℄ allows �rst-
lass arrays whi
h 
an be operated on in an element-wise fashion. It also allows mixed expressions on 
onformable obje
ts, and treatss
alars as being able to assume any shape. It in
orporates many of the parallelismme
hanisms dis
ussed above su
h as triplet notation and WHERE 
onstru
ts.MPL [107, 170, 171℄, the MasPar Programming Language, was another SIMDvariant of C whi
h treated arrays as �rst-
lass obje
ts. It had a plural type modi�erwhi
h indi
ated that an obje
t was multi-valued with its elements spread a
ross theMasPar ar
hite
ture's three-dimensional PE array. Operations on these obje
ts wereparallelized.MPL supported inter-PE 
ommuni
ation in a manner whi
h exposed the target'sar
hite
ture. This was done using a set of three new 
onstru
ts: pro
, router, andxnet. These allowed the programmer to spe
ify an expression to be evaluated onanother PE with the results 
ommuni
ated over one of the target's inter
onne
tionnetworks.Pseudo-First-Class ArraysLanguages whi
h do not have �rst-
lass arrays may handle them in a mannerwhi
h hides this fa
t and allows them to appear to be �rst-
lass obje
ts. For example,arrays 
an be treated as �rst-
lass obje
ts if they are manipulated using fun
tionsrather than operators. This allows the array to be passed to, and returned from,
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tions as a single obje
t and appear as a single entity in expressions whi
h 
allthese fun
tions.Some languages have intrinsi
 fun
tions whi
h are a required part of the language.Parallel languages are sometimes formed by using modi�ed intrinsi
 fun
tions toextend s
alar languages for parallel operation. These fun
tions perform element-wiseor redu
tive operations on ve
tor or array obje
ts without requiring the de�nition ofnew language operators or the modi�
ation of existing ones. This makes it possibleto treat non-�rst 
lass ve
tor and array obje
ts as �rst-
lass obje
ts.Several ve
tor and array languages have used this method of parallelization. NXFortran provided intrinsi
s for generating �rst-
lass ve
tors and arrays. Ve
tor LRL-TRAN [172℄ in
luded the redu
tion intrinsi
s Q8SUM and Q8PROD and the sele
tionintrinsi
s Q8MASK and Q8MERGE. Fortran 90 added the MAXVAL, MINVAL, and COUNTredu
tion intrinsi
s, and CM Fortran added the DIAGONAL and REPLICATE intrinsi
sfor array formation.Some languages allow their intrinsi
 fun
tions to be overloaded with user-de�nedfun
tions. As with operator overloading, this 
an be used to hide parallelizationperformed by the 
ompiler, and thus give the appearan
e of parallel operation on�rst-
lass obje
ts. For example, C* allowed fun
tion overloading based on the shapeof a fun
tion's arguments.Another 
ommon method of providing pseudo-�rst-
lass operation is to allow op-erator overloading. When an overloaded operator is used in an expression, a user-de�ned fun
tion is performed on the operands. As with a modi�ed intrinsi
, thisfun
tion may hide parallelizing s
alar 
onstru
ts or s
alar operations whi
h 
an beparallelized by the 
ompiler. This gives the appearan
e that the language supports�rst-
lass parallel operation without it a
tually doing so. Fortran 90 is one languagewhi
h allows a limited amount of both operator and intrinsi
 fun
tion overloading.
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tor ModelsSingle-dimensional, non-s
alar ve
tor models are less 
ommonly used in parallelpro
essing than are multi-dimensional array models. This is be
ause most parallelar
hite
tures are based on two- or three-dimensional arrays of pro
essors and thusare better served by multi-dimensional array models.Ve
tor ar
hite
tures are less 
ommon, and are typi
ally programmed via the ve
-torization of s
alar 
ode or the emulation of array 
ode. That is, they are usuallyprogrammed using a s
alar or array model. However, true ve
tor models are more
onsistent with the operation of 
urrent 
ommodity SWAR ar
hite
tures than ares
alar or array models. For this reason, the SWAR model des
ribed in this thesis isa ve
tor model.The number of pure, �rst-
lass ve
tor languages is signi�
antly smaller than thenumber of array languages. Below, a few ve
tor languages whi
h have some interestingfeatures are brie
y dis
ussed.Ve
tor LRLTRAN [172, 154℄ was a language whi
h supported �rst-
lass ve
tors ofREAL, INTEGER, or BIT data. It allowed ve
tors to be used in mixed expressions withextension performed as needed to make ve
tor operands of di�ering lengths mat
h.This was done by appending elements of the identity value for the given operation tothe shorter ve
tor. On assignment, s
alars were repli
ated to mat
h the shape of thedestination obje
t.Ve
tor LRLTRAN also allowed ve
tors to be passed to, or returned from, fun
-tions. This was done using ve
tor des
riptors, whi
h were used to hold the addressand length of ve
tors. These were visible obje
ts whi
h 
ould be modi�ed duringexe
ution, and thus allowed ve
tors to be dynami
ally reshaped under user 
ontrol.Ve
tor LRLTRAN had several methods for sele
ting ve
tor elements to be oper-ated on. First, it had a 
exible indexing system in whi
h ve
tor expressions 
ouldbe used and ranges of indi
es in
luded or ex
luded from the set. Alternatively, itallowed BIT ve
tors to be used as 
ontrol ve
tors. It also allowed subve
tors to be
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 equivalen
ing then used as �rst-
lass obje
ts in a manner sim-ilar to VECTRAN's identify statement. A set of intrinsi
 fun
tions were in
ludedto perform redu
tions and sele
tion on ve
tor obje
ts.C[ ℄ (C bra
kets) [173℄ is a ve
tor extension of ANSI C. Ve
tors are �rst-
lassobje
ts with a de
larable �xed stride between elements in memory. Higher-degreeobje
ts 
an be de
lared, but are treated as ve
tors of ve
tors. As with Ve
tor LRL-TRAN, ve
tors 
an be operated on, passed to fun
tions, and used as return values.Pointer arithmeti
 has a 
onsistent interpretation in C[ ℄, with element and subar-ray a

esses taking the de
lared stride into a

ount. The standard C operators wereparallelized. The C* maximum and minimum operators are also available, as are newoperators for population 
ount (?), leading zero 
ount (%), and word reversal (�).Unary redu
tion operators are also available, and are denoted by en
losing the 
or-responding C operator in a bra
ket pair. For example, redu
tive addition is denotedby the operator [+℄.C[ ℄ allows ve
tors of bit �elds to be assigned values via a gather operation on aninteger ve
tor of �xed stride. However, the language is primarily intended to supportdata of standard pre
isions, and does not treat bit �elds as �rst-
lass obje
ts.AJL (Anar Jhaveri's Language) [174℄ was a ve
tor 
al
ulator language whi
h pro-vided basi
 arithmeti
 operations and intrinsi
 trigonometri
 fun
tions. These 
ouldoperate on both s
alar (mono) and ve
tor (poly) obje
ts in a �rst-
lass manner. How-ever, it was not intended to be a general-purpose programming language.Prede�ned 
onstants were available in
luding pi, e, and the number of elementsin a ve
tor (#). AJL also in
luded ve
tor assignment from a list of elemental values,generation of linearly ranging ve
tors, and ve
tor shifts, shu�es, and inverse shu�es.Operations were limited to ve
tors of equal lengths, and only standard pre
isionelements were supported.



- 165 -Other ModelsNESL [175℄ is a language in whi
h parallel data is des
ribed as re
ursive sequen
es.This allows 
omplex, irregular, nested data stru
tures to be des
ribed and operatedon. Operations performed on a sequen
e 
an be performed in parallel a
ross ea
h ofits elements or a
ross a subset determined by a qualifying 
ondition.The following example from [175℄ shows the syntax of a typi
al NESL expression:fnegate(a): a in [3, -4, -9, 5℄ | a < 4gThis expression applies the built-in fun
tion negate() to ea
h element of the sequen
e[3, -4, -9, 5℄ whi
h has a value less than 4.NESL is based on VCODE [176℄, a sta
k-based ve
tor language whi
h allowssegmented ve
tors. Segment des
riptors are used to de�ne the number of elements inea
h segment of a ve
tor. Most ve
tor operations are applied to their ve
tor operandsin a segment-wise fashion and element-wise within ea
h segment. Redu
tions areapplied to ea
h segment individually.VCODE is, in turn, based on CVL [177℄, a low-level ve
tor library for the Clanguage. CVL provides a large number of ve
tor operations on segmented or unseg-mented ve
tors of type int, double, or 
vl bool (whi
h may take any useful formsu
h as 
hars or bits. Ve
tors are passed to fun
tions via handles, whi
h indi
ate theposition and layout of the ve
tor in a dedi
ated ve
tor storage area.The sequen
e model is probably too irregular to be a good mat
h for 
urrentSWAR ar
hite
tures. It is also dissimilar to the majority of languages used for high-performan
e 
omputing.An unnamed �ne-grained, parallel version of C developed at NASA's GoddardSpa
e Flight Center [178℄ was intended to be appli
able to targets of various shapes,in
luding serial, ve
tor, and array pro
essors. Thus, the model took on the shape ofthe target ar
hite
ture. To support bit-sli
e targets, all variables 
ould be assigned abit size whi
h the 
ompiler would use as a minimum required pre
ision.
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lass that represented data spread a
rossthe target's PEs. Parallel obje
ts were �rst-
lass and 
ould be used in expressionsinvolving standard C operations whi
h were parallelized in an element-wise fashion.The C assignment operators were modi�ed to work with parallel obje
ts, performingelement-wise assignment or redu
tive assignment as ne
essary.Interpro
essor 
ommuni
ation was implemented via arithmeti
 on pointers toparallel obje
ts and treated the target's PEs as a ring. By adding an o�set, n,to su
h a pointer, the element on the PE n steps away along the ring 
ould be a
-
essed.This language was only partially implemented, and only for the serial Apple Ma
-intosh II. It appears to have been abandoned or negle
ted afterward, as I have beenunable to �nd any other referen
es to it.3.3 The General-Purpose SWAR Pro
essing ModelThe goal of this resear
h was to develop a general-purpose programming modelfor a 
lass of ar
hite
ture 
urrently represented by the extension sets studied in theprevious 
hapter. Ultimately, a programming model is an abstra
tion whi
h pro-vides the programmer with a more suitable or portable target than the a
tual targetar
hite
ture or ar
hite
tures. Thus, de�ning a programming model is equivalent to
hoosing the abstra
tion that is provided to the programmer.In this 
hapter, I develop a new general-purpose SWAR programming model ina general sense. That is, we will try to delineate what should be part of the modeland what should be ex
luded while leaving implementation issues, su
h as how aparti
ular operation is des
ribed, for the next 
hapter. There, I will dis
uss some im-plementations of this model. The overall purpose is to provide a 
onsistent, portable,generalized abstra
tion for this 
lass of ar
hite
ture.
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ationIn trying to develop a new programming model, one must �rst de
ide if it will beimperative, fun
tional, or logi
al. That is, will algorithms be des
ribed as a seriesof assignments to storage lo
ations, as fun
tions whi
h 
an be treated as �rst-
lassobje
ts, or as a set of logi
al rules from whi
h 
on
lusions 
an be determined? Thisquestion must be answered before one 
an progress to the details of language design.Traditionally, the majority of languages used for parallel pro
essing have beenimperative languages whi
h operate via side-e�e
t. That is, they allow for the as-signment of values to variables. This is dire
tly related to the a
tual storage of datain the sense that a 
ompiler assigns a value to a parti
ular variable by storing it inthe 
orresponding storage lo
ation. Be
ause most programmers are familiar with thisform of programming, and be
ause it is well-established, the model whi
h is developedin this thesis will be an imperative programming model.3.3.2 Data RepresentationHow data is represented in a model determines how the programmer 
an use it tosolve his or her 
urrent task. It is espe
ially important to 
arefully 
hoose how paralleldata obje
ts will be represented be
ause pro
essing this type of data is the primarygoal for the new model. The type of data allowed in the model is also important. Amodel whi
h is limited to a single data type, for example 8-bit integers, will probablynot be useful for most programmers. Thus, the allowed types and pre
isions must be
hosen thoughtfully.Parallelizable Obje
tsAs a form of SIMD ar
hite
ture, SWAR ar
hite
tures exploit data parallelism byapplying an identi
al instru
tion to multiple streams of data simultaneously. Thisis sometimes modeled by SIMD languages as an operation on some form of multi-
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t. For example, we 
ould des
ribe su
h an a
tion as an operationon a single-dimensional ve
tor of data. This would be a natural 
hoi
e for a SWARprogramming model, but is not the only possible 
hoi
e.Despite the fa
t that SWAR ar
hite
tures are ve
tor parallel, there are severalreasons why we might want to 
onsider an array model rather than a ve
tor model.First, many of the large-s
ale problems fa
ed by the s
ienti�
 
ommunity require themodeling of physi
al pro
esses in the three-dimensional real world. Se
ond, ve
torpro
essing is really just a subset of array pro
essing in whi
h all arrays are one-dimensional. Third, the set of operations performed on mathemati
al ve
tors aresimilar to the set of operations performed on arrays. Finally, an array model wouldnot have to be expanded to in
orporate arrays on
e array-based SWAR ar
hite
turesbe
ome 
ommonpla
e. From these arguments it seems 
lear that it would be betterto develop an array-based model.While it is true that many appli
ations are array-based, there are also some thatare ve
tor-based. More importantly, given that we 
annot know what appli
ationswill be developed using this new model, it is best to develop one whi
h mat
hes theintended hardware targets as 
losely as possible. In this 
ase, a ve
tor model would�t 
urrent SWAR ar
hite
tures better than an array or s
alar model.Another problem is that a strong model tends to en
ourage the programmer to useits most powerful features. The more these features di�er from the a
tual hardware,the more diÆ
ult they are to implement. Hen
e, they are less portable and oftenimplemented in
orre
tly or ineÆ
iently when they are ported.Given the limitations of 
urrent SWAR ar
hite
tures, it would probably makemore sense to develop an array-based SWAR pro
essing model if and when SWARarray pro
essors be
ome 
ommonpla
e. Single-
hip array ar
hite
tures su
h as theNCR GAPP and three-dimensional ar
hite
tures based on three-dimensional 
hiplayouts [179℄ should 
ome to dominate at some future time. In the meantime, it isprobably wiser to develop a model whi
h relates more 
losely to the 
urrent bat
h
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tor-based, 
ommodity SWAR pro
essors. Thus, the model de�ned here is ave
tor-based model.Ve
tor LengthOn
e we have de
ided on ve
tors as the primary parallelizable data obje
t, we mustnow de
ide what a ve
tor is 
omprised of. The �rst issue is ve
tor length. For anygiven data pre
ision on any given ar
hite
ture, there is a natural number of elementsthat 
an �t into a single register. For example, MMX registers are 64-bits long, andthus 
an a

ommodate eight 8-bit ve
tor elements or four 16-bit elements. We referto the set of data in a register as a ve
tor fragment, and the natural length of thisfragment as the fragment length. Some programming models 
odify this fragmentlength as the ve
tor length. For example, it is used as the length of a ve
 * inAltiVe
.org's version of GCC for AltiVe
-based pro
essors [180℄.While this may seem to be a reasonable thing to do, there are two problems withthis approa
h. First, real-world data rarely �ts this natural ma
hine width. Se
ond,it in
orporates the spe
i�
s of the 
urrent ar
hite
ture in the model, thus limitingthe model's usefulness to the 
urrent ar
hite
ture. We wish to avoid both of theseproblems, and 
an best do so by making the ve
tor length variable. Thus, the general-purpose SWAR programming model allows all �nite, positive, integral ve
tor lengths.Note that ve
tor length may be limited by external 
onstraints su
h as the physi
s ofthe target ma
hine or the limits of the operating system used.Data TypesWe must next de
ide what type of data the elements of a ve
tor 
an 
onsist of.The type of data whi
h 
urrent SWAR ar
hite
tures were designed to handle fallsinto two primary 
ategories, both of whi
h allow signed or unsigned data:1. Integer data of various pre
isions typi
ally representing digitized sampled analogsignals or digital values generated by some multimedia program.
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ision (32-bit) and double-pre
ision (64-bit) 
oating-point data typi-
ally representing the value of some physi
al property or the pla
ement and/ororientation of some obje
t in the three-dimensional real-world.Unfortunately, people 
onsidering the use of SWAR ar
hite
tures often limit theirview to only 
ommon multimedia data types and thus overlook other 
ategories ofdata whi
h 
ould be operated on using SWAR te
hnology. Two examples are 
hara
terand Boolean data. Ea
h of these is used extensively in various appli
ations, but rarelyis either treated as a parallelizable data type.The data types supported by the programming model may di�er from those sup-ported by the target ar
hite
ture if these data types 
an be emulated or promotedinternally by the 
ompiler. This requires that the operations de�ned by the model beimplemented using the data types and instru
tions supported by the target ar
hite
-ture. Where this 
an be done, the SWAR model need not be limited to the data typeswhi
h are dire
tly supported by the hardware. We 
an thus 
onsider other possibledata types and de
ide to what extent these types should be supported by the newmodel.Integer Data All SWAR ar
hite
tures support parallel integer pro
essing at somelevel, but usually do so only for standard multimedia data sizes. This is based onthe seemingly reasonable assumption that programmers want to use the data sizesthat are natural for the data they are manipulating and that these types are knownto language designers. For example, people working with grays
ale pixels want 8-bitobje
ts and those working with 
olor pixels want 24- or 32-bit obje
ts.The problem with this assumption is that it eliminates generality from the lan-guage. No one knows what will be the full range of ve
tor appli
ations that peoplewill invent. The data they may wish to manipulate may be best des
ribed using 3-bitor 6-bit obje
ts. If so, the programming model shouldn't prevent the programmerfrom expressing operations in these terms, even if the 
ompiler is eventually for
ed



- 171 -to implement them using other data sizes. To ex
lude data sizes from the model isto eliminate the possibility of exploiting them.Perhaps an analogy is 
alled for here. Suppose your favorite soft drink is rootbeer. You go to the lo
al store to pur
hase a 6-pa
k and �nd that they don't 
arryit. Instead, you �nd a 
ola, whi
h you de
ide is 
lose enough. You 
he
k out, theyuse your shopper's 
ard to tra
k what you pur
hased, and then order more 
ola. Aweek later, you again go in looking for root beer, but only �nd 
ola. The pro
essrepeats a few more times. Now the store has a long history of your pur
hases of 
ola.They know that your favorite soft drink is 
ola. In fa
t, they know that many of their
ustomers' favorite soft drink is 
ola. Be
ause of this, they de
ide never to 
arry anyother kind of soft drink, and will use your long history of buying 
ola as eviden
e ofyour preferen
e for it.The same thing happens with data types. Be
ause everyone uses 8-, 16-, 32-,or 64-bit data sizes, why support anything else? If you look at all the C 
ode everwritten, you'll see that nobody ever uses 2-bit data types. They 
an't be
ause therearen't any. This 
ir
ular reasoning is used as an ex
use to avoid providing moregeneral programming models.SWAR operations on data of non-standard pre
isions su
h as this 
an be performedusing reasonably straight-forward, if not always eÆ
ient, methods of emulation. Weshall see that this is possible on both multimedia-enhan
ed and unenhan
ed ar
hi-te
tures. Also, data whi
h has an unsupported pre
ision usually 
an be promotedto some supported type by the implementation of the model (i.e. the 
ompiler orlibrary). Thus, it is often a straight-forward task to emulate operations on this typeof data.Be
ause we 
an easily emulate operations on small data sizes by promoting themto larger, supported sizes, it is illogi
al to have the programming model enfor
e theuse of only a few data sizes. If we do not adjust programming models to allow formore 
exibility, we will pay a performan
e pri
e when single-
hip, bit-sli
e parallelar
hite
tures be
ome widely available.
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ations, the general-purpose SWARprogramming model supports integer data of any bit pre
ision. As with ve
tor length,external 
onstraints may pla
e bounds on the pre
ision of data supported, but themodel itself does not. For example, pre
isions greater than the number of bits in oneof the target's registers may be disallowed by the implementation.Floating-point Data While several SWAR ar
hite
tures support 
oating-pointpro
essing, a signi�
ant number do not. These ar
hite
tures would require emulationif 
oating-point pro
essing is in
luded in the model. Su
h emulation is usually diÆ
ultto do eÆ
iently.A 
oating-point operation is a series of integer operations whi
h denormalize thedata, then operate on the integer mantissa and exponent separately, and �nally nor-malize the result. These steps 
an be done on an integer ar
hite
ture, but the numberof steps involved will probably o�set any gains made via parallelization.This should be
ome less of an issue in the future as more SWAR ar
hite
turesin
orporate 
oating-point support. For now, a portable SWAR model should notrequire the in
orporation of 
oating-point operations, but should not prevent themeither. That is, support for parallel 
oating-point operations should be ar
hite
ture-dependent.If it makes sense to allow any pre
ision of integer data, why not allow any pre
isionfor 
oating-point data? From a theoreti
al stand-point, there is no reason not to dothis. Suppose we have real-valued data that is limited in range to a set of values that
an be expressed using a 4-bit mantissa and a 4-bit exponent. Why should we not beable to express this?Again, the problem be
omes one of �nding the balan
e between generalization ofthe model and limiting it to dis
ourage operations whi
h are unlikely to provide per-forman
e gains (or worse, likely to 
ause losses). Current ar
hite
tures are generallylimited to 32-bit parallel 
oating-point operations, with only SSE2 supporting 64-bit
oating-point operations. Any other size of 
oating-point data will require emulation.



- 173 -The emulation of odd-sized 
oating-point operations is possible, but is probablyunreasonably ineÆ
ient. On an integer-only ar
hite
ture, it is ineÆ
ient for the samereasons that emulating single- and double-pre
ision 
oating-point operations are. Forsizes whi
h do not mat
h a standard integer size, it is even worse. If standard-sized
oating-point operations are supported by hardware, then the possibility exists forusing temporary promotion te
hniques. In this 
ase, the 
ompiler needs to be able tomanipulate the bit patterns of the 
oating-point data in order to 
reate the properform for 
al
ulation and extra
t the 
orre
t bits from the result. Again, this wouldprobably be unreasonably ineÆ
ient and may even require that the data be movedto an integer register �rst.Be
ause non-standard 
oating-point types 
an be unreasonably diÆ
ult and inef-�
ient to emulate, and be
ause it is unlikely that they will be
ome widely supportedin the near future, there is probably no signi�
ant loss in ex
luding them from a 
ur-rent SWAR model. Thus, the 
urrent general-purpose SWAR model will only support32- and 64-bit 
oating-point data on an ar
hite
ture-dependent basis. Support fornon-standard 
oating-point types will be left for the future.Chara
ter Data Chara
ter data is often overlooked as a parallelizable data typebe
ause it is not 
onsidered numeri
. However, 
hara
ters are in fa
t typi
ally storedusing an integer 
ode. For example, the ASCII [181℄ 
hara
ter set 
onsists of 7-bit integer values whi
h are used for storing and transmitting text. Thus, manyoperations on 
hara
ter data are in fa
t integer operations, even if the programmingmodel used does not treat them this way.Consider sear
hing for a string in a text stream. This is a parallelizable taskthat 
ould bene�t from SWAR fun
tionality. In fa
t, the size of a 
hara
ter on mostsystems (8-bits) is the same as that of a 256-
olor pixel | a data type whi
h iswell-supported by most multimedia extensions. However, in order for this algorithmto be parallelized, the model must treat the data as having a parallelizable type. Awell-designed SWAR model should do this. Thus, the general-purpose SWAR model
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hara
ter data as a form of integer data with the same attributes with respe
tto parallelization.Boolean Data Boolean (true/false) data 
ould also bene�t from SWAR pro
essing,espe
ially given that this information 
an theoreti
ally be represented with one bitper datum. In this 
ase, bitwise logi
al operations 
an be used to perform paralleloperations a
ross the single-bit �elds of a register. This yields the highest possibleparallelism on a SWAR system and should thus be supported. Similar to the handlingof 
hara
ter data, these logi
al types are treated as a form of integer data by thegeneral-purpose SWAR model.Enumerated Data Enumerated data types should also be supported. For example,in a digital logi
 simulator, we may want to represent four states for ea
h 
onta
tpoint between gates: high, low, high-Z, and indeterminate. This would require 2-bits per 
onta
t point. This data size does not mat
h any multimedia data type, somultimedia ar
hite
tures do not support it. Consequently, the programming modelsdeveloped for these ar
hite
tures fail to provide any means of expressing data of thisform. This prevents the programmer from obtaining the highest possible performan
ewhen using enumerated data even if the hardware 
an dire
tly support it. A goodSWAR programming model should not impose this type of restri
tion. Thus, as with
hara
ter data, enumerated data is treated as a form of integer data by the general-purpose SWAR model. An implementation may provide for expli
it enumerated typessu
h as in the C language.Aggregate Data Elements 
onsisting of aggregate data types su
h as C stru
tsor Pas
al re
ords may also be useful. Data su
h as ve
tors of 
omplex numbers 
ouldbe represented in this manner with multiple elements stored in a single register orwith ea
h element striped a
ross multiple registers. Other types or representations ofdata su
h as 
ylindri
al or spheri
al 
oordinates 
ould also be expressed as ve
tors ofaggregate data.
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h should beavoided for the time being. For example, whi
h of the two layouts just mentioned,unstriped or striped, would be the better default method of representation? Shouldthe user be able to spe
ify whi
h to use? If so, should this be via an expli
it or impli
itindi
ation in the language? If not, how should the 
ompiler make this de
ision?Other questions also arise. For example, how large or 
omplex a stru
ture shouldthe implementation 
onsider to be parallelizable? Should the 
ompiler be responsiblefor determining when to parallelize a ve
tor of aggregate elements? If so, then a
ompiler implementing the model be
omes signi�
antly more 
omplex than it wouldbe without ve
tors of aggregates. If not, then some limitation must be built into themodel to free the implementation from making this de
ision. While these questionsare interesting, they should be avoided at this time to make the work reasonablymanageable.One may also dismiss ve
tors of aggregate obje
ts for the simple reason that theydo not �t well with the operation of 
urrent SWAR ar
hite
tures. While some aggre-gate types are equivalent to small arrays of identi
ally-typed data, in general they are
omprised of obje
ts of dissimilar types. Su
h types di�er from the identi
ally-typedparallel streams whi
h SWAR instru
tions expe
t. Rather than trying to distinguishbetween these 
lasses of aggregate elements, we will reje
t them altogether.3.3.3 Parallel OperationsThe general-purpose SWAR model treats ve
tors as �rst-
lass obje
ts. Thus, alanguage whi
h implements the SWAR model should support a fundamental set ofve
tor operations in a manner whi
h is easily expressed and meaningful. This set ofoperations should re
e
t those whi
h are typi
ally performed on ve
tors, but mustalso re
e
t the 
apabilities of 
urrent SWAR ar
hite
tures. The operations that aresupported by the SWAR model must be 
hosen to balan
e these goals. In this se
tion,I build on the analysis of multimedia extensions from the previous 
hapter to delineate
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h implements thegeneral-purpose SWAR model.Modular and Saturation OperationOne issue that 
an be addressed before spe
i�
 operations are dis
ussed is that ofmodular versus saturation operation. Re
all that modular operations store only thelow bits of the result whi
h will �t into the destination, throwing any over
ow bitsaway. The stored result is the 
al
ulated result modulated by the maximum storablevalue. Saturation operations handle over
ow by �xing the result at the most positiveor most negative representable value depending on the dire
tion of over
ow.Multimedia operations are often performed on data whi
h represent digitized sam-ples of analog signals. Instru
tions whi
h operate on this type of data need to do sowithout 
hanging its meaning. For example, digitized musi
 may be played througha \mixer" program whi
h adjusts the relative strength of various data sour
es. Anattempt to in
rement the strength of a signal beyond the highest value should not re-sult in the lowest value. This would 
ause the signal's strength to drop unexpe
tedlyand thus una

eptably. It would be better if the signal strength simply stayed at themaximum. Saturation operations were developed for this type of situation.Certain multimedia extensions expe
t the data to be of this type and thus pro-vide only saturating operations while others assume that the data should be handledmodularly as with traditional 
omputing. Other extensions use one or the other de-pending on the data size and the operation performed. Thus, there is signi�
antvariation between SWAR targets.As a general-purpose model, SWAR should support both types of operations.Exa
tly how this is done is left to the implementation. For example, the SWARClanguage des
ribed in the next 
hapter asso
iates saturation or modularity with thetype of the data ve
tors. The type of operation applied is based on the resolutionof the data types of the operands. Other languages based on the SWAR model
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ould instead asso
iate saturation or modularity with the operations themselves. Forexample, separate operators 
ould exist for modular addition and saturation addition.This mirrors the a
tual operation of the hardware.Operations whi
h, by their nature, never over
ow have equivalent modular andsaturated forms, and should be in
luded for both if for either. For example, unsignedinteger division always results in an integer value whi
h is smaller in magnitude thanthe dividend. Thus, it never over
ows, so the modular and saturated 
ases neverdi�er.Arithmeti
 OperationsBasi
 modular and saturation arithmeti
 fun
tions should be in
luded for all datatypes and pre
isions with some 
aveats.The general-purpose SWAR model in
ludes modular and saturation addition andsubtra
tion for all data types. Binary maximum and minimum are also in
ludedfor all types. These are non-over
owing by nature, so there is no di�eren
e in theirbehavior under modular or saturation operation. Unary negation is also in
luded forall signed forms and 
an be emulated as subtra
tion from 0 if ne
essary. Unsignedunary negation is optional.Multipli
ation is in
luded in all 
ases. One may wish to avoid saturation mul-tipli
ation whi
h is sometimes expensive to emulate. However, it should probablybe in
luded for the sake of 
ompleteness, and for this reason it is in
luded in thegeneral-purpose SWAR model.Division, whi
h generally results in a value that is within the bounds of the divi-dend and is thus non-over
owing (with the ex
eption of signed division of the largestnegative number by -1), is in
luded in all 
ases. Modulus (division remainder) isin
luded for integer ve
tor types. Its result is always smaller and of the same sign asthe dividend, and thus never over
ows. Modulus is nonsensi
al, and thus ex
luded,for 
oating-point types.
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urrent ar
hite
tures and is easily emulatedfor most types. However, in multimedia appli
ations, averaging usually involves arounding step whi
h does not follow normal arithmeti
 rounding rules. For thisreason, averaging is 
onsidered optional. If it is supported, it should be in
luded forall ve
tor data types and should be 
learly and 
onsistently de�ned. Also, be
ause itsresult always falls between the two operands and thus never over
ows, both modularand saturated versions should be supported.More advan
ed operations su
h as square roots and exponentials should be avoideddue la
k of 
onsisten
y or availability a
ross ar
hite
tures. These operations are noteasily emulated and would thus be diÆ
ult to port between ar
hite
tures.Redu
tive Arithmeti
 OperationsRedu
tive versions of asso
iative arithmeti
 operations are also in
luded in thegeneral-purpose SWAR model. The order and method of redu
tion are dependenton the implementation. This allows reordering of operands and logarithmi
 or serialimplementation. Redu
tive versions of non-asso
iative operations are not supportedby the model. Thus, redu
tive addition and multipli
ation are allowed, but redu
tivesubtra
tion, division, and modulus are not.Combined Arithmeti
 OperationsThe 
ombined arithmeti
 operations supported by the various extensions are not
onsistently implemented a
ross ar
hite
tures, and should thus be avoided for porta-bility sake. This does not pre
lude the use of instru
tions whi
h perform these op-erations be
ause any implementation of the model is free to optimize 
ode sequen
eswhen possible. Su
h operations in
lude MMX's multiply-add (MADD) instru
tionwhi
h performs a parallel multiply followed by a semi-redu
tive addition.Certain ve
tor operations also fall into this 
ategory. For example, it 
ould beargued that a ve
tor dot-produ
t should be one of the operations de�ned by the
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ause it is a 
ommon operation in ve
tor mathemati
s. However, it 
ouldalso be argued that dot-produ
t is really a 
omposition of an elementwise multiplyand a redu
tion addition and is thus redundant. Exa
tly how this 
ommon operationis provided for, if at all, should probably be left as a language de�nition de
ision.A similar question arises for ve
tor 
ross produ
ts. These operations generate amulti-dimensional array from two single-dimensional ve
tors. Be
ause we would liketo avoid array pro
essing in the 
urrent model, we should avoid ve
tor 
ross-produ
tsat this time.Shift and Rotate OperationsSimple shifts in
lude logi
al and arithmeti
 shifts left and right. These are well-supported a
ross the various integer extension sets with the ex
eption of VIS, whi
hrequires some non-trivial pat
hwork. For VIS, the aligndata instru
tion 
an beused to perform byte-wise shifts while its various pixel pa
king instru
tions 
an beused to perform bit-wise shifts. Be
ause simple shifts are widely implemented andfundamental to bit pro
essing, they are in
luded in the general-purpose SWAR model.Rotates are dire
tly supported only by AltiVe
, but they 
an be emulated withrelative ease using shifts and polymorphi
s. Thus, the in
lusion of rotates in a gen-eralized model are debatable, but probably worthwhile. Both left and right rotatesshould be in
luded for symmetry. The general-purpose SWAR model in
ludes ea
hof these.Combined operations su
h as shift-and-adds are only supported by a few ar
hite
-tures and should be ex
luded from the general-purpose model as separate operations.Bitwise Logi
al OperationsBitwise logi
al (a.k.a. Boolean [182, 183℄) operations are the basi
 building blo
ksof all 
omplex binary 
omputation [184℄. These operations allow programmers toperform more 
omplex operations than are dire
tly supported by the model. Thus,
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h in
ludes these operations is both extensible and powerful. Theseoperations should be part of any programming model that in
ludes the 
on
ept of aBoolean type or exposes binary digits to the programmer.A programming model need not support every type of Boolean operation, butshould in
lude a working set. This set might not mat
h that of any target ar
hite
ture.For example, a binary NAND operation is suÆ
ient to perform any other Booleanoperation; thus, no other Boolean operation is ne
essary. However, it is often easierfor the programmer if a larger set of Boolean operators is provided. For example,AND, OR, and NOT are often available and are familiar to most programmers. Theparti
ular working set implemented is left as a language-dependent de
ision.Bit-Redu
tion OperationsRedu
tive versions of the working set of asso
iative bit-wise logi
al operationsshould also be supported. More 
omplex bitwise redu
tions, su
h as population
ounts, need not be visible to the programmer. Instru
tions whi
h perform theseoperations are s
ar
e and are usually diÆ
ult or expensive to emulate. Thus, theyare ex
luded from the general-purpose SWAR model.Conditional OperationsA reasonable set of 
onditional operations needs to be supported in order to allowde
isions to be made. Otherwise, the usefulness of the model will be severely limited.As with bitwise logi
al operations, only a working set needs to be 
hosen when themodel is implemented as a language. However, to promote self-
onsisten
y within themodel, a 
omplete set of 
onditional operations should be in
luded.One issue 
on
erning 
onditional operations is whether they 
an appear outsidethe test se
tions of 
onditional 
onstru
ts. Some languages disallow the use of 
on-ditional operations anywhere other than in these test se
tions. However, there arealso languages whi
h assign numeri
 values to these 
onditional expressions and al-
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 expressions. To allow as mu
h 
exibility aspossible, 
onditional operations should be assigned some value. Doing so requiresde�nitions for these values. These values are dependent on the implementation of themodel.Another issue is that of \orderedness", whi
h is probably better referred to as\orderability". Certain bit patterns are not interpretable as valid 
oating-point num-bers. IEEE standard 754 de�nes these patterns as NaNs (Not-a-Numbers). The valueof a NaN 
annot be 
ompared to other values, thus they are said to be \unordered".NaN patterns are not normally generated by a properly written high-level programoperating under well-de�ned 
ir
umstan
es; however, they may result from improper
onversion or interpretation of integer values. Thus, it should not be ne
essary, norwould it normally be desirable, to expose this aspe
t of 
oating-point operation tothe programmer. For these reasons, these tests are ex
luded from the general-purposeSWAR model.Redu
tive Conditional OperationsRedu
tive versions of the working set of 
onditional operations supported by animplementation of the model may also be supported. For example, a language maysupport a redu
tive greater-than operation whi
h is true if the elements of a ve
torare ordered and false if they are not. These are somewhat esoteri
 operations, anddiÆ
ult to emulate, so we may wish to avoid them. However, their in
lusion wouldprovide another level of 
onsisten
y. Given this trade-o�, these operations shouldprobably be optional.Logi
al OperationsLogi
al operations are used to 
ombine 
onditional operations into more 
omplexexpressions. These enable programmers to 
reate more 
omplex tests than simple
onditional operations allow. A working set of these should be in
luded in any imple-
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onditional operations, theresults of logi
al operations need not be visible to the programmer but allow more
exibility if they are.Redu
tive Logi
al OperationsRedu
tive asso
iative logi
al operations produ
e a result whi
h represents theaggregate 
ondition of the parallel elements. For proper exe
ution of 
onditional
onstru
ts under SIMD semanti
s, an implementation must internally perform oper-ations of this sort. For example, a parallelized while loop should be exe
uted whilethe test 
ondition holds for any of the parallel elements. This \any" test is essential aredu
tive logi
al-OR of the result of applying the 
onditional operation to the parallelelements.In terms of a programming model, the question is whether the programmer shouldbe provided with me
hanisms for performing similar operations. As with non-redu
tivelogi
al operations, it is arguable whether the results of these operations should be ex-posed. Again, visibility allows for more 
exibility. Thus, these operations shouldprobably be expli
itly available to the programmer. Therefore, a set of redu
tivelogi
al operations whi
h 
omplement the 
hosen set of asso
iative logi
al operationsshould be in
luded.Conditional Assignment OperationsConditional assignment is yet another issue. \Pi
k" instru
tions sele
t one of twopossible results based on the value of an index register. Their operation is similar tothat of the C trinary operator, in whi
h the result of a 
onditional test 
auses onestatement to be exe
uted if the result is true and another to be exe
uted if the resultis false. In the 
ase of a pi
k instru
tion, the exe
uted statements would both beassignments to the same variable. Be
ause this is a
tually a shorthand version of a
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ular if-else 
onstru
t, it is redundant. In
lusion of su
h an operation shouldthus be optional.Data Storage and Movement OperationsImperative languages represent the storage of data using assignment statements.These are operations in whi
h a value is stored for future pro
essing to a storagelo
ation designated by a variable. This allows long, 
omplex expressions to be split upinto smaller ones, thus simplifying the expressions used. It also allows a programmerto reuse 
ommon subexpressions. These are expressions whi
h appear in one or moreothers. Thus, the task of 
oding is made easier by the use of assignments.An imperative ve
tor model should allow ve
tor assignment. That is, it shouldallow data to be assigned to a ve
tor as a aggregate obje
t. A simple example wouldbe 
opying one ve
tor to another. This should be expressed as a single operation,not as a series of operations on the ve
tors' elements. Thus, the SWAR model allowsve
tor assignment.On assignment, data may a
tually be stored to a memory lo
ation or register.Usually, the di�eren
e in destinations is hidden from the programmer and registersare used only by the 
ompiler. Thus, assignment is an abstra
tion whi
h hides thea
tual operation performed. As an optimization, instru
tions whi
h perform movesbetween registers may be used internally by a 
ompiler to implement assignmentswhen an a
tual memory a

ess is unne
essary. This 
an in
rease performan
e byallowing stores to be used only when the data must be written to memory.Instru
tions for moving data between ve
tor registers are often used to 
opy databefore performing an operation whi
h destroys one of its operands. They are also usedto make a 
opy that 
an be handled di�erently from the original. These operationsare usually internal to the 
ompiler and not exposed to the high-level programmer.However, some languages do allow expli
it assignment to \register" variables as ameans of hinting that the data will be used often or does not need to be stored
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essary, exposure of the use of registers is
onsidered an implementation-dependent issue.Instru
tions for moving data between s
alar and ve
tor registers are used to loador store ve
tor fragments when this 
annot be done dire
tly between the ve
tor reg-isters and memory. They are also used to allow operations to be applied to ve
torfragments whi
h 
annot be applied to them while they are in the ve
tor registers.These instru
tions would normally be applied internally by the 
ompiler as part ofa multiple instru
tion operation. There should be no reason to expose this to theprogrammer.A well-designed ve
tor model should allow s
alar to s
alar assignment to allowve
tor elements to be operated on in a reasonable manner and to ease the 
onstru
tionof mixed expressions whi
h in
lude s
alar subexpressions.Redu
tive Assignment OperationsA well-designed ve
tor model should also allow ve
tor to s
alar assignment. This isoften the last step in a parallel pro
essing algorithm in whi
h data has been distributedto multiple pro
essors for identi
al pro
essing. This separates the task into parallelsubtasks whose results must be later 
ombined. This 
ombination step is a redu
tivestep in whi
h some fun
tion of the subresults is performed to obtain the single resultof the overall task.This step should be easily expressed as an assignment of a ve
tor to a s
alar.Be
ause there are various operations that one may wish to perform to obtain thesingle result, a variety of redu
tion operations should be available for use in thislast step. Con
eptually, the result of the redu
tive fun
tion is stored in a s
alarstorage lo
ation; thus, this step should be representable as a 
ombined redu
tiveassignment operation. Any of the redu
tive operations in
luded in the model shouldbe 
ombinable with assignment to provide ve
tor to s
alar assignment.
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ative Assignment OperationsS
alar to ve
tor assignment should also be supported. This is often one of the�rst steps in a typi
al parallel pro
essing algorithm. The initialization of ve
tors toa single value, su
h as zero, is a 
ommon operation. The s
alar value is repli
atedand assigned to ea
h of the ve
tor's element. Expressing this operation as a singlerepli
ative assignment of the s
alar value to the ve
tor obje
t is a mu
h more elegantsolution than expressing it as a series or loop of s
alar assignments to ea
h of theve
tor's elements. Thus, the general-purpose SWAR model allows s
alar to ve
torassignment whi
h operates in a repli
ative fashion.Type Conversion OperationsIn a typed language, one may wish to provide for the 
onversion of data from onetype to another. There are various reasons for this. A data's type usually de�nesits storage format. The primary purpose of type 
onversion is thus to ensure thatdata has the 
orre
t format during pro
essing. This means that type 
onversion isequivalent to 
onverting between data formats. This is ne
essary to properly evaluatemixed expressions, to ensure that data is stored in the proper format, and to mat
hfun
tion parameter and return value formats.When type 
onversion is performed internally by the 
ompiler to support mixedexpressions it is 
alled type 
oer
ion. For example, it is sometimes useful to use datawhi
h is stored in an integer format in an expression involving 
oating-point data.The 
onversion of data from integer to 
oating-point formats is ne
essary for this typeof pro
essing to be performed properly. Most languages have semanti
 rules whi
hde�ne when su
h 
onversion takes pla
e.Type 
oer
ion is also performed when an expression has been evaluated to a valueof one format and needs to be stored in a lo
ation whi
h has a di�erent size oris assumed to hold data of another format. The value must then be 
onverted to
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orre
t format before being stored. This 
onversion is typi
ally internal to the
ompiler, but is known to the programmer via the semanti
s of the language.Often, 
onversion 
an be performed expli
itly by the programmer using type-
asting operations. These allow the user to perform 
onversion outside of mixedexpressions and other situations in whi
h the 
ompiler would perform impli
it 
on-version. For example, when passing an integer value to a fun
tion whi
h expe
ts a
oating-point value, it is 
onvenient to simply perform the 
onversion without storingthe data to a 
oating-point variable or 
onstru
ting a mixed expression. Type 
astsallow the programmer to spe
ify su
h an a
tion.As with other operations, the level of support that a model 
an safely in
lude fortype 
onversion depends on the 
apabilities of the target ar
hite
tures. The variousextension sets in
lude a large number of instru
tions whi
h 
an be used to 
onvertdata between various types. Some of these were intended for this purpose, whileothers were not. Some instru
tions allow data to be 
onverted between integer typesof various sizes, while others 
an be used to 
onvert between 
oating-point and integerdata types.Pa
ks and unpa
ks 
an be used to 
onvert between integer types of various pre
i-sions. As de�ned previously, pa
king instru
tions 
onvert data to smaller pre
isions,then pa
k them into a smaller se
tion of the register without 
hanging their relativeorder. This is equivalent to performing a ve
tor type 
onversion from one pre
isionto another. In 
urrent multimedia extensions, this 
onversion is a

ompanied by asaturation operation. This for
es ea
h data element to the representable value nearestits original value.Unpa
king instru
tions perform the inverse of pa
king instru
tions, 
onvertingdata to larger pre
isions using sign- or zero-extension as ne
essary. As with pa
ks,this is equivalent to performing a ve
tor type 
onversion between pre
isions.Interleaving instru
tions also 
an be used to 
onvert integer data from a smallerto a larger pre
ision. This is done by �lling a register with zeroes or with �elds whi
h
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orresponding �elds of the original register. Theseare then interleaved to form larger �elds of zero- or sign-extended data.Instru
tions whi
h dire
tly 
onvert data between 
oating-point and integer formsare in
luded in several extension sets. In implementations of the model whi
h al-low 
oating-point data, these instru
tions may be used internally to implement type
oer
ion or expli
itly to implement type 
asts.In order to allow maximum 
exibility, a general form of type 
asting should bein
luded in the model and type 
oer
ion rules should be de�ned to allow for mixed-type and mixed-pre
ision expressions. These rules are implementation-dependent.To handle mixed-dimensional operations whi
h are applied to a ve
tor and a s
alar,it is sometimes useful to 
onvert the s
alar operand to a ve
tor whi
h \
onforms"to the shape of the ve
tor operand by repli
ating the s
alar's value. This allows
omputation to pro
eed using ve
tor operands only. This 
onversion may be doneimpli
itly as with type 
oer
ion or expli
itly as with type 
asting.Support by the various multimedia extensions for repli
ation is mixed. OnlyAltiVe
 has expli
it repli
ation instru
tions. A few extensions have a number ofoperations whi
h 
an pair a partitioned operand with a s
alar one. However, most ofthe extensions have little support for repli
ation or mixed operations. Despite this,as a general rule repli
ation 
an be emulated using polymorphi
s and shifts. Thus,they are reasonably portable, though often ineÆ
ient, and should not be ex
ludedfrom the model. For this reason, s
alar to ve
tor 
onversions via type 
oer
ion and
asting are allowed by the general-purpose SWAR model. This promotes 
exibilitywhile simplifying the programming task.Ve
tor Element A

ess OperationsTo provide generality and to ease the handling of boundary 
onditions and singu-larities, general-purpose ve
tor programming models should allow ve
tor elements tobe operated on individually. Where available, extra
tion and insertion instru
tions
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an be used to implement ve
tor element a

esses. These instru
tions allow se
tionsof a partitioned register to be isolated for further pro
essing or re
ombined with otherdata.While several multimedia extensions 
ontain this type of instru
tion, others donot. On these ar
hite
tures, it is generally possible to emulate basi
 forms, althoughseveral instru
tions may be required to do so. Thus, they should not be ex
luded. TheSWAR model assumes that ve
tor elements 
an be individually a

essed, operatedon, and assigned as s
alar obje
ts.Ve
tor Generation OperationsOne problem that is not well-addressed by 
urrent multimedia extensions is thatof 
ombining single items of data into partitioned form. That is, the 
reation of ave
tor from a set of s
alars. This often takes several steps be
ause data must bepositioned, masked, then inserted into the destination.This leads to the question of how su
h an operation should be expressed by theprogrammer. Spe
i�
ally, should the programmer des
ribe this as a single operationor as the several operations that are typi
ally used? By using elemental assignment,the programmer 
an express this as multiple separate operations. However, me
ha-nisms whi
h allow ve
tor generation to be expressed as a single operation would alsobe useful and should be in
luded in an implementation of the model.Ve
tor Catenation OperationsMathemati
al ve
tors are not often 
on
atenated, but the 
atenation of 
hara
terve
tors (i.e. strings) is a fairly 
ommon operation. A general-purpose model shouldin
lude operations of this type.
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ations OperationsShifts and rotates 
an also be used to emulate one-dimensional 
ommuni
ationsoperations, treating the register �elds as in a linear array or ring. This is the mostnatural form of \inter-PE" 
ommuni
ation for these ar
hite
tures, and one whi
h
losely represents the use of traditional SIMD inter
onne
ts. Thus, inter-�eld shiftsand rotates should be supported if only from a 
ommuni
ations stand-point. Spe
if-i
ally, linear 
ommuni
ation between data �elds is supported by the SWAR modelvia ve
tor shifts and rotates. These move data linearly and regularly between ve
torelements.Non-linear Interelement Communi
ation OperationsAdvan
ed 
ommuni
ations operations su
h as shu�es and permutations requiremore 
omplex operations than most 
urrent multimedia extensions support. Be
auseof this, these more advan
ed 
ommuni
ations operations will be avoided. We will,however, dis
uss the 
apabilities of 
urrent SWAR ar
hite
ture with respe
t to 
om-muni
ations operations.Interleaving instru
tions 
ombine data in two registers by alternating betweenthem, while swaps ex
hange data between the �elds of a single register. These in-stru
tions 
an be used to implement various forms of inter�eld 
ommuni
ation whi
hexhibit regular a

ess patterns. Neither interleaves nor swaps are 
onsistently im-plemented a
ross multimedia ar
hite
tures. Thus, the parti
ular 
ommuni
ationspatterns exhibited by these ar
hite
tures di�er. Be
ause of this, 
ommuni
ations op-erations with patterns whi
h require this type of operation should be avoided in the
urrent general-purpose model.The 
atenating instru
tions in
luded in the various multimedia extension sets 
om-bine subsets of their operands' elements without 
hanging their relative order. Thus,these instru
tions also perform operations whi
h resemble various regular 
ommuni-
ation s
hemes. As with interleaves and swaps, these instru
tions are in
onsistently
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luded in the 
urrentmodel.Pa
ks and unpa
ks 
an also behave like regular 
ommuni
ations operations. Pa
ksgather data from alternate �elds (PEs) of a register and pass it to a 
ontiguous setof �elds, while unpa
ks perform the inverse operation. These operations are notimplemented by all multimedia extensions, are in
onsistently implemented when theyare, and 
an be expensive to emulate. Thus, the 
ommuni
ations operations theyrepresent should also be avoided.Permutation instru
tions allow the �elds of one or two registers to be rearrangedor repli
ated. These operations are equivalent to 
ommuni
ations using advan
edinter
onne
tion networks su
h as the router networks of the Thinking Ma
hines' CM-2 or MasPar MP-1.Only a few extension sets in
lude permutation operations. Due to their general-ity, they are diÆ
ult to emulate on ar
hite
tures whi
h do not support them. Thismakes them diÆ
ult to port. Thus, these operations should be avoided despite theira

eptan
e and use in previous SIMD programming models. These operations arethus ex
luded from the 
urrent SWAR programming model.As te
hnology advan
es, more ar
hite
tures will in
orporate advan
ed inter
on-ne
tions between the �elds of their registers. This will allow more 
omplex operationssu
h as permutations to be portable between ar
hite
tures. At that time, advan
ed
ommuni
ations should be in
orporated into the model. Until then, in
orporation ofsu
h operations will only en
ourage the programmer to write 
ode whi
h 
annot beimplemented eÆ
iently on most SWAR ar
hite
tures.Ca
he Management OperationsCa
he management is inherently ar
hite
ture-dependent. One must be awareof the size of 
a
he lines and memory blo
ks to order operations intelligently. Forexample, when should a hint be given that a memory lo
ation will soon be needed?
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ur at the beginning of a blo
k of 
ode or the beginning of the statementin whi
h the a

ess o

urs? This depends on the size of the sour
e 
ode blo
k versusthat of the 
a
he lines. This de
ision also requires 
onsideration of the availability ofspa
e in the 
a
he.Generally, this knowledge should be hidden from the programmer so that he orshe may 
on
entrate on the des
ription of the algorithm at hand, not the me
hani
sof exe
ution or ma
hine 
ontrol. Moreover, an optimizing 
ompiler is likely to makemodi�
ations to the order of exe
ution. This leaves the programmer without 
learknowledge on whi
h to base 
a
he management de
isions. In this 
ase, 
a
he manage-ment operations would blindly impose 
onstraints on the reordering of instru
tions.For these reasons, 
a
he management operations should not be exposed to theprogrammer in a portable programming model, and are not in the general-purposeSWAR model.3.4 Properties of a Well-Designed High-Level Language for SWARWith the 
ompletion of this phase of resear
h, we are now in a position to enumer-ate a set of properties that a well-designed high-level SWAR language should exhibit,and also to establish guidelines for implementing the general-purpose SWAR modelas a full-s
ale high-level programming language.The primary 
hara
teristi
s of su
h a language are:� The primary parallelizable obje
t is a one-dimensional ve
tor.� Ve
tors 
onsist of one or more identi
ally-typed data elements.� Ve
tor element types are ar
hite
ture-independent.� The elements of a ve
tor are identi
al in type and pre
ision.� The elements of a ve
tor are single-valued and non-aggregate.
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tor have integer or 
oating-point type or some other typewhi
h is treated as a form of one of these types.� Ve
tor integer elements may have any pre
ision subje
t to external 
onstraints.� The allowed pre
ision and handling of 
oating-point ve
tor elements isimplementation-dependent.� The layout of a ve
tor in memory is implementation-dependent.� Ve
tor operations are 
onsistent a
ross data types and pre
isions.� Ve
tor operations are ar
hite
ture-independent.� Ve
tor operations are 
losely mat
hed to the 
apabilities of 
urrent SWAR ar-
hite
tures.3.5 Development of the ModelThe general-purpose SWAR programming model was developed jointly by Profes-sor Hank Dietz and me to address several 
on
erns.Originally, Professor Dietz suggested that the we should look at multimedia exten-sions su
h as MMX be
ause he believed that they would be interesting ar
hite
turesto target.We then designed the SLIME (SIMD Language for Intel Multimedia Extensions)programming language for use in the fall 1996 undergraduate Compiler and LanguageTranslation Systems Course (EE468) whi
h he was tea
hing and for whi
h I was theassistant.This language is a small MPL-like SIMD language in whi
h the number of pro-gramming elements depends on the pre
ision of the data to be operated on in parallel.There are two data types in the SLIME language: int and plural. An int is asingle standard C integer whi
h is visible to ea
h of the PEs. A plural is a multiple-
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t with a single name making only one element of the obje
t visible toany given PE.The pre
ision of a plural obje
t is given on the 
ommand line when the 
ompileris run, and is required to be one of 8, 16, 32, or 64. All plural obje
ts are 
ompiledwith this pre
ision and have a �xed number of elements. This number is 64 divided bythe given pre
ision. Thus, a plural obje
t �lls a 64-bit wide MMX register perfe
tly.Originally, students were to implement a 
ompiler for SLIME whi
h would gener-ate C-
ode using ma
ros to exe
ute the ne
essary MMX instru
tions. However, whilethe SLIME programming model requires all operations to be implemented for anyof the given pre
isions, MMX does not in
lude instru
tions for ea
h of these. Thus,unsupported operations required emulation whi
h we did not want the students tohave to implement in the time allotted.Subsequently, I made a brief survey of the multimedia sets then in existen
e. Overtime, I have expanded and re�ned this survey into the tables found in 
hapter 2. Dur-ing my initial investigation, I found the available multimedia extension sets to be bothin
ompatible and in
omplete. Also, it was 
lear that none of these extensions weredesigned to support a general-purpose parallel pro
essing model, but were instead in-tended to support parti
ular algorithms. Professor Dietz then suggested that perhapswe should attempt to develop a general-purpose model.As we began working on this model, I realized that the supported data sizes were
hosen based on the designers' beliefs about whi
h data sizes would be most 
om-monly used by their respe
tive 
ustomer bases. Be
ause this had led to in
ompatibleextension sets, it was 
lear to me that this was not the path to follow when designinga general-purpose model. Rather than to assume knowledge of the data sizes neededby the appli
ation programmer, I argued that one 
annot, and therefore should not,guess whi
h data sizes will be most useful to a future appli
ations programmer.It was also 
lear that limiting the size of the parallel data set to �t into one registerwas not ne
essary, and that few real appli
ations would use data sets of exa
tly the\
orre
t" size. For example, there are 3.2 billion gene pairs in the human genome.
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lude the des
ription of algorithms whi
haddress large data sets su
h as these. In fa
t, a good model should allow the pro-grammer to des
ribe operations on these data sets easily. Thus, as a basi
 model, weopted for a SIMD model in whi
h ve
tors are �rst-
lass obje
ts with any number ofelements of any pre
ision.It is important here to stress the di�eren
e between the model and any parti
ularimplementation of the model. Pra
ti
al 
onsiderations, su
h as �nite memory, 
annotbe avoided; and 
ertain situations, su
h as data pre
isions whi
h are greater than thesize of a register, will not result in speedup. While a parti
ular implementation of themodel may avoid these situations, they should not be in
orporated into the model.As an example, suppose we had 
hosen to limit data pre
ision to the maximumpre
ision that would have provided speedup using MMX. Be
ause MMX registers are64 bits wide, the maximum size would have been 32 bits. While none of the extensionsets 
ontemporary with MMX in
luded instru
tions for data whi
h ex
eeded thispre
ision, several 
urrent extensions do. Had the 32-bit limit been in
orporated intothe model, it 
ould not have been used by a programmer to take advantage of the64-bit 
apabilities of these ar
hite
tures when they be
ame available. Similarly, if wein
orporate a 64-bit limit into the model, it will not allow the programmer to takeadvantage of any 128-bit hardware support in the future.
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4. PROOF-OF-CONCEPT IMPLEMENTATIONS OF THEMODELHaving de�ned a new abstra
t model of parallel 
omputation whi
h better re
e
tsthe 
apabilities and limitations of modern SWAR ar
hite
tures than do 
urrent 
om-putational models, we now develop prototype implementations of this model andoptimizations whi
h exploit the 
apabilities of various target pro
essors.4.1 Prototype Libraries for SWAR Pro
essingMy original plan of study 
alled for the development of a set of small, portablelibraries for writing SWAR algorithms. These were to be optimized to their targetar
hite
tures and share a 
ommon portable interfa
e to show that the model 
ouldbe applied in this manner.Two prototype libraries were 
reated to address this goal. The �rst, 
alled lib-MMX, provided a means to a

ess MMX instru
tions in a manner similar to C fun
-tion 
alls. The se
ond, SWARlib, was intended to show that a portable libraryinterfa
e 
ould be developed for SWAR pro
essing.4.1.1 libMMXI started by 
reating the original in
arnation of the libMMX library [185℄. Thisprovided a

ess to the MMX set of extensions via C prepro
essor ma
ro 
alls. Thislibrary de�ned a union type, equal to the size of an MMX fragment, whi
h 
ould betreated as a repartitionable array of �elds. Operations on obje
ts of this type wereperformed using ma
ros whi
h hid the a
tual register usage from the programmer.
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orre
t approa
h for a portable library, but makes the library useless asa 
ompiler target. Later versions of this library [186℄, based on a version by ProfessorDietz, were written to expose register usage to make them more useful for 
ompilerwork. A set of similar libraries are used by the S

 
ompiler dis
ussed in se
tion 4.3to support its various targets.Following the development of this prototype library, we de
ided that the designof a high-level programming language and 
ompiler should be given higher prioritythan was originally 
alled for in the resear
h plan. We felt that a 
ompiler wouldbe needed to perform aggressive optimizations and instru
tion s
heduling in order toa
hieve a reasonable amount of speedup over large 
ode segments.When using libraries, the programmer is for
ed to perform these tasks and is lesslikely to a
hieve signi�
ant speedup over a large amounts of 
ode. For this reason,development of a portable SWAR library was not pursued until after the 
ompilerwas relatively mature; and then, only as a proof-of-
on
ept implementation. Theresulting library framework was 
alled SWARlib.
4.1.2 SWARlibSWARlib does not implement a full general-purpose model, but implements enoughof one to show that it 
ould be done. Currently, SWARlib has only been targeted toMMX and AltiVe
, but would be implemented similarly for any target.SWARlib allows the programmer to 
reate ve
tors of unlimited length, but violatesthe requirement that any �eld size be allowed by only allowing power-of-two �eld sizes.It also limits �eld sizes to those smaller than a fragment, but this is allowable as itdoes not limit the obtainable parallelism.
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h ve
tor is implemented using a C stru
t whi
h 
ontains the ve
tor's typeand layout information and also a data pointer. This pointer points to an allo
atedarea of memory whi
h is treated as an array of fragments holding the a
tual data1.In an appli
ation, ve
tor pointers, 
alled swar ve
tors are �rst de
lared, thenswar allo
() is 
alled to allo
ate and initialize the data stru
ture for the ve
tor.This fun
tion takes a ve
tor length, data pre
ision, and signedness and saturationindi
ators as arguments, stores this information, and allo
ates memory to hold theve
tor data. The user is responsible for initializing this data after the return.The swar ve
tor names 
an be used in 
alls to ma
ros whi
h implement thebasi
 operations of the model. Type information is not passed expli
itly in these
alls. This provides a level of abstra
tion whi
h makes the ve
tors look somewhatlike �rst-
lass obje
ts; however, basi
 operations must be performed via fun
tions orma
ros rather than by using operators as one would with truly �rst-
lass obje
ts. Animplementation in an obje
t-oriented language would allow �rst-
lass operation usingoperator overloading, but would be limited in the operators allowed.SWARlib 
ould have been implemented as a library in whi
h type information isgiven as part of the name of ea
h operation performed, but the 
urrent implementationmore 
losely mat
hes that of the SWARC language (se
tion 4.2). This has a negativee�e
t on type assessment. While a 
ompiler 
an perform type assessment stati
allyand arrange for 
orre
tly typed operations to be performed, a ma
ro library in whi
hdata types are passed as arguments or as part of an argument must be assessedduring exe
ution, thus making the resulting 
ode slower than the 
orresponding 
odegenerated by the 
ompiler.An example of a SWARlib ve
tor operation is swar add(). This ma
ro takesthree pointers, whi
h look like simple variable names, derives type information fromthe underlying data stru
tures, and then performs a (hopefully) properly typed ve
toraddition. This is done by exe
uting the MMX or AltiVe
 instru
tion(s) ne
essary to1This area is dynami
ally allo
ated and thus needs to be en
apsulated to for
e 
orre
t alignment.This is not 
urrently done, but is a relatively minor error whi
h should not need to be 
orre
ted toprove the viability of SWARlib.
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h of the 
orresponding pairs of fragments of the sour
eve
tors and storing ea
h subresult in the 
orresponding fragment of the result ve
tor.Currently, SWARlib assumes that the result type is the same as the destinationargument, and treats the sour
es as being of this type. This is in
orre
t be
ausethe result type should be a resolution of the sour
e arguments' types 
ast to thedestination's type. While this leads to in
orre
t results, it is something that anobservant user should be able to work around, and it should not be ne
essary to �xthis to prove that the SWAR model 
an be implemented as a library.Ea
h target has a set of operations for whi
h it la
ks hardware support. Thesemust be emulated in the library; however, the library 
urrently 
ontains no emulation.Emulation in SWARlib would be similar to emulation in the S

 
ompiler des
ribedin se
tion 4.3. I am 
on�dent that it 
ould be done in the framework of a library, andthat it would be time-
onsuming to do so.As an example of emulation, MMX does not have an instru
tion whi
h performsan 8-bit unsigned maximum operation (max8u), but it does have an 8-bit unsignedgreater-than 
omparison and a set of polymorphi
s. The max8u 
an be emulated asa series of operations similar to the following:gt8u(arg0, arg1, i);and(i, arg1, j);not(i, i);and(i, arg0, i);or(i, j, i);Here, arg0 and arg1 are the arguments to the max8u. i and j are temporaryvariables used to make the example 
learer. In ea
h 
all, the destination is the �nalargument with the sour
es pre
eding it.After pro
essing, ea
h ve
tor is freed by 
alling swar free(). This deallo
ates theve
tor data and stru
t. Finally, swar end() is 
alled to perform any operations, su
has MMX's emms instru
tion, ne
essary to put the pro
essor ba
k into a non-SWARpro
essing mode.
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ompleted version of SWARlib would be a full implementation of the SWARmodel as a library. Using the methods des
ribed in this se
tion, a portable library
ould be developed whi
h would satisfy the requirements of the SWAR model. How-ever, as was previously stated, it be
ame 
lear that a fully operational 
ompiler wouldbe ne
essary to a
hieve signi�
ant performan
e over anything but a trival 
ode se-quen
e. Thus, this library was not fully implemented, nor was it made available tothe publi
.4.2 The SWARC Ve
tor LanguageAfter the development of basi
 SWAR libraries, the next task was to de�ne anddevelop a new, high-level programming language based on the SWAR model for even-tual pla
ement in the publi
 domain.We 
hose to do this rather than to add new 
lasses to an obje
t-oriented languagesu
h as C++ be
ause we be believed that it would be diÆ
ult for a C++ 
ompiler tooptimize ve
tor 
ode and be
ause it would allow more 
exibility for future resear
h.To simplify this task, we developed a module language whi
h 
ould take advantageof available C libraries and integrate well with ordinary C 
ode. This allowed us toavoid writing support libraries for the language whi
h would have been ne
essary tobuild a 
omplete appli
ation otherwise.The language itself is intended to allow the programmer to easily des
ribe SWARdata and algorithms in a portable manner. The language is similar to C, but allowsparallel data to be represented as ve
tors. In a

ordan
e with the general-purposeSWAR programming model des
ribed in se
tion 3.3, ve
tors are �rst-
lass obje
tswhi
h 
an be of any length, subje
t to external 
onstraints su
h as the amount ofavailable memory.To make appli
ations portable between targets with varying word sizes, supported�eld sizes, and data alignments, the language only allows the programmer to spe
ify
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onstraints on data pre
ision and layout. This allows the 
ompiler to 
hoosewhi
h �eld sizes and layouts will a
tually be used based on the target's 
apabilities.The remainder of this se
tion des
ribes the SWARC module language whi
h wehave developed and is adapted from [5℄.4.2.1 Type SystemBase TypesThe SWARC language in
ludes the C language's base data types to make theintegration of SWARC and C 
ode easier than it would be otherwise. This allowsarguments to be passed from C 
ode to SWARC fun
tions without having to be 
astto a ve
tor form �rst. Aggregate types su
h as stru
ts and unions are not allowedin this prototype language; however, single-dimensional arrays of a base type areallowed.The base types allowed in SWARC 
ode are 
har, int, and float, with 
hars
onsidered to be 8-bit ints. These may be modi�ed with any of the modi�ers signed,unsigned, and 
onst. Also, the int type may be modi�ed or repla
ed with the sizemodi�ers short, long, and long long. The storage 
lasses extern, register, andstati
 
an also be applied to a base type and have the same meanings as in C.In addition to the normal C modi�ers, two additional attributes are allowed inSWARC. These are the modular and saturation attributes whi
h allow the pro-grammer to spe
ify whi
h form of over
ow handling should be used by operationsperformed on the obje
t. Thus, over
ow handling is spe
i�ed by data type using asingle operator for both modular and saturated operations.The general form for de
laring C data in SWARC is the same as in C with theex
eption that arrays are always one-dimensional and the dimension follows the basetype name, not the name of the variable. The general form is thus:storage-
lass modi�ers base-type [dimension℄ name
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it Boolean or enumerated types in SWARC. Ea
h of these mustbe handled as a type of integer. Boolean types 
an be handled as 1-bit unsigned ints,while enumerated types 
an be handled using n-bit ints where n = dlog2me for mvalues. Ma
ro de�nitions 
an be used to assign names to these values.Ve
tor TypesSWARC extends the C type system with a �rst-
lass ve
tor type whi
h allowsone-dimensional arrays of any length to be de�ned. These obje
ts may be a

essed asan aggregate entity as opposed to C arrays whi
h 
an only be a

essed one elementat a time.In its most general form, the type de
laration for SWARC ve
tor data spe
i�esan obje
t whose elements are laid-out either as an ordinary C array or pa
ked as the
ompiler sees �t using a spe
i�ed minimum pre
ision. The syntax for de
laring su
han obje
t is similar to the bit-�eld spe
i�
ation used in C stru
t de
larations, andtakes the general form:storage-
lass modi�ers base-type:pre
[width℄ namewhere the storage 
lass, modi�ers, and base type are as des
ribed above, and every-thing is optional ex
ept the base type and name.The pre
ision spe
i�er : indi
ates that the obje
t should have a SWAR (i.e.
ompiler-
hosen) layout, and that the minimum pre
ision required for the data maybe spe
i�ed with an optional integer pre
ision. This pre
ision spe
i�es the minimumpre
ision to be used for element data and may take any positive integer value subje
tto external 
onstraints.Omitting the pre
ision spe
i�er indi
ates that the obje
t should have a C, ratherthan a SWAR, layout. Using the pre
ision spe
i�er without an integer pre
ision isequivalent to spe
ifying a SWAR layout with the native pre
ision for the equivalentC layout type.
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ompiler may store data with a higher pre
ision than spe
i�ed,saturation is always to the de
lared pre
ision of the data. Also note that when apre
ision is spe
i�ed, the integer base types, whi
h in
lude 
har, short int, int,long int, and long long int, are equivalent.The optional [width℄ spe
i�er indi
ates the C layout array dimension or thenumber of SWARC layout ve
tor elements. If the [width℄ is omitted, it is taken tobe one.ExamplesSome examples of SWARC de
larations are in order at this point:� \
har 
" is equivalent to the C de
laration \
har 
", and spe
i�es that 
 is asingle variable of type 
har.� \float: f" is equivalent to \float:32 f" on most ar
hite
tures, and spe
i�esone single-pre
ision 
oating-point variable.� \int:7 i" de
lares i to be an integer with at least seven bits of pre
ision.� \long:[14℄ l" de
lares l to be a ve
tor with 14 visible elements, ea
h of whi
his an integer �eld with the same number of bits of pre
ision as a C obje
t oftype long int.� \
har:7[14℄ 
" de
lares 
 to be a ve
tor with 14 visible elements, ea
h ofwhi
h is an integer �eld with at least seven bits of pre
ision.Type Coer
ionThese type extensions require several modi�
ations to the C type 
oer
ion rules.S
alar obje
ts are promoted to the dimension of the other type. This allows a s
alarobje
t to be used as an operand to a ve
tor operation without the programmer ex-pli
itly 
onverting the s
alar into a ve
tor.
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t is a s
alar and the dimensions are mismat
hed, the wider obje
tis trun
ated to the width of the other. This 
an be used with ve
tor shifts to extra
tsubve
tors from a ve
tor if ne
essary. An implementation may optionally generate awarning about the mismat
h.Expressions whi
h mix C and SWAR layout obje
ts, result in the SWAR layouteven if this requires the pre
ision to be redu
ed. Otherwise, an expression with mixedpre
ision yields a result with the higher pre
ision. This is primarily to allow s
alarsto be 
onverted to the pre
ision of a ve
tor (whi
h is usually smaller) rather thanfor
ing the entire ve
tor to be 
onverted to the pre
ision of the s
alar.Finally, modular expressions are 
ast to saturated expressions when mixed. Thisensures that over
ow 
auses saturation even when generated by intera
tion with mod-ular data.SummaryThis type system allows the programmer to spe
ify ve
tors of any length andelement pre
ision, and thus 
onforms to the general-purpose SWAR model. It allowsprogrammers to spe
ify data types whi
h mat
h the pre
ision of the data in questionwhile leaving the 
ompiler free to use the whatever pre
ision and layout works beston the target ar
hite
ture.4.2.2 Control Constru
ts and StatementsControl 
ow 
onstru
ts in SWARC are a superset of those in C, and operatesimilarly to those in MPL [107℄. From the point of view of the programmer usingSWARC, 
onditionally exe
uted statements must be applied only to those ve
torelements for whi
h the 
ondition is true. Be
ause SWAR instru
tions are applieda
ross all the elements stored in a CPU register, a 
onditionally exe
uted instru
tionmust be applied under an enable maskwhi
h limits its e�e
ts to the elements whi
h areenabled for the operation. SWARC 
ontrol 
onstru
ts must be modi�ed to properly
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ationsprogrammer. The SWARC 
onstru
ts in
lude:� if statements, whi
h operate as do C if statements if the 
onditional expressionhas a width (i.e. ve
tor length) of one. Otherwise, the if body is exe
utedi� the 
ondition is true for some enabled element of the 
onditional ve
tor.In this 
ase, the body is exe
uted under enable masking to limit the e�e
tsto those elements for whi
h the 
ondition is true. Likewise, the else body isexe
uted, under masking, i� the 
ondition is false for some enabled element ofthe 
onditional ve
tor.� where statements, whi
h operate as do SWARC if statements, ex
ept that thewhere and elsewhere bodies are always exe
uted. These bodies are masked tolimit their e�e
ts to the 
orre
t set of elements.� everywhere statements, whi
h enable all elements of the ve
tor for the statementwhi
h follows. These are used to temporarily interrupt the 
urrent enable state.� while statements, whi
h operate as do C while statements if the 
onditionalexpression has a width of one. Otherwise, the while body is exe
uted as long asthe 
ondition is true for at least one enabled element in the ve
tor. An elementis disabled when the 
ondition be
omes false for that element, and stays thatway until the loop is exited. Thus, the set of enabled elements is monotoni
allynon-in
reasing with ea
h iteration. On
e all the elements be
ome disabled, theloop exits, and the enable mask is restored to its 
ondition before entering theloop.� for statements, whi
h are related to the SWARC while in the same way thatthe C for is related to the C while.� do statements, whi
h are related to the SWARC while in the same way thatthe C do is related to the C while.
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ontinue and break statements, whi
h operate as in C ex
ept that an optionalexpression indi
ates how many nesting levels to 
ontinue or break from.� return statements, whi
h operate as in C ex
ept that no expression is allowedto be returned from a SWARC fun
tion.� labels, blo
k statements, and empty statements, whi
h all operate as in C.� fun
tion 
alls, whi
h operate as in C ex
ept that arguments are passed by ad-dress, not by value. The 
all is exe
uted as the body of an implied everywhere.This ensures 
ompatibility with ordinary C 
ode.� A spe
ial blo
k statement, whi
h en
loses ordinary C 
ode and 
an be insertedwherever a statement 
an appear, or as a top-level de
laration. These blo
ksare en
losed by a $f $g pair, and will be emitted into the output 
ode. Withinthese blo
ks, a dollar sign is used wherever a pound sign should appear in theoutput C 
ode.4.2.3 OperatorsThe standard C operators work as usual on C-layout data. Their de�nitions havebeen modi�ed to work in a 
onsistent and intelligent way with SWARC ve
tor data:� The unary and binary arithmeti
 operators operate as in C but in parallelon the elements of ve
tor operands. These in
lude addition and identity (+),subtra
tion and negation (-), multipli
ation (*), division (/), and modulus(%). In
rementation (++) and de
rementation (--) are in
luded only as pre�xoperators.� The arithmeti
 assignment operators also work in C. These in
lude additive(+=), subtra
tive (-=), multipli
ative (*=), divisional (/=), and modular (%=)assignment operators. The asso
iative additive and multipli
ative assignments
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tions when storing a ve
torvalue into a s
alar or when the operator is used as a unary pre�x.� The bit shift operators (<< and >>) and assignments (<<= and >>=) operate asin C but are applied in an elementwise manner to ve
tor operands. Bit rotatesare not 
urrently supported in the language; however, they probably will be inthe future and use a notation similar to that of ve
tor element rotates.� The binary bitwise logi
al operators (&, |, and )̂ are in
luded and operate as inC, but within ea
h �eld on ve
tor data.� Bitwise logi
al assignment operators (&=, |=, and =̂) are also in
luded and op-erate as in C. These perform redu
tions when storing a ve
tor into a s
alar orwhen the operator is used as a unary pre�x. The unary one's-
omplement op-erator (~) is also extended for parallel operation; however, there is no redu
tiveversion of this.� Comparison operators operate as in C, but evaluate to 0 in every false �eld and-1 (all '1' bits) in every true �eld. This modi�
ation to the C de�nition makesthe implementation of enable masking signi�
antly simpler. These operatorsin
lude less-than (<), less-than-or-equal (<=), greater-than (>), greater-than-or-equal (>=), equal (==), and not equal (!=) operators.Redu
tive 
omparisons are not in
luded, primarily due to a notational 
on
i
t.Following the 
onvention use for arithmeti
 and logi
al redu
tions, a redu
tive\greater-than" operations would be annotated as (>=) whi
h 
on
i
ts with thegreater-than-or-equal operator. Be
ause they are not 
ommonly used, theseoperations were not in
luded in the language.� Logi
al operators operate as do 
omparison operators. These in
lude logi
al-AND (&&), logi
al-OR (||), and logi
al-NOT (!).
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onditional operator (?:) works as in C, but applies enable maskingto blo
k side-e�e
ts from a�e
ting elements for whi
h the 
ondition does notapply.� The C assignment operator (=) is de�ned as in C, but is extended to performrepli
ation when assigning a s
alar value to a ve
tor and in elementwise fashionwhen assigning a ve
tor value to a ve
tor. Assignment of a ve
tor value to as
alar is disallowed unless a redu
tive assignment operator is used.� The type
ast operator ((type)) has also been extended to allow SWARC typesand is used as in C.� The sizeof operator operates as in C, returning the size of its operand in bytes.This operand may be a type or obje
t.� The array generation operator (fg) has been extended to allow ve
tor genera-tion. This is typi
ally used at initialization. Ve
tor generation via 
on
atenationis 
urrently unsupported by the language. This is somewhat in keeping withthe C language from whi
h SWARC is derived.� The array element operator ([ ℄) has been extended to allow individual ve
torelement a

esses.New operators have also been added to fa
ilitate operations 
ommon to SIMDpro
essing to be performed in the SWAR environment:� Binary minimum (?<), maximum (?>), and average (+/) operators have beenadded to fa
ilitate the 
omputation of these values for s
alars and ve
tors.Redu
tive unary and redu
tive assignment versions are also available, and takethe forms: ?<=, ?>=, and +/=.� Unary redu
tive and redu
tive assignment versions of the binary logi
al oper-ators (&&= and ||=) have been added to perform the SIMD ANY and ALLoperations for assignments and redu
tions.



- 208 -� The ve
tor element shift ([<<n℄ and [>>n℄) and rotate ([<<%n℄ and [>>%n℄)operators have been added to ease the implementation of inter-element 
ommu-ni
ation and similar algorithms.� The typeof operator returns the type of its expression argument. This allowsparameterized fun
tions to be written to handle many types.� The widthof operator returns the de
lared dimension of its expression argu-ment.� The pre
isionof operator returns the de
lared pre
ision of its expression ar-gument.4.2.4 An Example Fun
tionAn example of 
ode that 
an be written in SWARC is the Linpa
k ben
hmarkDAXPY loop, whi
h is a
tually performed as a SAXPY (Single-pre
ision AXPY) onmost SWAR hardware. A C version of the original loop looks like this:for (i = 0;i < n; i++)dy[i℄ = dy[i℄ + da*dx[i℄;In SWARC, the same 
ode is written as a ve
tor expression. Here, we show the
ode wrapped in a fun
tion body whi
h 
an be in-lined or 
opied dire
tly into theSWARC sour
e:void swar_saxpy(float:32[VECTSIZE℄ x, float:32[VECTSIZE℄ y, float s){ y += (s * x);} Note that the algorithm is expressed as operations on ve
tors mu
h as it wouldbe in mathemati
al notation. Thus, this SWARC 
ode is more natural than thelooped C 
ode. Also, this 
ode des
ribes the data and operations to be performedwithout exposing the stru
ture of the target ar
hite
ture. Thus, it is portable a
rossmultiple ar
hite
tures. This allows users to write portable SIMD fun
tions that 
an
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ompiled into eÆ
ient SWAR-based modules and interfa
e 
ode whi
h allows thesemodules to be used within ordinary C programs.4.3 The S

 CompilerThe experimental SWARC module 
ompiler, S

, is the �rst implementation of a
ompiler for a general-purpose SWAR language. S

 is a 
ross-
ompiler whi
h targetsseveral SWAR-
apable ar
hite
tures. These in
lude the Intel IA32 ar
hite
ture usingstandard C 
ode and MMX, 3DNow!, Enhan
ed 3DNow!, and AltiVe
 ar
hite
turesusing C 
ode with inlined assembly ma
ros whi
h make use of these extensions.S

 is intended to be not only a proof-of-
on
ept implementation of the SWARmodel, but also to provide a framework for further SWAR resear
h. To this end, thesour
e 
ode for S

 will be pla
ed into the publi
 domain when this dissertation isdeposited.Any portable SWAR language su
h as SWARC must provide the programmer witha 
onsistent programming model. Any 
ompiler for su
h a language must manage thein
onsisten
ies of the target ar
hite
tures to implement this model. The 
ompilermust provide emulation for unsupported operations and 
orre
tly implement SIMD-style 
ontrol 
onstru
ts.4.3.1 OrganizationThe S

 
ompiler 
onsists of the front end, a ba
k end, and a set of utilities whi
hare used throughout the 
ompiler. The purpose of the front end is to determinewhat type of pro
essing must be performed on ea
h sour
e �le, parse SWARC sour
e
ode, and 
onvert the SWARC sour
e into a type-
oer
ed, optimized intermediaterepresentation (IR) tree representing the ve
tor operations. The ba
k end has the taskof 
onverting the intermediate ve
tor tree into lists of tuples representing operationson word-sized data fragments, and generating C 
ode to implement the operationsdes
ribed by these tuples based on the 
apabilities of the target ar
hite
ture.
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ow of data through the 
ompiler follows a path from the mainfun
tion, through the parser, the fragmenter, and �nally the s
heduler.4.3.2 The Front EndThe front end 
onsists of six major fun
tional units. These determine how ea
hsour
e will be handled, parse SWARC sour
es to form an intermediate representation(IR) tree, and perform type 
he
king, type 
oer
ion, and ve
tor-based optimizationssu
h as 
onstant-folding of ve
tor operations.The parser was built using PCCTS (the Purdue Compiler Constru
tion Tool Set,see the network newsgroup 
omp.
ompilers.tools.p

ts). As it reads the SWARCsour
e 
ode, it generates top-level de
larations and prototypes for the C output. Asea
h fun
tion body is parsed an IR tree is built to represent it. This tree has a 
hild-sibling stru
ture and 
ontains nodes whi
h represent s
alar and ve
tor operations. Itis optionally passed to the front end optimizer before being passed to the ba
k endfor 
ode generation.The front-end optimizer re
on�gures the IR tree for a fun
tion by performing sev-eral optimizations. These in
lude 
onstant folding on s
alar and ve
tor operations,removal of 
ode to 
ompute 
onditionals with 
onstant values and the related unused
onditional bodies, and aggressive ve
tor-level algebrai
 simpli�
ation. These opti-mizations depend not only on the type of the values, but also on their pre
ision andsize.Figure 4.1 is a representation of the IR tree that the front end generates for ourSAXPY example. The notation \2x32f" indi
ates an entity or operation whi
h hastwo �elds 
ontaining 32-bit 
oating point values. We see that the ADD performs a2x32f addition on the 2x32f value loaded from memory lo
ation y and the produ
tof the s
alar (1x32f) obje
t a, whi
h is 
ast to a 2x32f value, and the 2x32f obje
t x.The 2x32f result is then stored in y.
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BLOCK

EXPR 4x32f

STORE 4x32f "y" 1,1

ADD 4x32f

LOAD 4x32f "y" 1,1 MUL 4x32f

CAST 4x32f

LOAD 1x32f "a" 1,1 LOAD 4x32f "x" 1,1Fig. 4.1. IR tree for SWAR SAXPY4.3.3 The Ba
k EndThe ba
k end 
onsists of three major fun
tional units. These divide ve
tor datainto word-sized fragments, generate a tuple tree for ea
h fragment, s
hedule the tuples,and generate output 
ode.Ve
tor operations en
oded in the IR tree as single tree nodes need to be 
onvertedinto a series of equivalent operations on the word-length fragments of their ve
torarguments. This is done by the fragmenter, whi
h 
onverts the IR tree into lists oftuple DAGs (dire
ted, a
y
li
 graphs) whi
h more 
losely represent the operationsperformed by hardware.Note that fragmenting is not strip mining, although it serves a similar purpose.The primary di�eren
e is that fragmenting does not generate any loops, expensiveindexing, or 
onditional end-of-ve
tor tests. Instead, it generates longer sequen
esof fragment-based 
ode that have the minimum possible overhead and maximum
exibility in s
heduling. Future versions of S

 may use strip mining in 
ombination
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One
Fragment

Vector +

Field Field

1−8x32

1−8x32

4−2x32

2x32 Add 2x32 Add 2x32 Add 2x32 Add

4−2x32

Fig. 4.2. Fragmentation of a Ve
tor Additionwith fragmenting for very long ve
tors, where ex
essive fragmented 
ode size mightlimit performan
e.In �gure 4.2, we see how an 8-element ve
tor addition is fragmented into fourword-sized parallel additions. In the diagram, and this dis
ussion, the notation n-fxbindi
ates an entity with n parts, ea
h of whi
h has f �elds of b bits. In the top halfof the �gure, a single ve
tor addition is 
on
eptually applied to two ve
tors, ea
h ofwhi
h has eight 32-bit data elements. Assuming that the target's registers have awidth of 64 bits, the fragmenter 
an only pa
k two 32-bit �elds into ea
h fragment asa 2x32 SWAR entity. The lower half of the �gure shows how the ve
tor is fragmented,with ea
h pair of elements assigned to a single fragment. The 
orresponding fragmentsof the two ve
tors are then added with a single hardware operation.The operations and �eld sizes supported by hardware vary widely a
ross targetar
hite
tures. These di�eren
es must be a

ounted for during the 
onstru
tion of thetuple trees. Data promotion to supported �eld sizes and emulation of unsupportedoperations are performed as ve
tor operations represented by IR tree nodes are 
on-
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tionsused must a

ount for many spe
ial 
ases and variations while 
onstru
ting the tupleDAGs.As the tuple trees are generated, 
ommon subexpression elimination is performedby reusing previously generated, equivalent tuple trees when possible. Redu
tion instrength optimizations 
an also be performed in these fun
tions; however, 
are mustbe taken, be
ause these optimizations depend on the availability of an instru
tionwith the 
orre
t data type and �eld width. Finally, several 
ompiler optimizations
an be applied at the fragment level during the generation of tuples to lessen theoverhead of enable masking and spa
er manipulation or to take advantage of thespe
ial situations 
reated by the use of fragmentation, spa
er bits, and enable masks.These optimizations will be dis
ussed in se
tion 4.4.On
e a tuple tree list for a basi
 blo
k has been generated, the fragmenter 
allsthe s
heduler to generate output 
ode for the list. The 
ombined s
heduler/register-allo
ator then performs a modi�ed exhaustive sear
h of the possible s
hedules forthe tuple list based on s
hedule permutation [188℄. A detailed model of the targetpipeline is used to estimate the 
ost of ea
h s
hedule.The s
heduler attempts to �nd an optimal s
hedule by �rst building an initials
hedule, then trying to improve it by pla
ing restri
tions on operations su
h asmemory a

esses and relaxing these restri
tions until a viable s
hedule 
an be gener-ated.On
e a s
hedule for the basi
 blo
k is found, output 
ode is generated for it. Thiss
hedule is known to be optimal for the target ar
hite
ture based on the pipeline
ost estimation. This 
ost estimate takes into a

ount emulation overhead, multiplepipeline usage, target-spe
i�
 instru
tion 
osts, operand sour
e di�eren
es, and 
ostsrelated to register renaming. Unfortunately, our 
urrent 
ost estimation model over-estimates the expe
ted 
ost of memory referen
es in 
ertain 
ir
umstan
es. This
auses the s
heduler to 
hoose non-optimal 
ode sequen
es in 
ertain situations.



- 214 -Returning to our SAXPY example, the C 
ode generated by S

 for the SWARversion targeting an AMD K6-2 (with four elements to keep it brief) is given below.
void swar_saxpy(p64_t *x, p64_t *y, float *a){ register p64_t *_
pool = &(mmx_
pool[0℄);{ movq_m2r(*(((p64_t *) a) + 0), mm0);pand_m2r(*(_
pool + 2), mm0);movq_r2r(mm0, mm1);psllq_i2r(32, mm0);por_r2r(mm0, mm1);movq_r2r(mm1, mm2);pfmul_m2r(*(((p64_t *) x) + 1), mm1);pfmul_m2r(*(((p64_t *) x) + 0), mm2);pfadd_m2r(*(((p64_t *) y) + 1), mm1);pfadd_m2r(*(((p64_t *) y) + 0), mm2);movq_r2m(mm1, *(((p64_t *) y) + 1));movq_r2m(mm2, *(((p64_t *) y) + 0));}_return: femms();}p64_t mmx_
pool[℄ = {/* 0 */ 0x0000000000000000LL,/* 1 */ 0xffffffffffffffffLL,/* 2 */ 0x00000000ffffffffLL,/* 3 */ 0xffffffff00000000LL};

The �rst �ve statements inside the inner blo
k load the 32-bit 
oat value a intoboth �elds of a 64-bit register. The sixth 
opies this value for use with anotherfragment. The remaining instru
tions perform the SAXPY on the two fragments ofthe ve
tor data in x and y. Note that the above 
ode is not optimally s
heduled duethe aforementioned errors in the 
urrent 
ost estimation 
ode.
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h was to develop 
ompiler optimizations whi
h 
ould beused to enhan
e 
ode performan
e and alleviate the negative e�e
ts of emulation onperforman
e.In [106℄, we introdu
ed and dis
ussed several stati
 
ompiler optimizations thatapply to SWAR programming. These were based on tra
king data, spa
er, and maskvalues, and aggressively simplifying 
ode dealing with spa
ers and masks. While someof these te
hniques 
an only be applied for parti
ular types of targets and �eld sizes,others apply to all targets, and some 
an be implemented at both the ve
tor andfragment levels.The S

 
ompiler forms a framework for resear
h on SWAR-based optimizationsof ve
tor and fragment operations and instru
tion s
heduling for SWAR-
apable tar-gets. In this se
tion, we dis
uss how these optimizations have been implementedwithin the framework of the S

 experimental 
ompiler. We will brie
y reintrodu
ethese optimizations here, but refer you to [106℄ for a more detailed dis
ussion. Foursu
h optimizations are: promotion of �eld sizes, SWAR bitwise value tra
king, sim-pli�
ation of spa
er manipulation, and enable masking optimization.4.4.1 Promotion Of Field SizesIn SWARC, the appli
ation programmer may spe
ify the minimum number of bitsof pre
ision required for a value. The 
ompiler may 
hoose to use more bits for storageof these values in order to make use of spe
ialized hardware on the target ar
hite
ture.For example, 16 bit values are handled very well by HP's PA-RISC MAX-2 [62℄, butsmaller sizes are not. Thus, operations on ve
tors that were de
lared to 
ontain14-bit values will be 
onverted into more eÆ
ient 
ode sequen
es for MAX-2 if theve
tors are internally promoted to 16-bit �elds instead of being handled using 14-bitemulation.
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h SWAR target, there are 
ertain �eld sizes that are less eÆ-
ient than some larger �eld size and should not be used internally. However, not allsmaller �eld sizes are less eÆ
ient than a larger size. In some 
ases, the �eld size issmall enough that the gain in parallelism outweighs the overhead of 
onverting to anunsupported �eld size.Current S

 
ompiler targets only dire
tly support �eld sizes of 8-, 16-, 32-, and 64-bits. Data of any other �eld size must be promoted to one of these or any operationson it will have to be emulated by the 
ompiler. The S

 
ompiler emulates 1-, 2-, and4-bit support, as these �eld sizes are reasonably eÆ
ient. All other unsupported �eldsizes are promoted to the next larger supported or emulated �eld size.Certain �eld sizes do not supply any added parallelism over the next larger size.This is true whenever the fragment length in �elds is equal for both �eld sizes. In this
ase, it is only bene�
ial to emulate the smaller �eld size if the extra bits 
an be usedto in
rease the number of spa
er bits (this will be explained in se
tion 4.4.3) betweendata �elds. Otherwise, promoting the data to a higher pre
ision allows the amount ofemulation 
ode ne
essary to be minimized without a�e
ting the performan
e of theoutput 
ode.In S

, promotion of data pre
ision is performed in the ba
k-end during the frag-mentation phase be
ause this is the �rst point in the 
ompilation pro
ess that theparameters of the target are known. Promotion depends not only on the size ofthe target's registers, but also on the set of instru
tions available to operate on thesupported �eld sizes.4.4.2 Ve
tor Algebrai
 Simpli�
ation and Bitwise Value Tra
kingIn [106℄, we introdu
ed the topi
 of bitwise value tra
king as it related to theoptimization of 
ompiler-inserted masking operations. These are primarily 
omposedof bitwise AND and OR operations and left and right shift operations using 
onstant-
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es. Consider the following example in C in whi
h thelow byte of a 16-bit word is moved into the high byte with masking:x = (( (x & 0x00ff) << 8 ) & 0xff00);Simple 
onstant folding will not improve the above 
ode be
ause no single oper-ation has two 
onstant operands. However, by aggressively applying the algebrai
properties of the operations involved, we 
an restru
ture the 
ode so that 
onstantfolding 
an be applied. Distributing the shift over the inner expression yields:x = (( (x << 8) & (0x00ff << 8) ) & 0xff00);whi
h 
an be folded to:x = (( (x << 8) & 0xff00 ) & 0xff00);From here, we see that the AND operations 
an be folded be
ause they are asso
ia-tive and ea
h has a 
onstant operand. In this parti
ular example, they also happen tohave the same value, although this is not true generally. The 
ode is �nally 
onvertedto the equivalent, but simpler, form:x = ((x << 8) & 0xff00);Note that unless we are able to fold the operations at ea
h step, we will be simplyrepla
ing one set of operations with an equal number of di�erent operations whi
hare probably equally expensive. A stri
t set of 
onditions must be met to make thisoptimization worthwhile:� The top-level operation op1 must have one operand whi
h evaluates to a 
on-stant value, and another whi
h is a tree rooted at an operation op2.� op2 must have one operand whi
h evaluates to a 
onstant, and a se
ond whi
his a tree rooted at an operation op3, over whi
h op2 is distributive 2.2Note that the distributed form of an expression is only approximately equal to the non-distributedform in �nite-pre
ision arithmeti
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h evaluates to a 
onstant, and be asso
iativewith op1. Note that op1 and op3 may di�er. For example, in 1-bit �elds,additions and ex
lusive-ORs are asso
iative.� Other restri
tions may be imposed due to the exa
t form of the expression treeand the asymmetry of any of the operation's properties. For example, op1 orop3 may be required to be 
ommutative so that operands may be reordered andasso
iative 
ombining of operations applied.After ensuring that the above 
onditions are met, the algorithm to perform thisoptimization on an expression tree has four basi
 steps:� Distribute op2 over op3.� Reorder the tree if ne
essary, depending on the 
ommutative properties of op1and op3.� Combine op1 and op3.� Perform 
onstant folding on the tree.After this last step, op1 has been eliminated from the tree. This pro
ess 
an thenbe 
ontinued up the expression tree in the attempt to remove more operations.In S

, this optimization 
an be applied at the ve
tor level to algebrai
ally sim-plify ve
tor operations, and at the fragment level to optimize masking and spa
eroperations on the tuple trees for ea
h fragment.4.4.3 Spa
er Value Tra
king and Simpli�
ation of Spa
er ManipulationSpa
er bits form bu�er zones between the �elds of a software-partitioned register.For example, we may pla
e three 10-bit data �elds in a 32-bit register with one spa
erbit, whi
h does not 
ontain data, pla
ed between ea
h pair of these �elds. These bits
at
h 
arries from, and supply borrows to, the data �elds of the register to keep thesea
tions from a�e
ting the other data �elds.
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h operation that generates 
arries or borrows, otherwise they may propagatethese e�e
ts to another �eld. After su
h an operation, these values may have beenaltered by a 
arry or borrow, and may need to be reinitialized to properly isolatethe �elds. By tra
king the range of values of spa
er bits between operations we 
anstati
ally determine when these preset and isolation operations 
an be eliminated.Also, in a series of ve
tor operations, these spa
er manipulations often result inredundant operations whi
h 
an be eliminated and operations that 
an be optimizedvia bitwise value tra
king. For example, 
onsider 
omputing e=((a+b)-(
+d)) us-ing a SWAR representation employing spa
er bits identi�ed by the mask s. Theunoptimized form of the operation 
ontains a large number of preset and isolationoperations: e = (((((a & ~s) + (b & ~s)) & ~s) | s) -((((
 & ~s) + (d & ~s)) & ~s) & ~s)) & ~s;As dis
ussed in [106℄, redu
tion of these operations 
an yield a signi�
antly tighter
ode sequen
e: e = (((a + b) | s) -((
 + d) & ~s)) & ~s;For �eld sizes in whi
h many operations must be emulated, the manipulation ofspa
er bits may be a signi�
ant fra
tion of all the instru
tions exe
uted. Thus, opti-mization te
hniques whi
h redu
e the frequen
y of spa
er manipulations are desirable.A generalized, but rudimentary form of spa
er manipulation is implemented inthe front-end of the 
urrent S

 
ompiler. Currently, it should be strong enough todete
t and optimize 
ode, su
h as that above, in whi
h the ne
essary 
onditions foroptimization are easily 
he
ked. However, it does not 
urrently do so be
ause the
ompiler is not building identi
al trees for the mask loads.Full spa
er value tra
king, in whi
h the value of the spa
er bits is determined andmaintained for ea
h node of the IR tree is not 
urrently performed. Su
h pro
essingwould be espe
ially useful in the ba
k-end, where masking tuples are often generated
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essing.4.5 Comparison with Con
urrent WorkIn 
hapter 1, we dis
ussed work performed at MIT's Laboratory for ComputerS
ien
e 
on
erning Superword Level Parallelism (SLP) and also the VSUIF proje
tat the University of Toronto. In this se
tion, we will 
ompare the approa
h taken forour S

 
ompiler with the approa
hes taken by these other resear
h groups.Any 
ompiler targeting multimedia-enhan
ed pro
essors will have to perform ea
hof the following steps regardless of the sour
e language or target ar
hite
ture:� Find parallelizable 
ode in the sour
e.� Convert the parallelizable 
ode into parallelized fragment-based operations.� Output fragment 
ode as sequential instru
tions.The primary di�eren
e between our approa
h and that of the University of Torontoand MIT groups is in how the �rst two of these steps are performed. The �rst ofthese steps is 
on
erned with identifying parallelizable 
ode in the sour
e. How thisis done depends on the sour
e language and its stru
ture.Both the Toronto and the MIT groups make modi�
ations to the SUIF 
ompilerto 
onvert sequential C sour
e 
ode into parallelized output. Thus, neither of thesegroups allows for non-standard data types. Only our approa
h in
orporates thispossibility in the programming model. This is done through a signi�
ant modi�
ationof the sour
e language.In our approa
h, the sour
e is written as �rst-
lass ve
tor 
ode (whi
h 
on
eptually
ould be extended to array 
ode). Dete
tion of parallelism here is simple { ve
toroperations are inherently parallelizable. Thus the �rst step is trivial, and the se
ond
onsists of simply fragmenting the ve
tor 
ode and s
heduling it.
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h is essentially traditional ve
torization. The 
ompiler ve
-torizes loops of sequential s
alar 
ode, written in a language su
h as C. This is thenstrip-mined at the fragment level to form fragment 
ode, with the target ar
hite
turetreated as a parallel ve
tor ma
hine.The SLP approa
h is more 
omplex. In this approa
h, looped, sequential s
alar
ode is unrolled, then the entire basi
 blo
k is sear
hed for 
ode whi
h 
an be 
ombinedinto fragments. Hen
e, this approa
h builds fragments in the dire
tion opposite tothat of our approa
h or that of the Toronto group.In order to �nd 
ombinable statements, the SLP dete
tion algorithm starts by�nding referen
es to adja
ent memory lo
ations whi
h 
an be a

essed with a singleload or store instru
tion. For example, a

esses of adja
ent array elements generally
an be 
ombined unless they 
ross an alignment boundary on a target whi
h 
annothandle unaligned a

esses. Thus, the SLP 
ompiler tries to 
ombine operations ondata whi
h is already allo
ated in pa
ked form. This keeps the 
ost of pa
king low,but the 
ost of having the parallelizing 
ompiler lo
ate data stored in pre-pa
ked formis high.In our approa
h, data is expe
ted to be expli
itly stored as a pre-pa
ked ve
tor.Ve
tor operations are thus not only known to be parallelizable, but are also known tobe in pre-pa
ked form. This makes it trivial for the 
ompiler to re
ognize this typeof parallelism and eliminates the 
osts asso
iated with pa
king and unpa
king nativeve
tor data. The downside is that our approa
h for
es the programmer to store datain pa
ked form or, if ne
essary, 
onvert it by hand.After the sour
e has been 
onverted to fragment-based operations, the third stepis similar for ea
h of the 
ompilers. Optimizations su
h as 
ommon sub-expressionelimination and 
onstant folding are performed and some form of s
heduling te
hniqueis used to s
hedule the sequential fragment operations.One of the primary problems with the design of multimedia sets has been thela
k of suÆ
ient me
hanisms to minimize the 
osts of manipulating data layouts. Itis 
ostly to pa
k data into the proper form for SWAR-like parallelism to be applied.
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king and unpa
king the data. If suÆ
ient me
hanisms are not provided fordealing with this issue, then the problem must be avoided or minimized.Our approa
h to dealing with this issue is to for
e the data to be laid-out in pa
kedform (as SWAR ve
tors) at all times. This eliminates the need to 
onvert data layoutsfrom unpa
ked to pa
ked form and vi
e versa. One problem with our approa
h is thatwe allow ve
tor 
ode to be linked with non-ve
tor 
ode. This means that in 
ertain
ases, the programmer must ensure the proper data layout by generating the datain pa
ked form or by performing pa
king before passing the data to ve
tor-basedfun
tions. This is not really part of the SWAR model, but is related to the way inwhi
h it is 
urrently supported within the SWARC language/S

 
ompiler framework.The SLP group handles this issue while 
hoosing how single-valued operations are
ombined to form operations on fragments. Part of the SLP 
ombination algorithmdetermines if a result 
an be reused in pa
ked form in a subsequent instru
tion. Ifso, it is left pa
ked; otherwise, it is unpa
ked for storage.One negative aspe
t of our 
ompiler implementation 
on
erns the size of the prob-lem atta
ked. In our approa
h, a large amount of sequential fragment 
ode may begenerated when a ve
tor operation on long ve
tors is fragmented. This is representedby a large graph in memory during 
ompilation. S
heduling the fragment operationsrepresented by this graph is both time and spa
e intensive and may take severalminutes to 
ompile a fairly small ben
hmark.The MIT group fa
es a similar problem, whi
h is exa
erbated by the fa
t that theirapproa
h is to unroll any loops, then 
oales
e single-valued operations into fragment-based operations. Thus, their 
ompiler generates even larger internal representationsembodying the individual statements before pa
king them into fragment-based oper-ations. Pa
king and s
heduling these operations is also time-intensive, and sin
e theproblem set is larger (single-valued operations versus fragment operations) it is moretime-
onsuming than our approa
h.
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h be
auseloops in the sour
e 
ode are 
onverted dire
tly into loops in the output 
ode withoutunrolling or fragmentation. This keeps the problem size small and minimizes thetime required to generate output 
ode. However, it lessens the possibility of interloopoptimization, espe
ially in regards to masking and emulation 
ode.
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5. EVALUATION OF GENERAL-PURPOSE SWARMODEL AND IMPLEMENTATIONSTo ensure that the new SWAR model is a viable repla
ement for 
urrent parallel pro-gramming models and that it allows programmers to exploit the SWAR te
hnology ofvarious COTS pro
essors, it is ne
essary to analyze the performan
e of an in
arnationof the model. The SWARC language developed in the previous 
hapter is one su
hin
arnation. This language was implemented using the S

 
ompiler whi
h is alsodes
ribed in the previous 
hapter.By studying the 
oding of various ben
hmarks and appli
ations, we 
an deter-mine if the model is portable and 
omplete. By studying their performan
e, we 
andetermine if performan
e gains are possible and develop an intuition about the typeof performan
e gains that 
an be expe
ted.The goal of the �nal phase of this resear
h was to develop and employ metri
s toexamine the measurable e�e
ts of SWAR-based te
hnology. In this 
hapter, I will dis-
uss a set of ben
hmark programs that have been used to evaluate the SWAR model,the SWARC language, and the S

 
ompiler. These in
lude a brute-for
e test of arith-meti
 expression handling, an algorithm for in
reasing the resolution of LCD panels,an algorithm whi
h mimi
s DNA subsequen
e sear
hes using non-standard pre
isiondata, and a version of the Linpa
k ben
hmark modi�ed with modular SWARC 
ode.5.1 An Integer Expression Validation ProgramThe \valid" program is used to ensure that the S

 
ompiler generates proper
ode for the majority of binary operations allowed in the SWARC language. Thisprogram was the primary means of testing the 
ompilation of mathemati
al, logi
al,
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onditional expressions, and gives a good indi
ation of how well the 
ompiler hasbeen ported to a given target.Basi
 arithmeti
 operations tested are: addition, subtra
tion, multipli
ation, di-vision, modulus, minimum, and maximum. Logi
al AND and OR are also in
luded,as are the bitwise logi
al AND, OR, and XOR operations. The bitwise logi
al 
om-bination AND-NOT is also tested, primarily be
ause this validation program wasoriginally developed for an MMX target. The equality, inequality, less-than, less-than-or-equal, greater-than, and greater-than-or-equal 
omparisons are also in
luded. Bitshift instru
tions are not. Ea
h of the operations tested is done so for both modularand saturated data.For ea
h operation, a test is 
ondu
ted whi
h 
ompares the results of S

-
ompiledSWARC 
ode and C 
ode 
ompiled by the native C 
ompiler for every possible elementvalue repli
ated throughout the register. That is, given a parti
ular data pre
ision,for every representable m and n, the operation is applied to one ve
tor that 
onsistsof elements whi
h ea
h have the value m while the other has elements whi
h ea
hhave the value n.Currently, this validation program tests operations on ve
tor fragments 
onsistingof signed or unsigned integer elements with power-of-two data pre
isions up to 32 bits.This test 
ags any dis
repan
ies in 
al
ulation as 
ompared against the C version ofthe same operation. The 
auses of these dis
repan
ies 
an then be studied and a
tiontaken to 
orre
t errors.By default, element pre
isions of up to 8 bits are tested when the program is runbe
ause this type of exhaustive testing 
an usually be done qui
kly for these smallerpre
isions. Exhaustive testing for larger pre
isions takes signi�
ant time (on the orderof days or 
enturies) to test on 
urrent hardware. To allow useful testing to be donein reasonable time, 16-bit tests are limited to one type of data (unsigned modular,unsigned saturated, signed modular, or signed modular) per run. In addition, bothoperand values 
an be strided in non-unit intervals for tests on 32-bit data elements.



- 227 -The sour
es for this program are not in
luded in this dissertation, but are part ofthe S

 
ompiler distribution. Some se
tions are in
luded in appendix E.This program has been su

essfully ported to several target ar
hite
tures in
ludingAMD K6-II and Athlon systems using 3DNow! , Intel Pentium and Pentium 4 systemsusing MMX, and a Motorola 7400 system using AltiVe
. It has even been ported to anunenhan
ed Pentium laptop 
omputer by generating standard C 
ode for the target.This shows that ve
tor arithmeti
 expressions 
an be properly des
ribed, 
ompiled,and ported to various enhan
ed and unenhan
ed target ar
hite
tures.5.2 An Integer Ben
hmark | Subpixel RenderingOne ben
hmark test was 
ondu
ted by Professor Dietz and others in a 
lassroomsetting in 1999. The purpose of this informal test was to determine what, if any,performan
e gains 
ould be obtained for S

-generated SWARC 
ode versus optimizedserial C 
ode and hand-generated SWAR 
ode.Color Liquid Crystal Display units are 
ommonly found on laptop 
omputers andare be
oming more prevalent for desktop and television systems. Ea
h pixel of oneof these displays a
tually 
onsists of a set of three mono
hromati
 \subpixels" ofdi�erent 
olors: red, green, and blue. These are usually arranged as verti
al stripesthat have 1/3 the width of the full pixel. By using these subpixels to triple thehorizontal resolution used, the quality of the displayed image 
an be signi�
antlyimproved [5℄.Unfortunately, treating subpixels like full pixels results in 
olor fringing. To rem-edy this, a 5-point software �lter was used whi
h applies 1/9, 2/9, 3/9, 2/9, 1/9weightings to the linear set of subpixels surrounding ea
h subpixel on the display.While this mat
hes well with the SWAR ve
tor model, the �lter is relatively expen-sive due to odd weightings and be
ause the memory referen
e pattern for subpixelshas a non-unit stride of three bytes.
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oding this �lter was also assignedto 16 individual students as part of a SWARC proje
t in the \Programming Par-allel Ma
hines" 
ourse (Spring 1999 in Purdue's S
hool of Ele
tri
al and ComputerEngineering). Students 
ould write their own MMX 
ode by hand or they 
ouldwrite SWARC 
ode then use the S

 
ompiler to generate C 
ode whi
h 
ould byhand-tuned or an exe
utable whi
h was ready to run.At least a few of the students a
hieved more than 5x speedup over the optimizedC 
ode using S

-generated MMX 
ode. While some students wrote their own MMX
ode by hand, the fastest version used unedited S

-generated 
ode.This ben
hmark showed that the SWAR model 
ould be used to des
ribe a usefulparallel algorithm, that this 
ould be 
oded using the SWARC language, and that theS

 
ompiler 
ould be used to generate parallel MMX integer 
ode for standard pre
i-sion data and a
hieve signi�
ant performan
e gains for this algorithm over optimizedserial 
ode.5.3 An Integer Emulation Ben
hmark | Gene Mat
hingA third ben
hmark program operates on integer data of a non-standard pre
i-sion. This for
es the 
ompiler to emulate unsupported operations on all 
urrentmultimedia-enhan
ed ar
hite
tures. The ben
hmark 
an thus be used as a test ofthe S

 
ompiler's ability to generate 
orre
t emulation 
ode. This program, dna.S
,mimi
s a series of sear
hes for a parti
ular sequen
e of nu
leotides in longer 
hains ofDNA.The SWAR model and the SWARC language allow a natural des
ription of theseentities and the algorithms whi
h manipulate them. Ea
h DNA 
hain is representedby a �xed-length (350-element) ve
tor of 2-bit pseudo-random data whi
h representsthe four possible nu
leotides at ea
h position in the 
hain. Similarly, the target se-
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e is represented by a shorter, �xed-length (3-element) ve
tor whi
h also 
onsistsof 2-bit data.These data obje
ts mat
h the physi
al entities whi
h they des
ribe more pre
iselythan do the obje
ts one would be for
ed to use under other programming models.This allows the 
ompiler to generate better output 
ode. For example, des
ribingthese entities as ve
tors of 2-bit obje
ts allows the maximum amount of parallelismto be exploited during exe
ution. It also allows the programmer to avoid stru
turaloverhead, su
h as looping 
onstru
ts, required by non-ve
tor models.The 
ore of this program was written in the SWARC language and is shown inappendix F. It was ported via the experimental S

 module 
ompiler to variousmultimedia-enhan
ed target ar
hite
tures and even to targets whi
h do not dire
tlysupport any form of SWAR parallelism. While this program 
ontains some non-portable se
tions, they are entirely restri
ted to the C interfa
e 
ode.The program was 
ompiled and run on several platforms in
luding a 166MHzPentium-based laptop 
omputer with no multimedia support, a 300MHZ K6-2 desk-top system with 3DNow!, a 1.5GHz Pentium 4 system with and without using MMX,and a 500MHz PowerBook G4 with and without using AltiVe
.This ben
hmark proves that the SWARC language 
an been su

essfully used todes
ribe algorithms whi
h are best suited to data of non-standard pre
isions. Thatit 
an be ported between a diverse set of targets proves the portability of the SWARmodel and the SWARC language. Also, this ben
hmark shows that speedup 
an beobtained on various target ar
hite
tures for data types whi
h they do not dire
tlysupport.The rest of this se
tion is a dis
ussion of the results obtained from porting thisprogram to various target ar
hite
tures and an analysis of the problems en
ounteredduring the development of this program. For ea
h target, the ben
hmark was run forS

-generated 
ode using 2-bit integers and employing various fragment sizes, 
om-piler optimization levels, and optimization types. It was also run for GCC-
ompiledC 
ode using 32-bit integer data and separately for C 
ode using 8-bit 
hara
ter data.
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 TargetThe AltiVe
 
ode generated by S

 a
hieved speedup, though signi�
antly lessthan one would hope given AltiVe
's 128-bit registers and the 2-bit data. The optimalspeedup would have been approximately 128/2 or 64x over serial 32-bit integer or 8-bit 
hara
ter 
ode. The average speedup obtained over measured trials ranged fromabout 3.8x to about 4.6x | only 1/16 of the optimal speedup. The results of thesetrials are given in table G.1 in appendix G.Corre
t operation of the S

-generated AltiVe
 
ode was assumed to be veri�ed by
omparing the results with the GCC-generated C versions and �nding no di�eren
ein the 
al
ulated totals. The operation of the C programs was veri�ed by hand usingsmaller DNA ve
tors.Note that the best speedup, 4.636x, was a
hieved by S

-generated C 
ode op-erating on 32-bit fragments of 2-bit data ve
tors in the PowerPC's general registerset. While this 
ode was in
orre
t (the 
al
ulated total is slightly o�, probably dueto in
orre
t handling of end fragments), it is remarkable be
ause it does not use theAltiVe
 instru
tion set.The best speedup using the AltiVe
 instru
tions was 4.567x, whi
h is nearly asgood. Given that the AltiVe
 registers are four times as large as the PowerPC'sgeneral registers, we would expe
t the 128-bit fragment AltiVe
 SWAR 
ode to beabout four times as fast as the 32-bit fragment SWAR integer 
ode. It is instru
tiveto examine why this level of performan
e was not a
hieved.The primary problem is that loads and stores are ineÆ
ient. This is partly dueto the intera
tion of the S

 
ompiler with the underlying C 
ompiler. S

 generatesvariables using this 
ompiler, whi
h is assumed to be the GNU C 
ompiler, GCC. GCCallows an aligned attribute to be asso
iated with variables and types; however, it onlyapplies to stati
ally allo
ated obje
ts. Thus, the alignment of automati
 (i.e. lo
al)variables and fun
tion parameters is not guaranteed, and S

 is for
ed to assume thatthey are unaligned.
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 memory a

esses are auto-aligning. That is, a given address is 
onvertedto the nearest aligned address before memory is a

essed. Thus, aligned loads intothe ve
tor registers 
an be a

omplished with a single instru
tion but unaligned loadsrequire extra pro
essing.To handle an unaligned load at address addr, two auto-aligning loads must beexe
uted: one whi
h loads the 128-bit (16-byte) obje
t starting at the aligned addressbelow addr, and one whi
h loads the 128-bit obje
t starting at the aligned addressabove addr. These are followed by an instru
tion whi
h loads an alignment indexfragment whi
h is then used in a permute instru
tion to rearrange the bytes as needed.Thus, a typi
al load to an AltiVe
 register takes four times as many instru
tionsas a load to a general register. In fa
t, depending on the pre
ision of the obje
t beingloaded, the load may require up to two more instru
tions to pla
e the obje
t into thebit �eld that S

 
onsiders to be �eld 0.In its 
urrent in
arnation, S

 simply assumes that all loads and stores, ex
eptthose whi
h a

ess the stati
ally allo
ated 
onstant and spill pools, are unaligned.Thus, be
ause of the way in whi
h variables are de
lared and passed between fun
-tions, S

 must exe
ute several extra steps to retrieve data in a known-to-be-alignedform.Stores are subje
t to the same restri
tions, but here the problem is solved by usinga permute (whi
h requires an index ve
tor) followed by four 32-bit stores. Hen
e, S

takes six instru
tions to perform a 128-bit store from an AltiVe
 register. Smallerpre
ision stores 
an be implemented using fewer instru
tions be
ause we 
an repli
atethe value throughout the register in one instru
tion, then let the following elementstore sele
t the 
orre
t �eld. Comparing these operations to a general register store,it takes up to six times as many instru
tions to store an obje
t whi
h resides in anAltiVe
 register.The situation is made worse when a 128-bit obje
t is a

essed be
ause the twohalves of the obje
t must be swapped to pla
e the low end of the data at the low endof the ve
tor register. Thus, loads take up to �ve operations and stores up to seven.
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tor elements are even more 
omplex when the element isindexed by a value in an AltiVe
 register. This is be
ause AltiVe
 expe
ts all theparts of an address to be in the general registers, but does not provide a means ofdire
tly moving parts whi
h reside in a ve
tor register to them. Thus, these partsmust be stored to memory, then loaded into the general registers before they 
an beused as part of an address in a memory operation.While one may argue that all addressing data should be generated in the general-purpose integer registers, we will dismiss this argument be
ause any integer valueshould be usable as a ve
tor index, regardless of whi
h register set it is generated in.In my opinion, the failure to support addressing modes whi
h use ve
tor registers, orto provide instru
tions whi
h allow ve
tor data to be moved dire
tly to the general-purpose registers, is a signi�
ant 
aw in the AltiVe
 instru
tion set. However, the S


ompiler should do a better job of alleviating this problem by aggressively 
ombiningve
tor element memory operations.Another problem en
ountered exists be
ause the S

 
ompiler was originally writ-ten to target only Intel-based ar
hite
tures. These allow up to two registers to benamed in ea
h instru
tion. S

 has not yet been fully 
onverted to support the three-and four-address 
ode that AltiVe
 allows. Thus, 
urrent S

-generated C output istwo-address 
ode. Extra instru
tions are used to save register values whi
h would beoverwritten in two-address 
ode but need not be in three-address 
ode. This makesthe S

-generated AltiVe
 
ode both longer and slower than is ne
essary.Despite these problems, these tests show that SWARC 
ode operating on non-standard integer data types 
an be ported to a PowerPC G4 target using its standardinteger instru
tions or AltiVe
-enhan
ed instru
tion set. It also shows that this 
ode
an a
hieve signi�
ant speedup in either 
ase.



- 233 -5.3.2 Analysis of Results on MMX TargetS

-generated MMX 
ode did not a
hieved speedup in any of the tests performedon a Pentium 4 target. The speedup obtained over measured trials was between ap-proximately 0.4x and 0.8x. These results are summarized in table G.2 in appendix Gfor 2-bit S

-generated MMX 
ode, 2-bit S

-generated C-only 
ode using the target's32-bit general-purpose integer registers, GCC-generated C 
ode using 32-bit integerdata, and GCC-generated C 
ode using 8-bit 
hara
ter data.The best-
ase S

 
ode was generated without using the MMX registers, withS

 running at optimization level 0, and with S

 only performing ba
k-end peepholeoptimizations. Thus, we might assume that the overhead of using the MMX-enhan
edhardware was greater than the gains made. However, an inspe
tion of the generated C
ode reveals that the MMX-based C 
ode is hindered by the relatively small numberof enhan
ed registers available. S

's spill 
ode is admittedly horrendous, so there is ahigh penalty for spills. This is the primary reason for the relatively poor performan
eof the MMX 
ode.The worst-
ase S

 
ode performed better than the worst-
ase GCC 
ode. Hen
e,the range of performan
e of S

-generated 
ode falls within that of the GCC-generated
ode. Thus, the 
hoi
e of data pre
isions and 
ompiler swit
hes has more e�e
t thanthe 
hoi
e between the S

 and GCC 
ompilers.Corre
t operation of the S

-generated MMX 
ode was assumed to be veri�ed by
omparing the results with the GCC-generated C versions and �nding no di�eren
ein the 
al
ulated totals. Note that there is no di�eren
e in the results of the S

-generated non-MMX 
ode and the GCC-generated 
ode.These tests show that SWARC 
ode operating on non-standard integer data types
an be ported to a Pentium 4 target using its integer instru
tion set or MMX exten-sions, and that the range of performan
e of this 
ode is similar to that of GCC-generated 
ode from a C sour
e.
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-generated 3DNow! 
ode also a
hieved speedup when run on the K6-2target. Again, this was signi�
antly less than the theoreti
al maximum of 64/2 or32x over serial 32-bit integer or 8-bit 
hara
ter 
ode, but was more than either theAltiVe
-based 
ode on the PowerPC target or the MMX 
ode on the Pentium 4 target.The obtained speedup for the S

-generated 
ode ranged from approximately 3.9xto 5.1x. The results are summarized in table G.3 in appendix G for 2-bit S

-generated 3DNow! 
ode, 2-bit S

-generated C-only 
ode using the target's 32-bitgeneral-purpose registers, GCC-generated C 
ode using 32-bit integers, and GCC-generated C 
ode using 8-bit 
hara
ters.As with the MMX target, 
orre
t operation of the S

-generated 3DNow! 
ode wasassumed to be veri�ed by 
omparing the results with the GCC-generated C versionsand �nding no di�eren
e in the 
al
ulated totals.The 3DNow! 
ode su�ers from the same problems as the MMX 
ode in relation toregister spills. Interestingly though, the 3DNow! trials all obtained speedup over thebest GCC-generated C 
ode. This is a signi�
ant di�eren
e in two relatively similarar
hite
tures. The reason for this needs to be studied, but may in
lude the use of3DNow!'s femms instru
tion whi
h is intended to be a faster version of the MMX emmsinstru
tion, or an ar
hite
tural issue su
h as the number of available pipelines for thegiven 
ode sequen
e or the design of the memory hierar
hy. It may also be due todi�eren
es in the GCC-generated C 
ode for the di�erent targets.These tests show that SWARC 
ode operating on non-standard integer data types
an be ported to a K6-2 target using its standard integer instru
tion set or its3DNow! extensions. It also shows that this 
ode 
an a
hieve signi�
ant speedupin either 
ase.
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ed Pentium target, S

-generated IA32 
ode a
hievedspeedup in only one 
ase, but not by a signi�
ant amount over the best GCC-generated C 
ode. In the majority of 
ases, the S

-generated 
ode was a
tuallyslower. This is to be expe
ted be
ause the ar
hite
ture does not provide any formof SWAR instru
tions other than the basi
 polymorphi
s (bitwise logi
al operations).However, this isn't the point of porting this 
ode to an unenhan
ed 32-bit ar
hite
-ture. The important point proven here is that the SWARC 
ode 
an be ported to anunenhan
ed ar
hite
ture without modi�
ation.The speedup for S

-generated 
ode ranged from approximately 0.42x to 1.03x. Itis worth noting that the GCC-generated 
ode a
hieved speedups ranging from 0.28x to1.00x. Thus, the 
hoi
e of 
ompiler swit
hes appears to a�e
t the performan
e morethan the 
hoi
e between S

 and GCC. The results are summarized in table G.4 inappendix G for 2-bit S

-generated C-only 
ode using 32-bit integer fragments in thegeneral registers, GCC-generated C 
ode using 32-bit integers, and GCC-generatedC 
ode using 8-bit 
hara
ters.Corre
t operation of the S

-generated C 
ode was again veri�ed by 
omparing theresults with the GCC-generated C versions and �nding no di�eren
e in the 
al
ulatedtotals.These tests show that SWARC 
ode operating on non-standard integer data types
an be ported to an unenhan
ed IA32 target using its general registers and integerinstru
tion set. It also shows that this 
ode 
an a
hieve performan
e similar to thatof standard C 
ode.5.4 A Floating-Point Ben
hmark | Linpa
kAs a ben
hmark for 
oating-point performan
e, a version of the Linpa
k ben
h-mark used for ranking a wide range of ma
hines for the Top 500 Super
omputers
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-generated 
ode. This was run on several systemsand 
ompared with the standard C version for single-pre
ision data.In one test using a 400MHz AMD K6-2 platform [5℄, the standard C versiona
hieved 54 M
ops. The modi�ed version in
luded a few lines of the 
ore DAXPY,DDOT, and DSCAL loops whi
h were rewritten using hand-inlined S

-generate3DNow! 
ode. Using this 
ode, the performan
e in
reased to approximately 90 M
ops.While a signi�
ant improvement, performan
e was hindered by the S

 s
heduler's
onservative estimations of load 
ost whi
h was previously dis
ussed. A hand-tunedversion of the S

-generated 3DNow! 
ode s
hedule a
hieved more than 220 M
ops.In more re
ent testing, a C version of Linpa
k was modi�ed to 
onditionally 
allSWARC 
ode 
ompiled by S

 for the DAXPY, DDOT, and DSCAL loops. This was
onstru
ted as two sour
es: one in SWARC, the other in C whi
h were 
ompiled and
ombined by the S

 
ompiler (no hand 
oding). The SWARC sour
e is presentedin appendix H. This was 
ompiled for various �xed subve
tor lengths and maximumoptimization times. Results of the trial runs for this set of tests are also presented inappendix H.These tests were 
ondu
ted on a 1GHz AMD Athlon-based system, with and with-out using 3DNow!, and on a 500MHz PowerPC G4-based system, with and withoutusing AltiVe
. Signi�
ant improvement of between 51.9% and 105% was a
hievedfor the 3DNow! target, taking performan
e from the 250{270 M
ops range to the407{616 M
ops range. Performan
e on the AltiVe
 target was, however, disappoint-ing. It never rea
hed the level of the 
orresponding C 
ode 
ompiled by the nativeC 
ompiler. In fa
t, there was between a 7.6% and 8.9% de
rease in performan
efrom around 176 M
ops to between 160 and 167 M
ops for the best S

-generated
ode. The worst S

-generated 
ode was near 50 M
ops | around a 70% de
rease.This degradation is most likely due to the poor handling of memory a

esses bothby the AltiVe
 target and by the S

 
ompiler as dis
ussed in the se
tion on the dnaben
hmark (se
tion 5.3).
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hmark showed that the SWAR model 
ould be applied to standardhigh-performan
e 
omputing algorithms, that the SWARC language 
ould be used todes
ribe portable 
ode modules for operating on single-pre
ision 
oating-point data,and that these modules 
ould be translated by the S

 
ompiler into 3DNow!- orAltiVe
-based parallel 
oating-point 
ode. It also shows that the S

-generated 
ode
an a
hieve signi�
ant speedup over GCC-generated 
ode for the 3DNow! target. Italso highlights the weaknesses of the AltiVe
 target and the 
urrent S

 
ompiler withregards to the handling of memory a

esses.
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6. CONCLUSIONIn this thesis, a new, abstra
t model of parallel 
omputation was developed whi
hbetter re
e
ts the 
apabilities and limitations of modern SWAR (SIMD Within ARegister) ar
hite
tures than did previously-de�ned 
omputational models.A summary of the support provided by various multimedia extension sets forgeneral-purpose SWAR pro
essing was 
ompiled (se
tion 2) and presented as a set oftables des
ribing the type of SWAR operations supported by ea
h of these families(se
tion 2.1 and appendix C) with an a

ompanying analysis of their 
apabilities(se
tion 2.2).These 
apabilities were shown to vary signi�
antly, with some extensions o�er-ing little support for SWAR pro
essing, having only a few SIMD instru
tions, whileothers o�ered signi�
antly better support with larger, more 
omplete repertoires.Commonly-supported operations were identi�ed, and the suitability of the varioustypes of operations whi
h these extensions perform was 
onsidered in terms of in
lu-sion in a general-purpose SWAR programming model.This work formed a basis for the design of the new, general-purpose SWAR pro-gramming model developed in this resear
h (se
tion 3.3) and hereby pla
ed in thepubli
 domain. This programming model allows general-purpose appli
ations pro-grammers to exploit ve
tor SIMD parallelism when targeting SWAR-
apable 
om-modity o�-the-shelf (COTS) pro
essors in a portable, target-independent manner.This model more 
losely re
e
ts the 
apabilities and limitations of 
urrent SWARpro
essors than did previously-de�ned models by allowing for 
ommonly-supportedoperations su
h as saturation addition while dis
ouraging esoteri
 operations su
h asfull permutations and less eÆ
ient operations su
h as 
omplex 
ommuni
ations andmulti-dimensional array operations.
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ale, high-level language for SWARshould exhibit (se
tion 3.4) was enumerated. This formed the basis for the devel-opment of prototype implementations of the model. These guidelines 
an also beused by others who wish to develop languages based on the general-purpose SWARpro
essing model.Prototype implementations of the SWAR model were developed and presentedin
luding various libraries (se
tion 4.1) and the SWARC modular programming lan-guage (se
tion 4.2) whi
h provides a portable, target-independent language for ex-pressing data parallel appli
ations in terms of ve
tor pro
essing. These implementa-tions show that the SWAR programming model is viable and 
an be implemented invarious forms.The S

 
ompiler for the SWARC language (se
tion 4.3) was enhan
ed through thedevelopment of various te
hniques for emulating unsupported operations, for exploit-ing the advan
ed features of various targets, and for optimizing SWAR-based target
ode. These advan
ements allow 
ode to be generated for a variety of multimedia-enhan
ed ar
hite
tures and even unenhan
ed pro
essors. The 
urrent version of theS

 
ompiler is hereby pla
ed in the publi
 domain.Various metri
s were also developed and applied to evaluate the portability, 
om-pleteness, and performan
e of the SWARC language and S

 
ompiler. These tookthe form of SWARC programs and in
lude:1. A validation program to thoroughly test the 
orre
tness of S

-generated 
odefor the majority of binary operations allowed in SWARC. This is limited topower-of-two data pre
isions through 32-bits, but in
ludes both signed and un-signed and both modular and saturated data types.2. A program to test the portability and performan
e of 
ode whi
h operates onnon-standard pre
ision integer data.
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k ben
hmark to test the single-pre
ision 
oating-point performan
e of S

-generated 
ode on various platforms whi
h support
oating-point SWAR operations.4. Various other programs developed by me or by others.These metri
s show that the SWAR model is viable as exhibited by its implemen-tation as the SWARC ve
tor pro
essing language. Spe
i�
ally, they show that:1. The SWARC language allows general-purpose integer and 
oating-point ve
torappli
ations to be des
ribed in a 
onsistent, natural, and portable manner.2. SWARC appli
ations may use standard pre
ision 
oating-point data or integerdata of standard or non-standard pre
isions, in
luding those whi
h are notsupported dire
tly by the target ar
hite
ture.3. SWARC appli
ations 
an in
lude s
ienti�
 and high-performan
e algorithms aswell as multimedia algorithms.4. SWARC 
ode 
an be, and has been, ported to various multimedia-enhan
edand unenhan
ed ar
hite
tures.These metri
s also show that the S

 optimizing 
ompiler for the SWARC languageis viable and 
apable of generating highly eÆ
ient 
ode, although it has been foundto be la
king in 
ertain respe
ts. Spe
i�
ally, these metri
s show that:1. The S

 
ompiler 
an generate output whi
h exploits the multimedia enhan
e-ments of various targets to a
hieve performan
e gains.2. The S

 
ompiler 
an generate standard C 
ode output whi
h 
an be ported tovarious unenhan
ed pro
essors.3. Signi�
ant speedup 
an be a
hieved for integer and 
oating-point appli
ations.



- 242 -4. Signi�
ant speedup 
an be a
hieved, or signi�
ant degradation avoided, for ap-pli
ations whi
h require the emulation of operations on non-standard pre
isioninteger data.5. The S

 
ompiler's intera
tion with the underlying C 
ompiler has impli
ationsin regards to the layout of data in memory whi
h 
an have a signi�
ant negativeimpa
t on performan
e.6. The �xed-ve
tor size required by the S

 
ompiler is a liability, albeit one that
an be easily addressed using known te
hniques.7. The fragmentation of large ve
tors, as opposed to strip-mining them, 
an havea signi�
ant e�e
t on the size of 
ode and 
an negatively impa
t the 
ompiler'sability to generate eÆ
ient 
ode.In summary, the general-purpose SWAR pro
essing model developed in this thesisis a new, abstra
t model of parallel 
omputation whi
h better re
e
ts the 
apabilitiesand limitations of modern SWAR ar
hite
tures than did previously-de�ned 
ompu-tational models and allows programmers to exploit the 
apabilities of 
urrent SWARar
hite
tures in a portable and 
onsistent manner.6.1 Future Resear
hThis work provides a starting point for future resear
h and the development ofpra
ti
al programming languages for SWAR pro
essing. Future resear
h may in
lude:1. Extension of the model to array-based SWAR ar
hite
tures when they be
ome
ommonpla
e. Current 
ommodity SWAR pro
essors are primarily based onone-dimensional ve
tor parallel ar
hite
tures. Future COTS pro
essors willlikely be based on multi-dimensional array parallel ar
hite
tures. This willrequire 
onsideration of 
ertain aspe
ts of SIMD pro
essing whi
h have beensafely ignored in the 
urrent work.



- 243 -2. Re�nement of the SWARC language as SWAR ar
hite
tures evolve. The set ofoperations whi
h a typi
al multimedia enhan
ed ar
hite
ture supports 
an beexpe
ted to grow as this paradigm matures and new ar
hite
tures are developed.Certain operations will be
ome more 
ommon while others will be orphaned.3. Continued development of new emulation te
hniques for unsupported SWARoperations. Portability depends greatly on the ability to emulate operationswhi
h are unsupported by the target ar
hite
ture. Further resear
h will bene
essary to in
rease the range of viable targets and the repertoire of viableoperations.4. Development of new languages based on the general-purpose SWAR model.These may in
lude appli
ation-spe
i�
 languages or languages whi
h denoteparallel data or operations in a manner whi
h di�ers from 
urrent SWAR lan-guages.
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APPENDIX AHISTORICAL PERSPECTIVEIn order to develop this new abstra
t model for modern SWAR ar
hite
tures, we needto have a good understanding of related ar
hite
tures and programming models. Inthis appendix, we dis
uss some of these ar
hite
tures and the languages developedfor programming them in relation to SWAR pro
essing.Ve
tor Ar
hite
turesSWAR ar
hite
tures are 
losely related to ve
tor ar
hite
tures in that both aredesigned to perform identi
al operations on sets of related data. Knowledge of thesear
hite
tures, their features, and the issues traditionally asso
iated with them shouldprovide insight into how SWAR ar
hite
tures may be best used, and may give 
luesas to the future of SWAR ar
hite
tures.In general, a typi
al ve
tor pro
essor has one or more sets of fun
tion units. Thesemay be 
ontained within a single pro
essor (a unipro
essor) or spread a
ross a groupof 
onne
ted pro
essors (a multipro
essor). Ea
h set 
ontains one or more individualfun
tion units, some or all of whi
h may be redundant. In this dis
ussion, we will referto a set of fun
tion units as a \pro
essing element" (PE), regardless of the numberof pro
essors involved.Having multiple fun
tion units allows multiple instru
tions to be issued at onetime, as long as no two instru
tions require the same fun
tion unit simultaneously.For example, the exe
ution of an addition and a multipli
ation in the same 
lo
k
y
le 
an take pla
e if separate adder and multiplier units are available. This is oftenreferred to as supers
alar operation. Almost all of the ve
tor pro
essors dis
ussedbelow had supers
alar PEs.
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y of fun
tion units within a PE allows instru
tions of the same type tobe issued simultaneously. These may or may not be part of the same ve
tor instru
-tion, depending on how the fun
tion units are used and 
ontrolled. In some 
asesthese units are used independently, in supers
alar fashion, su
h as when exe
utingtwo unrelated additions in the same 
lo
k 
y
le. In other 
ases, they are used togetherto exe
ute the same instru
tion on di�erent parts of the same set of data. In this
ase, they are a
ting in a SIMD manner.Most of the ve
tor pro
essors dis
ussed below have multiple identi
al PEs. Su
h asystem, whether a unipro
essor or multipro
essor, is essentially a parallel pro
essingsystem. If these are driven by a single instru
tion, then they a
t as a SIMD system.If they are driven as independent se
tions, they a
t as a MIMD system instead. Inthis dis
ussion, we are primarily 
on
erned with pipelined and SIMD ve
tor systems,whi
h are similar to SWAR ar
hite
tures, rather than MIMD ve
tor systems, whi
hare not.STAR-100Built in the early-1970s, the Control Data Corporation (CDC) STring ARraySTAR-100 [144, 125℄ was one of the �rst ve
tor super
omputers. Its supers
alarve
tor unit 
onsisted of two dissimilar pipelined fun
tion units. These were an adder/-divider/logi
al unit and a separate adder/multiplier. Both 
ould produ
e a resultduring ea
h 
lo
k 
y
le, so the ve
tor unit 
ould 
omplete up to two ve
tor elementoperations per 
y
le.A

ording to [141℄, ea
h of the STAR-100's ve
tor fun
tion units also had a SWAR-like feature: they 
ould pro
ess one 64-bit operation or two simultaneous 32-bit op-erations. Spe
ial logi
 inserted between the two halves of the 64-bit datapath brokethe 
arry 
hains between them. This e�e
tively separated the datapath into two in-dependent parts whi
h performed identi
al operations. This method of partitioningthe pro
essor is essentially the same method used in modern SWAR ar
hite
tures.



- 263 -Spe
ial hardware was in
orporated into the STAR-100 to handle sparse ve
tors,whi
h 
onsist mostly of zero-valued elements. These were stored as two separateve
tors: one whi
h held a bit mask indi
ating the non-zero elements and a se
ondwhi
h a
tually stored those elements. When a sparse ve
tor was a

essed, the bitve
tor was 
he
ked for ea
h element to determine if it needed be loaded or storedfrom the ve
tor of non-zero elements.The STAR-100 had several other innovative features. One was the use of bit masksfor 
ontrolling 
onditional operations. Another was the ability to use \...stride[s℄ andgather/s
atter memory a

esses...." [141℄ This last point is 
ontradi
ted, however,in [135℄ whi
h 
laims that the STAR-100 
ould only handle single-strided a

esses.Unfortunately, neither [141℄ nor [135℄ is a �rst-hand sour
e, and I have been unableto obtain a 
opy of [144℄.Operands were drawn from a fast main memory and results were stored there. Anyresult that was to be used in a subsequent operation was �rst written to memory,then read ba
k from it. This memory-to-memory ar
hite
ture resulted in slower thanne
essary inter-operation times. The STAR-100 ultimately failed due to this and itspoor s
alar performan
e. However, it was the beginning of the CDC line of ve
torpro
essors whi
h survived into the late 1980s.TI-ASCThe Texas Instruments Advan
ed S
ienti�
 Computer (TI-ASC) [139, 190, 141℄had an ar
hite
ture similar to that of its 
ontemporary, the CDC STAR-100. Bothwere �rst-generation pipelined, memory-to-memory, ve
tor pro
essors. Both em-ployed bit masks for 
onditional exe
ution and were 
apable of providing SWAR-likefun
tionality.There were some di�eren
es between the TI-ASC and the STAR-100. One was theapparent la
k of sparse ve
tor handling in the TI-ASC. The other was the fun
tionalityand expandability of the TI-ASC's pipelines.



- 264 -The TI-ASC's 
entral pro
essor 
ontained of a set of up to four identi
al, mi
ropro-grammed ve
tor pipelines, ea
h of whi
h 
onsisted of an 
ombined adder/multiplierunit and was servi
ed by a 
ombined load/store path. This allowed up to four ele-mentwise operations to be applied simultaneously. These pipelines were driven by asingle instru
tion pro
essing unit and 
ould be used in a SIMD manner [139, 140℄.The ASC was TI's only venture into large s
ale 
omputers [141℄ and failed forreasons similar to those of the STAR-100. Many of the features of the TI-ASC 
anbe found in the digital signal pro
essing 
hips 
urrently produ
ed by TI.CRAY-1Cray Resear
h, In
orporated introdu
ed the CRAY-1 [135℄ in 1976. Unlike theTI-ASC and CDC STAR-100 memory-to-memory ar
hite
tures, it had a set of ve
torregisters for storing ve
tor operands and results. It also had a larger number of ve
torfun
tion units and was designed to allow better data 
ow between them.A set of eight 64-word registers were used to store ve
tor operands, whi
h 
onsistedof elements of 64-bits ea
h. This allowed lower-laten
y a

ess to data than memory-based ar
hite
tures 
ould a
hieve. Maintaining high-performan
e depended in parton making good use of these registers. The data path between memory and the ve
torregister �le was only a single word wide and thus 
ould only supply one 64-bit wordper 
lo
k 
y
le. Thus, the register �le was ne
essary to provide data at a high enoughrate to keep the multiple ve
tor units suÆ
iently supplied.The CRAY-1 had twelve independent, non-redundant fun
tion units whi
h 
ouldbe thought of as a single supers
alar PE. Its fun
tion units were grouped into ve
tor,
oating point, s
alar, and address units. Six of these, the ve
tor and 
oating-pointunits, 
ould be used to operate on ve
tor data. These in
luded integer and 
oating-point addition units, 
oating-point multipli
ation and re
ipro
al approximation units,and integer logi
al and shift units.



- 265 -One of the strengths of the CRAY-1 was the ability to \
hain" fun
tion unitstogether to form a pipeline. As the individual elemental results of a ve
tor operationleft one fun
tion unit, they 
ould be immediately forwarded to another for use as anoperand before the �rst ve
tor operation 
ompleted. This allowed a series of ve
toroperations to be performed in an overlapped manner that is similar to the operationof a pipelined s
alar pro
essor.The CRAY-1's memory system had 16 banks of 72 modules. Ea
h 64-bit wordwas stored a
ross the modules of a bank along with an 8-bit SECDED (single-error
orre
tion, double-error dete
tion) 
ode. The memory address spa
e 
y
led throughthe banks so that sequential addresses were stored in neighboring banks and every16th address o

urred in the same bank. This allowed up to 16 sequential data wordsto be a

essed with no two a

essing the same bank of memory.The CRAY-1 was des
ended from a line of pro
essors developed by Seymour Crayat CDC in
luding the 6600 and 7600 and was the �rst of the Cray line whi
h 
ontinuestoday. The CRAY-1 was a signi�
ant improvement over the TI-ASC and CDC STAR-100 systems. However, as a non-parallel ve
tor system, it was not able to fully makeuse of the data parallelism available in ve
tor programs, and thus was not able toa
hieve the full potential of ve
tor pro
essing.Cyber 205The ve
tor pro
essor of the CDC Cyber 205 [136, 126℄ was a SIMD pro
essorwith up to four identi
al PEs. These were pipelined 
oating-point ALUs driven by a
ontrol unit whi
h read a single instru
tion stream. Like its prede
essor, the STAR-100, the Cyber 205 was a memory-based ar
hite
ture. Its PEs had no registers andoperated on data stored in the 
entral memory.The Cyber 200 series of 
omputers, in
luding the Cyber 205, had improved s
alarpro
essing over the STAR-100 and in
orporated SIMD pro
essing. However, its



- 266 -memory-based ar
hite
ture was not a mat
h for later register-based systems. The Cy-ber 200 line 
ontinued with the ETA-10 and eventually died out in the late 1980s [141℄.VP200Fujitsu, Limited introdu
ed the VP200 in 1982 [141℄. It had up to two identi
alsets of pipelines operating as a SIMD system. Ea
h of these 
onsisted of an adder/logi
unit, a multiplier, and a separate divider. Like the CRAY-1, the VP200 was a register-based system. Ea
h PE had a large register �le supplied by two 
ombined load/storeunits. The VP200 was part of the \�rst generation" of Japanese ve
tor pro
essors.Later generations would eventually dominate ve
tor pro
essing.S810/20Hita
hi introdu
ed the S810/20 in 1983 [141℄. It had up to two identi
al ve
torPEs operating in SIMD mode. Ea
h of these 
onsisted of two adder/logi
 units, amultiplier with a 
as
aded adder, and a multiplier/divider whi
h also had a 
as
adedadder. The S810/20 had 32 ve
tor registers of 256 elements ea
h. These were suppliedwith data via a set of three load units and a separate load/store unit for every PE.SX-2The NEC SX-2 [137, 138℄ ve
tor parallel pro
essor was introdu
ed in 1984. Itsve
tor unit had \four identi
al sets of fun
tional units" [138℄ whi
h worked in SIMDparallel fashion. Ea
h set 
onsisted of adder, multiplier, logi
al, and shift units. These
ould be 
hained to in
rease performan
e.The SX-2 had forty 256-element ve
tor registers whi
h were 
onne
ted to memoryvia a four word wide load path and a separate four word wide load/store path. Themain memory 
ould store up to 1GB of memory organized in 512 banks of 2MB ea
h.Extended memory of up to 8GB was also available.



- 267 -S820/80The Hita
hi S820/80 [143℄, introdu
ed in 1987, had \the same basi
 ar
hite
tureas its prede
essor, the S-810." [191℄ A

ording to [141℄, the S820/80 had a maximumof four identi
al ve
tor PEs whi
h were simpler than those of the S810/20. These
onsisted of a 
ombined adder/logi
al unit, a multiplier with a 
as
aded adder, anda separate divider. Two of the load units were eliminated, leaving the S820/80 witha single load unit and one 
ombined load/store unit. The S820/80 was part of these
ond generation of ve
tor pro
essors from Japan whi
h were unipro
essor, SIMDve
tor ma
hines.VP2600The VP2600 was introdu
ed by Fujitsu in 1989 [142, 141℄. Ar
hite
turally, itwas primarily a re�nement of the VP200 SIMD ve
tor ar
hite
ture. It had fouridenti
al PEs whi
h were more advan
ed than those of the VP200. Ea
h 
onsistedof two multipliers, whi
h ea
h had an adder/logi
al unit 
as
aded behind them, anda separate divide unit. The memory paths were un
hanged from the VP200 design.The VP2600 had a large register �le with 2048 ve
tor registers of 64 elements ea
h.Other Ve
tor Ma
hinesOther 
ompanies developed slower, less powerful, low-
ost ve
tor pro
essors 
alled\mini-super
omputers" [141℄. These were intended to be a�ordable yet relatively pow-erful systems. They were often s
aled-down versions of high-end ve
tor pro
essors andthus typi
ally provided little in the way of ar
hite
tural innovation. For this reason,they have been ex
luded from this dis
ussion. One example of a mini-super
omputerwas Convex Computer Corporation's C-1 [192℄ whi
h was introdu
ed in 1985.In this dis
ussion we have also avoided multipro
essor systems su
h as the Cray2, X-MP, and Y-MP, and the later Japanese models su
h as the NEC SX-3 and



- 268 -SX-4 and the Fujitsu VX and VPP series systems. The most signi�
ant features ofthese ma
hines are related to multipro
essor and MIMD pro
essing issues rather thanSIMD ve
tor pro
essing. Thus, they are of less interest than the earlier models withrespe
t to the subje
t of this thesis.SummaryThe purpose of this dis
ussion was to develop an understanding of histori
al ve
torar
hite
tures so that we may better understand the relationship between them andmodern SWAR ar
hite
tures. Having knowledge of past ve
tor systems gives us abaseline for 
omparing the 
apabilities and limitations of 
urrent SWAR pro
essors.SWAR pro
essors are most 
losely related to pipelined SIMD ve
tor systems.The latter are, as a general rule, unipro
essor systems whi
h 
onsist of one or moreidenti
al sets of pipelined fun
tion units driven by a single instru
tion stream. Ea
hset of fun
tion units in a pipelined SIMD ve
tor system 
an thus be thought of as asingle pipelined, supers
alar PE in a SIMD system.A typi
al SWAR system is a pipelined unipro
essor with a data path that hasbeen split into multiple parallel se
tions. These systems 
an be 
onsidered SIMDpro
essors whi
h are 
omprised of a linear array of identi
al pipelined, supers
alarPEs. Con
eptually, ea
h PE 
onsists of one se
tion of the mi
ropro
essor's data path.To better understand how these types of ar
hite
ture are related, we 
an 
om-pare various aspe
ts of their design in
luding instru
tion fet
h and de
oding systems,fun
tion units, register �les, memory systems, and 
onditional exe
ution me
hanisms.A typi
al ve
tor system has an instru
tion fet
h unit whi
h de
odes a single in-stru
tion stream from a 
ommon memory and generates a set of 
ontrol signals todrive the system's fun
tion units. This is essentially what happens in SWAR ar
hi-te
tures. Here, a single multimedia instru
tion is fet
hed from main memory andde
oded to generate a set of 
ontrol signals. These determine whi
h operation will beperformed and how the data path will be partitioned into parallel se
tions. Thus, a



- 269 -SWAR system is a SIMD parallel system whose 
on�guration is determined by, andmay 
hange with, ea
h instru
tion exe
uted.Most traditional ve
tor pro
essors have supers
alar ar
hite
tures, as do modernmi
ropro
essor systems. In ea
h 
ase, the number and type of fun
tion units availablevaries between ar
hite
tures and determines their 
apabilities. Early ve
tor pro
essorshad one or two fun
tion units per pro
essing element while the se
ond generationtended to have signi�
antly more. Later generations were more balan
ed and tendedto have a moderate number of fun
tion units. Similarly, SWAR ar
hite
tures 
an beexpe
ted to undergo an evolutionary pro
ess as their use be
omes more re�ned.A typi
al ve
tor pro
essor's fun
tion units were pipelined to allow a result to begenerated with every 
lo
k 
y
le. This is also true of the typi
al SWAR ar
hite
ture,in whi
h the data path of a pipelined CPU is split into multiple independent se
tions.Chaining, in whi
h fun
tion units are 
onne
ted to form a pipeline, is similarto data forwarding te
hniques used in modern pipelined s
alar pro
essors. Somemultimedia-enhan
ed ar
hite
tures may allow for this type of forwarding as a natural
onsequen
e of using existing pipelines for SWAR pro
essing.The earliest ve
tor pro
essors were memory-based ar
hite
tures whose perfor-man
e su�ered from their long memory laten
ies. Later ve
tor pro
essors in
or-porated multi-element ve
tor register �les. These registers were 
apable of storingmultiple data words as a single entity and allowed intermediate results to be storedinternally. This redu
ed the e�e
tive laten
y of these pro
essors' memory systems,whi
h in turn allowed them to have shorter 
lo
k 
y
les and a
hieve better perfor-man
e than memory-based ve
tor pro
essors.Modern SWAR ar
hite
tures are register-based ma
hines in whi
h existing orespe
ially-designed registers are used with multimedia instru
tions. These registersare typi
ally one to four words wide and few in number. For example, a register �le
ontaining 32 registers of 128 bits ea
h (4kb) would be very large by SWAR standards.This is an eighth of the size of the CRAY-1's register �le, whi
h had eight registers



- 270 -of 64 64-bit elements (32kb), and less than one per
ent of the size of the SX-2's 40registers of 256 64-bit elements (640kb).Traditional SIMD ve
tor unipro
essors typi
ally had a 
ommon memory sharedby ea
h of their pro
essing elements. To in
rease performan
e, later ve
tor pro
essorswere equipped with banked memories whi
h allowed multiple simultaneous a

esses.They were also often designed with a set of memory a

ess pipelines for ea
h inde-pendent set of fun
tion units in the system. This allowed ea
h set to obtain data andstore results at a rate independent of the other pro
essors as long as there were noaddressing 
on
i
ts.SWAR pro
essors are similar with one 
aveat | ea
h memory a

ess tou
hes a
ontiguous set of bits in a 
ommon main memory. No individual addressing is possiblebe
ause these systems use memory data paths whi
h are split in the same way as theirfun
tion units. Thus, ea
h word in memory 
an be thought of as being spread outa
ross several banks of memory whi
h are a

essed simultaneously. The degree ofinterleaving depends on the pre
ision of the data stored and the word size of thear
hite
ture.More 
omplex memory a

esses su
h as strides and gather/s
atters are diÆ
ultto implement on SWAR systems. Strided a

esses are often used to a

ess elementsof an array along one of its minor axes. Gathers and s
atters are typi
ally used to
ompress and expand sparse matri
es or ve
tors. Some SWAR ar
hite
tures allowstrided a

esses to o

ur, but gathers and s
atters require a level of indire
tion that
urrent SWAR systems 
annot provide.The �rst generation of ve
tor pro
essors had only one or two fun
tion units perindependent se
tion. The throughput of these systems was thus limited to a fews
alar operations per 
lo
k 
y
le. Hen
e, these ar
hite
tures 
ould be served by adata path that was at most a few words wide.Later ve
tor pro
essors had a moderate number of fun
tion units and large ve
torregister �les. Due to their prohibitive 
osts, the memory pipelines of these systems



- 271 -were often kept narrow in 
omparison to the size of their ve
tor registers, but wideenough to keep the fun
tion units supplied with data.Thus, the bandwidth of the full memory-to-memory data path was typi
ally lim-ited to the data rate of the fun
tional pipelines. This meant that to maintain peakperforman
e, the ve
tor registers had to be �lled at the same rate, and at the sametime, that they were being emptied.Over time, as the number of pro
essing elements has in
reased, the bandwidthrequired to maintain high eÆ
ien
y has also in
reased. Be
ause of this, later ve
torpro
essors had some of the highest bandwidth memory systems ever built.Be
ause SWAR systems have modi�ed mi
ropro
essor ar
hite
tures, their memorysystems are often pre-de�ned by their underlying ar
hite
tures. Generally, they areable to load or store an entire multimedia register with ea
h 
lo
k 
y
le. Dependingon the width of the data path and the pre
ision of the data being a

essed, ea
hmemory a

ess may move between one and several ve
tor elements. For example, ami
ropro
essor with 64-bit registers and a 64-bit memory path 
an load the registerin one 
lo
k 
y
le. If the data loaded is 8-bit data, then this single load brings in upto eight ve
tor elements in one 
lo
k.SIMD pro
essors must also deal with the issue of 
onditional exe
ution. When a
onditional bran
h is en
ountered in a program, the 
ondition may be true for some ofthe pro
essor's PEs, but not for others. Normally, every SIMD instru
tion is exe
utedby all of the PEs in the system, but when a 
ondition does not hold for some set ofPEs, there needs to be some me
hanism to prevent them from exe
uting the relatedinstru
tions or to blo
k or undo their e�e
ts.Early SIMD ve
tor pro
essors used bit masks to tra
k whi
h of their PEs wereenabled to exe
ute instru
tions and whi
h were disabled due to failing some 
ondi-tional test. These were typi
ally used with masked stores to prevent side e�e
ts fromo

urring. Modern SWAR pro
essors may use a variety of methods to perform thisbasi
 task. These are dis
ussed in more detail later in this 
hapter.



- 272 -From this dis
ussion, 
ertain trends 
an be re
ognized in ve
tor pro
essor ar
hite
-ture. While the number of fun
tion units within ea
h pro
essing element has tendedto level o�, the number of pro
essing elements themselves has in
reased signi�
antly.The size of their ve
tor register �les has gone from zero to well into the hundreds ofkilobits range, and their memories and bandwidths have also in
reased dramati
ally.Current ve
tor pro
essors are signi�
antly more 
omplex than any of those dis-
ussed above. This 
omplexity makes them less like 
urrent 
ommodity SWAR ar
hi-te
tures than were earlier ve
tor systems. For this reason, we have avoided dis
ussingthem in this se
tion; however, the trends they exhibit are still worth brie
y noting.These ma
hines are generally multipro
essor MIMD systems with a large num-ber of identi
al PEs. These typi
ally have a few well-designed, pipelined fun
tionunits whi
h are used in supers
alar or VLIW (Very Long Instru
tion Word) mode,depending on whether the parallelization is performed in hardware or by a 
ompiler.They are also in
reasingly 
onne
ted to allow data to be transferred dire
tly betweenthem. In many ways, ve
tor pro
essors are be
oming in
reasingly like the parallelarray pro
essors whi
h will be dis
ussed next.SIMD Array Ar
hite
turesModern SWAR ar
hite
tures are also related to traditional SIMD array ar
hite
-tures. Brief des
riptions of several of these are presented here with an emphasis ontheir relationship to SWAR pro
essing. This should provide an understanding of theevolution of these pro
essors and of how modern SWAR ar
hite
tures are 
onstrainedin 
omparison.SOLOMONThe SOLOMON [117, 118℄ prototypes were early SIMD pro
essors built for theWestern Ele
tri
 Company in the early 1960s. Their design was inspired by the



- 273 -physi
al appearan
e of a magneti
 drum used as storage for the IAS ma
hine built atPrin
eton University.The original design 
alled for 512 byte-wise \pro
essing elements" 
onne
ted ina 2-dimensional toroidal mesh, and 
ontrolled from a \
entral sour
e." In the �naldesign for the original prototype, the PEs were to be grouped into up to eight 32x8subarrays for a maximum of 2048 PEs. The a
tual prototypes used signi�
antly fewerPEs in various 
on�gurations.The PEs were essentially single bit full adders whi
h used operands that wereeither stored in lo
al 
ore memory frames, broad
ast from the 
entral sour
e, or readover the link from any of the PE's nearest neighbors. An \L-bu�er" was used to
onvert word-sized data from the 
ontrol unit into a serial bit stream for the PEs.The length of this stream was variable and determined by the value of a settableregister.The 
entral sour
e was responsible for program storage and supplying immediatedata, but its primary task was to a
t as a 
ontroller for the rest of the system. This itdid by providing the PEs with 
ontrol signals to sele
t operations, enable or disablePEs, and a
tivate 
onne
tions between the PEs.Ea
h PE had a 2-bit \mode" register whose value determined whi
h of four pos-sible modes the PE was operating in. Ea
h instru
tion 
arried a 4-bit �eld (one perstate) whi
h spe
i�ed a set of possible modes. Only the PEs that were in one of thesemodes were allowed to exe
ute the instru
tion. This allowed PEs to be e�e
tivelydisabled for a given instru
tion. While \o�", a PE 
ould supply operands to itsneighboring PEs but was not allowed to 
hange state.Later SOLOMON prototypes repla
ed the bit-serial PEs with byte-sli
ed pro
es-sors. These had 24-bit registers and 8-bit arithmeti
 hardware. As PEs with widerdata paths began being used, the number of PEs in su

essive prototypes was s
aleddown. A full-s
ale model was never built; however, the design led dire
tly to theILLIAC IV.



- 274 -SOLOMON provides us with a basi
 model of a SIMD array pro
essor: an arrayof pro
essing elements, 
ontrolled by a single 
ontrol unit, with lo
al memories, and
onne
ted via some form of inter
onne
tion network.ILLIAC IVThe �rst operational SIMD ma
hine was the ILLIAC IV [119℄, built at the Uni-versity of Illinois. It was an extension of the SOLOMON prototypes, and was builtby a group led by D. L. Slotni
k and whi
h in
luded others from the SOLOMONproje
t. Both [152℄ and [123℄ 
ontain 
ase studies of the ILLIAC IV, and some of thefollowing material is drawn from these sour
es.The ILLIAC IV was 
ontra
ted by the Department of Defense's Advan
ed Re-sear
h Proje
ts Agen
y (ARPA) in about 1965. A quarter-sized prototype was de-veloped and used at Illinois until the early 1970s when it was de
ided that it shouldbe moved to a government fa
ility. The prototype was delivered to the NASA AmesResear
h Center in 1972, but was not fully operational until 1975. The ILLIAC IVwas de
ommissioned in 1982.As delivered, the ILLIAC IV's pro
essing array 
onsisted of one quadrant of 64pro
essing elements (PEs). Ea
h of these had an arithmeti
/logi
 unit (ALU), variousregisters, and a lo
al pro
essing element memory (PEM).The ALU 
ould perform arithmeti
, logi
al, and 
omparison operations on data inits four 64-bit data registers. These 
ould be loaded from lo
al memory or with a valuebroad
ast by the 
ontrol unit (CU). The operation applied depended on the 
ontrolsignals from the CU and the values stored in the PE's 
ag registers. These 
ontainedstatus and 
ontrol values and were a

essible by both the PE and the CU. Thisallowed the various PEs to behave di�erently while exe
uting the same instru
tion,and allowed 
onditional exe
ution based on an individual PE's 
omputational results.Atta
hed to ea
h PE was a lo
al bank of memory from whi
h its data stream wasnormally drawn during parallel operations. These banks held 2k words of 64 bits



- 275 -ea
h, and were a

essible by both the PE and the CU. Ea
h PE 
ould a

ess a lo
almemory lo
ation that di�ered from that of the other PEs. This was done by indexingthe address by the value in the PE's 16-bit index register.ILLIAC IV's 
ontrol unit drove the pro
essor array by issuing 
ontrol signals tothe PEs over a \nanoinstru
tion" bus. It 
ould set the PEs' 
ag registers and modebits with di�erent values to 
onditionally enable or disable sets of PEs. The CU 
ouldalso broad
ast data and addresses over a 64-bit 
ommon data bus. This allowed it totransmit s
alar values and 
onstants to the PE array. A mode \
ip-
op" bus 
olle
teda single bit from ea
h PE and delivered the set to the CU as a 64-bit word. Thisword 
ould then be tested to determine global 
onditions.The CU 
ould a

ess the PEs' lo
al memories dire
tly over a separate 512-bit bus.This allowed it to use all of memory and treat the PEs' memory banks as a singleglobal store. The CU read its instru
tions from this memory and fet
hed them intoan instru
tion 
a
he. Data also 
ould be loaded from this memory and stored in aprivate bu�er.The PE inter
onne
t was an 8x8 mesh, with ea
h 
olumn 
onne
ted as a separatetorus, and the rows 
onne
ted together as a single torus. This allowed data to berotated through the 
olumns of the mesh or through the entire set of PEs. It alsoallowed nearest neighbor 
ommuni
ations in any of four dire
tions. This was usefulfor moving data ve
tors and arrays whi
h had been mapped onto the pro
essor array.The ILLIAC IV was 
apable of a form of variable-width pro
essing. Ea
h PE
ould operate as a single 64-bit 
oating-point element, as two 32-bit 
oating-pointelements, or as eight 8-bit �xed point elements. Whether this was implemented ina manner similar to that of modern SWAR ar
hite
tures is un
lear from [118℄. Thisvariable-width pro
essing made the ar
hite
ture more 
exible in its ability to supportvarious data types; however, the languages used to program the ILLIAC IV tendednot to take advantage of this 
apability.
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ommer
ial massively parallel 
omputer was the Distributed Array ofPro
essors (DAP) built by International Computers Limited (ICL) [120℄. It wasdeveloped in the mid 1970s based on a \design study" by S. F. Reddaway [121℄.Work on a prototype took pla
e during the rest of the de
ade, and the originalsystem was delivered to Queen Mary College, London University in 1979. In the mid1980s, A
tive Memory Te
hnology (AMT), In
. was spun-o� from ICL to developDAP systems.The idea behind the ICL DAP was to use bit-serial pro
essors to simplify thelogi
 design and provide these with lo
al memories to 
losely integrate the logi
 andstorage systems. With enough pro
essors, the entire problem 
ould theoreti
ally bemapped onto the pro
essing array.The paper design 
onsisted of a main 
ontrol unit (MCU) and a pro
essor array,and was \somewhat similar to SOLOMON 1" [121℄. The DAP was to be 
onne
tedto, and supported by, a \parent" 
omputer system whi
h provided it with data andinstru
tions.The MCU was to 
onsist of a \
onventional" instru
tion fet
h system, an instru
-tion bu�er, and a set of registers whi
h 
ould be 
onne
ted to a row or 
olumn of thearray. These registers would allow data to be loaded to, or retrieved from, the arrayalong either of its sides, and was apparently intended for use in pro
essing s
alar data.The pro
essor array was to be two-dimensional with one side 
onne
ted to the\store highway" of the parent system. The parent 
ould then load data and instru
-tions via this bus and hen
e 
ould use the array for storage or 
omputation. A word ofdata was normally to be stored along a 
olumn of PEs in what was 
alled \main storemode". Words would also be stored in a single PE in \array mode" for more eÆ
ientpro
essing in some 
ir
umstan
es. Conversion between these two modes would o

urwithin the PE array.



- 277 -The PEs were to be 
onne
ted in a re
tangle via a nearest neighbor network withea
h PE also 
onne
ted to the PE \half a row away in the same row". Independent,program 
ontrolled edge 
onne
tions were to allow the PEs to be 
onne
ted as alinear array, a ring, a mesh, a toroid, or any of up to 32 geometries when half-row
onne
tions were used.Ea
h PE would have a 4kb lo
al memory. Storage to these memories 
ould beblo
ked by the MCU on a row or 
olumn basis to allow operations on array subse
-tions. Ea
h PE also had a set of single-bit registers whi
h were to be used to holdoperands and bu�er in
oming and outgoing bits. One of these was used as a maskbit to 
ontrol 
onditional exe
ution a

ording to [126℄.The design emphasized 
onne
tivity and allowed several input and output 
onne
-tions to be made with the MCU, the parent ma
hine's store highway, and neighboringPEs. Multiplexers were to be used to a
tivate 
onne
tions between the registers andthe various sour
es and destinations.MPPGoodyear Aerospa
e Corporation's Massively Parallel Pro
essor (MPP) [122, 123℄was developed in the late 1970s and built in the early 1980s. It was the �rst so-
alled\massively parallel pro
essor," whi
h meant that it 
ontained thousands of PEs. It
onsisted primarily of an array unit whi
h housed the PEs and an array 
ontrol unitwhi
h dire
ted them. The MPP was des
ended from the STARAN [193℄ bit-serialasso
iative pro
essor, and was similarly intended for image pro
essing using bit-sli
es.The array unit (ARU) was a 128x128 array of bit-serial PEs. Ea
h PE had aset of six bit registers, a programmable shift register, a full-adder, and a Booleanlogi
/routing unit. Arithmeti
 operations were performed bit-serially, with the re-sult stored in either the shift register or lo
al memory. Most instru
tions 
ould beprevented from exe
uting on a parti
ular PE by resetting a \mask bit" in that PE'sstatus register.
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h PE had 1kb of lo
al memory. Be
ause the MPP was designed to operateon bit planes, these were used 
olle
tively with the planes stored a
ross the entireset. During a memory operation, all of the PEs a

essed the same lo
al address,and thus the same bit plane. Thus, these memories 
ould be thought of as a setof 1024 bit-planes, with ea
h PE 
ontrolling one bit in the same position of ea
h128x128 plane. Data was typi
ally from 1 to 32 bits in length and was stored a
rossmultiple, 
onse
utive bit-planes. Thus, a set of 
onse
utive bit-planes 
ould be usedto represent an array of multi-bit items.Be
ause the depth of the memory array was �xed at 1028 bits, the MPP 
ouldstore 128 8-bit images or 32 32-bit images. The more pre
ise the pixel data, thefewer pixels the MPP 
ould store. This trade-o� is similar to one found in SWARar
hite
tures in whi
h a �xed number of bits are available in the CPU's registers.This �xed number must be traded o� between data pre
ision and parallelism width.Instru
tions for the MPP's ARU were handled by the array 
ontrol unit (ACU)by pla
ing them in a \
all queue" to be read by the ACU's PE 
ontrol se
tion. Ea
hof these instru
tions was exe
uted as a mi
roprogram by the PE 
ontrol unit whi
hgenerated one stream of 
ontrol signals whi
h it broad
ast to the entire PE array. Formemory a

esses, these signals in
luded a single address that was used by all of thePEs simultaneously.The MPP had multiple inter
onne
ts in
luding a re
on�gurable mesh, a globalOR network, and an aggregate word network. The inter-PE mesh network allowednearest neighbor 
ommuni
ations in any of four dire
tions 
alled north, east, west,and south. For this reason, it was 
alled the NEWS network. It 
onne
ted the PEsin a 128x128 mesh whose topology was 
ontrolled by the ACU. This was done by
ontrolling the 
onne
tions of the PEs at the edges of the mesh. The PE at the edgeof a 
olumn 
ould be 
onne
ted with the PE at the other edge of the same 
olumn orleft dis
onne
ted. The same was true of the rows, ex
ept that the PE at one edge ofa row 
ould be 
onne
ted to the PE at the other edge of the next row. This 
exibilityallowed the MPP to be 
onne
ted as a mesh, a verti
al or horizontal 
ylinder, a torus,
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losed spiral, or a spiral torus. This level of 
exibility 
an only be a
hievedin SWAR ar
hite
tures whi
h support permutations.A se
ond network, 
alled the \sum-or" network, performed a bitwise ORing of thebits sent by the PEs to the 
ontrol unit. The SWAR equivalent to this global ORnetwork would be a test of the CPU register for a non-zero value. In both 
ases, thisallows aggregate data to be 
olle
ted and tested easily.A single bit 
ould also be 
olle
ted from ea
h of the 16 PEs in the southeast
orners of the ARU's 32x32 subarrays. These formed a 16-bit aggregate value thatthe ACU 
ould a

ess and manipulate as a single word. This third network was moregeneral than the sum-or network.The MPP 
ould be diÆ
ult to use for higher-dimensional problems and for prob-lems whi
h did not mat
h its dimensions. While the NEWS network was more 
exiblethan the mesh of the ILLIAC IV, it still required all PE data 
ommuni
ations to fol-low the same pattern. For example, for one PE to send data to its northern neighbor,all the other PEs had to do the same.The ILLIAC IV and MPP represented opposite ends of the SIMD 
ontinuum. TheILLIAC IV had a relatively small number of fairly powerful multiple-bit pro
essors,while the MPP had a large number of very simple one-bit pro
essors. This was a resultof the two ar
hite
tures having been designed for di�erent purposes. ILLIAC IV wasintended to be a number-
run
her, operating primarily on 32- and 64-bit measureddata, while MPP was intended to be an image pro
essor, operating primarily on 8-bit,or at most 32-bit, pixel data.AMT DAPThe AMT DAP [194℄ was a su

essor to the ICL DAP and was built in the late1980s by A
tive Memory Te
hnology (AMT), In
. The 500 series had a 32x32 arrayof 1-bit pro
essing elements while the 600 series had a 64x64 array. In both systems,
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h PE had between 32k and 1Mbit of lo
al private memory. Thus, both versionswere somewhat smaller than the MPP, but had signi�
antly more memory.The PEs were bit-serial and 
onsisted of a full adder/logi
al unit, three 1-bitregisters, and two multiplexers. One of these was used to 
hoose the operand sour
es,whi
h 
ould be any of the registers or inter
onne
tion networks. The other was usedto 
hoose the sour
e of the result sent to the memory and inter
onne
ts.The PEs were arranged in a two-dimensional mesh with ea
h 
onne
ted to its fournearest neighbors in a NEWS network, and also to all of the PEs in its row and toall of the PEs in its 
olumn via buses. This inter
onne
tion was more 
exible thanthe MPP's NEWS network, allowing a PE's data to be broad
ast within a row or
olumn, or even to the entire array.The master 
ontrol unit (MCU) was a 32-bit CPU. It read instru
tions from the
ode memory and issued 
ontrol signals to the PEs in the pro
essing array. It alsoperformed s
alar operations and 
ould broad
ast data to the array.One unique feature was a hardware DO instru
tion whi
h 
ould en
ompass otherinstru
tions. These instru
tions 
ould then a

ess various se
tions of the array in anin
remental manner, with the index automati
ally in
remented for ea
h iteration.Later versions of the DAP had an 8-bit 
o-pro
essor whi
h was used for 
ompu-tation while the 1-bit pro
essors were used for 
ommuni
ation. This medium-sized
olle
tion of moderately powerful pro
essing elements represented a trade-o� betweenthe ILLIAC IV and MPP ar
hite
tures. This allowed it to be more 
ommer
ially a
-
eptable on a pri
e/performan
e basis.GAPPThe NCR Geometri
 Arithmeti
 Parallel Pro
essor (GAPP) 1 was a single 
hipSIMD pro
essor whi
h 
onsisted of a 
ontrol unit and a 6x12 array of PEs 
onne
ted1Part number NCR45CG72.
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ription of the GAPP 
an be foundin [145℄ whi
h explains its use in a parti
ular appli
ation.The PEs were bit-serial full adder/subtra
ters whi
h 
ould perform basi
 arith-meti
 and logi
al operations. Operands were drawn from a set of four 1-bit registerswhi
h bu�ered data that was either drawn from a set of 
ommon memory lines or theNEWS network, or was generated as 
arries or borrows during arithmeti
 operations.The generated output in
luded the sum (SM), 
arry out (CY), and borrow (BW)bits.A set of �ve multiplexers were used to 
hoose the sour
e of the data lat
hed duringthe exe
ution 
y
le. These were 
hosen from any of the registers, the ALU outputs,or the data in
oming over the inter
onne
t. Data 
ould also be moved between thehost pro
essor and the PEs' lo
al memories via a set of 
ommon data lines, 
alledCMN and CMS.Ea
h PE had a relatively small 128-bit lo
al memory, addressed by a 7-bit imme-diate �eld in the instru
tion op
ode. This meant that all PEs addressed the samelo
ation in their lo
al memories during memory a

esses.GAPP 
hips had a set of I/O ports whi
h allowed them to be 
onne
ted intolarger pro
essing arrays. This allowed the 
hip to be used by others to develop largersystems. One example is the systoli
 array 
onstru
ted by Morley and Sullivan [145℄.While the GAPP pro
essor is over a de
ade old as of this writing, it is still in use.A 
urrent video pro
essing/
onversion system, the TeraNex video 
omputer [146℄ isbased on the sixth generation of the SIMD mi
ropro
essor whi
h was introdu
ed in1998 by Lo
kheed Martin Ele
troni
s and Missiles. This pro
essor, 
alled the GAPPVI, is implemented as a single 
hip with 1k PEs in a 32x32 mesh. These 
an be
ombined in a 32x32 array for a total of over one million PEs.The GAPP is a
tually a full SIMD ar
hite
ture on a 
hip, and represents a morepowerful ar
hite
ture than the SWAR ar
hite
tures we are 
on
erned with in thisresear
h. If multimedia, espe
ially image pro
essing, 
ontinues to be a driving for
e
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omputing design, then the GAPP and similar ar
hite
tures may move into the
ommodity market. For now, they are used in spe
ialized ar
hite
tures.GF11The IBM GF11 [124, 125, 126℄ was a pipelined SIMD parallel pro
essor designedfor verifying resear
h in quantum 
hromodynami
s. It had 576 pipelined PEs withhigh-speed register �les. Ea
h of these had 64KB of high-speed memory and 256KB oflower-speed memory. The lower-speed memory was expandable to 2MB per pro
essor,allowing up to 1.125GB in total.Possibly the most interesting feature of the GF11 was that the PEs were fullyinter
onne
ted via a non-blo
king Bene�s network [127℄. This network had three stagesof 24x24 
rossbars and allowed the PEs to be 
onne
ted in any arbitrary permutationin order to share data. Thus, the PEs 
ould be 
onne
ted in a large number of variousmulti-dimensional shapes.CM-1The Thinking Ma
hines Corporation's �rst \Conne
tion Ma
hine", the CM-1 [128,129, 130℄, was another massively parallel SIMD system 
onsisting of a parallel pro-
essing unit whi
h 
ontained a very large array of PEs, a front-end host 
omputerwhi
h read instru
tions from its memory and issued nanoinstru
tions to the PEs, andinter
onne
tion networks between the PEs and between the PEs and the front end.The CM-1 had up to 64k PEs { signi�
antly more than previous ar
hite
tures.These were bit-serial ALUs whi
h 
ould perform any of 232 fun
tions on their inputs.Ea
h PE had a private memory from whi
h two input bits were taken and a set of
ags from whi
h a third input bit was drawn. Output 
onsisted of one bit whi
h wasstored in memory and another whi
h was stored in the 
ags register.Conditional instru
tions on the CM-1 were exe
uted based on the value of a spe
i-�ed pro
essor 
ag. For ea
h PE, if this 
ag had a spe
i�ed value, then the instru
tion
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uted; otherwise, it was skipped. Thus, like the ILLIAC IV, 
onditionals wereperformed on an instru
tion-by-instru
tion basis, with no sense of nesting.The CM-1 had multiple inter
onne
tion networks. A NEWS network 
onne
tedthe PEs in a two-dimensional mesh and moved bits between neighboring PEs' 
ags.This was used for short distan
e and regular pattern 
ommuni
ations. A global ORnetwork 
ombined data from the PEs into a single s
alar value that was passed tothe front-end. This provided aggregate data to the 
ontrolling system.The most interesting of the CM-1's inter
onne
ts was, however, an adaptivepa
ket-swit
hed hyper
ube network. It allowed any set of PEs to 
ommuni
ate withany other set in an irregular pattern. This network was signi�
antly more 
omplexand powerful than those of earlier systems, whose inter
onne
ts did not allow su
hgeneral 
ommuni
ation.Messages on this network passed through a pa
ket-swit
hed adaptive router. Ea
hset of 16 PEs was 
onne
ted to a single router node, and these nodes were 
onne
ted toform a hyper
ube. Collisions within the hyper
ube were resolved by using other paths;thus, the router network adapted to internal loading. However, be
ause multiplePEs were 
onne
ted to a single router node, 
ontention for a

ess to the router waspossible, and blo
king 
ould o

ur as a result.In relation to SWAR ar
hite
tures, use of the router network is analogous to ex-e
uting a generalized permutation instru
tion. These instru
tions allow any typeof permutation of the data �elds in a CPU register to be sele
ted in
luding repli
a-tions. Thus, they 
an be used to perform broad
asts and generalized 
ommuni
ationsbetween �elds just as the CM-1's router network 
ould be used for interpro
essor 
om-muni
ation.The CM-1 represented a return to the ideas behind the Goodyear MPP, but withthe addition of the hyper
ube network to fa
ilitate the types of 
ommuni
ation thatthe MPP was weak at. This allowed the CM-1 to be used for problem types that theMPP performed poorly on.
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hines CM-2 [131, 130℄, CM-2a, and CM-200 were updates ofthe CM-1 with various sizes and options 2. The CM-2 
ould have 16k, 32k, or 64kPEs, while the the CM-2a 
ould have 4k or 8k PEs. \CM-200" may have been thename assigned to a version with 
oating-point 
o-pro
essors. The basi
 ar
hite
turewas essentially the same as that of the CM-1, although there were some signi�
antmodi�
ations.One di�eren
e was the addition of a sequen
er between the front end system andthe PE array. It read instru
tions from the front end system and issued nanoinstru
-tions to the PEs, thus taking over this part of the duties of the CM-1's front-end.The broad
ast and s
alar memory buses whi
h had previously 
onne
ted the PEs tothe front-end now 
onne
ted them to the sequen
er instead.A se
ond di�eren
e was the modi�
ation of the global OR network to a moregeneral 
ombinatorial network whi
h 
onne
ted the PE array to the sequen
er. Thisnetwork 
ould perform global redu
tions su
h as maximum, summation, and logi
alAND on the PE data to form a single value whi
h the sequen
er then re
eived. Thiswas a signi�
ant advan
ement over the previous global network, and 
ould be usedto gather more diverse information about the system's aggregate state. In relationto SWAR ar
hite
tures, this was the equivalent of adding advan
ed redu
tions to theinstru
tion set.Another di�eren
e was the modi�
ation of the NEWS network. First, it wasextended from a two-dimensional mesh to an n-dimensional mesh implemented on topof the existing hyper
ube. This upgrade allowed regular 
ommuni
ations patterns inmultiple dire
tions. Se
ond, it was modi�ed to perform s
ans and spreads. S
ans,whi
h are also known as parallel pre�x operations, are redu
tions in whi
h the runningsubresults are retained. Spreads are operations whi
h repli
ate a value throughout2While the literature is somewhat 
ontradi
tory with respe
t to the features of the various Conne
-tion Ma
hine implementations, the spe
i�
s are not 
ru
ial to the understanding of this thesis.
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essing, espe
iallywhen a 
al
ulation is split-up between PEs.In terms of SWAR ar
hite
tures, no 
urrent system performs s
ans, although they
an usually be emulated rather easily, but expensively, using shifts. Spreads are foundon some ar
hite
tures, while others attempt to obviate them by in
luding instru
tionswhi
h use a single data �eld as a s
alar operand to ea
h of the elemental operationswhi
h 
omprise the ve
tor instru
tion.Operations on multibit data were exe
uted bit-serially within the CM-2's 1-bitALUs, while single- and double-pre
ision 
oating-point operations were pro
essed onan optional 
oating-point a

elerator. This 
onsisted of one 
oating-point memoryunit and one 
oating-point pro
essing unit per pair of pro
essor 
hips (i.e. one a
-
elerator per 32 PEs). The memory unit a
ted as a glue 
hip whi
h 
onverted databetween a 
olle
tion of 32 single bits or 32 pairs of single bits and a single- or double-pre
ision 
oating-point value that the pro
essing unit 
ould operate on. Thus, itworked similarly to the MPP's bit-sli
e pro
essor.An analysis of the CM-2 and its use at the Resear
h Institute for Advan
edComputer S
ien
e (RIACS) at NASA Ames Resear
h Center, written by RobertS
hreiber [195℄, provides a more in-depth analysis of the system's utility, strengths,and weaknesses.BLITZENThe goal of the BLITZEN [148℄ proje
t at the Mi
roele
troni
s Resear
h Centerof North Carolina was to develop a miniaturized massively parallel pro
essor. Su
ha pro
essor was expe
ted to be e
onomi
al and easily atta
hed to, or embedded in,other systems. While the 
hip layout was submitted for fabri
ation, it appears thata prototype system was never built [196℄. Despite this, the ar
hite
tural de�nition isinstru
tional.
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h 
hip 
ontained an 8x16 array of bit-serial PEs driven by an on-
hip 
ontrolunit. The 
ontrol unit 
onverted mi
ro
oded routines into the 
ontrol signals for thearray. These routines were stored in a 
ontrol memory and 
ould be loaded from thehost ma
hine via an external interfa
e. This interfa
e 
ould also be used to transferdata between the 
hip and the host's peripherals.The PEs had essentially the same design as those of the MPP, but employed vari-ous modi�
ations. One was a redesign of the shift register to make it bidire
tional andto limit the shifted bits to a sele
ted set, thus prote
ting the data in the unsele
tedbits. This made the register more generally useful and allowed parts of it to be usedfor temporary storage and address indexing. Another modi�
ation was the extensionof masking to all memory a

esses. A third was the addition of 
omplementary 
ondi-tional operations. These performed either the spe
i�ed operation or its 
omplementdepending on the value of a 
ontrol bit on ea
h of the PEs. This allowed the PEs totake opposite a
tions simultaneously, and 
ould be used to simplify 
ertain 
ontrolstru
tures.Ea
h PE had 1kb of lo
al on-
hip memory whi
h was individually addressableusing the 
ontents of the PE's shift register as an o�set to the globally suppliedaddress. This was done by bitwise ORing them together, and required that theglobal address be aligned on a 10 bit boundary. This memory organization hadtwo advantages over that of the MPP. First, it was more 
exible be
ause it allowedits PEs to a

ess di�erent lo
ations in memory. Se
ond, the BLITZEN design wastheoreti
ally faster be
ause memory a

esses were on-
hip and thus didn't su�er fromo�-
hip delays.Data 
ould be transferred over a set of 4-bit buses, ea
h of whi
h 
onne
ted arow of 16 PEs and provided a port for memory a

esses. This allowed memory to bea

essed in 4-bit blo
ks during row I/O operations. An innovative inter
onne
tionnetwork 
alled the X-grid was also in
orporated in the design. This network 
onne
tedea
h PE with eight nearest neighbors: its four NEWS neighbors and its four diagonal



- 287 -neighbors. The X-grid was more 
exible than a NEWS grid, yet was signi�
antlysmaller than a full routing network and required fewer I/O pins.Ea
h PE had four 
onne
tions | one leaving ea
h of its four 
orners. Every fourneighboring PEs whi
h formed a square were 
onne
ted via their 
orners within thesquare in an X 
onne
tion. By 
hoosing whi
h 
orners the PEs would send data out,and from whi
h they would read data in, the X-grid 
ould be used to 
onne
t theverti
al, horizontal, or diagonal pairs of PEs. The unused lines would be e�e
tivelydis
onne
ting by pla
ing them in a high-impedan
e state.Like the GAPP, the BLITZEN ar
hite
ture was an attempt to pla
e a full SIMDar
hite
ture on a single 
hip and represents a possible future dire
tion for 
ommoditypro
essors.MP-1 and MP-2The 
ompute engine of MasPar Computer Corporation's MP-1 [132, 133, 134℄ was
alled the data pro
essing unit (DPU). The DPU 
onsisted of a PE array of between 1kand 16k nodes, an Array Control Unit (ACU) whi
h also performed s
alar arithmeti
,and multiple inter
onne
tion networks.While the arrayed PEs were 4-bit ALUs, mi
ro
ode was used to make them behave,from a programming perspe
tive, as 32-bit pro
essors. Thus, the MP-1 was another
ompromise ar
hite
ture, falling between the massively parallel 1-bit ma
hines andthose with fewer, more powerful PEs. Ea
h of the MP-1's PEs had forty 32-bitregisters and was 
onne
ted to its own lo
al memory of between 16 and 64 kB.Floating-point support 
onsisted mainly of fast normalization hardware whi
hde
reased the time needed to normalize the integer mantissa and exponent partsof the operands. This sped-up what is often the slowest part of a 
oating-pointoperation. Floating-point data 
ould be single- or double-pre
ision, and 
ould be inVAX or IEEE formats.
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ation between the PEs 
ould be a

omplished in two ways. First, anX-net provided straight-line 
ommuni
ation in any of 8 dire
tions. This may havebeen a re-invention of the BLITZEN X-grid or an independent invention by MasPar.Either way, it provided the same level of interpro
essor 
ommuni
ation and had thesame advantages as the BLITZEN X-grid.Se
ond, a three-stage global router network, similar to that of the CM-1, allowedsimultaneous, independently-indire
ted, duplexed 
ommuni
ations between pairs ofPEs. The PEs were grouped in 
lusters of 16, with ea
h 
luster having a single
onne
tion to the router network. This 
onne
tion was multiplexed between the PEsin the 
luster, and operated in a bit-serial fashion.As in earlier ar
hite
tures, 
ommuni
ation between the PE array and the 
ontrolunit was also provided for. Communi
ation from the ACU to the PEs took pla
e overa broad
ast network, and 
ommuni
ation from the PEs to the ACU took pla
e overa global OR network.As a later SIMD array ar
hite
ture, the MP-1 bene�tted from many of the lessonslearned from previous ar
hite
tures. While similar to the CM-1 and CM-2, the MP-1'sar
hite
ture was more of a 
ompromise, 
ombining a fairly large number of pro
essorswith a reasonable amount of memory and multiple types of inter
onne
tion networks.The MP-2 was essentially a s
aled-up version of the MP-1 whi
h had thirty-two 32-bitPEs per 
hip with a 
oating-point unit atta
hed to ea
h PE. Thus, it too representeda 
ompromise between the two extremes in SIMD array ar
hite
ture.SummaryThe purpose of this dis
ussion was to develop an understanding of histori
al SIMDarray ar
hite
tures so that we may better understand the relationship between themand modern SWAR ar
hite
tures. This should make it easier to set reasonable goalsand avoid pitfalls while designing a SWAR pro
essing model.



- 289 -SWAR pro
essing is a limited form of SIMD implemented within a single mi
ro-pro
essor. A traditional SIMD array ar
hite
ture 
onsists of a 
ontrol unit, a pro-
essing array, memory, and an inter
onne
t. Ea
h of these has a SWAR ar
hite
ture
ounterpart. We will brie
y dis
uss the relationships between them.The primary task of a SIMD 
ontrol unit is to read instru
tions and de
ode theminto 
ontrol signals for the pro
essor array. In a SWAR ar
hite
ture, the analogue ofthe 
ontrol unit is the normal CPU instru
tion issue me
hanism. An instru
tion isread from a single instru
tion stream in memory and de
oded into a set of 
ontrolsignals. These signals spe
ify a single operation to be performed by the ALU or otherfun
tional units. They also turn o� logi
 su
h as the 
arry and borrow 
hains toensure that the operation a
ts independently within ea
h of the �elds of the a�e
tedregisters.In a SWAR ar
hite
ture, ea
h register �eld 
an be thought of as a small, 
ompleteregister residing on one of the PEs of a SIMD system. The set of �elds lo
ated in thesame position a
ross the set of CPU registers 
an then be thought of as a parti
ularPE's register set. That PE 
onsists not only of this set of register �elds, but also ofthat part of the CPU's data path whi
h operates on them. Thus, a SWAR system
an be thought of as a one-dimensional linear array of PEs.Thus, a SWAR system is really a ve
tor parallel pro
essor in whi
h ve
tor ele-ments are stored in the �elds of the CPU registers. In 
ontrast, traditional SIMDsystems were usually multi-dimensional array pro
essors with ea
h PE holding onearray element in ea
h of its registers. This implies that many of the problems thatmap easily to SIMD array pro
essors will not map easily to SWAR ar
hite
tures.In a typi
al SIMD array pro
essor, ea
h PE had a lo
al memory whi
h was oftenshared by, or at least a

essible to, the 
ontrol unit. On a SWAR system, data isloaded or stored in 
hunks that are often larger than a single �eld. For example, aload that mat
hes the size of the partitioned register is equivalent to all of the SWARPEs loading a value from the same address of a banked memory. In this sense, mostSWAR memory systems are similar to that of the ILLIAC IV.



- 290 -On most SIMD ar
hite
tures, a PE's lo
al memory was not available to the otherPEs. Continuing this analogy, on most SWAR ar
hite
tures a PE 
annot dire
tlya

ess data from another PE's part of memory. This is be
ause loads and stores areusually performed on word-sized entities and preserve the bit ordering of the data.An a

ess of another PE's memory sli
e would be equivalent to performing su
h aload with a simultaneous shift of the data to the desired position.In some SIMD ar
hite
tures, the 
ontrol unit also a
ted as a s
alar unit. In SWARpro
essors, non-SIMD instru
tions treat the 
ontents of the registers as single valuesregardless of their origins or any earlier partitionings. If the ALU is thought of asa s
alar unit when exe
uting normal instru
tions, it is one with dire
t a

ess to theglobal memory 
onsisting of the PEs' lo
al memories. This is true only if the ar
hi-te
ture supports instru
tions whi
h operate on the entire register 
ontents. Often,this is not the 
ase, and is a weakness of several of the 
urrent SWAR ar
hite
tures.One of the weaknesses in early SIMD array ar
hite
tures that was addressed inlater generations was the la
k of suÆ
ient 
ommuni
ations 
apabilities. Early meshsystems were suÆ
ient for regular 
ommuni
ations patterns, but it be
ame 
lear thatmore generalized 
apabilities were needed. As SIMD systems evolved, more 
omplexinter
onne
ts were developed to provide these 
apabilities.Most SWAR ar
hite
tures have the one-dimensional equivalent of a NEWS net-work whi
h 
an be emulated using logi
al shifts and rotates; but few have any equiva-lent to the general 
ommuni
ation 
apabilities of a full router network, whi
h requiressome form of permutation instru
tion. Be
ause of this, a good portable model shouldprobably avoid this generality, at least until SWAR ar
hite
tures mature a little more.One other aspe
t of SIMD pro
essing requires dis
ussion. As with SIMD ve
torpro
essors, SIMD array pro
essors had to in
orporate some means of allowing separate
ontrol paths to be taken by di�erent PEs. In most systems this was done by turningthe PE o� on an instru
tion-by-instru
tion basis. Usually, this was done by the
ontrol unit, but in some 
ases the PEs 
ould turn themselves o� based on the statusof an exe
uted instru
tion. SWAR ar
hite
tures do not have equivalent fun
tionality.
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tions are exe
uted a
ross an entire register; thus, all SWAR PEs exe
utethe same instru
tion.Other SIMD systems allowed the PE to exe
ute the instru
tion, but prevented theside-e�e
ts of exe
ution from o

urring. Some SWAR ar
hite
tures employ maskedstores to a

omplish this. These operations store only those register �elds whi
h aresele
ted by some type of mask. As long as the data pre
ision used mat
hes one ofthe hardware-supported �eld sizes, masked stores 
an be used to blo
k unwantedside-e�e
ts during 
onditional exe
ution.Where no hardware support for 
onditional exe
ution is available, arithmeti
 nul-li�
ation must be used to blo
k the e�e
ts of exe
ution on those PEs for whi
h the
ondition doesn't hold. This was used on some SIMD systems, and 
an also be usedon SWAR ar
hite
tures. Arithmeti
 nulli�
ation is also ne
essary if the data pre
isiondoesn't mat
h any supported �eld size.It is 
lear that SWAR ar
hite
tures, while similar to traditional SIMD systems,also di�er from them in signi�
ant ways. SWAR ar
hite
tures are less mature andmore restri
ted than the later SIMD systems. As we dis
uss the spe
i�
s of 
ommoditySWAR ar
hite
tures in the next 
hapter, we will be able to do so with a perspe
tivegained from knowledge of past SIMD ar
hite
tures.
Re
on�gurable Ar
hite
turesSWAR ar
hite
tures are also related, though less 
losely, to re
on�gurable ar
hi-te
tures. These are ar
hite
tures whose pro
essing model or logi
al 
on�guration 
anbe 
hanged without a
tually 
hanging the hardware, either as the ma
hine is runningor between runs. A detailed study of these ar
hite
tures is unne
essary; however, wewill brie
y dis
uss two in order to 
ompare and 
ontrast them to SWAR ar
hite
tures.



- 292 -PASMThe PArtitionable SIMD/MIMD (PASM) system [197, 198℄ was a dynami
allyrepartitionable ar
hite
ture in whi
h the system 
ould be partitioned, while running,into several smaller SIMD and/or MIMD systems to perform separate parallel tasks.As the needs of the tasks 
hanged, the system 
ould be re
on�gured on the 
y. Thisallowed multiple pro
esses to use the array simultaneously, and in a manner that best�t their needs.SWAR ar
hite
tures, by 
ontrast, are mu
h less 
exible than was PASM. SWARsystems are always SIMD and are not partitionable into separate parallel subsystems.They 
an, however, dynami
ally 
hange pre
ision and parallelism by 
hanging howtheir data paths are partitioned into logi
al PEs.Re
on�guration on PASM was expli
it, meaning that a program exe
uted a sep-arate instru
tion to set the 
on�guration of the system, then exe
uted other instru
-tions under that 
on�guration. Re
on�guration on a typi
al SWAR ar
hite
ture o
-
urs impli
itly with every multimedia instru
tion exe
uted. The multimedia instru
-tion determines the 
on�guration of the system, but only during is own exe
ution |no state is maintained between instru
tions.While modern SWAR ar
hite
tures share some hardware aspe
ts with PASM, thefo
us of this resear
h is the development of a programming model for systems inwhi
h the partitioning of individual registers is dynami
. SWAR ar
hite
tures aredynami
ally partitionable not in the sense of tasks, like PASM, but in the sense ofthe layout of �elds in the register set. Thus, while a study of ar
hite
tures su
h asPASM's 
an provide insight into the design of modern mi
roparallel ar
hite
tures,they are not parti
ularly relevant to the 
urrent work.TRACThe Texas Re
on�gurable Array Computer (TRAC) prototype 
onsisted of four8-bit pro
essing elements 
onne
ted to nine memory modules via a Banyan net-



- 293 -work [126, 199℄. To perform an operation, the network swit
hes were set to forman instru
tion tree rooted at one of the memory modules whi
h would be used tosend instru
tions to a set of PEs. A set of separate data trees rooted at ea
h of thesePEs were also formed. These were used to a

ess data during the operation.A more important feature of the TRAC from the perspe
tive of SWAR pro
essingwas its varistru
ture. This allowed PEs to be ganged together to perform higher-pre
ision operations. The TRAC's PEs were byte-sli
e (i.e. 8-bit) pro
essors whi
h
ould be 
ombined to perform operations on data sizes whi
h were multiples of eightbits. Be
ause the prototype had only four pro
essors, it was limited to 8-, 16-, 24-,and 32-bit operations, but would allow any 
ombination of data pre
ision and set sizewhose produ
t was limited to 32.TRAC was an extension of the Re
on�gurable Varistru
ture Array Pro
essor [200℄.For this ar
hite
ture, the pre
ision and ve
tor sizes were spe
i�ed by the programmervia dimension de
larations. The trees were then built, with the PEs ganged togethervia exposed 
arry networks. By passing the 
arry signals between PEs, multi-bytepre
ision obje
ts were formed, and by blo
king the 
arry signals multiple elementsof a ve
tor were formed. This is similar to modern SWAR ar
hite
tures whi
h also
ontrol the 
arry 
hain to 
reate sets of equivalent elements of various sizes.A later version, TRAC 2.0, was built at a time when 32-bit mi
ropro
essors werea�ordable enough to use as the PEs. Varistru
ture, whi
h 
ombined byte-sli
e pro-
essors to form multi-byte obje
ts, was no longer needed. Ea
h PE in the TRAC 2.0design 
ould handle 32-bit and smaller obje
ts itself. Be
ause of this, the TRAC 2.0design is not parti
ularly relevant to SWAR pro
essing.Early Forms of SWAR Pro
essingSWAR-like pro
essing is not a new 
on
ept. Various forms have been used toexploit limited ma
hine resour
es su
h as memory and register spa
e for some time.



- 294 -As demonstrated in this 
hapter, both the ILLIAC IV and the MPP 
ould performdatapath partitioning to operate on data in a SWAR-like fashion.In fa
t, James Glei
k indi
ates in \Genius" [201℄ that Stanley Frankel, a mathe-mati
ian at Los Alamos during the se
ond World War, modi�ed IBM 601 multipliers,whi
h performed a single ten digit multipli
ation, to perform three separate threeor four digit multiplies simultaneously. This was 
learly a form of SIMD pro
essing,and, depending on the design of the multipliers, may even have been a form of SWARpro
essing. I have not been able to obtain more spe
i�
 information on this work,nor was Mr. Glei
k able to guide me to the original sour
e of this information 3, so I
annot 
on�rm this.Early work in applying this form of pro
essing to mi
ropro
essor systems fo
usedon enhan
ing these pro
essors with on-
hip graphi
al hardware. These were latergeneralized into the multimedia extensions 
urrently in use. A short history of SWAR-like multimedia extensions is given in [29℄. There is also some dis
ussion of earlySWAR-like ar
hite
tures in [202℄. In this se
tion, we will dis
uss some of these earlySWAR pro
essors.Intel i860In 1989, Intel introdu
ed the i860 mi
ropro
essor [203℄. This was the �rst general-purpose mi
ropro
essor to in
orporate SIMD-style instru
tions for graphi
s pro
ess-ing [202℄. This fun
tionality was intended to a

elerate \ba
k-end rendering opera-tions" su
h as \shading and hidden surfa
e removal." [203℄The i860 had a three-dimensional graphi
s pro
essing unit that 
ould operatesimultaneously on a set of pixels stored in any of its 64-bit 
oating-point registers.When used in this manner, these registers were partitioned into sets of eight 8-bitpixels, four 16-bit pixels, or two 24- or 32-bit pixels.3James Glei
k, email to author, 19 De
ember 2001.



- 295 -A set of ten graphi
s instru
tions were supported by the i860 whi
h performedoperations su
h as z-bu�er 
he
ks, pixel intensity interpolation, and z-distan
e inter-polation. These were used for determining whi
h pixels were 
losest to the viewer,and therefore must be visible, and for rendering unstored, but visible, points betweenpolygon verti
es.Motorola 88110The 88110 [204℄, introdu
ed by Motorola in 1992, had a set of about nine SIMDinstru
tions for performing \...�xed-point shading and image pro
essing." These in-stru
tions operated on pixel or 
olor intensity data stored in the 88110's 64-bit generalregisters. The 88110 had separate pa
k/unpa
k and arithmeti
 units and 
ould issuean instru
tion to ea
h on every 
lo
k 
y
le.Graphi
al data was normally stored as \pixels" in pa
ked format. These 
onsistedof four 8-bit integer values stored as a 32-bit entity. It appears that these werenormally operated on in an \unpa
ked" format with four 16-bit �xed-point valuesstored in a 64-bit register. Instru
tions for unpa
king pixel data into �xed-point formand pa
king �xed-point data into pixel form were in
luded.The 88110 allowed modular and signed or unsigned saturation addition and sub-tra
tion on 8-, 16-, and 32-bit unpa
ked �xed-point data. Modular arithmeti
 refersto operations in whi
h only the bits that 
an �t into the assigned storage spa
e arestored. Over
ow bits are ignored, although side e�e
ts su
h as the setting of 
ondi-tion 
odes may o

ur. This is equivalent performing a modulus operation after thearithmeti
 operation, and is how arithmeti
 is traditionally handled on 
omputingsystems.Saturation arithmeti
 refers to operations in whi
h over
ow is prevented by settingthe result of an operation to the maximum storable value of the same sign when anover
ow would have o

urred and to the minimum storable value of the same signwhen a negative over
ow would have o

urred. Signed saturation refers to performing
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 while treating the data as signed values. Unsigned saturationrefers to performing saturation arithmeti
 while treating the data as unsigned values.Multipli
ation of �xed-point data by an 8-bit integer s
alar value was also sup-ported. This instru
tion multiplied ea
h 16-bit unpa
ked �xed-point �eld by the same8-bit value to form a set of 16-bit results stored in unpa
ked �xed-point form. Thisallowed 
olor intensity values to be s
aled simultaneously by the same amount.Other instru
tions in
luded rotation of the �elds of a register by a 
onstant orvariable amount and z-bu�er 
omparison operation. The rotate 
ould operate on 4-,8-, 16-, and 32-bit �elds, presumably in unpa
ked form.Texas Instruments MVPIntrodu
ed in 1992, the Texas Instruments multimedia video pro
essor (MVP) [116℄was a single-
hip parallel pro
essor intended for \...general integer DSP or bit andpixel manipulation...." The ar
hite
ture allowed for one to eight parallel pro
essingunits 
ontrolled by a \master pro
essor".Ea
h parallel pro
essing unit had a 32-bit ALU whi
h 
ould perform arithmeti
operations in a SWAR-like manner. These were referred to as \split ALU" operationsand 
ould be performed on either two 16-bit or four 8-bit register �elds simultaneously.It is un
lear from [116℄ exa
tly whi
h operations 
ould be performed in this manner.The MVP was a highly spe
ialized high-performan
e ar
hite
ture intended forDSP and graphi
s manipulation algorithms. I am unsure if any pro
essor was everbuilt based on this ar
hite
ture.Parallel Programming LanguagesBe
ause SWAR ar
hite
tures implement a limited form of SIMD pro
essing, itmakes sense to try to develop a SIMD-like abstra
t model to program them. How-ever, it is 
lear that past SIMD ar
hite
tures di�er somewhat from modern SWARar
hite
tures. Be
ause of this, the programming models developed for SIMD ma
hines



- 297 -may not work well with SWAR ar
hite
tures. Also, while SWAR ar
hite
tures aresimilar to SIMD ar
hite
tures, their operation more 
losely �ts the one-dimensionalve
tor pro
essing model than the multi-dimensional array pro
essing model. In orderto develop a good SWAR programming model, it is best to have some understandingof both.A large number of programming languages have been developed for programmingve
tor and SIMD parallel pro
essors. In this se
tion, several of these are dis
ussedin order to gain an understanding of ve
tor and SIMD programming models andhow they have been embodied in these languages. Having an understanding of therelationship between these models and languages will be useful when developing ausable SWAR pro
essing model. We will also borrow from these languages to developan experimental SWAR programming language.Most parallel programming languages are based on previously existing 
omputerlanguages, so it is useful to group them into families of languages whi
h are based ona 
ommon an
estor.APL-based LanguagesAPL [162, 205℄ was developed starting in early 1956 \as a tool for des
ribing andanalyzing various topi
s in data pro
essing, for use in tea
hing 
lasses, and in writinga book...." [206℄ APL is rooted in mathemati
s and has a syntax similar to that ofalgebrai
 notation. Thus, APL programs are essentially mathemati
al expressions.In APL, ve
tors and arrays are \�rst-
lass" obje
ts. This means that the languageallows the programmer to 
on
isely des
ribe the task at hand as simple high-leveloperations on ve
tors and arrays rather than as a series or loop of low-level operationson their individual elements. This, in turn, makes it easier for a 
ompiler to re
ognizeparallelizable operations.Ve
tors and arrays are operated on using a set of primitive \fun
tions" (oper-ations) whi
h are de�ned in an implementation-independent manner [207℄. These
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lude arithmeti
, Boolean, and relational operations, and other operations su
h asarray element sele
tion. Operations on s
alars are extended in a 
onsistent way toarray operands and handle them in elementwise fashion. These operations have no\side e�e
ts" whi
h are hidden from the programmer and are thus well-suited toparallelization.APL also introdu
ed several advan
ed features. These in
lude redu
tion and s
an(parallel pre�x) operators. Redu
tions 
ombine the elements of a ve
tor or array toform a single s
alar result. For example, adding all the elements of an array together.S
ans are redu
tions in whi
h ea
h of the intermediate results is also kept, not justthe �nal result. For example, keeping the running total for the above example as ea
helement is added in. Other features were an \axis" modi�er whi
h indi
ated that anoperation was to be applied a
ross the rows or 
olumns of an array, and inner- andouter-produ
t operators whi
h resulted in a s
alar or array respe
tively.Be
ause of its mathemati
al basis and 
onsistent treatment of s
alar, ve
tor, andarray obje
ts, APL might be a good 
hoi
e for SWAR pro
essing. However, APLhas several aspe
ts whi
h make it less desirable as a basis for a SWAR language.For one, it is a dynami
 language. Array types and dimensions are often unde
laredand must be determined by the 
ompiler [126℄. Also, variable types may 
hangeduring pro
essing. While these features make APL versatile, they also make buildinga properly working 
ompiler for it a diÆ
ult task.APL also makes use of symbols that are not part of a modern mi
ro
omputer'srepertoire. Its 
hara
ter set is based on that of the IBM 1050 terminal and in
ludesa number of symbols not available in the ASCII 
hara
ter set whi
h is used on mostmodern systems. Finally, APL di�ers signi�
antly from the languages most oftenused by programmers in the high-performan
e area. This may be the most damning,as programmers tend not to use unfamiliar languages no matter how well designedthey are. For these reasons, the SWAR model presented in this thesis will drawfrom APL's strengths, but our in
arnation of it will be based on a more universallya

epted language.



- 299 -APPLE [208℄ was intended to be a general-purpose parallel language for theILLIAC IV. Like APL, it was highly dynami
 and allowed operations on ve
tors andarrays to be des
ribed eÆ
iently. These would be performed in parallel on the PEarray. While this language may have been useful for SWAR pro
essing, the proje
twas abandoned after proving to be too diÆ
ult to implement 
orre
tly for the ILLIACIV [126, 152℄.ALGOL-based LanguagesALGOL [164, 165℄ was developed in the late 1950s. It was intended to be a well-designed, ma
hine- and appli
ation- independent language for expressing algorithmswith 
on
iseness and stru
ture.ALGOL was the �rst blo
k-stru
tured language [126℄. It allowed programs to behierar
hi
al and better organized than those written in earlier languages su
h as FOR-TRAN. It also allowed for dynami
ally allo
ated lo
al variables, re
ursive pro
edures,and 
all-by-value and 
all-by-name parameters [209℄. This stru
ture had a pri
e inthat 
ode written in FORTRAN tended to be 
ompiled to more eÆ
ient ma
hine
ode. Thus, programmers 
on
erned with performan
e tended to use FORTRANinstead.ALGOL has been the basis for mu
h theoreti
al work in 
omputer languages, andhas in
uen
ed the design of many subsequent languages. ALGOL was a sequentiallanguage, but at least one parallel language, GLYPNIR, was based dire
tly on it.GLYPNIR [163℄ was a general-purpose language intended to provide a stable,eÆ
ient method of programming the ILLIAC IV. Designed in 1968, it was one ofthe �rst attempts at the development of a true SIMD language. GLYPNIR was anextension of ALGOL 60 whi
h allowed parallelism to be expressed expli
itly in termsof 64-word ve
tors (the size of the ILLIAC IV's PE array).GLYPNIR di�erentiated between what were 
alled CU variables and PE variables.CU variables represented s
alars and ve
tors of s
alars that would normally reside



- 300 -on the ILLIAC IV's 
ontrol unit, while PE variables represented swords or ve
tors ofswords (sword ve
tors) residing on its PE array. A sword was the group of 64 words atthe same address in ea
h of the PEs' lo
al memories. A sword ve
tor was a 
olle
tionof swords 
ontiguously allo
ated on ea
h of the PEs.PE variables were �rst-
lass obje
ts, and operations on them were exe
uted inparallel a
ross the PE array. Using PE variables to index a sword ve
tor alloweda sli
e to be a

essed. This was a group of 64 words residing on the PE array atpossibly di�erent lo
al addresses in ea
h PE. Thus, GLYPNIR allowed what wouldlater be 
alled \ve
tor-valued indexing" or \ve
tor indexing" of a ve
tor or array.GLYPNIR allowed data to be stored in a pa
ked format along the same lines asmodern SWAR ar
hite
tures. The partitioned obje
t was represented by an identi�er,but 
ould not be operated on in a SWAR manner. An individual pie
e of data wasa

essed by modifying the identi�er with a bit �eld spe
i�er whi
h de�ned the rangeof bits to be a

essed. A sword of bit �elds 
ould be operated on in parallel just aswith any other type of sword.IF and ELSE statements were parallelized, with impli
it PE enabling, if their
onditional tests were PE expressions. This was also true for FOR, DO, and WHILEloops. A FOR ALL 
onstru
t was added as an alternative equivalent syntax for theparallelized IF. These 
onstru
ts allowed the programmer to express parallelism usingfamiliar means.GLYPNIR also in
luded the Boolean quanti�ers SOME and EVERY whi
h 
ould beused to test aggregate 
onditions and provide a s
alar result. These were TRUE if a
ondition was TRUE for some or all of the tested elements, respe
tively.Unfortunately, GLYPNIR was not designed to hide the ar
hite
ture of the ILLIACIV from the programmer. In fa
t, quite the opposite was true. PE variables alwaysde�ned a set of 64 obje
ts whi
h were spread a
ross the width of the ma
hine'spro
essor array. Operations on larger data sets had to be strip-mined (i.e. split into aseries of operations on smaller parts of the data set) by the programmer to �t within



- 301 -this limit. This exposure of the ar
hite
ture makes GLYPNIR unsuitable as a basisfor a portable SWAR model.FORTRAN-based LanguagesThere are a large number of parallel pro
essing languages based on FORTRAN(the FORmula TRANslation system). This language was developed by a group atIBM led by John Ba
kus in the mid-1950's [210℄. It was originally designed as a meansto program the 704, a 
ommer
ial SISD 
omputer, in a manner whi
h more 
loselyrepresented the s
ienti�
 problems of the end-users than other languages of the time.In later in
arnations, the name was 
hanged to Fortran to signify the a

eptan
e of
ase-sensitive sour
es.Fortran has a long history as a language for s
ienti�
 and te
hni
al 
omputing,and has been in 
ontinual use sin
e its in
eption. The proverbial \dusty de
ks" ofpun
h 
ards are typi
ally Fortran sour
es that few people want to make signi�
ant
hanges to unless there will be suÆ
ient pay-o�. As a result, mu
h resear
h has
entered on 
onverting sequential sour
e 
ode into ve
torized or parallelized ma
hine
ode. This is typi
ally done by parallelizing the iterations of 
ode loops.As ar
hite
tures evolved, so did Fortran. Newer versions of the language treatarrays and ve
tors as �rst-
lass obje
ts. Thus, looping 
onstru
ts are no longer ne
-essary for des
ribing ve
tor and array operations. Unfortunately, mu
h of the dustyde
k 
ode is still written as looped 
onstru
ts. Thus, while Fortran has grown toallow new paradigms, it has also been for
ed to 
ontinue supporting the old ones.Be
ause of its history, Fortran is the most widely used language for high-per-forman
e 
omputing. This same history has also transformed it into a large andunwieldy language with many ar
hai
 features whi
h are only slowly being removed.This makes Fortran a non-optimal 
hoi
e for the basis of a new programming model.Despite this, mu
h 
an be learned from its evolution, so it is worth studying. In



- 302 -this se
tion, we will 
on
entrate on des
ribing versions of Fortran used on ve
tor andSIMD pro
essing systems.ILLIAC IV FORTRAN [150℄ by Burroughs Corporation was developed some-time before 1968 and was the earliest parallel version of FORTRAN for the ILLIACIV [154℄. This language introdu
ed some simple 
onstru
ts for supporting parallelpro
essing whi
h were used in later languages.Parallelism was supported via a notation in whi
h an asterisk was used as anarray index. This indi
ated that operations on the array should be applied to ea
hof its elements in parallel. Thus, arrays 
ould be treated almost as though they were�rst-
lass obje
ts. Some later versions of Fortran used a similar notation. We willrefer to the use of this notation as wild
ard indexing.ILLIAC IV FORTRAN also introdu
ed the use of \
ontrol ve
tors" as array sub-s
ripts to indi
ate 
onditional exe
ution. Ea
h element of a 
ontrol ve
tor had eithera .true. or .false. value. When used as an array subs
ript, the value of ea
h 
ontrolve
tor element indi
ated whether or not operations were to be performed on the 
or-responding element of the array. This allowed elementwise 
onditional operations tobe written as operations on arrays rather than as loops of 
onditional s
alar 
ode.These 
onstru
ts provided rudimentary support for parallel pro
essing, but weresomewhat restri
tive. Later parallel diale
ts of FORTRAN would build on this start-ing point and were signi�
antly more 
omplex.IVTRAN [159℄ was an extension of ILLIAC IV FORTRAN whi
h allowed more
omplex parallel operations to be performed on arrays of integer or 
oating-pointdata. This was done by adding new looping and data allo
ation 
onstru
ts whi
hhelped the 
ompiler to �nd and extra
t useful parallelism.The primary me
hanism for expressing parallelism was a new DO FOR ALL 
on-stru
t whi
h was somewhat similar to a DO loop. This 
onstru
t indi
ated that 
ertainassignments within the loop were logi
ally simultaneous and 
ould therefore be par-allelized. These assignments were denoted as s
alar element assignments and wererequired to be of a 
ertain form.



- 303 -Rather than having a single index variable as with standard Fortran DO loops, DOFOR ALL loops 
ould be indexed over a set of variables 
alled a \
ontrol multi-index".Ea
h member of this set represented an axis of the obje
t or obje
ts to be a

essed.A related logi
al expression spe
i�ed a range of values for ea
h axis to be operatedon. The values thus spe
i�ed were 
alled the \index set". This allowed a subarray tobe sele
ted for parallel operation within the loop body. PE enabling for the sele
tedelements was handled impli
itly.Using IVTRAN required having knowledge of the ILLIAC IV's ar
hite
ture. Toa
hieve eÆ
ient speedup, the data had to be laid-out so that it 
ould be a

essed inparallel. This required the programmer to stru
ture arrays to mat
h the underlyingar
hite
ture. Two 
onstru
ts were provided to help in this endeavor. The �rst, anoptional allo
ation de
laration, allowed the programmer to spe
ify the layout of anarray. The se
ond was an OVERLAP spe
i�er whi
h allowed an array to be transformedbetween multiple layouts in pla
e during pro
essing.While IVTRAN had 
ertain features whi
h may be useful in a SWAR model, theexposure of the ar
hite
ture made it non-portable, and thus not useful in the 
urrente�ort. The language also had a short life, having been repla
ed by CFD soon afterthe ILLIAC IV was delivered to NASA [126℄.CFD [151, 152℄ was a FORTRAN-based language designed primarily to allow
omputational 
uid dynami
s 
ode to be ported to the ILLIAC IV (hen
e the name).CFD was not intended to be a general-purpose language and was intentionally tiedto the underlying ar
hite
ture. This allowed programmers in NASA's CFD resear
hbran
h to optimize 
ode for the ILLIAC IV target.Parallelizable \ve
tor-aligned" arrays of up to three dimensions were allowed, butthe �rst dimension was required to be less than or equal to the number of PEs.Parallel operations on these were pseudo-�rst-
lass using a wild
ard indexing s
hemesimilar to that of ILLIAC IV FORTRAN. This was extended to allow expressionsover wild
ards to denote rotations of the indexed obje
t.
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alars and non-parallelizable arrays resided on the CU and operations on themwere performed there. These were thus limited to the operations whi
h the CU 
ouldperform, while a di�erent set of operations 
ould be performed on the ve
tor-alignedarrays residing on the PEs.Thus, the language not only required the user to have knowledge of the targetar
hite
ture, it 
odi�ed the di�eren
es between its fun
tional units. These issuesmake CFD unsuitable for use as a basis for a portable programming model.Despite this, CFD did have 
ertain features whi
h 
ould be in
orporated into amodern SWAR programming model. Like GLYPNIR, CFD had used CU and PE stor-age 
lass modi�ers whi
h expli
itly indi
ated where the data should be stored. Logi
alIF statements with parallel 
onditionals were parallelized and impli
itly handled PEenabling, thus hiding these issues from the programmer. Finally, expli
it .ANY. and.ALL. quanti�ers, whi
h were similar to GLYPNIR's SOME and EVERY tests, 
ouldbe used to obtain aggregate information. CFD expanded upon these with new .NOTANY. and .NOT ALL. quanti�ers whi
h performed 
omplementary tests.TI-ASC NX Fortran [149, 154℄ was a ve
tor Fortran developed for the TexasInstruments Advan
ed S
ienti�
 Computer | a parallel pipelined ve
tor pro
essor.This language was introdu
ed around 1973. The NX 
ompiler was one of the �rstve
torizing 
ompilers, 
apable of 
onverting standard Fortran 66 
ode into ve
torma
hine 
ode. To make it easier to make use of the TI-ASC's 
apabilities, NX Fortranalso in
luded some array pro
essing features.Ve
tors and arrays were apparently �rst-
lass obje
ts in NX Fortran whi
h 
ouldbe referen
ed in expressions and assignments by simply using their names. No spe
ialindi
es or loop 
onstru
ts were ne
essary to invoke parallel operation on these obje
ts.This was essentially a notational improvement over previous versions of FORTRANwhi
h brought them 
loser to GLYPNIR or APL.Elementwise array assignments 
ould be performed as long as the right-hand sideof the assignment 
onformed to the shape and size of the obje
t on the left-hand side.S
alars on the right-hand side were promoted to a 
onforming shape via repli
ation.



- 305 -A set of \array generating intrinsi
s" allowed \the generation of an array 
rossse
tion from other array 
ross se
tions by use of ve
tor instru
tions...." [149℄ Variousredu
tion intrinsi
s were also available whi
h generated an aggregate s
alar value froma ve
tor or array argument.Other features allowed a

ess to subse
tions of multi-dimensional obje
ts. ASUBARRAY statement allowed the dynami
 aliasing of an array subse
tion to anotherarray of the same rank. This allowed multiple operations to be performed on the sub-se
tion without requiring the subse
tion to be spe
i�ed for ea
h one. Cross-se
tionsof an array 
ould be spe
i�ed using an asterisk wild
ard index. This indi
ated the fullrange of possible values for that index from one to the obje
t's length in that dimen-sion. Choosing a parti
ular index value for only one dimension 
aused a 
ross-se
tionof rank n � 1 to be sele
ted from an obje
t of rank n. A negated asterisk 
ould beused to spe
ify the full range of values from the obje
t's length down to one.From the perspe
tive of designing a model for ve
tor-based SWAR pro
essing, themost signi�
ant 
ontribution of NX Fortran was probably its use of �rst-
lass ve
torobje
ts. Ve
torization is used primarily when the sour
e is based on a s
alar pro-gramming model. Cross-se
tions are trivial unless the obje
t is a multi-dimensionalarray | the 
ross-se
tion of a ve
tor is a single element. Thus, most of NX Fortran'sfeatures are better suited to non-SWAR programming models.Ve
tor LRLTRAN [172, 154℄ was developed, also around 1973, at the Lawren
eLivermore Labs. It was intended to allow programmers to make use of the ve
tor
apabilities of the CDC STAR-100 ve
tor pro
essor by extending the LRLTRANversion of Fortran with ve
tor features. Ve
tor LRLTRAN was also used to 
odeprograms for the TI-ASC, ILLIAC IV, and CDC 7600 before the STAR system wasdelivered.The language supported single-strided (i.e. 
ontiguously allo
ated), one-dimen-sional ve
tors as �rst-
lass obje
ts. These ve
tors 
ould 
onsist of REAL, INTEGER, orBIT data. Ve
tor de
larations, assignments, expressions, subs
ripting, and fun
tionswere in
luded to support these obje
ts.



- 306 -Ve
tor LRLTRAN allowed ve
tor obje
ts to be de
lared in a manner similar to aFortran DIMENSION statement. Ve
tors di�ered from arrays in that they were �rst-
lass obje
ts and thus 
ould be operated on as a single obje
t. Related to ea
h ve
torwas a \des
riptor". This was essentially an index into a table 
ontaining the memoryaddress of the �rst element and the number of elements in ea
h ve
tor.If the ve
tor was de
lared with a s
alar dimension, it was allo
ated stati
ally andassigned a new des
riptor whi
h 
ould not be 
hanged during exe
ution. If the ve
torwas de
lared using a des
riptor, but no dimension, the information in the des
riptorwas used to allo
ate the ve
tor. If both were given in the ve
tor de
laration, thenthe dimension was assigned to the des
riptor and the ve
tor was allo
ated usingthis information. In ea
h of the last two 
ases, the des
riptor was available to theprogrammer during exe
ution; thus, the ve
tor's size and lo
ation were dynami
allyalterable.LRLTRAN's s
alar operators were extended to perform in elementwise fashion onve
tor operands in
luding sparse ve
tors. Pure ve
tor and mixed expressions 
ould bewritten, with promotion and ve
tor extension performed as ne
essary. If the size ofthe ve
tor operands did not mat
h, the shorter ve
tor was extended with an identityvalue for the applied operation.Available operations in
luded the standard Fortran arithmeti
, Boolean, rela-tional, and logi
al operators. Lo
ation and mode (type) operators, and a set of\STAR-spe
i�
" ve
tor operators were also in
luded. Arithmeti
 operations on ve
-tors were parallelized and had ve
tor results. Boolean and logi
al operations 
ouldonly be applied to bit ve
tors and produ
ed a bit ve
tor as a result. Relationaloperations 
ould be applied to any type of ve
tor, but produ
ed a bit ve
tor as aresult.Assignments 
ould also be performed on ve
tor obje
ts using the same syntax ass
alar assignments. When assigning a s
alar value to a ve
tor, the s
alar was repli-
ated to 
onform to the ve
tor's size. Ve
tor to ve
tor assignments were performed



- 307 -elementwise to �ll the result ve
tor. If the result was longer than the right-hand sideve
tor value, then the remaining elements of the result were unde�ned.The language also allowed subve
tors to be de�ned using \dynami
 equivalen
ing"in whi
h a range of ve
tor elements 
ould be assigned an alias and operated on as asingle entity. This was similar to ve
tor assignment, but did not 
reate a new obje
t.Ve
tors 
ould also be used as fun
tion arguments and return values. Although thelength of the returned ve
tor had to be spe
i�ed upon de
laration of a user-de�nedfun
tion, this size 
ould be a run-time value. When 
alled, the 
alling routine wasresponsible for evaluating the size of the return value and allo
ating spa
e for it.Ve
tors and parenthesized ve
tor expressions 
ould be indexed using several dif-ferent methods. These allowed a single element, a range of elements, or any set ofelements to be sele
ted for use in expressions. S
alars 
ould be used as with arraysto spe
ify a single element. Non-bit ve
tor expressions 
ould be used as an indexve
tor whi
h listed the elements to be sele
ted. This allowed arbitrary permutationsof a ve
tor to be generated. Bit ve
tors 
ould also be used as indi
es and a
ted like a
ontrol ve
tor, indi
ating whether or not ea
h element would be used in the 
urrentoperation.Semi
olon-separated o�sets 
ould be used as an index. These spe
i�ed the numberof elements to dismiss at either end of the ve
tor. The result was the remainingelements from the middle of the ve
tor. Either o�set 
ould be omitted and defaultedto zero.Colon-separated limits also 
ould be used as an index. These spe
i�ed the �rstand last elements to in
lude in the result. Either limit 
ould be omitted. The lowerlimit defaulted to zero, while the upper defaulted to the length of the ve
tor minusone.The STAR-spe
i�
 operators were .LGTH., .VEC., .DES., .CTRL., ', :, and ;.These were used to obtain information about a ve
tor, manipulate it, or sele
t sub-se
tions of it. The 
olon and semi
olon index operators were just des
ribed. Theothers 
an be des
ribed brie
y.



- 308 -The length of a ve
tor 
ould be obtained using the unary .LGTH. operator. The.VEC. and .DES. operators were used to manipulate ve
tor des
riptors. Con
eptually,.VEC. 
onverted its s
alar argument to a ve
tor des
riptor whi
h 
ould be used inexpressions and assignments. The .DES. operator returned the des
riptor of its ve
toror ve
tor expression argument. This allowed the programmer to obtain, 
opy, ormodify a ve
tor's des
riptor.Similar to ILLIAC IV FORTRAN, 
ontrol ve
tors were bit ve
tors used to im-plement 
onditional exe
ution by indi
ating whi
h elemental results of a ve
tor ex-pression were to be stored. These were used with the binary .CTRL. operator whi
happlied the 
ontrol ve
tor, or an expression whi
h evaluated to one, whi
h pre
ededit to the ve
tor expression whi
h followed it. Only one .CTRL. operator 
ould be usedper statement and it was not allowed to be en
losed in parentheses.A representation for sparse ve
tors was also in
luded in the language. These werestored as a pair of ve
tors. The \value ve
tor" 
ontained the non-zero element values,while the \order ve
tor" stored a bit ve
tor indi
ated whi
h elements 
ontained thesenon-zero values. Sparse ve
tors were denoted as an apostrophe-separated value/orderve
tor pair.A set of inlineable intrinsi
 ve
tor fun
tions were also in
luded in LRLTRAN. Oneset of these performed arithmeti
 redu
tions on their ve
tor arguments. Q8SUM()and Q8PROD() performed, respe
tively, redu
e-add and redu
e-multiply operationson their ve
tor arguments. Ea
h of these 
ould also take a 
ontrol ve
tor as a se
-ond argument. This spe
i�ed a subset of the ve
tor's elements to be used in the
al
ulation.A se
ond set of intrinsi
s 
ould be used either as fun
tions, whi
h returned aresult, or subroutines, whi
h required pre-allo
ated storage for the result to be madeavailable to them. This se
ond set of intrinsi
s in
luded Q8MASK, Q8MERG, Q8CMPRS,and Q8XPND. The �rst two of these 
ombined two data ve
tors using a 
ontrol ve
torto sele
t whi
h elements from ea
h data ve
tor would be sele
ted. Q8MASK sele
ted oneof the two data elements whose index 
orresponded with that of the result element,



- 309 -while Q8MERG treated the data ve
tors as two sta
ks and used the 
ontrol ve
tor to
hoose from whi
h the next sequential result element would be taken. Q8CMPRS wasused to 
ompress a ve
tor into sparse form, while Q8XPND was used to expand a sparseve
tor ba
k to normal form.Ve
tor LRLTRAN had a large number of ve
tor-handling features, some of whi
hare beyond our 
urrent needs or the 
apabilities of 
urrent SWAR ar
hite
tures. How-ever, a number of them 
an be in
orporated into a SWAR model or used to implementa SWAR-based programming language.VECTRAN [155, 154℄ was introdu
ed by International Business Ma
hines (IBM)Corporation in 1978 4. Triplet notation, identify statements, and where 
onstru
tswere introdu
ed by this language and/or BSP Fortran whi
h was introdu
ed aboutthe same time by the Burroughs Corporation [156, 154℄.Triplet notation allowed the programmer to referen
e se
tions of arrays using a
on
ise notation. A triplet was a 
omma-separated list 
onsisting of the indi
es of the�rst and last elements along a parti
ular dimension to be a

essed and an optionalstride to be used between su

essive elements. This notation allowed the programmerto des
ribe regular patterns of a

ess without using looping 
onstru
ts.Ea
h part of the triplet had a well-
hosen default value whi
h made 
ommonly-a

essed subse
tions trivial to des
ribe. If the �rst index was omitted from a triplet,the �rst element in the array was used. Similarly, if the last index was omitted, thelast element was used. An omitted stride was set to one.Triplet and standard index notations 
ould be mixed as long as 
orrespondingdimensions had the same number of elements. When used as an array index, tripletnotation allowed the programmer to express regular patterns of a

ess without usinglooping 
onstru
ts. However, triplet notation did not allow 
onditional sele
tion asdid ILLIAC IV FORTRAN's 
ontrol ve
tors.The where 
onstru
t allowed 
onditional assignment in a manner that was more
exible than 
ontrol ve
tors. A 
onditional ve
tor expression was evaluated and4 [154℄ reports this date as 1973, but the 
ited work is from 1978.



- 310 -used to de
ide whi
h elements would be operated on. In a sense, the where 
reatedthe equivalent of a 
ontrol ve
tor to be applied to its body. This body 
ould only
ontain array assignment statements whi
h 
onformed to the shape of the 
onditionalexpression. An otherwise statement was also in
luded whi
h operated on the set ofelements where the 
ondition did not hold.The identify statement was used to allow the expression of operations thata

essed memory in regular strides, but were denoted by array indi
es with irregularstrides. For example, the diagonal of an array is typi
ally stored with a regular strideof n + 1 for an array with dimensions of length n, but the 
orre
t set of indi
es
annot be des
ribed using triplet notation. The identify statement applied aliasingto 
reate a smaller-dimensional obje
t with 
orre
tly strided element indi
es. Thisobje
t 
ould then be used in a separate assignment statement.VECTRAN handled parallelism somewhat more elegantly than earlier parallelversions of FORTRAN. Subse
tion sele
tion and 
onditional exe
ution were denotedusing 
on
ise notations and language 
onstru
ts. These features would be 
opied byseveral later languages.DAP Fortran [211℄ was a variant of Fortran for programming the ICL DAP. Itwas in
uen
ed by CFD, but extended for use with the DAP's bit-serial ar
hite
ture.It was developed in the late 1970s.Two parallelizable data stru
tures were de�ned whi
h were 
learly related to thegeometry of the DAP's PE array: Two-dimensional arrays equal to the size of the PEarray, and one-dimensional ve
tors equal to the size of one edge of the array. Higher-degree obje
ts 
ould be de�ned as arrays of lower-level obje
ts. Thus, a programmer
ould de
lare an obje
t that was a 
olle
tion of arrays or ve
tors.DAP Fortran, like Ve
tor LRLTRAN, allowed expressions of mixed dimensions. Inthese expressions, lower-dimensional obje
ts were repli
ated and promoted to mat
hthe dimension of higher-dimensional obje
ts. This allowed the programmer to easilymix ve
tor and array 
ode.



- 311 -A set of intrinsi
 fun
tions were in
luded whi
h performed restru
turing operationssu
h as ve
tor and array shifts and rotates, element and subarray sele
tion, redu
tionssu
h as summations and ANY and ALL tests, and a trinary merge whi
h 
ombinedtwo obje
ts based on the elemental values of a third. Masked assignments, whi
hstored elements based on an element-wise 
onditional, were also available.Be
ause DAP Fortran was so 
losely tied to the DAP ar
hite
ture, it is not agood 
andidate for a portable SWAR language. However, some of the ideas, su
h asde�ning high-level obje
ts as 
olle
tions of lower-level ones and dimensional promotionvia repli
ation, may be useful for a SWAR programming language.Fortran 90 [157, 212℄ is an extension of the Fortran 77 language whi
h allowsthe pro
essing of ve
tors and multi-dimensional arrays. An interim version, Fortran8X, was standardized during the late 1980s [213℄.Ve
tors and arrays are treated as �rst-
lass obje
ts in Fortran 90; thus, operationson them 
an be expressed with a simple syntax. A large number of operations andfun
tions 
an be performed on these obje
ts in
luding elemental operations, 
ondi-tional tests, array se
tioning operations, redu
tions, and various intrinsi
 fun
tions.As with earlier languages, elemental operations behave as though they are appliedindependently a
ross the elements of their array operands and are often parallelized.Their operands are required to be 
onformable in shape and size. As with NX Fortran,s
alar obje
ts were 
onsidered to be 
onformable to any shape and size, thus makingit possible to mix s
alars with ve
tors or arrays within expressions.Fortran 90 reuses the VECTRAN/BSP Fortran where 
onstru
t with some mod-i�
ations. As in VECTRAN, WHERE operates in parallel on ea
h of the elements ofan obje
t for whi
h a spe
i�ed 
ondition holds. It is equivalent to an IF statementen
losed by a DO statement, and 
an therefore be thought of as a parallelized IF. AnELSEWHERE statement repla
es the VECTRAN otherwise, and operates on the setof elements where the 
ondition does not hold. It is analogous to a parallel ELSE.Statements in the WHERE/ELSEWHERE blo
ks are restri
ted to array assignments andwere required to 
onform to the shape of the tested obje
t. The WHERE is typi
ally



- 312 -used to avoid singular 
ases su
h as dividing by a zero-valued element. To minimizethe overhead of tra
king the set of enabled PEs, WHEREs 
annot be nested.Fortran 90 also reuses VECTRAN's triplet notation for referen
ing se
tions ofarrays, and allows ve
tor and arrays to be indexed using ve
tor subs
ripts. These areused to sele
t elements in an independent and variable manner. This allows the pro-grammer to spe
ify 
omplex data movement and rearrangement su
h as repli
ations,permutations, and gathers and s
atters of the elements of a sparse array.These notational 
apabilities 
an be used on either side of an assignment statementto reorganize data, and are typi
ally mapped to interpro
essor 
ommuni
ations onthe hardware. By assigning one array se
tion to another, the data is e�e
tively movedbetween PEs. Se
tion assignments spe
i�ed by triplet have regular 
ommuni
ationspatterns, while those spe
i�ed by ve
tor subs
ripting are equivalent to generalizedpermutations. The latter is a powerful feature that is only reasonable to use onar
hite
tures with generalized inter
onne
tion networks su
h as the routers found onthe Conne
tion Ma
hines and MasPar systems.Fortran 90 also has a large number of intrinsi
s whi
h perform various array opera-tions. These intrinsi
s in
lude 
onstru
tion, transposition, multipli
ation, redu
tions,geometri
 lo
ation of elements with spe
i�
 properties, and stru
ture inquiries. A 
on-ditional MASK 
an be applied to some of these to limit the operation to a subset ofelements.Fortran 90's redu
tions in
lude SUM, PRODUCT, MAXVAL, MINVAL, COUNT,ANY, and ALL. These 
an be applied a
ross the rows of an array in any dimension toform an array of one less dimension, forming a s
alar in the limiting 
ase. Conversely,data 
an also be spread (repli
ated) along a new axis to expand an array by onedimension.A limited amount of operator and intrinsi
 fun
tion overloading is possible, asare user-de�ned operators. These features let the programmer de�ne short-handnotations for spe
i�
 tasks, but 
an also make the sour
e less understandable.



- 313 -Fortran 90 is a large and 
omplex language whi
h has evolved to handle arraypro
essing on SIMD and MIMD ar
hite
tures. However, SWAR ar
hite
tures are notparti
ularly well suited to multi-dimensional array pro
essing. Thus, Fortran 90 ismore 
omplex than is ne
essary for a SWAR pro
essing model.A number of parallel variations on Fortran were developed 
on
urrently with theFortran 90 standard. These languages have features whi
h are similar to those of For-tran 90. Often these were intended to mat
h the (then proposed) standard. Be
auseof their 
on
urrent development, and be
ause several diale
ts of C were developed atabout the same time, it is diÆ
ult to determine whi
h of these languages implementedwhi
h features �rst. We will not be 
on
erned with this, but will introdu
e some ofthese languages and point out salient features regardless of their origins.Fortran-Plus [194℄ was a high-level language for programming the AMT DAP.It had features that were later in
luded in the then proposed Fortran 8X language.These in
luded extensions and intrinsi
 routines intended to allow the programmerto easily take advantage of data parallelism.As with DAP Fortran, parallel data types were limited to ve
tors and two-dimen-sional matri
es. These were �rst-
lass obje
ts, but were limited to the size of theDAP array. Later versions of the language were expe
ted to allow arbitrarily-sizedobje
ts.Fortran-Plus had sele
tion operators whi
h 
ould 
onditionally operate on se
tionsof a ve
tor or matrix. This was similar to the proposed Fortran 8X standard. It alsohad a set of aggregate fun
tions su
h as redu
tions whi
h operated on both ve
torsand matri
es.CM Fortran [160, 131℄ was essentially Fortran 77 with Fortran 90 and Con-ne
tion Ma
hine-spe
i�
 array extensions for spe
ifying potential data parallelism.These extensions were automati
ally parallelized by the 
ompiler for exe
ution onthe parallel unit of the Conne
tion Ma
hine.Generally, CM Fortran sour
e 
ode 
ould be divided into Fortran 77 
ode andparallel-extended 
ode. Fortran 77 operations were exe
uted on the front end system
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alar data and arrays whose elements were only a

essed individually.These data obje
ts were stored on the front end. All other arrays were stored on thePE array, and were operated on in parallel by Fortran 90 and CM Fortran-spe
i�
operations.CM Fortran allowed ve
tor subs
ripting whi
h was only reasonable to use be
auseof the presen
e of the CM's router inter
onne
t. The Fortran 90 WHERE 
onstru
twas supported to allow parallel 
onditional exe
ution. Also, a few CM-spe
i�
 exten-sions were supported by the language in
luding a FORALL [161℄ statement (whi
h hadbeen dropped from the Fortran 8X proposal) and various advan
ed array pro
essingintrinsi
s.The FORALL 
onstru
t was similar to a FOR loop in whi
h the iterations wereknown to be parallelizable. This allowed the programmer to expli
itly indi
ate arrayassignments whi
h 
ould be parallelized and made it easier for the 
ompiler to �nd andexploit this 
ode. To ensure the independen
e of its iterations, the body of a FORALLloop was restri
ted to 
ontaining \...a single array assignment statement." [214℄Array elements to be operated on 
ould be sele
ted by value or position withinthe array. The FORALL was typi
ally used for array initialization and elemental as-signment, but it was also useful for performing various data movements su
h as s
ansand generalized permutations.From the programmer's point of view, the elemental operations denoted by aFORALL exe
uted simultaneously, although this was not ne
essarily the 
ase. Thisguaranteed that elemental assignments whi
h would overwrite a value used in an-other assignment would not destroy the old value before it was used. Thus, theprogrammer did not have to take extra steps to prote
t values from the exe
ution ofother iterations.The FORALL was the equivalent of the VECTRAN identify, ex
ept that it avoidedthe aliasing step by 
ombining the separate aliasing and assignment statements intoa single 
onstru
t. Synta
ti
ally, it was similar to IVTRAN's DO FOR ALL 
onstru
t.
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 fun
tions were modi�ed to work in parallel on the ele-ments of the obje
t. Also, many of the Fortran 90 array intrinsi
s were implementedin CM Fortran in
luding those for 
onstru
tion, lo
ation, manipulation, inquiry, andmultipli
ation. Redu
tion intrinsi
s were also supported, but were extended by al-lowing them to be used with a FORALL to spe
ify s
ans (parallel pre�x operations) tobe performed on the PE array.A number of other intrinsi
s beyond those in Fortran 90 were available for per-forming a variety of transformations on ve
tors and arrays. These in
luded severalinquiry and lo
ation intrinsi
s, a DIAGONAL 
onstru
tor whi
h pla
ed a ve
tor in thediagonal of a matrix �lled with an optionally spe
i�ed value, and a REPLICATE whi
hextended an array along one of its dimensions.Compiler dire
tives whi
h 
ontrolled the layout of arrays in the memory of thePE array were also available. These allowed the programmer to attempt to optimizethe pla
ement of the data on the CM. A dire
tive to allow the programmer to spe
ifywhere 
ommon data should be stored was also provided.MPF [170, 171℄ (MasPar Fortran) was a subset of Fortran 77 whi
h in
ludedsome of the array-handling extensions of Fortran 8X. It was intended to allow theprogrammer to write 
ode in a familiar manner by hiding the details of the Mas-Par ar
hite
ture. This made the 
ompiler responsible for �nding and automati
allyparallelizing operations on ve
tor and array obje
ts.MPF implemented a subset of the proposed Fortran 8X standard. It treated ve
-tors and arrays as �rst-
lass obje
ts. It allowed array se
tions to be referen
ed and op-erated on using triplet notation or ve
tor subs
ripts. It in
luded the WHERE/ELSEWHERE
onstru
t for des
ribing parallel 
onditionals. It also supported a subset of Fortran8X's array intrinsi
s. Layout dire
tives whi
h allowed the programmer to spe
ify howdata was to be stored on the MasPar's DPU were also in
luded.Fortran D [215℄ was a post-Fortran 90 attempt to develop a portable, parallelversion of Fortran that 
ould repla
e the variety of diale
ts whi
h were around atthe time. These had been developed for various pro
essing models and ar
hite
tures
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luding SIMD, MIMD, and ve
tor systems. It was believed that they tended toexpose the underlying model, and thus programs written in them were often hard toport to systems based on other models.The important aspe
t of Fortran D was de
omposition: separating a problem intoa problem mapping and a ma
hine mapping. The problem mapping was an expressionof the inherent, target-independent parallelism of the problem. The ma
hine mappingwas an expression of how the problem was to be mapped onto the spe
i�
 target ar-
hite
ture. Thus, the problem was de
omposed into a portable, ma
hine-independentpart and a non-portable, ma
hine-dependent part.Fortran D operates at a higher level than this resear
h is 
on
erned with. Thepurpose of the 
urrent work is to develop a new SWAR pro
essing model and relatedprogramming methods, while Fortran D was developed to promote the portability ofFortran 
ode between multiple pro
essing models.High Performan
e Fortran [158℄ (HPF) is a later diale
t of Fortran 90 withextensions intended to better support data-parallel pro
essing, primarily on MIMDand SIMD 
omputers with non-uniform memory a

ess 
osts.New dire
tives, implemented as Fortran 90 
omments, allow the programmerto suggest parallelization strategies or to make assertions about the program. AnINDEPENDENT dire
tive indi
ates that statements in a DO loop 
an be parallelized. AnALIGN dire
tive indi
ates that an obje
t should be 
o-lo
ated with another obje
t.Also, DISTRIBUTE and REDISTRIBUTE dire
tives allow the programmer to suggestdata layouts.Other additions in
lude support for extrinsi
 fun
tions whi
h allow the program-mer to tailor algorithms to the target system. Also, 
ertain of Fortran 90's 
apabilitieshave been eliminated to remove asso
iated problems.As with Fortran D, HPF 
an be reje
ted for our purposes. HPF is basi
allyFortran 90 with a CM Fortran-style FORALL and some mark-up. The FORALL shouldnot be ne
essary in a well-designed programming language 
ompiled with a smart
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torizing 
ompiler, and the work of the mark-up dire
tives should be unne
essaryin a SWAR environment and should probably be handled in some other manner.Various ve
torizing 
ompilers for Fortran [154℄ in
luded Cray CFT, FujitsuFortran 77, IBM VS Fortran, Alliant FX/8 Fortran and NEC SX Fortran. Thesewere developed between about 1979 and 1987. As automati
 ve
torizors for standardFortran, they did not add mu
h in the way of interesting language 
onstru
ts orprogramming 
on
epts for parallel pro
essing. Their purpose was to avoid doing thisso that the programmer 
ould reuse sequential Fortran 
ode without 
hange or, atmost, with the addition of a few dire
tives to provide the 
ompiler with hints abouthow to ve
torize parts of the 
ode.PASCAL-based LanguagesPASCAL [216℄ is an ALGOL-based language that was designed as a portabletea
hing tool sometime around 1971. This was done by 
ompiling the sour
e to asimpli�ed, portable intermediate language 
alled P-
ode [217, 218℄, then using aninterpreter to exe
ute this 
ode on the target ma
hine. This method was very su
-
essful. In fa
t, the highly portable JAVA [219℄ uses a remarkably similar method toobtain its portability.Be
ause of its portability, PASCAL be
ame widely used and well-known, and hasin
uen
ed a number of later languages. This ubiquity makes it a reasonable 
hoi
eas a basis for parallel programming languages. One parallel language that was basedon PASCAL was A
tus.A
tus [153℄ was a SIMD-parallel language developed just after NX Fortran andVe
tor LRLTRAN and at about the same time as VECTRAN and BSP Fortran.It was a stru
tured language intended to provide a target-independent programmingmodel for ve
tor and array pro
essors whi
h allowed for the dire
t, natural expressionof data parallelism. A
tus was originally targeted to the ILLIAC IV using a PASCALP-
ode 
ompiler.
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tus, the maximum parallelism width that 
ould be applied to an array orve
tor was spe
i�ed upon de
laration of the obje
t. This was done using a dimensionnotation in whi
h the starting and ending indi
es along one dimension of the obje
twere separated with a 
olon instead of a pair of periods. This indi
ated both themaximum \extent of parallelism" and the dimension a
ross whi
h it should be applied.For example, the de
laration var a: array[1:4, 1..5℄ of integer; wouldde
lare a to be a two-dimensional array and indi
ate that it should be arrangedin memory so that a

esses a
ross its �rst dimension 
ould o

ur in parallel. Themaximum extent of parallelism for this array would be four (the length of its �rstdimension).The extent of parallelism to be applied for a parti
ular a

ess 
ould also be ex-pli
itly spe
i�ed when that a

ess o

urred. This allowed subve
tors and subarraysto be des
ribed and operated on in a parallel fashion. Suppose that the array a abovewas a

essed as a[2:3, 1℄ in an expression. This would indi
ate that the elementsa[2, 1℄ and a[3, 1℄ should be a

essed in parallel. The extent of parallelism thus
ontrolled the enabling of PEs whi
h held sele
ted elements.A
tus was one of the �rst languages to allow ve
tor subs
ripting. It also allowednamed \parallel 
onstants" whi
h were a set of strided values that were de�ned usinga notation similar to that of VECTRAN triplets. These 
ould be used as array indi
esor as initial values for ve
tors. They had the form: 
onst id = start:(stride)finish,where the stride was optional and defaulted to one.A
tus introdu
ed a general form of index sets whi
h were similar to parallel 
on-stants. These allowed the programmer to spe
ify a set of indi
es that would beinvolved in an operation. For example, the 
ode index ind = 1:10, 11:(2)99;
reated an index set 
ontaining all values from 1 to 10 and the odd values from 11to 99. The identi�er ind 
ould then be used to indi
ate the indi
es involved in aparti
ular operation.These sets 
ould be operated on using set operators to obtain their union, in-terse
tion, di�eren
e, or 
omplements. Ve
tor shift and rotate operations 
ould also
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it extents of parallelism. For example, the 
odesegments a[1:10 shift 2℄; and index idx=1:10 shift 2; a[idx℄; ea
h repre-sented the �rst ten elements of the ve
tor a shifted by two positions.To allow an extent of parallelism to be reused within a se
tion of 
ode withoutfor
ing the programmer to repeatedly supply the same information, A
tus had awithin 
onstru
t whi
h de�ned an extent of parallelism to be used throughout itsbody. Within the body, the 
urrent extent of parallelism was represented by a poundsign (#).Like GLYPNIR, A
tus had parallelized if, while, and for 
onstru
ts and any andall tests that were equivalent to its SOME and EVERY tests. It also had a parallelized
ase statement whi
h embodied multiple jump targets given a single 
onditional test.A
tus also allowed ve
tors to be passed to fun
tions and pro
edures as argumentsand used as return values from fun
tions.While A
tus allowed virtualized ve
tor and array dimensions (i.e. dimensions thatdid not mat
h the underlying ar
hite
ture), it only allowed standard data pre
isions.As a language whi
h allowed and promoted the use of multidimensional arrays, itis not a good mat
h for 
urrent SWAR ar
hite
tures whi
h are all one-dimensional.Under the assumption that future SWAR ar
hite
tures will be multi-dimensional;that is, something more akin to the GAPP or BLITZEN pro
essors, they may bene�tfrom an A
tus-like programming model.C-based LanguagesThe C programming language was developed in the mid 1970s by Dennis Rit
hieand others at AT&T Bell Laboratories [220, 221℄. It was 
o-developed with the UNIXoperating system and was its primary sour
e language.C is a well-de�ned language that is useful for writing portable appli
ations 
ode.Its real strength, however, lies in its low-level nature. This allows the programmer ahigh degree of 
exibility and a

ess to the target system.
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ause of the wide-spread use of UNIX on high-performan
e, multi-user systems,most of these systems have a working C 
ompiler available to their programmers.Be
ause of this ubiquity and its power, C has be
ome a favorite of systems-levelprogrammers, and the basis for several parallel programming languages. Amongthese are PASM Parallel-C, C*, and MPL. The language developed as part of thisresear
h, SWARC, is also based on C.PASM Parallel-C [222℄ was developed for the dynami
ally re
on�gurable PASM.It allowed any data type to be parallelized, and treated obje
ts of these types as �rst-
lass entities.Conditional tests su
h as if statements were modi�ed for use with parallel ex-pressions, and a sele
tor type was added whi
h allowed subarrays to be spe
i�ed.Assignment of parallel data obje
ts used a syntax similar to that of C and oper-ated in an element-wise fashion. Mixed-sized parallel assignments were allowed, butwere exe
uted only for 
orresponding elements. Parallel to s
alar assignments werenot allowed, so the the programmer was required to 
onvert the parallel data to asingle value. This was done by using the value of a single sele
ted element from theparallel obje
t. No redu
tion operations or redu
tion-assignments were available inthe language.Be
ause PASM 
ould be partitioned into se
tions whi
h used SIMD and MIMDmodes simultaneously, the Parallel-C language was primarily geared toward allowingthis type of usage. Later languages were targeted to more SWAR-like ar
hite
tures.C* (pronoun
ed C-star) was an extension of the C language intended to help theprogrammer exploit data parallelism on the SIMD Conne
tion Ma
hine. There werea
tually two major versions of C*. One was introdu
ed in the mid-1980s and wasmodi�ed slightly soon afterward. A se
ond was introdu
ed around 1990 whi
h wassigni�
antly di�erent from the earlier versions. It is instru
tive to look at ea
h ofthese.The original version of C* [166℄ was developed for use on the CM-1. It used twostorage 
lass identi�ers to expli
itly indi
ate parallel versus s
alar data, and impli
itly



- 321 -indi
ate where in the system a data obje
t would reside. mono obje
ts were s
alarsthat were pla
ed in the memory of the host 
omputer and were typi
ally operatedon there. poly obje
ts were pla
ed in the memories of the pro
essors in the parallelarray, and were operated on in parallel.PEs were represented in the language via the pro
essor type. The programmer
ould de
lare an array of pro
essors to represent a subset of the available PEswhere a parallel data obje
t would reside. By de
laring di�erent pro
essor obje
ts,the programmer 
ould 
reate di�erent sets of PEs to hold di�erent data sets.C* had a sele
tion statement modi�er whi
h allowed the programmer to 
hoosean \a
tive set" of PEs to be enabled during the exe
ution of the modi�ed statement.Upon 
ompletion of this statement, the PEs were returned to their previous enablestate.The format of this sele
tion statement was [sele
tor℄.statement. The sele
tor
ould be a pro
essor variable, an array of pro
essors, an indexed value representinga 
onse
utive series of pro
essors, or a list of any of the above. This allowed anysubset of pro
essors to be 
hosen at any time to exe
ute a statement, thus providinga great deal of 
exibility.The standard C 
ontrol 
onstru
ts retained their C syntax, but were modi�edsemanti
ally to mat
h the SIMD pro
essing model using a
tive sets. These weresplit and re
ombined as ne
essary to handle 
onditional exe
ution. The bodies ofif, else, and while statements were only exe
uted if, and while, the test 
onditionheld for at least one a
tive PE. This was later 
alled the \rule of lo
al support".Nested 
onstru
ts were allowed. These re
ursively divided the set of a
tive PEs intosmaller sets whi
h re
ombined as ea
h level of nesting 
ompleted. On
e a 
onstru
twas 
ompleted, the a
tive set before it was entered was restored.The language supported the full set of standard C operators in
luding its variousassignment operators. New operators were also in
luded to represent the minimum(<>) and maximum (><) binary operations. These operators provided a 
on
isemeans of denoting these often used operations, and 
ould represent s
alar or parallel
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ould also be
ombined with assignment to form 
omparison-assignment operators.Purely mono expressions were exe
uted as in C, but poly and mixed expressionsrequired the semanti
s of the standard C operators to be modi�ed for use with theSIMD model. Both poly and mixed expressions were required to follow the \as-if-serial" rule. This stated that the result was determined as if the parallel parts hadbeen exe
uted in some undetermined serial order.In mixed expressions, mono values were promoted to polys as needed via repli
a-tion. Assignment of a mono value to a poly obje
t implied repli
ation of the value toea
h of the members of the a
tive set. Assignment of a poly to a mono implied someform of redu
tion operation to form the single assigned value.The standard C assignment operators, and those formed from the minimum andmaximum operators, 
ould be used for both assignment and unary redu
tion. Whenused as assignments, they a
ted as des
ribed above. When used as unary redu
tions,the result was a mono value whi
h 
ould be used in an expression.Under the as-if-serial rule, redu
tions were performed as if the elemental as-signments o

urred in some unspe
i�ed serial order. This ensured that redu
tion-assignments to a mono obje
t resulted in the 
orre
t value being stored without theloss of any parts of the redu
tion.C* had a this keyword whi
h 
ould be used in poly expressions to represent the
urrently exe
uting pro
essor. It 
ould be dereferen
ed to a

ess data on the lo
alpro
essor; but more importantly, it 
ould also be indexed to a

ess data on anotherpro
essor, thus allowing a form of interpro
essor 
ommuni
ation.Daniel Hillis' dissertation [128℄ des
ribes the theory behind the use of the Con-ne
tion Ma
hine. It was based on mapping data onto the PE array in any of severalrepresentations 
alled xe
tors. Xe
tors were domain/range pairings of the indexedPEs with values determined by applying a fun
tion to these indi
es. The original C*language was modi�ed to in
orporate the domain 
on
ept soon after its introdu
tion.
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ribed in [167℄ and [168℄, in
luded a C++ 
lass-like 
onstru
t 
alled a domain. Ea
h instan
e of a domain represented data residingon a single PE. An array of some domain represented a set of data (i.e. a xe
tor)whi
h was distributed with one element per virtual pro
essor. Ea
h pro
essor onwhi
h an instan
e resided was said to belong to the domain. Using this 
on
ept, thePEs 
ould be divided into groups for performing di�erent tasks on di�erent sets ofdata.Similar to 
lasses in an obje
t-oriented language, domains 
onsisted of a datastru
ture and a set of fun
tions whi
h 
ould a

ess it. The data stru
ture des
ribedthe xe
tor data and its layout in the memory of ea
h of the PEs on whi
h it resided.These PEs were said to \belong" to the domain.A domain's data elements were treated as �rst-
lass obje
ts. A referen
es to anyof them referred to the entire set of same-named elements a
ross all of the instan
esof the domain. This allowed the programmer to spe
ify an entire parallel data obje
t
on
isely.Parallel exe
ution was performed by 
alling the member fun
tions of the domainrelated to the xe
tor to be operated on. These fun
tions were exe
uted simultaneouslya
ross all the PEs belonging to the domain. Thus, domains were used to spe
ify thea
tive set of PEs as used in the original version of the language. A domain's memberfun
tions 
ould only be 
alled on a parti
ular PE if that PE belonged to the domain.This ensured that the pro
essor had the 
orre
t data layout for the 
alled fun
tion.For this version of C*, the meanings of mono and poly were modi�ed slightly towork with domains. mono domain members were s
alars stored on the front-end, whilepoly members were allo
ated a
ross the PEs belonging to the domain.Other 
hanges in
luded the repla
ement of the minimum and maximum operatorswith (<?) and (>?), respe
tively, and the addition of a (;=) assignment operatorwhi
h indi
ated that a single, arbitrary element should be 
hosen as the result.The use of the sele
tion statement was modi�ed to a
tivate the pro
essors be-longing to a parti
ular domain for a single statement (whi
h 
ould be a blo
k). This
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tion to: [domain tag℄.statement. Thee�e
t of this 
hange was to make sele
tion less 
exible, thus making it harder for theprogrammer to violate the semanti
s of the language's 
ontrol stru
tures.Sele
tion dea
tivated the 
urrent a
tive domain before sele
ting the new one,and rea
tivated it on
e the statement 
ompleted. Indexing 
ould still be done withsele
tion, and the this keyword had the same meaning, ex
ept that the index referredto a PE in the a
tive domain. Sele
tion 
ould also be used to initiate parallel exe
utionfrom within serial 
ode.The programmer 
ould still do something along the lines of the original C*'ssele
tion statement using a dot operator. This was interpreted by evaluating theleft-hand side as an lvalue whi
h spe
i�ed a set of PEs. These PEs would evaluatethe right-hand side based on the type of the left-hand side. If the right-hand sideevaluated to a value, it was used as the value of the dot operation. In this sense, C*'ssele
tion statement was an extension of its dot operator.Fun
tion overloading was available and allowed multiple variations of same-namedfun
tions to be written for various 
ombinations of mono and poly parameter andreturn types. Resolution was done using an algorithm whi
h tried to �nd the bestmat
h between the argument and return types of the 
all and the parameter andreturn types of the available fun
tions. C* also had a typeof keyword whi
h wasused to allow fun
tion parameters to be polymorphous.This version of C* allowed interpro
essor 
ommuni
ation to be denoted 
on
isely.As in the original C*, the this keyword 
ould be used with the dot operator todenote interpro
essor 
ommuni
ation between a PE and its neighbors. For example,x=(this+1)->x; sets the lo
al PE's value of x to that of its nearest neighbor's x. Sim-ilarly, C* pointers 
ould be used to denote 
ommuni
ations between the pro
essors ina domain. This was a

omplished by simply pointing at an obje
t in another pro
es-sor's memory. This notation supported permutations, multiple parallel broad
asts,and multiple parallel redu
tions.
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ond form, the languagewas again redesigned [169, 131℄. This se
ond major version of C* was somewhat
leaner than the previous two, and was based on the 
on
ept of data \shapes".Shapes were used to spe
ify multi-dimensional spa
es on a virtual PE array. On
espe
i�ed, these shapes 
ould be asso
iated with data obje
ts as part of their de
lara-tion. The syntax for a shape spe
i�
ation was similar to that of a multi-dimensionalarray de
laration, with the size of ea
h dimension spe
i�ed by the number of positionsalong its axis. This allowed a shape to be des
ribed 
on
isely and easily applied tomultiple data obje
ts.Shaped obje
ts 
ould be simple variables, arrays, stru
ts, or any other C type
onstru
t. Pointers to shapes were also available, and shapes 
ould be passed betweenfun
tions. Thus, the new C* provided a signi�
ant level of 
exibility in dealing withobje
ts of di�erent sizes and dimensions.One aspe
t of this version of C* was the 
on
ept of a \
urrent shape". This wasspe
i�ed using a with statement. In general, obje
ts had to be of the 
urrent shapein order to be operated on in parallel. The addition of with allowed multiple layoutsto be spe
i�ed and used within a single program. This allowed parallel data obje
tsto be independent of not only the ar
hite
ture, but also of other parallel obje
ts.Parallelism was expressed in terms of the positions in a data shape that were tobe a
ted on. A where statement, similar to that of VECTRAN, allowed the set ofa
tive data positions to be 
onditionally determined. This was referred to as \settingthe 
ontext". The standard C 
onstru
ts were modi�ed to work with the wherestatement to provide 
onditional exe
ution. These in
luded the else statement,whi
h was modi�ed to a
tivate the set of positions opposite to that of the where.An everywhere 
onstru
t was also added to allow all positions, a
tive or not, tobe enabled for the exe
ution of an embodied statement. Nested wheres operated asexpe
ted, possibly making the set of a
tive positions smaller as ea
h was entered, andreturning to the previous set as ea
h exited.
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tions 
ould take parallel obje
ts as arguments and also return them. They
ould be written with the shape of their parameters expli
itly spe
i�ed or left un-spe
i�ed, in whi
h 
ase the 
urrent shape would be used during the 
all. As withearlier versions of C*, overloading 
ould be used to spe
ify multiple fun
tions withthe same name but various parameter shapes.C*'s expression syntax was made 
on
ise through the use of operator overloading.Overloading allowed the standard C operators to be used on shaped obje
ts in a �rst-
lass manner. Operations on these obje
ts 
ould then by parallelized and modi�edwith repli
ations or redu
tions as ne
essary. Thus, C* shapes were similar to obje
t-oriented 
lasses with overloaded operators.The this keyword was repla
ed by the p
oord intrinsi
 fun
tion whi
h returnedan identi�er for the 
urrent data element along a spe
i�ed axis. This 
ould be usedin a manner similar to this, allowing regular 
ommuni
ation along one axis of thedata stru
ture.\Left indexing" was used with assignments to a

ess data in irregular parallel pat-terns. Indexing a parallel obje
t on the right-hand side was equivalent to performinga \get" operation. In this 
ase, the operation assigned the instan
e of the parallelobje
t on the indexed virtual PE to the left-hand side. Indexing a parallel obje
ton the left-hand side was equivalent to performing a \send" operation. In this 
ase,the operation assigned the value on the right-hand side to the instan
e of the parallelobje
t on the virtual PE indexed on the left. These operations allowed generalized
ommuni
ation to be des
ribed using a syntax similar to that of element a

ess andassignment.This version of C* also di�ered from the previous versions by the in
lusion of abool Boolean type. This type 
losely mat
hed the bitwise ar
hite
ture of the parallelarray, and allowed the programmer to make use of this aspe
t of the system moreeasily than the previous versions of C* allowed.Obviously, C* was 
hanged signi�
antly over time as experien
e was gained withits use. The original version fo
used on the PEs as the parallel entities whose a
tivity
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ribed and 
ontrolled. This was repla
ed by the se
ond version, whi
hfo
used more on des
ribing the data sets to be parallelized. This version was more
omplex in its handling of sele
tion and domains, but more 
losely mat
hed Hillis'thesis. Both of these exposed the virtual pro
essor array via sele
tion, a me
hansimwhi
h was promoted for 
ommuni
ations purposes.These versions of C* 
an be reje
ted as the basis for a SWAR model, just as theywere ultimately reje
ted by Thinking Ma
hines. In ea
h 
ase, the language was amix of a data-oriented programming model and one with expli
it 
ontrol over PEsele
tion and inter-virtual PE 
ommuni
ations. This made ea
h of these languagesmore 
omplex than ne
essary. While these versions of C* 
ould be thought of asfailures, 
ertain of their aspe
ts were very well-designed and deserve to be rememberedby anyone trying to design a new parallel programming model.The last version of C* was, semanti
ally, the 
leanest of the three. Pro
essorsele
tion was limited to the 
onditional where and the un
onditional everywhere
onstru
ts. Few new 
onstru
ts were added beyond those of the C language, and thesemanti
s of the C operators were extended to handle parallelism through operatoroverloading. This version of the language also allowed the programmer to fo
us ondes
ribing the data sets, and the operations to be performed on them, rather than onthe 
ontrol of parallel exe
ution.This last version of C* might be a good 
hoi
e for the basis of a SWAR program-ming model. However, \shapes" are more useful for multi-dimensional data stru
turesthan for the ve
tors whi
h more 
losely �t the SWAR model. Thus, a SWAR modelshould probably avoid C*-like shapes. Also, spe
ial syntax and intrinsi
 fun
tions areprobably unne
essary for 
ommuni
ations in a SWAR environment { simple elementa

esses and assignments should suÆ
e.A generi
 �ne-grained parallel C [178℄ was developed by s
ientists at NASA'sGoddard Spa
e Flight Center in the late 1980s. It was intended to be a 
ommoninterfa
e language to multiple types of ar
hite
tures in
luding serial pro
essors [178℄.
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intosh II | a serial pro
essor.This language extended C with a parallel storage 
lass whi
h indi
ated thatthe de
lared obje
t was multi-valued. Con
eptually, parallel obje
ts were stored in aparallel memory and serial obje
ts stored in a separate serial memory. When mappedto a target ar
hite
ture, these memories may or may not have been separate.As with previous parallel languages, the standard C operators were extended tooperate on parallel obje
ts. Arithmeti
 operators were extended to perform in anelementwise manner. Bit shifts were implemented su
h that shifting by a parallelvalue resulted in ea
h element being shifted by a (possibly) di�erent number of bits.Logi
al operators were implemented using a parallel if-else stru
ture, apparently tomaintain the short-
ir
uit semanti
s of C's logi
al operators. Mixed expressions wereallowed, with s
alar values repli
ated to mat
h the dimensions of parallel obje
ts.Mixed assignments were also allowed. Assignment of a parallel value to a s
alarobje
t resulted in a redu
e-OR of the parallel elements, while s
alar to parallel as-signments resulted in repli
ation of the s
alar. C's assignment operators were alsoparallelized with redu
tion or repli
ation of values taking pla
e as ne
essary.The C 
ontrol 
onstru
ts, if, while, for, and swit
h were modi�ed for use withparallel 
onditionals. If the 
onditional was a parallel expression, ea
h body wouldbe exe
uted if the 
ondition held for at least one element. Ea
h 
ase in a swit
hwas exe
uted only if at least one element was dire
ted to that 
ase.Parallel pointers were disallowed, but serial pointers to parallel obje
ts were legal.Arithmeti
 on these pointers 
ould be used to denote interpro
essor 
ommuni
ationby shifting values between elements. Thus, the language hid 
ommuni
ation behindits normal syntax.This language also allowed all variables, in
luding parallel obje
ts, to be assigneda bit size. This was primarily intended for use with bit-sli
ed target ar
hite
tures,su
h as the MPP, whi
h allowed variable data lengths. It is un
lear from [178℄ ifthis feature allowed all bit sizes to be applied. To ease portability to more restri
tive
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hite
tures, the 
ompiler was allowed to use larger bit sizes than were spe
i�ed inthe program sour
e. Given the assertion that a general-purpose SWAR model shouldsupport any data pre
ision, this aspe
t of the language deserves further examination.This language had several interesting features that may be of value for a SWAR-based programming language. Unfortunately, I 
ould �nd no further referen
es to thislanguage, so it is probably safe to assume that it either was abandoned or evolved intoanother language. The SWARC language des
ribed in this thesis has some similaritiesto this language, but is more fully developed.MPL [107, 170, 171℄, the MasPar Programming Language, was another SIMDvariant of C developed around 1990. Semanti
ally, it was similar enough to C toallow it to be 
ompiled with a simple variation of the GNU C Compiler (GCC). MPLwas also known as the MasPar Parallel Appli
ation Language.To allow the programmer to spe
ify data parallel algorithms, a plural type modi-�er was used whi
h indi
ated that the obje
t was multi-valued and distributed a
rossthe PE array. An operation on a plural obje
t was exe
uted simultaneously on theenabled PEs and resulted in another plural obje
t. This allowed the programmer tospe
ify data parallel operations in a manner semanti
ally similar to C.A s
alar data obje
t in MPL was referred to as a single. These obje
ts had onevalue and resided on the MasPar's ACU. Operations on single obje
ts took pla
e inthe ACU and resulted in single values. This allowed the programmer to spe
ify s
alaroperations simply, again using C-like semanti
s.MPL also allowed mixed-mode operations and assignments, with redu
tions andrepli
ations performed as ne
essary. As with C*, the semanti
s of 
ontrol 
onstru
tssu
h as while loops and if statements were modi�ed for proper operation under theSIMD pro
essing model.MPL allowed for syn
hronous inter-PE 
ommuni
ation via the addition of threenew 
onstru
ts: pro
, router, and xnet. These allowed non-lo
al data to be a

essedby the PEs. They also allowed expressions to be exe
uted where their operandsresided, with only their results passed over the inter
onne
t. Using these 
onstru
ts,
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ommuni
ation o

urred syn
hronously with all a
tive PEs sending and re
eivingdata on the same instru
tion.The pro
[ex1℄.ex2 
onstru
t allowed the programmer to spe
ify the exe
ution ofan expression, ex2 on a single PE 
hosen by another expression, ex1. In the simplest
ase, this allowed the extra
tion of elements from plural obje
ts.The router[ex1℄.ex2 
onstru
t was a plural operation in whi
h the result onea
h of the PEs was the result of evaluating expression ex2 on PE number ex1 with
ommuni
ation o

urring over the three-stage router network. The expression ex1was a plural obje
t. This allowed independently indexed 
ommuni
ations to bespe
i�ed.Similarly, the xnetdir[ex1℄.ex2 
onstru
t was a plural operation in whi
h theresult on ea
h of the PEs was the result of evaluating expression ex2 on the PE whi
his ex1 steps away in dire
tion dir with 
ommuni
ation o

urring over the Xnet. Theexpression ex1 was a single value; thus, all PEs exe
uted the same 
ommuni
ationspattern.While the names of these 
onstru
ts are taken dire
tly from the MP-1's majorinter
onne
tion networks, they are really more generally appli
able. For example,the PE numbering used in the router 
onstru
t is linear, but these numbers maybe mapped onto an N-dimensional array where N is any non-negative integer. Also,the xnet 
onstru
t 
ould be mapped to smaller-dimensional PE arrays by ignoringdimensions, or to larger-dimensional ones by adding new dire
tions.MPL 
ode was 
allable from other languages used on MasPar systems to ease
ode migration to the parallel model. This allowed the programmer to in
rementallyrewrite existing 
ode to take advantage of the parallel ar
hite
ture.MPL was well-designed and semanti
ally 
lean. It allowed the programmer toexpress parallelism and operations su
h as redu
tions in a manner whi
h did notexpose the properties of the underlying ar
hite
ture. It also allowed 
ommuni
ationsusing language 
onstru
ts that were appli
able to other types of ar
hite
tures. MPLwould be a good 
hoi
e for the basis of a SWAR programming model, with the
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aveat that most SWAR ar
hite
tures 
annot easily support its highly-generalized
ommuni
ations 
onstru
ts.C[ ℄ (C bra
kets) [173℄, developed in the early 1990s, is an extension of the ANSIC language. It was intended to allow the programmer to write eÆ
ient 
ode thatwas portable between the SIMD ar
hite
tures then available without in
orporatingnon-portable features.C[ ℄ is ve
tor-based, treating ve
tors as �rst-
lass obje
ts with a de
larable �xedstride between elements. Multidimensional arrays are allowed, and are treated asve
tors of ve
tors. This is an approa
h that may work well for allowing array-basedpro
essing on ve
tor-based SWAR ar
hite
tures.C[ ℄ was de�ned in a manner that ensured that pointer arithmeti
 has a 
onsistentinterpretation whi
h followed the basi
 intent of the then 
urrent ANSI C standard.A

esses of ve
tor and array elements obey an arithmeti
 whi
h takes the de
laredstride into a

ount. Subarrays 
an be spe
i�ed using either pointer arithmeti
 or anotation similar to C's array indexing.C[ ℄ extends the C language's bit �elds by allowing ve
tors of these to be assignedvalues via a gather operation on an integer ve
tor of �xed stride. However, it appearsthat this is the only �rst-
lass operation allowed on bit �eld ve
tors, and that thelanguage does not allow SWAR-like operations to be performed on them.Along with the standard C operators, C*-like s
alar maximum (?>) and mini-mum (?<) operators were in
luded in C[ ℄, as were operators for bitwise population(?), leading zero 
ount (%) and word reversal (�). Unary operators 
an be appliedto ve
tors and operate in elementwise fashion, while binary operators 
an operateon ve
tor or mixed operands. These same operations 
an be performed as unaryredu
tions using a set of \unary linear operators" whi
h are denoted by en
losingthe 
orresponding C operator in a bra
ket pair. For example redu
tive addition isdenoted by the symbol [+℄.Ve
tors 
ould be 
onverted in length or type via 
asting or on assignment, butve
tor to s
alar 
onversions were not allowed. Binary operations between ve
tors of
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tors and arrays 
ould also be passed tofun
tions as �rst-
lass obje
ts and return values 
ould be of ve
tor type. All of theattributes of a ve
tor or array parameter were required to be de�ned as part of thefun
tion's formal de
laration. Thus, fun
tions using these parameters 
ould not bewritten to a

ept obje
ts of some other size without resorting to pointer arithmeti
.The goals of C[ ℄ are similar to those of the SWAR model of pro
essing, but thelanguage was intended to provide eÆ
ien
y and portability at the level of array andve
tor pro
essing of standard data types. While not the best model for the 
urrentset of SWAR ar
hite
tures, this language has features that may be useful in futureSWAR-like languages targeting array-based ar
hite
tures.Other LanguagesThere are a few other languages that are worth mentioning be
ause they havesome feature or features whi
h are related to SWAR pro
essing; however, for variousreasons, are not languages that we wish to model.PL/I [223, 224, 225℄ was developed in the mid-1960s and was originally intendedto be an update of FORTRAN IV that was referred to by the name of FORTRANVI. After it was de
ided that it would be in
ompatible with FORTRAN IV, the nameNPL (New Programming Language) was given to it. This name happened to 
on
i
twith the name of a laboratory in England, so the name of the language was �nally
hanged to PL/I.PL/I allowed the programmer to spe
ify arbitrary pre
isions to be used for storingindividual data obje
ts \by de
laring the total number of digits and the number ofdigits to the right of the de
imal (or binary) point." [225℄ This allowed the programmerto spe
ify data pre
isions that 
losely mat
hed those of the appli
ation. The 
ompiler
ould then attempt to preserve pre
ision when possible. As a pra
ti
al matter, usingpre
isions that di�ered signi�
antly from those supported by IBM's S/360 series of
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omputers, PL/I's primary target, resulted in unexpe
ted results and were thus rarelyused.AJL (Anar Jhaveri's Language) [174℄ was developed around 1990 and was in-tended to provide a simple ve
tor programming model whi
h 
ould be easily portedto various target ar
hite
tures. AJL was a 
al
ulator language whi
h provided ba-si
 arithmeti
 and trigonometri
 operations and fun
tions on either s
alar (mono) orve
tor (poly) obje
ts. It was similar in 
ertain respe
ts to both C and Pas
al.Arithmeti
 operations provided by AJL in
luded addition, subtra
tion, negation,multipli
ation, division, and power. Intrinsi
 fun
tions in
luded sine, 
osine, tangent,
oor, and 
eiling. Mixed expressions were allowed for some of these operations andfun
tions, but ea
h 
ould be applied to purely s
alar or ve
tor expressions.A set of prede�ned values was also provided, in
luding pi and e, and a shorthandfor the number of elements in any ve
tor (#). A set of intrinsi
 fun
tions were alsoin
luded whi
h provided limited support of the input and output of s
alar values.AJL provided operations related to layout and rearrangement of ve
tor data.These in
luded ve
tor value de�nitions (i.e. the ability to assign the values of a ve
-tor's elements from a list), generation of linearly ranging ve
tors, left and right ve
torshifts, shu�e, and inverse shu�e.Only a \less than" 
omparison operator was available in the language. It operatedon either s
alars or on ve
tors in an element-wise fashion. A C-like trinary operatorwas also provided whi
h operated on ve
tors by element.Sour
e 
ode written in AJL was translated into a pseudo-assembly language fora non-existent sta
k-based ma
hine. This 
ode was a
tually a list of ma
ros whi
hwere then 
onverted into native C 
ode for the target ma
hine. Thus, porting AJL-
ompiled 
ode 
onsisted of de�ning the pseudo-assembly ma
ros for the new target.This method of translation allowed AJL to be very portable and to take advantageof the optimization 
apabilities of the native C 
ompiler.AJL was a limited language whi
h dealt neither with ve
tors of unequal lengths norwith ve
tor element pre
isions. However, many of its features are useful for developing
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an beapplied to the development of a new SWAR language. In fa
t, the language developedas part of this thesis has some similarities to AJL, but AJL itself is not parti
ularlysuited to SWAR pro
essing.NESL/VCODE/CVL NESL [175℄ is a \nested data-parallel language". Thismeans that it allows data to be des
ribed using re
ursive data stru
tures and allowsoperations to be applied to sets of data des
ribed by these stru
tures. Its primary ben-e�t is the des
ription of irregular data sets. Like APL, NESL di�ers signi�
antly fromthe programming languages whi
h are most 
ommonly used in the high-performan
e
omputing 
ommunity.NESL is built on top of the sta
k-based VCODE ve
tor language [176℄. VCODEallows operations on the primitive data types: int, bool, float, 
har, and segdes,where segdes \spe
i�es a partitioning of one of more ve
tors into segments." Thelanguage allows basi
 arithmeti
 operations, 
onditional tests, intra-element shifts,logi
al operations, and 
onversions. It also allows higher-level mathemati
s su
h asexponentials and trigonometri
 fun
tions. A limited set of redu
tions and s
ans arealso available. Various operations allow data manipulation su
h as permutations,extra
tions, and pa
king. Operations for manipulating the sta
k and performing I/Oare also in
luded.While VCODE allows a large range of useful fun
tions whi
h 
an be in
luded ina SWAR model, it is a sta
k language for a rather powerful, theoreti
al ma
hine. Assu
h, it does not mat
h the 
urrent set of multimedia-enhan
ed targets very well.VCODE itself is built on top of CVL [177℄, a low-level ve
tor library for the Clanguage. CVL fun
tions in
lude elementwise operations, redu
tions, s
ans, permu-tations, ve
tor-s
alar 
onversions, management, and some higher-level fun
tions.CVL fun
tions operate on an area of memory set aside ex
lusively for the storageof ve
tors. Ve
tors are laid-out within this memory in an implementation-dependentmanner. Ve
tor elements may be stored in larger than ne
essary lo
ations in memoryin order to simplify pro
essing or provide portability.
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tions are passed a \handle" for ea
h of their ve
tor operands. This handlemay be a pointer or a more 
omplex stru
ture whi
h indi
ates the position and layoutof the ve
tor. Fun
tions must also be passed the length of their ve
tor operands and,in some 
ases, a handle to a previously allo
ated s
rat
h spa
e in ve
tor memory.CVL's fun
tions operate on ve
tors of type int and double, whi
h have nativepre
ision, and 
vl bool whi
h may be stored in any useful form su
h as 
hars orbits. A ve
tor may be segmented, meaning that it is a
tually a 
olle
tion of smallerve
tors, or unsegmented whi
h means that it 
onsists of a single ve
tor (i.e. it has onesegment). Operations performed on a segmented ve
tor are applied to ea
h segmentindependently.CVL was intended to provide portability between massively-parallel pro
essorssu
h as the Conne
tion Ma
hines CM-2 and MasPar MP-1. It was not intended toprovide fun
tionality for non-standard data pre
isions. CVL's use of a private ve
tormemory allows ve
tors to be laid-out in the most eÆ
ient manner without regards toissues su
h as pointer arithmeti
 although it provides similar fun
tionality via ve
torhandles.CVL provides mu
h of the fun
tionality that one would hope to have in a goodSWAR model. However, it is limited to standard data pre
isions and provides 
ertainfun
tionality, su
h as trigonometri
 fun
tions, whi
h should not be in
luded in ageneral-purpose SWAR model.
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APPENDIX BSUPPORTED SWAR EXTENSIONSIN COMMODITY CPUS
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Table B.1Supported SWAR Extensions in Commodity CPUsPro
essor Name Year 1 Aliases MVI MAX-1 MAX-2 MIPS-V MDMXDEC Alpha 21264 [60℄ 1997? EV6 Yes - - - -DEC Alpha 21164PC [226℄ 1997 PCA56 Yes - - - -DEC Alpha 21164A 1995? EV56 - - - - -DEC Alpha 21164 [227℄ 1994 EV5 - - - - -HP PA-8000 [84℄ 1996 - Yes Yes - -HP PA-7100LC [61℄ 1994 - Yes - - -MIPS MIPS64 [87℄ 1999 - - - Optional -MIPS H1 Ar
h. [85℄2 1999? - - - Yes YesMIPS R12000 [85℄ 1998? - - - - -MIPS R10000 [66℄ 1994? - - - - -Motorola MPC7400 [89℄ 1999 G4 - - - - -Sun UltraSpar
 III Cu [92℄ 2001 - - - - -Sun UltraSpar
 III [92℄ 2000 - - - - -Sun UltraSpar
 II [202, 91℄ 1996? - - - - -Sun UltraSpar
 I [202, 228℄ 1995 - - - - -Intel Pentium 4 [229℄ 2000 Willamette - - - - -Intel Pentium III [229℄ 1999 Katmai - - - - -Intel Pentium II [229℄ 1997 - - - - -Intel Pentium w/MMX [229℄ 1996 - - - - -Intel Pentium Pro [229℄ 1995 - - - - -Intel Pentium [229℄ 1993 80586 - - - - -AMD Athlon XP [99℄ 2002 Thoroughbred - - - - -AMD Athlon MP [230℄ 2001 Palomino - - - - -AMD Athlon 4 [98℄ 2001 Palomino - - - - -AMD Athlon [76℄ 1999 K7 - - - - -AMD K6-III [75℄ 1999 - - - - -AMD K6-2 [75℄ 1998 Model 8 - - - - -AMD K6 [73℄ 1996 Models 6-7 - - - - -VIA C3 [103℄ 2000 Cyrix MIII - - - - -Cyrix MXi [231℄2 1998? Cayenne - - - - -Cyrix M-II [232, 77℄ ? M2 - - - - -Cyrix MediaGXm [100℄ ? - - - - -Cyrix 6x86Mx [100℄ 1997 - - - - -Cyrix MediaGX [100℄ ? - - - - -Cyrix 6x86 [100℄ ? - - - - -1Approximate year of introdu
tion or implementation.2I'm not sure that this was ever implemented.
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Table B.1 
ont'd.Supported SWAR Extensions in Commodity CPUsPro
essor Name AltiVe
 VIS MMX SSE SSE2DEC Alpha 21264 - - - - -DEC Alpha 21164PC - - - - -DEC Alpha 21164A - - - - -DEC Alpha 21164 - - - - -HP PA-8000 - - - - -HP PA-7100LC - - - - -MIPS MIPS64 - - - - -MIPS H1 Ar
h. - - - - -MIPS R12000 - - - - -MIPS R10000 - - - - -Motorola MPC7400 Yes - - - -Sun UltraSpar
 III Cu - 2.0 - - -Sun UltraSpar
 III - 2.0 - - -Sun UltraSpar
 II - 1.0 - - -Sun UltraSpar
 I - 1.0 - - -Intel Pentium 4 - - Yes Yes YesIntel Pentium III - - Yes Yes -Intel Pentium II - - Yes - -Intel Pentium w/MMX - - Yes - -Intel Pentium Pro - - - - -Intel Pentium - - - - -AMD Athlon XP - - Yes - -AMD Athlon MP - - Yes - -AMD Athlon 4 - - Yes - -AMD Athlon - - Yes - -AMD K6-III - - Yes - -AMD K6-2 - - Yes - -AMD K6 - - Yes - -VIA C3 - - Yes - -Cyrix MXi - - Yes - -Cyrix M-II - - Yes - -Cyrix MediaGXm - - Yes - -Cyrix 6x86Mx - - Yes - -Cyrix MediaGX - - - - -Cyrix 6x86 - - - - -
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Table B.1 
ont'd.Supported SWAR Extensions in Commodity CPUsPro
essor Name 3DNow! E3DNow! 3DNow!Pro EMMX MMFPDEC Alpha 21264 - - - - -DEC Alpha 21164PC - - - - -DEC Alpha 21164A - - - - -DEC Alpha 21164 - - - - -HP PA-8000 - - - - -HP PA-7100LC - - - - -MIPS MIPS64 - - - - -MIPS H1 Ar
h. - - - - -MIPS R12000 - - - - -MIPS R10000 - - - - -Motorola MPC7400 - - - - -Sun UltraSpar
 III Cu - - - - -Sun UltraSpar
 III - - - - -Sun UltraSpar
 II - - - - -Sun UltraSpar
 I - - - - -Intel Pentium 4 - - - - -Intel Pentium III - - - - -Intel Pentium II - - - - -Intel Pentium w/MMX - - - - -Intel Pentium Pro - - - - -Intel Pentium - - - - -AMD Athlon XP Yes Yes Yes - -AMD Athlon MP Yes Yes Yes - -AMD Athlon 4 Yes Yes Yes 1 - -AMD Athlon Yes Yes - - -AMD K6-III Yes - - - -AMD K6-2 Yes - - - -AMD K6 - - - - -VIA C3 Yes - - - -Cyrix MXi - - - - YesCyrix M-II - - - Yes -Cyrix MediaGXm - - - Yes -Cyrix 6x86Mx - - - - -Cyrix MediaGX - - - - -Cyrix 6x86 - - - - -1Available on later models.
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APPENDIX CSWAR INSTRUCTION MNEMONICSThe following tables show the instru
tion mnemoni
s for the SWAR multimedia sup-port tabulated in se
tion 2.1. Ex
ept for table C.1, ea
h table 
orresponds to thetable in se
tion 2.1 with the same number.
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Table C.1Comparison of Multimedia Instru
tion Set ExtensionsAr
hite
tural Feature DEC HP HP SGI SGIMVI MAX-1.0 MAX-2.0 MIPS-V MDMXTypi
al Pro
essor Alpha 21164PC PA-7100LC PA-8000 H1 Ar
h. H1 Ar
h.# MM Pipelines1 2[226℄ 2 ALUs [63℄ 2 ALUs, 2 SMUs [63℄ 2 Unknown UnknownYear Announ
ed [233℄ 1996 1993 1995 1996 1996Year Shipped [233℄ 1997 1994 1996 1999 1999?Ar
hite
tural Feature Motorola Sun Intel, AMD IntelAltiVe
 VIS MMX SSETypi
al Pro
essor MPC7400 UltraSpar
I Pentium w/MMX Pentium III# MM Pipelines1 1 ALU, 1 VPU [89℄ 3 2 in GRU [90℄4 2 (U and V) [234℄ 2?Year Announ
ed 1998 1994 1996 1998?Year Shipped 1999 1995 1996 1999Ar
hite
tural Feature Intel AMD AMD AMD CyrixSSE2 3DNow! E3DNow! 3DNow!Pro EMMXTypi
al Pro
essor Pentium4 K6-2 Athlon Athlon XP M-II# MM Pipelines1 2? 2 (X and Y) 2 (ex
luding L/S) [235℄ 2 [99℄ 1? [232℄Year Announ
ed 1999? 1997? 1998? 2001 1997Year Shipped 2000 1998 1999 2002 ?1Independent pipelines may not ne
essarily be equivalent.2SMU=Shift Multiply Unit.3VPU=Ve
tor Permute Unit.4GRU=Graphi
s Unit
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Table C.2SWAR Addition OperationsOperation Types DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
Modular AdditionPart/Part - - - vaddubm,hadd hadd vadduhm,add.ps vadduwmImmd/Part - - - - - -Part/Part w/A

 - - - - add[la℄.ob, -(w/ or w/o Init) add[la℄.qhS
alar/Part w/A

 - - - - add[la℄.ob, -(w/ or w/o Init) add[la℄.qhImmd/Part w/A

 - - - - add[la℄.ob, -(w/ or w/o Init) add[la℄.qhElement/Element - - - - - -Saturation AdditionPart/Part - hadd,ss, hadd,ss, - add.ob,add.qh vaddsbs,vaddubs,hadd,us hadd,us vaddshs,vadduhs,vaddsws,vadduws,vaddfpS
alar/Part - - - - add.ob,add.qh -Immd/Part - - - - add.ob,add.qh -Modular Add. HighPart/Part - - - - - vadd
uwSat. RedAdd w/El. - - - - - vsumswsSat. Part. RedAdd - - - - - vsum2swsw/EvenSat. Part. RedAdd - - - - - vsum4sbs,w/Part vsum4ubs,vsum4shsSat. RedAdd - - - - - -and Pa
kSat. RedAdd/Sub - - - - - -and Pa
k
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Table C.2 
ont'd.SWAR Addition OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Modular AdditionPart/Part paddb, paddb,fpadd16s,fpadd16, paddw, paddw,fpadd32s,fpadd32 paddd addps paddd,paddq,addpdImmd/Part - - - -Part/Part w/A

 - - - -(w/ or w/o Init)S
alar/Part w/A

 - - - -(w/ or w/o Init)Immd/Part w/A

 - - - -(w/ or w/o Init)Element/Element - - addss addsdSaturation AdditionPart/Part - paddsb,paddusb, - paddsb,paddusb,paddsw,paddusw paddsw,padduswS
alar/Part - - - -Immd/Part - - - -Modular Add. HighPart/Part - - - -Sat. RedAdd w/El. - - - -Sat. Part. RedAdd - - - -w/EvenSat. Part. RedAdd - - - -w/PartSat. RedAdd - - - -and Pa
kSat. RedAdd/Sub - - - -and Pa
k
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Table C.2 
ont'd.SWAR Addition OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXModular AdditionPart/Part - - -addpsImmd/Part - - - -Part/Part w/A

 - - - -(w/ or w/o Init)S
alar/Part w/A

 - - - -(w/ or w/o Init)Immd/Part w/A

 - - - -(w/ or w/o Init)Element/Element - - addss -Saturation AdditionPart/Part - - paddsiwpfaddS
alar/Part - - - -Immd/Part - - - -Modular Add. HighPart/Part - - - -Sat. RedAdd w/El. - - - -Sat. Part. RedAdd - - - -w/EvenSat. Part. RedAdd - - - -w/PartSat. RedAdd pfa

 - - -and Pa
kSat. RedAdd/Sub - pfpna

 - -and Pa
k
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tion OperationsOperation Types DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
Modular Subtra
tionPart/Part - - - vsububm,hsub hsub vsubuhm,sub.ps vsubuwmPart/Part w/A

 Di� - - - - sub.ob, -(w/ or w/o Init) sub.qhS
alar/Part w/A

 Di� - - - - sub.ob, -(w/ or w/o Init) sub.qhImmd/Part w/A

 Di� - - - - sub.ob, -(w/ or w/o Init) sub.qhElement/Element - - - - - -Saturation Subtra
tionPart/Part - hsub,ss, hsub,ss, - sub.ob,sub.qh vsubsbs,vsububs,hsub,us hsub,us vsubshs,vsubuhsvsubsws,vsubuws,vsubfpS
alar/Part - - - - sub.ob,sub.qh -Immd/Part - - - - sub.ob,sub.qh -Subtra
tion HighPart/Part - - - - - vsub
uwSat. RedSub - - - - - -and Pa
kRedAdd of Abs. Di�s perr - - - - -Sum Abs Di�s; Sat A

. - - - - - -Table C.3 
ont'd.SWAR Subtra
tion OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Modular Subtra
tionPart/Part psubb, psubb,fsub16s,fsub16, psubw, psubw,fsub32s,fsub32 psubd subps psubd,psubq,psubq,subpdPart/Part w/A

 Di� - - - -(w/ or w/o Init)S
alar/Part w/A

 Di� - - - -(w/ or w/o Init)Immd/Part w/A

 Di� - - - -(w/ or w/o Init)Element/Element - - subss subsdSaturation Subtra
tionPart/Part - psubsb,psubusb - psubsb,psubusb,psubsw,psubusw psubsw,psubuswS
alar/Part - - - -Immd/Part - - - -Subtra
tion HighPart/Part - - - -Sat. RedSub - - - -and Pa
kRedAdd of Abs. Di�s pdist - psadbw psadbwSum Abs Di�s; Sat A

. - - - -
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Table C.3 
ont'd.SWAR Subtra
tion OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXModular Subtra
tionPart/Part - - -subpsPart/Part w/A

 Di� - - - -(w/ or w/o Init)S
alar/Part w/A

 Di� - - - -(w/ or w/o Init)Immd/Part w/A

 Di� - - - -(w/ or w/o Init)Element/Element - - subss -Saturation Subtra
tionPart/Part - - psubsiwpfsub(r)S
alar/Part - - - -Immd/Part - - - -Subtra
tion HighPart/Part - - - -Sat. RedSub - pfna

 - -and Pa
kRedAdd of Abs. Di�s - psadbw - -Sum Abs Di�s; Sat A

. - - - pdistib
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 VISMaximumPart/Part maxsb8,maxub8, - - max.ob, vmaxsb,vmaxub, -maxsw4,maxuw4 max.qh vmaxsh,vmaxuh,vmaxsw,vmaxuw,vmaxfpS
alar/Part - - - max.ob, - -max.qhImmd/Part maxsb8,maxub8, - - max.ob, - -maxsw4,maxuw4 max.qhElement/Element - - - - - -MinimumPart/Part minsb8,minub8, - - min.ob, vminsb,vminub, -minsw4,minuw4 min.qh vminsh,vminuh,vminsw,vminuw,vminfpS
alar/Part - - - min.ob, - -min.qhImmd/Part minsb8,minub8, - - min.ob, - -minsw4,minuw4 min.qhElement/Element - - - - - -Magnitude Part/Part - - - - - -Abs. Value Part/Part - - abs.ps - - -Negate Part/Part - - neg.ps - - -Generate Sign Mask - - - - - -Operation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXMaximumPart/Part - pmaxub, pmaxub, pmaxub, -pmaxsw, pmaxsw, pmaxswmaxps pfmax maxpsmaxpdS
alar/Part - - - - - - -Immd/Part - - - - - - -Element/Element - maxss - - maxss -maxsdMinimumPart/Part - pminub, pminub, pminub, -pminsw, pminsw, pminswminps pfmin minpsminpdS
alar/Part - - - - - - -Immd/Part - - - - - - -Element/Element - minss - - minss -minsdMagnitude Part/Part - - - - - - pmagwAbs. Value Part/Part - - - - - - -Negate Part/Part - - - - - - -Generate Sign Mask - pmovmskb, pmovmskb, - pmovmskb -movmskps movmskpsmovmskpd
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Table C.5Multipli
ation OperationsOperation Types DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
Modular Multipli
ationPart/Part - - - mul.ps - vmulesb,vmuleub,vmulosb,vmuloub,vmulesh,vmuleuh,vmulosh,vmulouhImmd/Part - - - - - -Part/Part w/A

 - - - - mul[la℄.ob, -(w/ or w/o Init) mul[la℄.qhS
alar/Part w/A

 - - - - mul[la℄.ob, -(w/ or w/o Init) mul[la℄.qhImmd/Part w/A

 - - - - mul[la℄.ob, -(w/ or w/o Init) mul[la℄.qhPart/Part w/A

 Subt - - - - mul[la℄.ob, -(w/ or w/o Init) mul[la℄.qhS
alar/Part w/A

 Subt - - - - mul[la℄.ob, -(w/ or w/o Init) mul[la℄.qhImmd/Part w/A

 Subt - - - - mul[la℄.ob, -(w/ or w/o Init) mul[la℄.qhPart/Element - - - - - -Element/Element - - - - - -Modular Mul. HighPt/Pt Store in Enh. - - - - - -Pt/Pt Store in Implied - - - - - -Pt/Pt A

. w/Implied - - - - - -Sat. Multipli
ationPart/Part - - - - mul.ob,mul.qh -S
alar/Part - - - - mul.ob,mul.qh -Immd/Part - - - - mul.ob,mul.qh -Mult. by Sign (-,0,+)Part/Part - - - - msgn.qh -S
alar/Part - - - - msgn.qh -Immd/Part - - - - msgn.qh -Average - - - vavgsb,vavgub,have havg vavgsh,vavguh,vavgsw,vavguw
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Table C.5 
ont'd.Multipli
ation OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Modular Multipli
ationPart/Part fmul8x16, pmullw pmullw,fmul8sux16,fmul8ulx16,fmuld8sux16, pmuludq,fmuld8ulx16 pmuludq,mulps mulpdImmd/Part - - - -Part/Part w/A

 - - - -(w/ or w/o Init)S
alar/Part w/A

 - - - -(w/ or w/o Init)Immd/Part w/A

 - - - -(w/ or w/o Init)Part/Part w/A

 Subt - - - -(w/ or w/o Init)S
alar/Part w/A

 Subt - - - -(w/ or w/o Init)Immd/Part w/A

 Subt - - - -(w/ or w/o Init)Part/Element fmul8x16au, - - -fmul8x16alElement/Element - - mulss mulsdModular Mul. HighPt/Pt Store in Enh. - pmulhw pmulhuw pmulhuw,pmulhwPt/Pt Store in Implied - - - -Pt/Pt A

. w/Implied - - - -Sat. Multipli
ationPart/Part - - - -S
alar/Part - - - -Immd/Part - - - -Mult. by Sign (-,0,+)Part/Part - - - -S
alar/Part - - - -Immd/Part - - - -Average - - pavgb, pavgb,pavgw pavgw
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Table C.5 
ont'd.Multipli
ation OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXModular Multipli
ationPart/Part - - -

mulpsImmd/Part - - - -Part/Part w/A

 - - - -(w/ or w/o Init)S
alar/Part w/A

 - - - -(w/ or w/o Init)Immd/Part w/A

 - - - -(w/ or w/o Init)Part/Part w/A

 Subt - - - -(w/ or w/o Init)S
alar/Part w/A

 Subt - - - -(w/ or w/o Init)Immd/Part w/A

 Subt - - - -(w/ or w/o Init)Part/Element - - - -Element/Element - - mulss -Modular Mul. HighPt/Pt Store in Enh. pmulhrw pmulhuw - pmulhrwPt/Pt Store in Implied - - - pmulhriwPt/Pt A

. w/Implied - - - pma
hriwSat. Multipli
ationPart/Part pfmul - - -S
alar/Part - - - -Immd/Part - - - -Mult. by Sign (-,0,+)Part/Part - - - -S
alar/Part - - - -Immd/Part - - - -Average pavgusb pavgb, - pavebpavgw
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Table C.6Combined Arithmeti
 OperationsOperation Types DEC HP SGI SGI MotorolaMVI MAX MIPS-V MDMX AltiVe
Multiply, then Add - - - - -Neighboring FieldsMultiply/Mod. Add - - madd.ps - vmaddfp,vmladduhmNegated - - nmadd.ps - -Multiply/Mod. AddMultiply/Sat. Add - - - - vmhaddshsMultiply(w/Rnd)/Sat. Add - - - - vmhraddshsMultiply/Mod. Subtra
t - - msub.ps - -Negated - - nmsub.ps - vnmsubfpMultiply/Mod. Subtra
tMultiply, then Modular - - - - vmsumubm,Add Neighbor w/Part vmsumshm,vmsumuhm,vmsummbmMultiply, then Saturate - - - - vmsumshs,Add Neighbor w/Part vmsumuhs
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Table C.6 
ont'd.Combined Arithmeti
 OperationsOperation Types Sun Intel Intel Intel AMD CyrixVIS MMX SSE SSE2 3DNow! (All families) EMMXMultiply, then Add - pmaddwd - pmaddwd - -Neighboring FieldsMultiply/Mod. Add - - - - - -Negated - - - - - -Multiply/Mod. AddMultiply/Sat. Add - - - - - -Multiply(w/Rnd)/Sat. Add - - - - - -Multiply/Mod. Subtra
t - - - - - -Negated - - - - - -Multiply/Mod. Subtra
tMultiply, then Modular - - - - - -Add Neighbor w/Part
Multiply, then Saturate - - - - - -Add Neighbor w/Part
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Table C.7Division and Advan
ed Arithmeti
 OperationsOperation Types DEC HP SGI SGI Motorola Sun IntelMVI MAX MIPS-V MDMX AltiVe
 VIS MMXDividePart/Part - - - - - - -Element/Element - - - - - - -Square RootPart/Part - - - - - - -Element/Element - - - - - - -Re
ipro
al Approx.Part - - - - vrefp - -Element - - - - - - -Re
ip. Sq. Rt. Approx.Part - - - - vrsqrtefp - -Element - - - - - - -Log2(x) Approx.Part - - - - vlogefp - -2x Approx.Part - - - - vexptefp - -Operation Types Intel Intel AMD AMD AMD CyrixSSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXDividePart/Part divps - - divps -divpdElement/Element divss - - divss -divsdSquare RootPart/Part sqrtps - - sqrtps -sqrtpdElement/Element sqrtss - - sqrtss -sqrtsdRe
ipro
al Approx.Part r
pps - - - r
pps -Element r
pss - pfr
p/pfr
pit1/pfr
pit2 - r
pss -Re
ip. Sq. Rt. Approx.Part rsqrtps - - - rsqrtps -Element rsqrtss - pfrsqrt/pfrsqit1/fpr
pit2 - rsqrtss -Log2(x) Approx.Part - - - - - -2x Approx.Part - - - - - -
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Table C.8Shift and Rotate OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
 VISShift Left Logi
alPart by Part - - - - sll.ob, vslb, -sll.qh vslh,vslwPart by S
alar - - - - sll.ob, -sll.qh vslPart by Single sll - - - - -vsloPart by Immd sll - hshl - sll.ob, - -sll.qhShift Right Logi
alPart by Part - - - - srl.ob, vsrb, -srl.qh vsrh,vsrwPart by S
alar - - - - srl.ob, - -srl.qhPart by Single srl - - - - vsro -Part by Immd srl - hshr,u - srl.ob, - -srl.qhShift Right Arithmeti
Part by Part - - - - sra.qh vsrab, -vsrah,vsrawPart by S
alar - - - - sra.qh - -Part by Single sra - - - - - -Part by Immd sra - hshr or hshr,s - sra.qh - -Shift Left and Addby 1 bit - - - - - - -by 2 bits s4addq - - - - - -by 3 bits s8addq - - - - - -Shift Left and Sat. Addby 1,2, or 3 bits - hshladd - - - - -Shift Left and Subtra
tby 2 bits s4subq - - - - - -by 3 bits s8subq - - - - - -Shift Right and Sat. Addby 1,2, or 3 bits - hshradd - - - - -RotatePart by Part - - - - - vrlb, -vrlh,vrlw
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Table C.8 
ont'd.Shift and Rotate OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXShift Left Logi
alPart by Part - - - - - - -Part by S
alar - - - - - - -Part by Single psllw, - psllw, - - - -pslld, pslld,psllq psllqPart by Immd psllw, - psllw, - - - -pslld, pslld,psllq psllq,pslldqShift Right Logi
alPart by Part - - - - - - -Part by S
alar - - - - - - -Part by Single psrlw, - psrlw, - - - -psrld, psrld,psrlq psrlqPart by Immd psrlw, - psrlw, - - - -psrld, psrld,psrlq psrlq,psrldqShift Right Arithmeti
Part by Part - - - - - - -Part by S
alar - - - - - - -Part by Single psraw, - psraw, - - - -psrad psradPart by Immd psraw, - psraw, - - - -psrad psradShift Left and Addby 1 bit - - - - - - -by 2 bits - - - - - - -by 3 bits - - - - - - -Shift Left and Sat. Addby 1,2, or 3 bits - - - - - - -Shift Left and Subtra
tby 2 bits - - - - - - -by 3 bits - - - - - - -Shift Right and Sat. Addby 1,2, or 3 bits - - - - - - -RotatePart by Part - - - - - - -
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Table C.9Polymorphi
 OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
 VISANDPart/Part and and and - and.ob,and.qh vand fands,fandPart/Imm and - - - and.ob,and.qh - -Part/S
alar - - - - and.ob,and.qh - -ANDNPart/Part bi
 and
m and
m - - vand
 fandnot[12℄s1,fandnot[12℄Part/Imm bi
 - - - - - -NANDPart/Part - - - - - - fnands,fnandPart/Imm - - - - - - -ORPart/Part bis or or - or.ob,or.qh vor fors,forPart/Imm bis - - - or.ob,or.qh - -Part/S
alar - - - - or.ob,or.qh - -ORNPart/Part ornot - - - - - fornot[12℄s,fornot[12℄Part/Imm ornot - - - - - -NORPart/Part - - - - nor.ob,nor.qh vnor fnors,fnorPart/Imm - - - - nor.ob,nor.qh - -Part/S
alar - - - - nor.ob,nor.qh - -XORPart/Part xor xor xor - xor.ob,xor.qh vxor fxors,fxorPart/Imm xor - - - xor.ob,xor.qh - -Part/S
alar - - - - xor.ob,xor.qh - -XORNPart/Part eqv - - - - - -Part/Imm eqv - - - - - -NXORPart/Part - - - - - - fxnors,fxnorPart/Imm - - - - - - -Population 
tpop - - - - - -Leading 0 bits 
tlz - - - - - -Trailing 0 bits 
ttz - - - - - -1\[12℄" means \1" or \2".
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Table C.9 
ont'd.Polymorphi
 OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXANDPart/Part pand andps pand,andpd - - andps -Part/Imm - - - - - - -Part/S
alar - - - - - - -ANDNPart/Part pandn andnps pandn,andnpd - - andnps -Part/Imm - - - - - - -NANDPart/Part - - - - - - -Part/Imm - - - - - - -ORPart/Part por orps por,orpd - - orps -Part/Imm - - - - - - -Part/S
alar - - - - - - -ORNPart/Part - - - - - - -Part/Imm - - - - - - -NORPart/Part - - - - - - -Part/Imm - - - - - - -Part/S
alar - - - - - - -XORPart/Part pxor xorps pxor,xorpd - - xorps -Part/Imm - - - - - - -Part/S
alar - - - - - - -XORNPart/Part - - - - - - -Part/Imm - - - - - - -NXORPart/Part - - - - - - -Part/Imm - - - - - - -Population - - - - - - -Leading 0 bits - - - - - - -Trailing 0 bits - - - - - - -
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Table C.10Condition Testing OperationsOperation Types DEC HP SGI SGI MotorolaMVI MAX MIPS-V MDMX AltiVe
Forms of Result Bitmask - FP CC FP CC Bits Field MaskBits All/None BitsEqualityPart/Part - 
.eq.ob, v
mpequb,
mpeq 
.eq.qh v
mpequh,
.eq.ps v
mpequw,v
mpeqfp,Part/Imm 
mpeq - - 
.eq.ob,
.eq.qh -Part/S
alar - - - 
.eq.ob,
.eq.qh -El/El - - - - -InequalityPart/Part - - - -
.neq.psPart/Imm - - - - -Part/S
alar - - - - -El/El - - - - -Greater ThanPart/Part - - - v
mpgtsb,v
mpgtub,v
mpgtsh,v
mpgtuh,
.gt.ps v
mpgtsw,v
mpgtuw,v
mpgtfpEl/El - - - - -Less ThanPart/Part - - 
.lt.ob, -
.lt.qh
.lt.psPart/Imm - - - 
.lt.ob,
.lt.qh -Part/S
alar - - - 
.lt.ob,
.lt.qh -El/El - - - - -Greater or EqualPart/Part 
mpbge - 
.ge.ps - v
mpgefpPart/Imm 
mpbge - - - -Part/S
alar - - - - -Less or EqualPart/Part - - 
.le.ob, -
.le.qh
.le.psPart/Imm - - - 
.le.ob,
.le.qh -Part/S
alar - - - 
.le.ob,
.le.qh -El/El - - - - -Not Less nor EqualPart/Part - - 
.nle.ps - -Element/Element - - - - -Not Less ThanPart/Part - - 
.nlt.ps - -Element/Element - - - - -
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Table C.10 
ont'd.Condition Testing OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Forms of Result Bitmask Field Mask Field Mask Field MaskEqualityPart/Part p
mpeqb, p
mpeqb,f
mpeq16, p
mpeqw, p
mpeqw,f
mpeq32 p
mpeqd 
mpps/0 p
mpeqd,
mppd/0Part/Imm - - - -Part/S
alar - - - -El/El - - 
mpss/0 
mpsd/0InequalityPart/Part f
mpne16, -f
mpne32 
mpps/4 
mppd/4Part/Imm - - - -Part/S
alar - - - -El/El - - 
mpss/4 
mpsd/4Greater ThanPart/Part p
mpgtb, - p
mpgtb,f
mpgt16, p
mpgtw, p
mpgtw,f
mpgt32 p
mpgtd p
mpgtd,El/El - - - -Less ThanPart/Part - - 
mpps/1 
mppd/1Part/Imm - - - -Part/S
alar - - - -El/El - - 
mpss/1 
mpsd/1Greater or EqualPart/Part - - - -Part/Imm - - - -Part/S
alar - - - -Less or EqualPart/Part -f
mple16,f
mple32 
mpps/2 
mppd/2Part/Imm - - - -Part/S
alar - - - -El/El - - 
mpss/2 
mpsd/2Not Less nor EqualPart/Part - - 
mpps/6 
mppd/6Element/Element - - 
mpss/6 
mpsd/6Not Less ThanPart/Part - - 
mpps/5 
mppd/5Element/Element - - 
mpss/5 
mpsd/5
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Table C.10 
ont'd.Condition Testing OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXForms of Result Field Mask - Field Mask -EqualityPart/Part - -pf
mpeq 
mpps/0Part/Imm - - - -Part/S
alar - - - -El/El - - 
mpss/0 -InequalityPart/Part - - -
mpps/4Part/Imm - - - -Part/S
alar - - - -El/El - - 
mpss/4 -Greater ThanPart/Part - - -pf
mpgtEl/El - - - -Less ThanPart/Part - - -
mpps/1Part/Imm - - - -Part/S
alar - - - -El/El - - 
mpss/1 -Greater or EqualPart/Part pf
mpge - - -Part/Imm - - - -Part/S
alar - - - -Less or EqualPart/Part - - -
mpps/2Part/Imm - - - -Part/S
alar - - - -El/El - - 
mpss/2 -Not Less nor EqualPart/Part - - 
mpps/6 -Element/Element - - 
mpss/6 -Not Less ThanPart/Part - - 
mpps/5 -Element/Element - - 
mpss/5 -
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Table C.10 
ont'd.Condition Testing OperationsOperation Types DEC HP SGI SGI Motorola SunMVI MAX MIPS-V MDMX AltiVe
 VISNot (Greater or Equal) Pt/Pt - - 
.nge.ps - - -Greater or Less Than Pt/Pt - - 
.gl.ps - - -Not (Greater or Less) Pt/Pt - - 
.ngl.ps - - -Not Greater Than Pt/Pt - - 
.ngt.ps - - -Greater, Less, or Equal Pt/Pt - - 
.gle.ps - - -Not (Gr., Less, or Eq.) Pt/Pt - - 
.ngle.ps - - -OrderedPart/Part - - 
.or.ps - - -Element/Element - - - - - -UnorderedPart/Part - - 
.un.ps - - -Element/Element - - - - - -Unordered or Equal Pt/Pt - - 
.ueq.ps - - -Signaling Equal Pt/Pt - - 
.seq.ps - - -Signaling Not Equal Pt/Pt - - 
.sne.ps - - -Ordered or Greater Than Pt/Pt - - 
.ogt.ps - - -Unordered or Greater Pt/Pt - - 
.ugt.ps - - -Ord. or Greater or Eq. Pt/Pt - - 
.oge.ps - - -Unord. or Grtr. or Eq. Pt/Pt - - 
.uge.ps - - -Ordered or Less Than Pt/Pt - - 
.olt.ps - - -Unordered or Less Than Pt/Pt - - 
.ult.ps - - -Ordered or Less or Eq. Pt/Pt - - 
.ole.ps - - -Unord. or Less or Eq. Pt/Pt - - 
.ule.ps - - -Ord. or Greater or Less Pt/Pt - - 
.ogl.ps - - -Compare Bounds Pt/Pt - - - - v
mpbfp -Set Cond. CodesOrdered El/El - - - - - -Unord. El/El - - - - - -
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Table C.10 
ont'd.Condition Testing OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXNot (Greater or Equal) Pt/Pt - - - - - - -Greater or Less Than Pt/Pt - - - - - - -Not (Greater or Less) Pt/Pt - - - - - - -Not Greater Than Pt/Pt - - - - - - -Greater, Less, or Equal Pt/Pt - - - - - - -Not (Gr., Less, or Eq.) Pt/Pt - - - - - - -OrderedPart/Part - 
mpps/7 
mppd/7 - - 
mpps/7 -Element/Element - 
mpss/7 
mpsd/7 - - 
mpss/7 -UnorderedPart/Part - 
mpps/3 
mppd/3 - - 
mpps/3 -Element/Element - 
mpss/3 
mpsd/3 - - 
mpss/3 -Unordered or Equal Pt/Pt - - - - - - -Signaling Equal Pt/Pt - - - - - - -Signaling Not Equal Pt/Pt - - - - - - -Ordered or Greater Than Pt/Pt - - - - - - -Unordered or Greater Pt/Pt - - - - - - -Ord. or Greater or Eq. Pt/Pt - - - - - - -Unord. or Grtr. or Eq. Pt/Pt - - - - - - -Ordered or Less Than Pt/Pt - - - - - - -Unordered or Less Than Pt/Pt - - - - - - -Ordered or Less or Eq. Pt/Pt - - - - - - -Unord. or Less or Eq. Pt/Pt - - - - - - -Ord. or Greater or Less Pt/Pt - - - - - - -Compare Bounds Pt/Pt - - - - - - -Set Cond. CodesOrdered El/El - 
omiss 
omisd - - 
omiss -Unord. El/El - u
omiss u
omisd - - u
omiss -
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Table C.11Conditional Flow Control OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
 VISBran
h On... 1None True beq - - - - - -Any True bne - - - - - -All Equal (Part/Part) - 
ombt,= 
mpb,*= - - - -All Equal (Part/Immed) - 
omibt,= 
mpib,*= - - - -All Inequal (Part/Part) - 
ombt,<> 
mpb,*<> - - - -All Inequal (Part/Immed) - 
omibt,<> 
mpib,*<> - - - -Operate and Null Next On...AND/Any True? - and,<> and,*<> - - - -AND/None True? - and,= and,*= - - - -ANDN/Any True? - and
m,<> and
m,*<> - - - -ANDN/None True? - and
m,= and
m,*= - - - -OR/Any True? - or,<> or,*<> - - - -OR/None True? - or,= or,*= - - - -XOR/Any True? - xor,<> xor,*<> - - - -XOR/None True? - xor,= xor,*= - - - -XOR/Any False? uxor,*swz- uxor,shz uxor,*shz - - - -uxor,sbz uxor,*sbzXOR/None False? uxor,*nwz- uxor,nhz uxor,*nhz - - - -uxor,nbz uxor,*nbzAdd Complement/Any False? uadd
m,*swz(A+B) - uadd
m,shz uadd
m,*shz - - - -uadd
m,sbz uadd
m,*sbzAdd Complement/None False? uadd
m,*nwz(A+B) - uadd
m,nhz uadd
m,*nhz - - - -uadd
m,nbz uadd
m,*nbz11x32 versions of these tests are also available. For example, \
mpb,<>".
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Table C.11 
ont'd.Conditional Flow Control OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXBran
h On...None True - - - - - - -Any True - - - - - - -All Equal (Part/Part) - - - - - - -All Equal (Part/Immed) - - - - - - -Any Inequal (Part/Part) - - - - - - -Any Inequal (Part/Immed) - - - - - - -Operate and Null Next On...AND/Any True? - - - - - - -AND/None True? - - - - - - -ANDN/Any True? - - - - - - -ANDN/None True? - - - - - - -OR/Any True? - - - - - - -OR/None True? - - - - - - -XOR/Any True? - - - - - - -XOR/None True? - - - - - - -XOR/Any False? - - - - - - -XOR/None False? - - - - - - -Add Complement/Any False? - - - - - - -(A+ B)Add Complement/None False? - - - - - - -(A+ B)
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Table C.12Conditional Data Manipulation OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
 VISMove Reg/Imm On...None True 
moveq - - - - - -Any True 
movne - - - - - -Zero Masked Bytes zap - - - - - -Zero UnMasked Bytes zapnot - - - - - -Clear Reg& Null Next/AllPart/Part - 
om
lr,= 
mp
lr,*= - - - -Part/Imm - 
omi
lr,= 
mpi
lr,*= - - - -Part/S
alar - - - - - - -Clear Reg& Null Next/Not AllPart/Part - 
om
lr,<> 
mp
lr,*<> - - - -Part/Imm - 
omi
lr,<> 
mpi
lr,*<> - - - -Part/S
alar - - - - - - -Load Reg. On...Zero - - - - - - -Non-Zero - - - - - - -Negative - - - - - - -Non-Negative - - - - - - -Move Reg. On...CC bit TRUE - - - movt.ps - - -CC bit FALSE - - - movf.ps - - -Pi
k TruePart/Part - - - - pi
kt.ob,pi
kt.qh vsel -Part/Imm - - - - pi
kt.ob,pi
kt.qh - -Part/S
alar - - - - pi
kt.ob,pi
kt.qh - -Pi
k FalsePart/Part - - - - pi
kf.ob,pi
kf.qh vsel -Part/Imm - - - - pi
kf.ob,pi
kf.qh - -Part/S
alar - - - - pi
kf.ob,pi
kf.qh - -
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Table C.12 
ont'd.Conditional Data Manipulation OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXMove Reg/Imm On...None True - - - - - - -Any True - - - - - - -Zero Masked Bytes - - - - - - -Zero UnMasked Bytes - - - - - - -Clear Reg & Null Next/AllPart/Part - - - - - - -Part/Imm - - - - - - -Part/S
alar - - - - - - -Clear Reg & Null Next/AnyPart/Part - - - - - - -Part/Imm - - - - - - -Part/S
alar - - - - - - -Load Reg. On...Zero - - - - - - pmvzbNon-Zero - - - - - - pmvnzbNegative - - - - - - pmvlzbNon-Negative - - - - - - pmvgezbMove Reg. On...CC bit TRUE - - - - - - -CC bit FALSE - - - - - - -Pi
k TruePart/Part - - - - - - -Part/Imm - - - - - - -Part/S
alar - - - - - - -Pi
k FalsePart/Part - - - - - - -Part/Imm - - - - - - -Part/S
alar - - - - - - -
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Table C.13Data Movement, Repli
ation, and Type Conversion OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltitVe
 VISMove Reg.!Enh. Reg. - - - - - - -Move Enh. Reg.!Reg. - - - - - - -Move Enh. Reg. - - - fsr
[12℄s1,!Enh. Reg. movb movb fsr
[12℄mov.psMove Comp. Enh. Reg. - - - - - - fnot[12℄s,!Enh. Reg. fnot[12℄Pa
k Singles to Part - - - 
vt.ps.s - - -Modular Move A

!RegLow Third of A

. - - - - ra
l.ob, - -ra
l.qhMiddle Third of A

. - - - - ra
m.ob, - -ra
m.qhHigh Third of A

. - - - - ra
h.ob, - -ra
h.qhMove Regs. to Low A

. - - - - wa
l.ob, - -wa
l.qhMove Reg. to High A

. - - - - wa
h.ob, - -wa
h.qhRepli
ate Field vspltb,(Element/Part) - - - - - vsplth, -vspltwRepli
ate Sign-Extended vspltisb,Immediate to Part - - - - - vspltish, -vspltiswShift Rt, Rnd, & Sat A

toward 0 - - - - rzu.ob, - -rzs.qh,rzu.qhto nearest away from 0 - - - - rnau.ob, - -rnas.qh,rnau.qhto nearest toward even - - - - rne.ob, - -rnes.qh,rneu.qhConvert int. to 
t. - - - - - v
fux, -v
fsxConvert 
t. to int. - - - - - v
tuxs, -v
tsxsConvert 
t. to 
t. - - - - - - -Round 
t. value to int.to nearest - - - - - vr�n -toward zero - - - - - vr�z -toward +in�nity - - - - - vr�p -toward -in�nity - - - - - vr�m -1\[12℄" means \1" or \2".
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Table C.13 
ont'd.Data Movement, Repli
ation, and Type Conversion OperationsOperation Types Intel Intel IntelMMX SSE SSE2Move Reg!Enh. Reg. movd - movdMove Enh. Reg!Reg. movd - movdMove Enh. Reg!Enh. Reg. movq movq,movdq2q,movq2dq,(movdqu)movdqa,(movups)movaps (movupd)movapdMove Comp. Enh. Reg. - - -!Enh. Reg.Pa
k Singles to Part - - -Modular Move A

!RegLow Third of A

. - - -Middle Third of A

. - - -High Third of A

. - - -Move Regs. to Low. A

. - - -Move Reg. to High A

. - - -Repli
ate Field - - -Repli
ate Sign-Extended - - -Immediate to PartShift Rt, Rnd, & Sat A

toward 0 - - -to nearest away from 0 - - -to nearest toward even - - -Convert int. to 
t. - 
vtpi2ps, 
vtpi2pd,
vtsi2ss 
vtsi2sd,
vtdq2ps,
vtdq2pdConvert 
t. to int. - 
vt(t)ps2pi1 , 
vt(t)pd2pi1 ,
vt(t)pd2dq1 ,
vt(t)ss2si1 
vt(t)sd2si1 ,
vt(t)ps2dq1Convert 
t. to 
t. - - 
vtpd2ps,
vtps2pd,
vtsd2ss,
vtss2sdRound 
t. value to int.to nearest - - -toward zero - - -toward +in�nity - - -toward -in�nity - - -1Cvt* uses rounding mode spe
i�ed in MXCSR. Cvtt* trun
ates the fra
tional part.
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Table C.13 
ont'd.Data Movement, Repli
ation, and Type Conversion OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXMove Reg!Enh. Reg. - - - -Move Enh. Reg!Reg. - - - -Move Enh. Reg!Enh. Reg. - - -(movups)movapsMove Comp. Enh. Reg. - - - -!Enh. Reg. -Pa
k Singles to Part - - - -Modular Move A

!RegLow Third of A

. - - - -Middle Third of A

. - - - -High Third of A

. - - - -Move Regs. to Low. A

. - - - -Move Reg. to High A

. - - - -Repli
ate Field - - - -Repli
ate Sign-Extended - - - -Immediate to PartShift Rt, Rnd, & Sat A

toward 0 - - - -to nearest away from 0 - - - -to nearest toward even - - - -Convert int. to 
t. pi2fd pi2fw 
vtpi2ps, -
vtsi2ssConvert 
t. to int. pf2id pf2iw 
vt(t)ps2pi1 , -
vt(t)ss2si1Convert 
t. to 
t. - - - -Round 
t. value to int.to nearest - - - -toward zero - - - -toward +in�nity - - - -toward -in�nity - - - -1Cvt* uses rounding mode spe
i�ed in MXCSR. Cvtt* trun
ates the fra
tional part.
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Table C.14Data Extra
tion, Insertion, and Permutation OperationsOperation Types DEC HP HP SGI SGIMVI MAX-1 MAX-2 MIPS-V MDMXExtra
t Field to Reg. - - - - -Insert Sele
ted Field - - - - -Insert Low Field - - - - -Byte Shft Rt & Extra
tBy Immed. extbl,extwl,extll,extql - - - -By Register extbl,extwl,extll,extql - - - -Byte Shft Lt & Extra
tBy Immed. extwh,extlh,extqh - - - alni.ob,alni.qhBy Register extwh,extlh,extqh - - alnv.ob,alnv.qhalnv.psByte Shft Rt & Insert inswh,inslh,insqh - - - -into Zeroed RegByte Shft Lt & Insert insbl,inswl,insll,insql - - - -into Zeroed RegBit Shft Lt & Extra
t - (v)extrs extrw(,s), - -(v)extru extrw,u1- extrd(,s),- extrd,u2Merge, Bit Shft Rt - (v)shd shrpw, - -& Extra
t shrpdBit Shift Left & Insertinto Zeroed Regfrom Immed - z(v)depi depwi,z, - -depdi,zfrom Reg - z(v)dep depw,z, - -depd,zBit Shift Left & Insertinto Un
hanged Regfrom Immed - (v)depi depwi, - -depdifrom Reg - (v)dep depw, - -depdClear Segment Low mskbl,mskwl,mskll,mskql - - - -Clear Segment High mskwh,msklh,mskqh - - - -PermutePart/Indexed by Part - - - - -Part/Indexed by Imm - - permh - -Swap Fields - - - - -1See table D-13, pD-9 in [82℄.2See table D-14, pD-9 in [82℄.
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Table C.14 
ont'd.Data Extra
tion, Insertion, and Permutation OperationsOperation Types Motorola Sun Intel Intel IntelAltiVe
 VIS MMX SSE SSE2Extra
t Field to Reg. - - - pextrw pextrwInsert Sele
ted Field - - - pinsrw pinsrwInsert Low Field - - - movss movsdByte Shft Rt & Extra
tBy Immed. vsldoi - - - -By Register - faligndata - - -Byte Shft Lt & Extra
tBy Immed. - - - - -By Register - - - - -Byte Shft Rt & Insert - - - - -into Zeroed RegByte Shft Lt & Insert - - - - -into Zeroed RegBit Shft Lt & Extra
t - - - - -Merge, Bit Shft Rt - - - - -& Extra
tBit Shift Left & Insertinto Zeroed Regfrom Immed - - - - -from Reg - - - - -Bit Shift Left & Insertinto Un
hanged Regfrom Immed - - - - -from Reg - - - - -Clear Segment Low - - - - -Clear Segment High - - - - -PermutePart/Indexed by Part vperm - - - -Part/Indexed by Imm - - - pshufw, pshu
w,pshufhw,pshufd,shufps shufpdSwap Fields - - - - -
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Table C.14 
ont'd.Data Extra
tion, Insertion, and Permutation OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXExtra
t Field to Reg. - pextrw - -Insert Sele
ted Field - pinsrw - -Insert Low Field - - movss -Byte Shft Rt & Extra
tBy Immed. - - - -By Register - - - -Byte Shft Lt & Extra
tBy Immed. - - - -By Register - - - -Byte Shft Rt & Insert - - - -into Zeroed RegByte Shft Lt & Insert - - - -into Zeroed RegBit Shft Lt & Extra
t - - - -Merge, Bit Shft Rt - - - -& Extra
tBit Shift Left & Insertinto Zeroed Regfrom Immed - - - -from Reg - - - -Bit Shift Left & Insertinto Un
hanged Regfrom Immed - - - -from Reg - - - -Clear Segment Low - - - -Clear Segment High - - - -PermutePart/Indexed by Part - - - -Part/Indexed by Imm - pshufw - -shufpsSwap Fields - pswapd - -
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Table C.15Interleaving OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
 VISInterleave (Merge) - - - - - - fpmergeInterleave odd (left) - - mixh,l, - - - -mixw,lInterleave even (right) - - mixh,r, - - - -mixw,rInterleave upperPart/Part - - - sh
.mixh.ob, vmrghb, -sh
.mixh.qh vmrghh,puu.ps vmrghwPart/Imm - - - - sh
.mixh.ob, - -sh
.mixh.qhPart/S
alar - - - - sh
.mixh.ob, - -sh
.mixh.qhPart/Zero - - - - sh
.upuh.ob - -Interleave lowerPart/Part - - - sh
.mixl.ob, vmrglb, -sh
.mixl.qh vmrglh,pll.ps vmrglwPart/Imm - - - - sh
.mixl.ob, - -sh
.mixl.qhPart/S
alar - - - - sh
.mixl.ob, - -sh
.mixl.qhPart/Zero - - - - sh
.upul.ob - -S
ale, Trun
., Clip & Merge - - - - - - fpa
k32Interleave even w/oddForward or ReversePart/Part - - - - sh
.b
[ab℄.qh - -plu.psPart/Imm - - - - sh
.b
[ab℄.qh - -Part/S
alar - - - - sh
.b
[ab℄.qh - -Interleave odd w/evenForward or ReversePart/Part - - - pul.ps - - -Part/Imm - - - - - - -Part/S
alar - - - - - - -
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Table C.15 
ont'd.Interleaving OperationsOperation Types Intel Intel IntelMMX SSE SSE2Interleave (Merge) - - -Interleave odd (left) - - -Interleave even (right) - - -Interleave upperPart/Part punp
khbw, punp
khbw,punp
khwd, punp
khwd,punp
khdq unp
khps punp
khdq,punp
khqdq,unp
khpdPart/Imm - - -Part/S
alar - - -Part/Zero - - -Interleave lowerPart/Part punp
klbw, punp
klbw,punp
klwd, punp
klwd,punp
kldq unp
klps punp
kldq,punp
klqdq,unp
klpdPart/Imm - - -Part/S
alar - - -Part/Zero - - -S
ale, Trun
., Clip & Merge - - -Interleave even w/oddForward and ReversePart/Part - - -Part/Imm - - -Part/S
alar - - -Interleave odd w/evenForward and ReversePart/Part - - -Part/Imm - - -Part/S
alar - - -
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Table C.15 
ont'd.Interleaving OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXInterleave (Merge) - - - -Interleave odd (left) - - - -Interleave even (right) - - - -Interleave upperPart/Part - - - -unp
khpsPart/Imm - - - -Part/S
alar - - - -Part/Zero - - - -Interleave lowerPart/Part - - - -unp
klpsPart/Imm - - - -Part/S
alar - - - -Part/Zero - - - -S
ale, Trun
., Clip & Merge - - - -Interleave even w/oddForward and ReversePart/Part - - - -Part/Imm - - - -Part/S
alar - - - -Interleave odd w/evenForward and ReversePart/Part - - - -Part/Imm - - - -Part/S
alar - - - -
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Table C.16Catenating, Pa
king, and Unpa
king OperationsOperation Types DEC HP SGI SGI MotorolaMVI MAX MIPS-V MDMX AltiVe
Catenate oddPart/Part - - - sh
.pa
h.ob, -sh
.pa
h.qhPart/Imm - - - sh
.pa
h.ob, -sh
.pa
h.qhPart/S
alar - - - sh
.pa
h.ob, -sh
.pa
h.qhCatenate evenPart/Part - - - sh
.pa
l.ob, vpkuhum,sh
.pa
l.qh vpkuwumPart/Imm - - - sh
.pa
l.ob, -sh
.pa
l.qhPart/S
alar - - - sh
.pa
l.ob, -sh
.pa
l.qhCatenate upperPart/Part - - - sh
.repa.qh -Part/Imm - - - sh
.repa.qh -Part/S
alar - - - sh
.repa.qh -Catenate lowerPart/Part - - - sh
.repb.qh -Part/Imm - - - sh
.repb.qh -Part/S
alar - - - sh
.repb.qh -Unsigned Saturate, - - - - vpkshus,vpkuhus,Pa
k, and Catenate vpkswus,vpkuwusSigned Saturate, - - - - vpkshss,Pa
k, and Catenate vpkswssPixel Pa
k - - - - vpkpxand CatenateTrun
ate & Pa
k pklb, - - - -Low Byte pkwbS
ale, Trun
ate, - - - - -& ClipUnpa
k Lower - - - sh
.upsl.ob vupklsb,& Sign Extend vupklshUnpa
k Upper - - - sh
.upsh.ob vupkhsb,& Sign Extend vupkhshUnpa
k Low Bytes unpkbl, - - - -& Zero Extend unpkbwUnpa
k Lower Pixel - - - - vupklpxUnpa
k Upper Pixel - - - - vupkhpxZero Expand - - - - -
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Table C.16 
ont'd.Catenating, Pa
king, and Unpa
king OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Catenate oddPart/Part - - - -Part/Imm - - - -Part/S
alar - - - -Catenate evenPart/Part - - - -Part/Imm - - - -Part/S
alar - - - -Catenate upperPart/Part - - movhlps -Part/Imm - - - -Part/S
alar - - - -Catenate lowerPart/Part - - movlhps -Part/Imm - - - -Part/S
alar - - - -Unsigned Saturate, - pa
kuswb - pa
kuswbPa
k, and CatenateSigned Saturate, - pa
ksswb, - pa
ksswb,Pa
k, and Catenate pa
kssdw pa
kssdwPixel Pa
k - - - -and CatenateTrun
ate & Pa
k - - - -Low ByteS
ale, Trun
ate, fpa
k16, - - -& Clip fpa
k�xUnpa
k Lower - - - -& Sign ExtendUnpa
k Upper - - - -& Sign ExtendUnpa
k Low Bytes - - - -& Zero ExtendUnpa
k Lower Pixel - - - -Unpa
k Upper Pixel - - - -Zero Expand fexpand - - -
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Table C.16 
ont'd.Catenating, Pa
king, and Unpa
king OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXCatenate oddPart/Part - - - -Part/Imm - - - -Part/S
alar - - - -Catenate evenPart/Part - - - -Part/Imm - - - -Part/S
alar - - - -Catenate upperPart/Part - - movhlps -Part/Imm - - - -Part/S
alar - - - -Catenate lowerPart/Part - - movlhps -Part/Imm - - - -Part/S
alar - - - -Unsigned Saturate, - - - -Pa
k, and CatenateSigned Saturate, - - - -Pa
k, and CatenatePixel Pa
k - - - -and CatenateTrun
ate & Pa
k - - - -Low ByteS
ale, Trun
ate, - - - -& ClipUnpa
k Lower - - - -& Sign ExtendUnpa
k Upper - - - -& Sign ExtendUnpa
k Low Bytes - - - -& Zero ExtendUnpa
k Lower Pixel - - - -Unpa
k Upper Pixel - - - -Zero Expand - - - -
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Table C.17Memory A

ess OperationsOperation Types DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
Load Aligned ldbu, ldb, ldb, - lvebx,ldwu, ldh, ldh, lvehx,ldl, ldw ldw and ldwa, lvewx,ldq ldd and ldda lux
1 lvx or lvxl1Load Unaligned - - - - -ldq uLoad Field - - - - - -Load Immediate - ldil ldil - - -Load Zeros - - - - - -Load All Ones - - - - - -Load Alignment - - - - - lvsl or lvsrVe
torStore Aligned stb, stb, stb, - stvebx,stw, stb, sth, stvehx,stl, stw stw and stwa stvewx,stq std and stda sux
1 stvx or stvxl1Store Unaligned stbys stby, - - -stdbystq uStore Aligned - - - - - -w/Ca
he FlushMasked Storeby Bitmask - - - - - -by msb of Part - - - - - -Store Syn
 wmb - - - - -Load Syn
 - - - - - -Memory Syn
 - syn
 - - - -Spin-wait Hint - - - - - -1Hints that the referen
e will probably be the last to this 
a
he blo
k.
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Table C.17 
ont'd.Memory A

ess OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Load Aligned lddfa,d0, -lddfa,d2, movaps movdqa,movapdlddfa,[7f℄0Load Unaligned - movd, movss, movd,movq movq,movsd,movhps, movhpd,movlps, movlpd,movups movdqu,movupdLoad Field - - pinsrw pinsrwLoad Immediate - - - -Load Zeros fzeros, - - -fzeroLoad All Ones fones, - - -foneLoad Alignment - - - -Ve
torStore Aligned stdfa,d0, -stdfa,d2, movnti,movntq, movdqa,movntdq,movaps,movntps movapd,movntpdstdfa,[7f℄0Store Unaligned - movd, movss, movd,movq movq,movsd,movhps, movhpd,movlps, movlpd,movups movdqu,movupdStore Aligned stdfa,e0 - - -w/Ca
he FlushMasked Storeby Bitmask stdfa,
0, - - -stdfa,
2,stdfa,
4by msb of Part - - maskmovq maskmovdquStore Syn
 - - sfen
e -Load Syn
 - - - lfen
eMemory Syn
 - - - mfen
eSpin-wait Hint - - - pause
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Table C.17 
ont'd.Memory A

ess OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXLoad Aligned - - -movapsLoad Unaligned - - movss, -movhps,movlps,movupsLoad Field - pinsrw - -Load Immediate - - - -Load Zeros - - - -Load All Ones - - - -Load Alignment - - - -Ve
torStore Aligned - -movntq movaps,movntpsStore Unaligned - - -movss,movhps,movlps,movupsStore Aligned - - - -w/Ca
he FlushMasked Storeby Bitmask - - - -by msb of Part - maskmovq - -Store Syn
 - sfen
e - -Load Syn
 - - - -Memory Syn
 - - - -Spin-wait Hint - - - -
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Table C.18Ca
he Management OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe
 VISPrefet
h Data Line - - ldd - - - -Prefet
h Data Line for Write - - ldw - - - -Prefet
h Hint fet
h - - - - dst -Prefet
h Hint Transient - - - - - dstt -Store Hint fet
h m - - - - dstst -Store Hint Transient wh64 - - - - dststt -Disasso
iate ID and Stream(s) - - - - - dss or dssall -Evi
t Hint e
b - - - - - -Flush Line - fd
,�
 - - - - -Purge Line - pd
 - - - - -Flush Ca
he - fd
e,�
e - - - - -

Operation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXPrefet
h Data Line - - - prefet
h - -Prefet
h Data Line for Write - - - prefet
hw - -Prefet
h Hint - prefet
h*1 - - prefet
h*1 -Prefet
h Hint Transient - - - - - -Store Hint - - - - - -Store Hint Transient - - - - - -Disasso
iate ID and Stream - - - - - -Evi
t Hint - - - - - -Flush Line - - Yes - - -Purge Line - - - - - -Flush Ca
he - - - - - -1prefet
ht0, prefet
ht1, prefet
ht2, prefet
hnta.
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APPENDIX DSCC INTERNAL PSEUDO-OPERATIONSThe following table lists the pseudo-ops used internally in the S

 
ompiler, alongwith the number of arguments ea
h takes (i.e. the number of subtrees representingarguments whi
h are atta
hed to the pseudo-op's node. A \-" means that the 
on-stru
t has multiple 
hildren, but these are not 
onsidered to be arguments per se.\Null" means that the node is a leaf, or that it's arguments are provided in someother manner. \U" means that the operation is unary (one argument). \UR" meansthat it is a unary redu
tion (i.e. a unary that returns a single value. \Bi" means thatthe operation is binary (two arguments). \Tri" means that the operation is trinary(three arguments).
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 Internal Pseudo-operationsPseudo-op Args. MeaningBLOCK - A blo
k of 
odeBREAK - Break statementCALL - Fun
tion 
allCONTINUE - Continue statementDO - Do statementEVERYWHERE - Everywhere statementEXPR - ExpressionFOR - For statementGOTO - Goto statementIF - If statementLABEL - LabelRETURN - Return statementSEMI - An empty statementWHERE - Where statementWHILE - While statementNUM Null A 
onstant single numberVNUM Null A 
onstant parallel numberSIZEOF Null sizeof operatorLVSL Null Load index ve
tor for shift left (used for alignment in AltiVe
)LOAD Null Ve
tor loadNEG U Parallel negateRCP U Parallel re
ipro
al (or 1st step of 3 step operation)NOT U Parallel bitwise-NOT (1's 
omplement)CAST U Type 
ast arg0I2F U Parallel 
onvert arg0 from integer to 
oating-pointF2I U Parallel 
onvert arg0 from 
oating-point to integerLNOT U Parallel logi
al NOT yielding -1 or 0LEA U Load/
al
ulate e�e
tive address and store in registerLOADR U Fragment load based on e�e
tive address in registerLOADRR U Fragment load based on e�e
tive address in a pair of registersLOADX U Ve
tor element loadSTORE U Ve
tor storeUNPACKL U Unpa
k and extend the lower �elds of a sour
eUNPACKH U Unpa
k and extend the higher �elds of a sour
eALL UR Redu
e logi
al-AND of arg0ANY UR Redu
e logi
al-OR of arg0REDUCEADD UR Redu
e add of arg0REDUCEAND UR Redu
e bitwise-AND of arg0REDUCEAVG UR Redu
e average of arg0REDUCEMAX UR Redu
e maximum of arg0REDUCEMIN UR Redu
e minimum of arg0REDUCEMUL UR Redu
e multiply of arg0REDUCEOR UR Redu
e bitwise-OR of arg0REDUCEXOR UR Redu
e bitwise-XOR of arg0



- 387 -Table D.1 
ont'd.S

 Internal Pseudo-operationsPseudo-op Args. MeaningADD Bi Parallel addADDH Bi Parallel add high (low bit is 
arry-out of add)AVG Bi Parallel averageDIV Bi Parallel divideMOD Bi Parallel modulusMUL Bi Parallel multiply (low N bits of result of NxN)MULEVEN Bi Parallel multiply (even N-bit �elds yeilding 2N-bit result)MULODD Bi Parallel multiply (odd N-bit �elds yeilding 2N-bit result)MULH Bi Parallel multiply high (high N bits of result)MAX Bi Parallel maximumMIN Bi Parallel minimumRCP1 Bi Parallel re
ipro
al (or 2nd step of 3 step operation)RCP2 Bi Parallel re
ipro
al (or 3rd step of 3 step operation)SUB Bi Parallel subtra
tAND Bi Parallel bitwise-ANDANDN(x,y) Bi Parallel bitwise-AND with 
omplement (Identi
al to AND(NOT x, y))NOR Bi Parallel bitwise-NOROR Bi Parallel bitwise-ORXOR Bi Parallel bitwise-XOREQ Bi Parallel == yielding -1 or 0EQ C Bi Parallel == yielding 1 or 0 (C-like result)GE Bi Parallel >= yielding -1 or 0GT Bi Parallel > yielding -1 or 0GT C Bi Parallel > yielding 1 or 0 (C-like result)LE Bi Parallel <= yielding -1 or 0LT Bi Parallel < yielding -1 or 0NE Bi Parallel ! = yielding -1 or 0LAND Bi Parallel logi
al AND yielding -1 or 0LOR Bi Parallel logi
al OR yielding -1 or 0STORER Bi Fragment store based on e�e
tive address in registerSTORERR Bi Fragment store based on e�e
tive address in a pair of registersSTOREX Bi Ve
tor element storeROTATE Bi Ve
tor rotate (inter-element rotate) (
ount>0 is left?)SHIFT Bi Ve
tor shift (inter-element shift) (
ount>0 is left?)SHL Bi Parallel intra-element shift leftSHLBIT Bi Parallel fragment shift left by bitsSHLBYTE Bi Parallel fragment shift left by bytesSHR Bi Parallel intra-element shift rightSHRBIT Bi Parallel fragment shift right by bitsSHRBYTE Bi Parallel fragment shift right by bytesINTRLVLOW Bi Interleave lower �elds of sour
esINTRLVHIGH Bi Interleave higher �elds of sour
esINTRLVEVEN Bi Interleave even �elds of sour
esINTRLVODD Bi Interleave odd �elds of sour
es
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Table D.1 
ont'd.S

 Internal Pseudo-operationsPseudo-op Args. MeaningPACK Bi Catenate the even �elds of sour
es (arg0 into low half)PACKS2U Bi Catenate the signed, even? �elds of sour
es (arg0 into low half?)PERM Bi Permute arg0 indexed via arg1REPL Bi Repli
ate �eld 'arg1' of 'arg0' in rest of fragmentPUTGET Bi? UnusedQUEST Tri Trinary 
onstru
t (e.g. a? true:false)TPERM Tri Permute arg0 and arg1 indexed via arg2



- 389 -
APPENDIX ETHE INTEGER EXPRESSION VALIDATION PROGRAMThe integer expression validation program is written using C prepro
essor ma
ros tominimize its size. In this form, it is about 500 lines long, so I only in
lude somese
tions here with some empty lines removed. Below is the ma
ro whi
h is expandedto 
reate the SWARC fun
tions for testing an operation op, for ve
tors of fieldselements of signed or unsigned (sign), bits-bit pre
ision, using modular or saturationarithmeti
 (ms).#define BINOP(name, op, bits, fields, sign, ms) \void name(ms sign##signed int i, ms sign##signed int j, \ms sign##signed int:bits[fields℄ 
) \{ \ms sign##signed int:bits[fields℄ a; \ms sign##signed int:bits[fields℄ b; \\a = i; \b = j; \
 = a op b; \}The C versions of these operations are generated using a set of ma
ros whi
h arenot in
luded here. These must emulate the operations performed by the SWARC
ode, handling saturation and non-standard bits sizes 
orre
tly.Debugging the S

 
ompiler using ma
ro-generated 
ode is parti
ularly painful.Here is an example fun
tion generated by the ma
ro shown above for adding 1-bitunsigned integer values using modular addition:void add1um(modular unsigned int i, modular unsigned int j,modular unsigned int :1[64℄ 
) { modular unsigned int:1[64℄ a;modular unsigned int:1[64℄ b; a = i; b = j; 
 = a + b; }This is embedded in a longer line of 
ode be
ause the above ma
ro is nested inanother ma
ro that generates all the fun
tions for 1-bit unsigned modular data. This
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an be seen by typing \make valid64-MMX" in the Examples/Valid dire
tory of theS

 
ompiler sour
es and looking at the �le valid64.Si. I have never found a way toembed a newline or line-feed 
hara
ter in these ma
ros to make the generated 
odemore readable.An example of the C 
ode generated by the S

 
ompiler for an MMX-basedtarget is given below. Here, we see the wrapper ma
ros generated to exe
ute theMMX instru
tions:/* # 100 "valid64.S
"*/__inline__void add1um(unsigned int *i,unsigned int *j,p64_t *
){ extern p64_t 
pool64[℄;register p64_t *_
pool = &(
pool64[0℄);extern p64_t spool64[℄;register p64_t *_spool = &(spool64[0℄);{ volatile p64_t a[1℄;volatile p64_t b[1℄;movq_m2r(*(_
pool + 0), mm0);movq_m2r(*(((p64_t *) ((
har *)i +0)) + 0), mm1);movq_m2r(*(_
pool + 2), mm2);pand_r2r(mm2, mm1);movq_r2r(mm0, mm3);psubd_r2r(mm1, mm0);movq_r2r(mm0, mm4);psllq_i2r(32, mm0);movq_m2r(*(((p64_t *) ((
har *)j +0)) + 0), mm5);por_r2r(mm0, mm4);pand_r2r(mm5, mm2);psubd_r2r(mm2, mm3);movq_r2r(mm3, mm6);psllq_i2r(32, mm3);por_r2r(mm3, mm6);pxor_r2r(mm6, mm4);movq_r2m(mm4, *(((p64_t *) ((
har *)
 +0)) + 0));}emms();}



- 391 -In this 
ode, a ma
ro with a name that ends in \r2r" performs an operation on one ormore registers and leaves its result in a register. A ma
ro with an \m2r" suÆx takesan operand from memory and leaves its result in a register. Also, a ma
ro with an\r2m" suÆx takes an operand from a register and leaves its result in memory. Theobje
ts \mm0", \mm1", et
. represent MMX registers. The type p64 t is a uniontype whi
h represents a fragment of data. emms() must be 
alled to put the systemba
k into 
oating-point mode from MMX mode.Ea
h ma
ro is repla
ed with one or more inline assembly statements. Here is theprepro
essed 
ode 
orresponding to the above fun
tion with some formatting 
hanges:__inline__void add1um(unsigned int *i, unsigned int *j, p64_t *
){ extern p64_t 
pool64[℄; register p64_t *_
pool = &(
pool64[0℄);extern p64_t spool64[℄; register p64_t *_spool = &(spool64[0℄);{ volatile p64_t a[1℄;volatile p64_t b[1℄;__asm__ __volatile__ ("movq" " %0, %%" "mm0" : : "m" (*(_
pool + 0)));__asm__ __volatile__ ("movq" " %0, %%" "mm1" : :"m" (*(((p64_t *) ((
har *)i +0)) + 0)));__asm__ __volatile__ ("movq" " %0, %%" "mm2" : : "m" (*(_
pool + 2)));__asm__ __volatile__ ("pand" " %" "mm2" ", %" "mm1");__asm__ __volatile__ ("movq" " %" "mm0" ", %" "mm3");__asm__ __volatile__ ("psubd" " %" "mm1" ", %" "mm0");__asm__ __volatile__ ("movq" " %" "mm0" ", %" "mm4");__asm__ __volatile__ ("psllq" " $" "32" ", %" "mm0");__asm__ __volatile__ ("movq" " %0, %%" "mm5" : :"m" (*(((p64_t *) ((
har *)j +0)) + 0)));__asm__ __volatile__ ("por" " %" "mm0" ", %" "mm4");__asm__ __volatile__ ("pand" " %" "mm5" ", %" "mm2");__asm__ __volatile__ ("psubd" " %" "mm2" ", %" "mm3");__asm__ __volatile__ ("movq" " %" "mm3" ", %" "mm6");__asm__ __volatile__ ("psllq" " $" "32" ", %" "mm3");__asm__ __volatile__ ("por" " %" "mm3" ", %" "mm6");__asm__ __volatile__ ("pxor" " %" "mm6" ", %" "mm4");__asm__ __volatile__ ("movq" " %%" "mm4" ", %0" :"=m" (*(((p64_t *) ((
har *)
 +0)) + 0)) : );}__asm__ __volatile__ ("emms");}



- 392 -The above fun
tion is 
ompiled by the C 
ompiler to assembly. The assembly
ode generated is dire
tly related to the C 
ode generate by the S

 
ompiler. The�nal 
ode is s
heduled a

ording to the S

 
ompiler's s
heduling algorithm with theC 
ompiler generating the 
ode for handling the sta
k..globl add1um.type add1um,�fun
tionadd1um: pushl %ebpmovl %esp, %ebppushl %esipushl %ebxsubl $16, %espmovl 8(%ebp), %edxmovl 12(%ebp), %e
xmovl 16(%ebp), %ebxmovl $
pool64, %eaxmovl $spool64, %esi#APP movq (%eax), %mm0movq (%edx), %mm1movq 16(%eax), %mm2pand %mm2, %mm1movq %mm0, %mm3psubd %mm1, %mm0movq %mm0, %mm4psllq $32, %mm0movq (%e
x), %mm5por %mm0, %mm4pand %mm5, %mm2psubd %mm2, %mm3movq %mm3, %mm6psllq $32, %mm3por %mm3, %mm6pxor %mm6, %mm4movq %mm4, (%ebx)emms#NO_APP addl $16, %esppopl %ebxpopl %esipopl %ebpret
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APPENDIX FTHE DNA EXAMPLE BENCHMARKThis is the SWARC sour
e with inlined C 
ode for the DNA example ben
hmark.Note the la
k of target-spe
i�
 
ode in the SWARC se
tions of the sour
e, and theexposure of the target ar
hite
ture in the inlined C 
ode.${$in
lude <stdio.h>$in
lude <stdlib.h>$in
lude <time.h>$in
lude <sys/times.h>$in
lude <limits.h>$in
lude <time.h>typedef unsigned long long int ullong;$}#in
lude "
ommon.h"#if BPF == 128#define FRAGTYPE p128_t#define FRAGCTYPE ullong#define FRAGEXT uq#elif BPF == 64#define FRAGTYPE p64_t#define FRAGCTYPE ullong#define FRAGEXT uq#define FRAGCONST ULL#else #define FRAGTYPE p32_t#define FRAGCTYPE unsigned#define FRAGEXT ud#define FRAGCONST U#endif${stru
t tms junk;
lo
k_t start, end, 
omptime;$}



- 394 -void f(unsigned int:2[LENGTH℄ DNA, unsigned int total){ unsigned int:2[3℄ substring;unsigned int:2[LENGTH℄ 
ount;unsigned int i;#ifdef DEBUG_PEEK${ stati
 p128_t output;{$}#endif#ifdef DEBUG_TOTAL${ printf("total=%u\n", *total);$}#endif#ifdef DEBUG_SUBSTRING${ substring[0℄.uq[0℄ = 0x0123456789ab
defULL;substring[0℄.uq[1℄ = 0xfed
ba9876543210ULL;printf("substring[0℄={0x%016llx,0x%016llx}\n",substring[0℄.uq[0℄, substring[0℄.uq[1℄);$}#endif substring[0℄=A; substring[1℄=G; substring[2℄=T;#ifdef DEBUG_SUBSTRING${ printf("substring[0℄={0x%016llx,0x%016llx}\n",substring[0℄.uq[0℄, substring[0℄.uq[1℄);$}#endif 
ount = 0;#ifdef DEBUG_COUNT${ int frag, x;for (frag=0; frag<((LENGTH/(BPF/2))+1); ++frag) {printf("
ount[%d℄={0x%016llx,0x%016llx}\n",frag, 
ount[frag℄.uq[0℄, 
ount[frag℄.uq[1℄);}for (x=0; x<((LENGTH/(BPF/2))+1); ++x)printf(" DNA[%d℄={0x%016llx,0x%016llx}\n",x, DNA[x℄.uq[0℄, DNA[x℄.uq[1℄);$}#endif



- 395 -for (i=0; i<3; ++i) {#ifdef DEBUG_COUNT${ int x;printf("At top of loop: in memory order\n");for (x=0; x<((LENGTH/(BPF/2))+1); ++x)printf("
ount[%d℄={0x%016llx,0x%016llx}\n",x, 
ount[x℄.uq[0℄, 
ount[x℄.uq[1℄);#ifdef DEBUG_SETCOUNTBYHANDprintf("After setting by hand: in memory order\n");
ount[0℄.uq[0℄ = 0xffffffffffffffff;
ount[0℄.uq[1℄ = 0x0000000000000000;
ount[1℄.uq[0℄ = 0x0123456789ab
def;
ount[1℄.uq[1℄ = 0xfed
ba9876543210;for (x=0; x<((LENGTH/(BPF/2))+1); ++x)printf("
ount[%d℄={0x%016llx,0x%016llx}\n",x, 
ount[x℄.uq[0℄, 
ount[x℄.uq[1℄);#endif $}#endif 
ount = 
ount[<< 1℄;#ifdef DEBUG_COUNT${ int x;printf("After shift: in memory order\n");for (x=0; x<((LENGTH/(BPF/2))+1); ++x)printf("
ount[%d℄={0x%016llx,0x%016llx}\n",x, 
ount[x℄.uq[0℄, 
ount[x℄.uq[1℄);$}#endif 
ount += (DNA == substring[i℄)? 1:0;#ifdef DEBUG_COUNT${ int x;printf("At bottom of loop: in memory order\n");for (x=0; x<((LENGTH/(BPF/2))+1); ++x)printf("
ount[%d℄={0x%016llx,0x%016llx}\n",x, 
ount[x℄.uq[0℄, 
ount[x℄.uq[1℄);printf("\n");$}#endif }



- 396 -#ifdef DEBUG_COUNT${ int x;printf("Just outside loop: in memory order\n");for (x=0; x<((LENGTH/(BPF/2))+1); ++x)printf("
ount[%d℄={0x%016llx,0x%016llx}\n",x, 
ount[x℄.uq[0℄, 
ount[x℄.uq[1℄);$}#endif 
ount = (
ount == 3)? 1:0;#ifdef DEBUG_COUNT${ int x;printf("After marking full 
ounts: in memory order\n");for (x=0; x<((LENGTH/(BPF/2))+1); ++x)printf("
ount[%d℄={0x%016llx,0x%016llx}\n",x, 
ount[x℄.uq[0℄, 
ount[x℄.uq[1℄);$}#endif total += 
ount;#ifdef DEBUG_TOTAL${ printf("total=%u\n", *total);$}#endif#ifdef DEBUG_PEEK${ printf("output = {0x%016llx, 0x%016llx}\n",output.uq[0℄, output.uq[1℄);}$}#endif}${int main(void){ int iters, i, j, k;unsigned int total = 0;FRAGTYPE DNA[((2*LENGTH-1)/BPF)+1℄;#ifdef TIME_OVERALL



- 397 -start = times(&junk);#endif#ifdef TIME_COMPUTE
omptime = 0ULL;#endifsrand(SEED);for (iters=0; iters<ITERS; ++iters) {/* Full fragments - 32,31,...,0 */for (i=0; i<LENGTH/(BPF/2); ++i) {for (j=0; j<(BPF/2); ++j) {#if BPF==128DNA[i℄.FRAGEXT[0℄ = (DNA[i℄.FRAGEXT[0℄>>2) |(DNA[i℄.FRAGEXT[1℄ << ((BPF/2)-2));DNA[i℄.FRAGEXT[1℄ = (DNA[i℄.FRAGEXT[1℄>>2) |( ((FRAGCTYPE)(4.0*rand()/(RAND_MAX+1.0))&0x3)<< 62 );#elseDNA[i℄.FRAGEXT = (DNA[i℄.FRAGEXT>>2) |( ((FRAGCTYPE)(4.0*rand()/(RAND_MAX+1.0))&0x3)<< BPF-2 );#endif}}/* Final, possibly partially-filled, fragment */if (i == (2*LENGTH-1)/BPF) {#if BPF==128DNA[i℄.FRAGEXT[1℄ = DNA[i℄.FRAGEXT[0℄ = 0ULL;#else DNA[i℄.FRAGEXT = 0ULL;#endif}for (j=0; j<LENGTH%(BPF/2); ++j) {#if BPF==128if (LENGTH%(BPF/2) > 32) {/* Store in upper half */DNA[i℄.FRAGEXT[0℄ = (DNA[i℄.FRAGEXT[0℄>>2) |(DNA[i℄.FRAGEXT[1℄ << ((BPF/2)-2));DNA[i℄.FRAGEXT[1℄ = (DNA[i℄.FRAGEXT[1℄>>2) |( ((FRAGCTYPE)(4.0*rand()/(RAND_MAX+1.0))&0x3)<< ((LENGTH%((BPF/2)/2))*2)-2);} else {/* Store in lower half */DNA[i℄.FRAGEXT[1℄ = 0ULL;



- 398 -DNA[i℄.FRAGEXT[0℄ = (DNA[i℄.FRAGEXT[0℄>>2) |( ((FRAGCTYPE)(4.0*rand()/(RAND_MAX+1.0))&0x3)<< ((LENGTH%((BPF/2)/2))*2)-2);}#elseDNA[i℄.FRAGEXT = (DNA[i℄.FRAGEXT>>2) |( ((FRAGCTYPE)(4.0*rand()/(RAND_MAX+1.0))&0x3)<< ((LENGTH%(BPF/2))*2)-2);#endif}#ifdef DEBUGprintf("(Des
ending order) DNA[i℄=");for (i=0; i<LENGTH; ++i) {#if BPF==128j = (LENGTH-1-i)/(BPF/2);k = (LENGTH-1-i)%(BPF/2);if (k >= (BPF/4)) {/* Field is in upper half */k -= (BPF/4);printf("%llu ",(DNA[j℄.FRAGEXT[1℄>>2*k) & 0x3ULL);} else {/* Field is in lower half */printf("%llu ",(DNA[j℄.FRAGEXT[0℄>>2*k) & 0x3ULL);}#elsej = (LENGTH-1-i)/(BPF/2);k = (LENGTH-1-i)%(BPF/2);printf("%d ",(int)((DNA[j℄.FRAGEXT >> 2*k) &0x3FRAGCONST));#endif}printf("\n");#endif#ifdef TIME_COMPUTEstart = times(&junk);#endiff(DNA, &total);#ifdef TIME_COMPUTEend = times(&junk);
omptime += (end-start);#endif



- 399 -}printf ("Total was %u.\n", total);#ifdef TIME_OVERALLend = times(&junk);printf("Time elapsed for %d element 
he
k: %ld (%ld, %ld)\n",LENGTH, end-start, end, start);#endif#ifdef TIME_COMPUTEprintf("Time elapsed for %d element 
he
k: %ld\n",LENGTH, 
omptime);#endifreturn 0;}$} The C versions of this program are similar to one another. The C 
hara
ter versionis:#in
lude <stdio.h>#in
lude <stdlib.h>#in
lude <time.h>#in
lude <sys/times.h>#in
lude <limits.h>#in
lude <time.h>#in
lude "
ommon.h"stru
t tms junk;
lo
k_t start, end, 
omptime;int f (
har DNA[℄){ 
har substring[3℄ = {A, G, T};
har 
ount[LENGTH℄;int total;int i, j;/* start = times(&junk); */for (i=0; i<LENGTH-2; ++i) 
ount[i℄ = 0;total = 0;



- 400 -for (i=0; i<3; ++i)for (j=0; j<LENGTH-2; ++j)
ount[j℄ += (DNA[j+i℄ == substring[i℄);for (i=0; i<LENGTH-2; ++i)total += (
ount[i℄ == 3);/* end = times(&junk); *//* printf("Time elapsed for %d element 
he
k: %ld (%ld, %ld)\n",LENGTH, end-start, end, start);*/return total;}int main(void){ int iters;int i;int total = 0;
har DNA[LENGTH℄;#ifdef TIME_OVERALLstart = times(&junk);#endif#ifdef TIME_COMPUTE
omptime = 0ULL;#endifsrand(SEED);for (iters=0; iters<ITERS; ++iters) {for (i=0; i<LENGTH; ++i) {DNA[i℄ = (
har)(4.0*rand()/(RAND_MAX+1.0));}#ifdef DEBUGprintf("DNA[i℄=");for (i=LENGTH-1; i>=0; --i) {printf("%x ", DNA[i℄);}printf("\n");#endif#ifdef TIME_COMPUTEstart = times(&junk);#endif



- 401 -total += f(DNA);#ifdef TIME_COMPUTEend = times(&junk);
omptime += (end-start);#endif}printf ("Total was %d.\n", total);#ifdef TIME_OVERALLend = times(&junk);printf("Time elapsed for %d element 
he
k: %ld (%ld, %ld)\n",LENGTH, end-start, end, start);#endif#ifdef TIME_COMPUTEprintf("Time elapsed for %d element 
he
k: %ld\n",LENGTH, 
omptime);#endifreturn 0;} The C integer version is:#in
lude <stdio.h>#in
lude <stdlib.h>#in
lude <time.h>#in
lude <sys/times.h>#in
lude <limits.h>#in
lude <time.h>#in
lude "
ommon.h"stru
t tms junk;
lo
k_t start, end, 
omptime;int f (int DNA[℄){ int substring[3℄ = {A, G, T};int 
ount[LENGTH℄;int total;int i, j;/* start = times(&junk); */for (i=0; i<LENGTH-2; ++i) 
ount[i℄ = 0;



- 402 -total = 0;for (i=0; i<3; ++i)for (j=0; j<LENGTH-2; ++j)
ount[j℄ += (DNA[j+i℄ == substring[i℄);for (i=0; i<LENGTH-2; ++i)total += (
ount[i℄ == 3);/* end = times(&junk); *//* printf("Time elapsed for %d element 
he
k: %ld (%ld, %ld)\n",LENGTH, end-start, end, start);*/return total;}int main(void){ int iters;int i;int total = 0;int DNA[LENGTH℄;#ifdef TIME_OVERALLstart = times(&junk);#endif#ifdef TIME_COMPUTE
omptime = 0ULL;#endifsrand(SEED);for (iters=0; iters<ITERS; ++iters) {for (i=0; i<LENGTH; ++i) {DNA[i℄ = (int)(4.0*rand()/(RAND_MAX+1.0));}#ifdef DEBUGprintf("DNA[i℄=");for (i=LENGTH-1; i>=0; --i) {printf("%x ", DNA[i℄);}printf("\n");#endif



- 403 -#ifdef TIME_COMPUTEstart = times(&junk);#endiftotal += f(DNA);#ifdef TIME_COMPUTEend = times(&junk);
omptime += (end-start);#endif}printf ("Total was %d.\n", total);#ifdef TIME_OVERALLend = times(&junk);printf("Time elapsed for %d element 
he
k: %ld (%ld, %ld)\n",LENGTH, end-start, end, start);#endif#ifdef TIME_COMPUTEprintf("Time elapsed for %d element 
he
k: %ld\n",LENGTH, 
omptime);#endifreturn 0;} The following �le de�nes the parameters of the experimental run to ensure 
om-monality between ea
h version:/* Parameters of run ******************************************************LENGTH is the length of the DNA ve
tor to be sear
hed,ITERS is the number of iterations that the main loop will be run,SEED is for random() to ensure all versions generate the same data.*/ #define LENGTH 350#define ITERS 1000000#define SEED 11/* Choose one of the following for timimg information. ********************TIME_OVERALL in
ludes time to initialize the data,TIME_COMPUTE does not.*/ #undef TIME_OVERALL#define TIME_COMPUTE/* Define this to generate some debugging information ********************/#undef DEBUG_PEEK



- 404 -#undef DEBUG_SUBSTRING#undef DEBUG_COUNT#undef DEBUG_SETCOUNTBYHAND#undef DEBUG_TOTAL/* Values for the genes. Do not 
hange these. ***************************/#define A 0#define G 1#define T 2#define C 3
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APPENDIX GNUMERICAL RESULTS FOR DNA BENCHMARKThis appendix 
ontains the numeri
 results of experiments in porting the dna.S
ben
hmark program.Speedup was 
al
ulated as the average time for the fastest C version divided bythe average time for the version under test. In all 
ases, 10 trials were run and therunning times of the 
ounting fun
tion averaged. This separated the time to generatethe random data and pa
k it into the 
orre
t layout from the a
tual pro
essing time.This is reasonable under the assumption that measured data 
an be presented to the
omputer in an optimal layout by the measuring devi
e.To ensure that the timing averages are reasonably pre
ise despite the relatively
oarse-grained timing me
hanism used, one million iterations of the loop were per-formed in ea
h trial and the resultant timings averaged.G.1 Results on AltiVe
 TargetThe S

-generated AltiVe
 
ode a
hieved speedup, though signi�
antly less thanone would hope given AltiVe
's 128-bit registers and the 2-bit data. The optimalspeedup would have been approximately 128/2 or 64x over serial 32-bit integer or 8-bit 
hara
ter 
ode. The average speedup 
al
ulated from the measured trials rangedfrom about 3.8x to about 4.6x.The results are presented in table G.1 below for S

-generated 
ode using 2-bitintegers and employing various fragment sizes, 
ompiler optimization levels, and op-timization types; GCC-generated C 
ode using 32-bit integers, and GCC-generatedC 
ode using 8-bit 
hara
ters.



- 406 -The numbers in this table were obtained by 
ompiling and running ea
h of thefour versions on a 1GHz PowerBook G4 
omputer running LinuxPPC. No other ap-pli
ations (ex
luding normal servi
es) were running, and no other users had a

ess tothe ma
hine.The best speedup was a
hieved by S

-generated 32-bit integer C 
ode. Whilethis 
ode was obviously in
orre
t (the 
al
ulated total is slightly o�), it is remarkablebe
ause it does not use the AltiVe
 instru
tion set. The best speedup using theAltiVe
 instru
tions was 4.567, whi
h is nearly as good. Given that the AltiVe
registers are four times as large as the PowerPC's general registers, we would expe
tthe 128-bit AltiVe
 SWAR 
ode to be about four times as fast as the 32-bit SWAR
ode on the same platform.G.2 Results for MMX TargetS

-generated MMX 
ode did not a
hieved speedup in any of the tests. Thespeedup 
al
ulated from the measured trials was between approximately 0.4x and0.8x. These results are summarized in table G.2 below for 2-bit S

-generated MMX
ode, 2-bit S

-generated C-only 
ode using the target's 32-bit general-purpose integerregisters, GCC-generated C 
ode using 32-bit integers, and GCC-generated C 
odeusing 8-bit 
hara
ters.The worst-
ase S

 
ode was generated without using any of the optimizationsbuilt into the 
ompiler. The best 
ase S

 
ode was generated without using the MMXregisters, with S

 running at optimization level 0, and with S

 only performing ba
k-end peephole optimizations. Thus, we might assume that the overhead of using theMMX-enhan
ed hardware was greater than the gains made. However, an inspe
tionof the generated C 
ode reveals that the MMX-based C 
ode is hindered by therelatively small number of enhan
ed registers available. S

's spill 
ode is admittedlyhorrendous, so there is a high penalty for spills. This is probably the primary reasonfor the relatively poor performan
e of the MMX 
ode.
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Table G.1AltiVe
 Trial RunsCompiler Data Type: Optimization Compiler Avg. Speedup Cal
ulatedBits:Fragsize Level(s) Swit
hes Time (x fa
tor) TotalS

 010530 int:2:128 S

 0 / GCC 3 - 439.5 4.458 5441660S

 010530 int:2:128 S

 1 / GCC 3 - 437.7 4.476 5441660S

 010530 int:2:128 S

 2 / GCC 3 - 429.0 4.5671 5441660S

 010530 int:2:128 S

 3 / GCC 3 - 441.5 4.438 5441660S

 010530 int:2:32 S

 0 / GCC 3 - 431.8 4.537 5440685S

 010530 int:2:32 S

 1 / GCC 3 - 435.4 4.500 5440685S

 010530 int:2:32 S

 2 / GCC 3 - 437.4 4.479 5440685S

 010530 int:2:32 S

 3 / GCC 3 - 422.6 4.6362 5440685S

 010530 int:2:128 S

 0 / GCC 3 {fe-bvt 437.7 4.476 5441660S

 010530 int:2:128 S

 1 / GCC 3 {fe-bvt 446.0 4.393 5441660S

 010530 int:2:128 S

 2 / GCC 3 {fe-bvt 436.0 4.494 5441660S

 010530 int:2:128 S

 3 / GCC 3 {fe-bvt 441.9 4.434 5441660S

 010530 int:2:32 S

 0 / GCC 3 {fe-bvt 438.9 4.464 5440685S

 010530 int:2:32 S

 1 / GCC 3 {fe-bvt 438.6 4.476 5440685S

 010530 int:2:32 S

 2 / GCC 3 {fe-bvt 436.2 4.492 5440685S

 010530 int:2:32 S

 3 / GCC 3 {fe-bvt 435.6 4.498 5440685S

 010530 int:2:128 S

 0 / GCC 3 {no-be-
ofold 440.8 4.445 5441660S

 010530 int:2:128 S

 1 / GCC 3 {no-be-
ofold 434.3 4.511 5441660S

 010530 int:2:128 S

 2 / GCC 3 {no-be-
ofold 432.9 4.526 5441660S

 010530 int:2:128 S

 3 / GCC 3 {no-be-
ofold 437.6 4.477 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-be-
ofold 439.1 4.462 5440685S

 010530 int:2:32 S

 1 / GCC 3 {no-be-
ofold 441.3 4.440 5440685S

 010530 int:2:32 S

 2 / GCC 3 {no-be-
ofold 430.2 4.554 5440685S

 010530 int:2:32 S

 3 / GCC 3 {no-be-
ofold 442.7 4.426 5440685S

 010530 int:2:128 S

 0 / GCC 3 {no-be-peep 456.7 4.290 5441660S

 010530 int:2:128 S

 1 / GCC 3 {no-be-peep 443.2 4.421 5441660S

 010530 int:2:128 S

 2 / GCC 3 {no-be-peep 455.1 4.305 5441660S

 010530 int:2:128 S

 3 / GCC 3 {no-be-peep 452.9 4.326 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-be-peep 453.6 4.319 5440685S

 010530 int:2:32 S

 1 / GCC 3 {no-be-peep 457.1 4.286 5440685S

 010530 int:2:32 S

 2 / GCC 3 {no-be-peep 452.4 4.331 5440685S

 010530 int:2:32 S

 3 / GCC 3 {no-be-peep 452.0 4.335 5440685S

 010530 int:2:128 S

 0 / GCC 3 {no-be-
ofold {no-be-peep 440.0 4.435 5441660S

 010530 int:2:128 S

 1 / GCC 3 {no-be-
ofold {no-be-peep 449.3 4.361 5441660S

 010530 int:2:128 S

 2 / GCC 3 {no-be-
ofold {no-be-peep 451.0 4.344 5441660S

 010530 int:2:128 S

 3 / GCC 3 {no-be-
ofold {no-be-peep 459.3 4.266 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-be-
ofold {no-be-peep 457.4 4.283 5440685S

 010530 int:2:32 S

 1 / GCC 3 {no-be-
ofold {no-be-peep 456.6 4.291 5440685S

 010530 int:2:32 S

 2 / GCC 3 {no-be-
ofold {no-be-peep 460.7 4.253 5440685S

 010530 int:2:32 S

 3 / GCC 3 {no-be-
ofold {no-be-peep 446.9 4.384 54406851Best dna1282Best dna32, best overall
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Table G.1 
ont'd.AltiVe
 Trial RunsCompiler Data Type: Optimization Compiler Avg. Speedup Cal
ulatedBits:Fragsize Level(s) Swit
hes Time (x fa
tor) TotalS

 010530 int:2:128 S

 0 / GCC 3 {no-fe-
ofold {no-be-
ofold 445.1 4.402 5441660S

 010530 int:2:128 S

 1 / GCC 3 {no-fe-
ofold {no-be-
ofold 438.8 4.465 5441660S

 010530 int:2:128 S

 2 / GCC 3 {no-fe-
ofold {no-be-
ofold 445.6 4.397 5441660S

 010530 int:2:128 S

 3 / GCC 3 {no-fe-
ofold {no-be-
ofold 443.5 4.418 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-fe-
ofold {no-be-
ofold 440.7 4.446 5440685S

 010530 int:2:32 S

 1 / GCC 3 {no-fe-
ofold {no-be-
ofold 444.9 4.404 5440685S

 010530 int:2:32 S

 2 / GCC 3 {no-fe-
ofold {no-be-
ofold 451.3 4.341 5440685S

 010530 int:2:32 S

 3 / GCC 3 {no-fe-
ofold {no-be-
ofold 451.7 4.337 5440685S

 010530 int:2:128 S

 0 / GCC 3 {no-fe-
ofold 445.5 4.398 5441660S

 010530 int:2:128 S

 1 / GCC 3 {no-fe-
ofold 446.3 4.390 5441660S

 010530 int:2:128 S

 2 / GCC 3 {no-fe-
ofold 454.7 4.309 5441660S

 010530 int:2:128 S

 3 / GCC 3 {no-fe-
ofold 446.7 4.386 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-fe-
ofold 446.5 4.388 5440685S

 010530 int:2:32 S

 1 / GCC 3 {no-fe-
ofold 436.6 4.487 5440685S

 010530 int:2:32 S

 2 / GCC 3 {no-fe-
ofold 442.5 4.428 5440685S

 010530 int:2:32 S

 3 / GCC 3 {no-fe-
ofold 453.1 4.324 5440685S

 010530 int:2:128 S

 0 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 465.6 4.208 5441660S

 010530 int:2:128 S

 1 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 471.4 4.156 5441660S

 010530 int:2:128 S

 2 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 460.2 4.257 5441660S

 010530 int:2:128 S

 3 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 470.5 4.164 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 491.4 3.987 5440685S

 010530 int:2:32 S

 1 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 509.1 3.8481 5440685S

 010530 int:2:32 S

 2 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 489.6 4.002 5440685S

 010530 int:2:32 S

 3 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 475.3 4.122 5440685GCC 2.95.3 
har:8:32 GCC 0 - 7148.9 0.274 5441660GCC 2.95.3 
har:8:32 GCC 1 - 2222.2 0.882 5441660GCC 2.95.3 
har:8:32 GCC 2 - 1959.2 1.0002 5441660GCC 2.95.3 
har:8:32 GCC 3 - 1960.0 1.000 5441660GCC 2.95.3 int:32:32 GCC 0 - 8130.2 0.2413 5441660GCC 2.95.3 int:32:32 GCC 1 - 2835.1 0.691 5441660GCC 2.95.3 int:32:32 GCC 2 - 1961.1 0.9994 5441660GCC 2.95.3 int:32:32 GCC 3 - 1967.9 0.996 54416601Worst S

-
ompiled2Best C 
har, best GCC-
ompiled3Worst GCC-
ompiled4Best C int



- 409 -The numbers in this table were obtained by 
ompiling and running ea
h of thefour versions on a Pentium4 
omputer running Redhat Linux 7.0 with kernel version2.2.16-22. No other appli
ations (ex
luding normal servi
es) were running, and noother users had a

ess to the ma
hine.Corre
t operation of the S

-generated MMX 
ode was assumed to be veri�ed by
omparing the results with the GCC-generated C versions and �nding no di�eren
ein the 
al
ulated totals. Note that there is no di�eren
e in the results of the S

-generated non-MMX 
ode and the GCC-generated 
ode.G.3 Results for 3DNow! TargetThe S

-generated 3DNow! 
ode also a
hieved speedup; again signi�
antly lessthan the theoreti
al maximum of 64/2 or 32x over serial 32-bit integer or 8-bit 
har-a
ter 
ode, but more than the AltiVe
 
ode and signi�
antly more than the MMX
ode.The speedup 
al
ulated for S

-generated 
ode ranged from approximately 3.9x to5.1x. The results are summarized in table G.3 for 2-bit S

-generated 3DNow! 
ode,2-bit S

-generated C-only 
ode using the target's 32-bit general-purpose registers,GCC-generated C 
ode using 32-bit integers, and GCC-generated C 
ode using 8-bit
hara
ters.3DNow! su�ers from the same problems as MMX in relation to register spills.Interestingly though, the 3DNow! trials all obtained speedup over the best GCC-generated C 
ode. This is a signi�
ant di�eren
e in two relatively similar ar
hite
-tures. The reason for this needs to be studied.G.4 Results for IA32 TargetS

-generated IA32 
ode a
hieved speedup in only one 
ase, but not by a signi�
antamount over the best GCC-generated C 
ode. In the majority of 
ases, the S

-generated 
ode was a
tually slower. This is to be expe
ted be
ause the ar
hite
ture
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Table G.2MMX Trial RunsCompiler Data Type: Optimization Compiler Avg. Speedup Cal
ulatedBits:Fragsize Level(s) Swit
hes Time (x fa
tor) TotalS

 010530 int:2:64 S

 0 / GCC 3 - 908.2 0.810 5441660S

 010530 int:2:64 S

 1 / GCC 3 - 904.2 0.813 5441660S

 010530 int:2:64 S

 2 / GCC 3 - 891.2 0.8251 5441660S

 010530 int:2:64 S

 3 / GCC 3 - 902.7 0.815 5441660S

 010530 int:2:32 S

 0 / GCC 3 - 981.2 0.749 5441660S

 010530 int:2:32 S

 1 / GCC 3 - 979.3 0.751 5441660S

 010530 int:2:32 S

 2 / GCC 3 - 983.0 0.748 5441660S

 010530 int:2:32 S

 3 / GCC 3 - 989.3 0.743 5441660S

 010530 int:2:64 S

 0 / GCC 3 {fe-bvt 930.9 0.790 5441660S

 010530 int:2:64 S

 1 / GCC 3 {fe-bvt 924.5 0.795 5441660S

 010530 int:2:64 S

 2 / GCC 3 {fe-bvt 919.3 0.800 5441660S

 010530 int:2:64 S

 3 / GCC 3 {fe-bvt 938.8 0.783 5441660S

 010530 int:2:32 S

 0 / GCC 3 {fe-bvt 933.8 0.787 5441660S

 010530 int:2:32 S

 1 / GCC 3 {fe-bvt 939.0 0.783 5441660S

 010530 int:2:32 S

 2 / GCC 3 {fe-bvt 934.7 0.787 5441660S

 010530 int:2:32 S

 3 / GCC 3 {fe-bvt 952.9 0.772 5441660S

 010530 int:2:64 S

 0 / GCC 3 {no-be-
ofold {no-be-peep 1154.2 0.637 5441660S

 010530 int:2:64 S

 1 / GCC 3 {no-be-
ofold {no-be-peep 1147.0 0.641 5441660S

 010530 int:2:64 S

 2 / GCC 3 {no-be-
ofold {no-be-peep 1160.0 0.634 5441660S

 010530 int:2:64 S

 3 / GCC 3 {no-be-
ofold {no-be-peep 1180.9 0.623 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-be-
ofold {no-be-peep 1096.4 0.671 5441660S

 010530 int:2:32 S

 1 / GCC 3 {no-be-
ofold {no-be-peep 1079.8 0.681 5441660S

 010530 int:2:32 S

 2 / GCC 3 {no-be-
ofold {no-be-peep 1085.6 0.677 5441660S

 010530 int:2:32 S

 3 / GCC 3 {no-be-
ofold {no-be-peep 1090.5 0.674 5441660S

 010530 int:2:64 S

 0 / GCC 3 {no-be-
ofold 959.4 0.766 5441660S

 010530 int:2:64 S

 1 / GCC 3 {no-be-
ofold 968.1 0.760 5441660S

 010530 int:2:64 S

 2 / GCC 3 {no-be-
ofold 959.8 0.766 5441660S

 010530 int:2:64 S

 3 / GCC 3 {no-be-
ofold 974.4 0.755 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-be-
ofold 968.5 0.759 5441660S

 010530 int:2:32 S

 1 / GCC 3 {no-be-
ofold 968.7 0.759 5441660S

 010530 int:2:32 S

 2 / GCC 3 {no-be-
ofold 991.3 0.742 5441660S

 010530 int:2:32 S

 3 / GCC 3 {no-be-
ofold 998.7 0.736 5441660S

 010530 int:2:64 S

 0 / GCC 3 {no-be-peep 1130.9 0.650 5441660S

 010530 int:2:64 S

 1 / GCC 3 {no-be-peep 1116.6 0.659 5441660S

 010530 int:2:64 S

 2 / GCC 3 {no-be-peep 1107.6 0.664 5441660S

 010530 int:2:64 S

 3 / GCC 3 {no-be-peep 1117.3 0.658 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-be-peep 1069.9 0.687 5441660S

 010530 int:2:32 S

 1 / GCC 3 {no-be-peep 1089.0 0.675 5441660S

 010530 int:2:32 S

 2 / GCC 3 {no-be-peep 1074.4 0.684 5441660S

 010530 int:2:32 S

 3 / GCC 3 {no-be-peep 1071.5 0.686 54416601Best dna64
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Table G.2 
ont'd.MMX Trial RunsCompiler Data Type: Optimization Compiler Avg. Speedup Cal
ulatedBits:Fragsize Level(s) Swit
hes Time (x fa
tor) TotalS

 010530 int:2:64 S

 0 / GCC 3 {no-fe-
ofold {no-be-
ofold 931.9 0.789 5441660S

 010530 int:2:64 S

 1 / GCC 3 {no-fe-
ofold {no-be-
ofold 942.8 0.780 5441660S

 010530 int:2:64 S

 2 / GCC 3 {no-fe-
ofold {no-be-
ofold 948.1 0.776 5441660S

 010530 int:2:64 S

 3 / GCC 3 {no-fe-
ofold {no-be-
ofold 930.1 0.791 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-fe-
ofold {no-be-
ofold 885.4 0.8301 5441660S

 010530 int:2:32 S

 1 / GCC 3 {no-fe-
ofold {no-be-
ofold 897.9 0.819 5441660S

 010530 int:2:32 S

 2 / GCC 3 {no-fe-
ofold {no-be-
ofold 900.6 0.816 5441660S

 010530 int:2:32 S

 3 / GCC 3 {no-fe-
ofold {no-be-
ofold 897.9 0.819 5441660S

 010530 int:2:64 S

 0 / GCC 3 {no-fe-
ofold 963.7 0.763 5441660S

 010530 int:2:64 S

 1 / GCC 3 {no-fe-
ofold 959.9 0.766 5441660S

 010530 int:2:64 S

 2 / GCC 3 {no-fe-
ofold 950.6 0.774 5441660S

 010530 int:2:64 S

 3 / GCC 3 {no-fe-
ofold 963.5 0.763 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-fe-
ofold 984.4 0.747 5441660S

 010530 int:2:32 S

 1 / GCC 3 {no-fe-
ofold 971.0 0.757 5441660S

 010530 int:2:32 S

 2 / GCC 3 {no-fe-
ofold 967.0 0.760 5441660S

 010530 int:2:32 S

 3 / GCC 3 {no-fe-
ofold 964.9 0.762 5441660S

 010530 int:2:64 S

 0 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 1182.1 0.622 5441660S

 010530 int:2:64 S

 1 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 1977.0 0.3722 5441660S

 010530 int:2:64 S

 2 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 1191.7 0.617 5441660S

 010530 int:2:64 S

 3 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 1194.5 0.616 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 1453.9 0.506 5441660S

 010530 int:2:32 S

 1 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 1455.1 0.505 5441660S

 010530 int:2:32 S

 2 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 1435.8 0.512 5441660S

 010530 int:2:32 S

 3 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 1406.8 0.523 5441660GCC 2.96 
har:8:32 GCC 0 - 1675.8 0.439 5441660GCC 2.96 
har:8:32 GCC 1 - 968.4 0.759 5441660GCC 2.96 
har:8:32 GCC 2 - 735.3 1.0003 5441660GCC 2.96 
har:8:32 GCC 3 - 785.7 0.936 5441660GCC 2.96 int:32:32 GCC 0 - 2477.0 0.2974 5441660GCC 2.96 int:32:32 GCC 1 - 1046.6 0.703 5441660GCC 2.96 int:32:32 GCC 2 - 904.7 0.8135 5441660GCC 2.96 int:32:32 GCC 3 - 912.1 0.806 54416601Best dna32, best S

-
ompiled2Worst S

-
ompiled3Best C 
har, best overall4Worst overall5Best C int
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Table G.33DNow! Trial RunsCompiler Data Type: Optimization Compiler Avg. Speedup Cal
ulatedBits:Fragsize Level(s) Swit
hes Time (x fa
tor) TotalS

 010530 int:2:64 S

 0 / GCC 3 - 1122.7 4.708 5441660S

 010530 int:2:64 S

 1 / GCC 3 - 1095.0 4.827 5441660S

 010530 int:2:64 S

 2 / GCC 3 - 1114.0 4.744 5441660S

 010530 int:2:64 S

 3 / GCC 3 - 1115.7 4.737 5441660S

 010530 int:2:32 S

 0 / GCC 3 - 1065.7 4.959 5441660S

 010530 int:2:32 S

 1 / GCC 3 - 1057.1 5.000 5441660S

 010530 int:2:32 S

 2 / GCC 3 - 1059.0 4.991 5441660S

 010530 int:2:32 S

 3 / GCC 3 - 1065.3 4.961 5441660S

 010530 int:2:64 S

 0 / GCC 3 {fe-bvt 1080.3 4.8921 5441660S

 010530 int:2:64 S

 1 / GCC 3 {fe-bvt 1082.9 4.881 5441660S

 010530 int:2:64 S

 2 / GCC 3 {fe-bvt 1090.4 4.847 5441660S

 010530 int:2:64 S

 3 / GCC 3 {fe-bvt 1099.7 4.806 5441660S

 010530 int:2:32 S

 0 / GCC 3 {fe-bvt 1054.9 5.010 5441660S

 010530 int:2:32 S

 1 / GCC 3 {fe-bvt 1061.6 4.979 5441660S

 010530 int:2:32 S

 2 / GCC 3 {fe-bvt 1040.1 5.0822 5441660S

 010530 int:2:32 S

 3 / GCC 3 {fe-bvt 1060.1 4.986 5441660S

 010530 int:2:64 S

 0 / GCC 3 {no-be-
ofold {no-be-peep 1308.9 4.038 5441660S

 010530 int:2:64 S

 1 / GCC 3 {no-be-
ofold {no-be-peep 1295.7 4.079 5441660S

 010530 int:2:64 S

 2 / GCC 3 {no-be-
ofold {no-be-peep 1304.1 4.053 5441660S

 010530 int:2:64 S

 3 / GCC 3 {no-be-
ofold {no-be-peep 1299.5 4.067 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-be-
ofold {no-be-peep 1306.9 4.044 5441660S

 010530 int:2:32 S

 1 / GCC 3 {no-be-
ofold {no-be-peep 1279.7 4.130 5441660S

 010530 int:2:32 S

 2 / GCC 3 {no-be-
ofold {no-be-peep 1297.1 4.075 5441660S

 010530 int:2:32 S

 3 / GCC 3 {no-be-
ofold {no-be-peep 1308.2 4.040 5441660S

 010530 int:2:64 S

 0 / GCC 3 {no-be-
ofold 1095.4 4.825 5441660S

 010530 int:2:64 S

 1 / GCC 3 {no-be-
ofold 1096.6 4.820 5441660S

 010530 int:2:64 S

 2 / GCC 3 {no-be-
ofold 1091.7 4.841 5441660S

 010530 int:2:64 S

 3 / GCC 3 {no-be-
ofold 1095.7 4.824 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-be-
ofold 1057.9 4.996 5441660S

 010530 int:2:32 S

 1 / GCC 3 {no-be-
ofold 1055.4 5.008 5441660S

 010530 int:2:32 S

 2 / GCC 3 {no-be-
ofold 1040.9 5.078 5441660S

 010530 int:2:32 S

 3 / GCC 3 {no-be-
ofold 1051.5 5.026 5441660S

 010530 int:2:64 S

 0 / GCC 3 {no-be-peep 1295.2 4.081 5441660S

 010530 int:2:64 S

 1 / GCC 3 {no-be-peep 1277.4 4.138 5441660S

 010530 int:2:64 S

 2 / GCC 3 {no-be-peep 1289.1 4.100 5441660S

 010530 int:2:64 S

 3 / GCC 3 {no-be-peep 1282.0 4.123 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-be-peep 1281.9 4.123 5441660S

 010530 int:2:32 S

 1 / GCC 3 {no-be-peep 1297.6 4.073 5441660S

 010530 int:2:32 S

 2 / GCC 3 {no-be-peep 1256.6 4.206 5441660S

 010530 int:2:32 S

 3 / GCC 3 {no-be-peep 1251.0 4.225 54416601Best dna642Best dna32, best overall
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Table G.3 
ont'd.3DNow! Trial RunsCompiler Data Type: Optimization Compiler Avg. Speedup Cal
ulatedBits:Fragsize Level(s) Swit
hes Time (x fa
tor) TotalS

 010530 int:2:64 S

 0 / GCC 3 {no-fe-
ofold {no-be-
ofold 1126.9 4.690 5441660S

 010530 int:2:64 S

 1 / GCC 3 {no-fe-
ofold {no-be-
ofold 1146.7 4.609 5441660S

 010530 int:2:64 S

 2 / GCC 3 {no-fe-
ofold {no-be-
ofold 1128.9 4.682 5441660S

 010530 int:2:64 S

 3 / GCC 3 {no-fe-
ofold {no-be-
ofold 1130.0 4.677 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-fe-
ofold {no-be-
ofold 1084.6 4.873 5441660S

 010530 int:2:32 S

 1 / GCC 3 {no-fe-
ofold {no-be-
ofold 1105.1 4.783 5441660S

 010530 int:2:32 S

 2 / GCC 3 {no-fe-
ofold {no-be-
ofold 1104.7 4.784 5441660S

 010530 int:2:32 S

 3 / GCC 3 {no-fe-
ofold {no-be-
ofold 1100.7 4.802 5441660S

 010530 int:2:64 S

 0 / GCC 3 {no-fe-
ofold 1138.8 4.641 5441660S

 010530 int:2:64 S

 1 / GCC 3 {no-fe-
ofold 1137.5 4.646 5441660S

 010530 int:2:64 S

 2 / GCC 3 {no-fe-
ofold 1124.6 4.700 5441660S

 010530 int:2:64 S

 3 / GCC 3 {no-fe-
ofold 1114.7 4.741 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-fe-
ofold 1097.2 4.817 5441660S

 010530 int:2:32 S

 1 / GCC 3 {no-fe-
ofold 1121.8 4.711 5441660S

 010530 int:2:32 S

 2 / GCC 3 {no-fe-
ofold 1120.0 4.719 5441660S

 010530 int:2:32 S

 3 / GCC 3 {no-fe-
ofold 1111.3 4.756 5441660S

 010530 int:2:64 S

 0 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 1332.0 3.968 5441660S

 010530 int:2:64 S

 1 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 1346.3 3.9261 5441660S

 010530 int:2:64 S

 2 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 1327.5 3.981 5441660S

 010530 int:2:64 S

 3 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 1342.9 3.936 5441660S

 010530 int:2:32 S

 0 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 1289.7 4.098 5441660S

 010530 int:2:32 S

 1 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 1309.0 4.038 5441660S

 010530 int:2:32 S

 2 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 1292.0 4.091 5441660S

 010530 int:2:32 S

 3 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 1319.1 4.007 5441660eg
s 2.91.66 
har:8:32 GCC 0 - 14800.7 0.357 5441660eg
s 2.91.66 
har:8:32 GCC 1 - 5285.3 1.0002 5441660eg
s 2.91.66 
har:8:32 GCC 2 - 5385.9 0.981 5441660eg
s 2.91.66 
har:8:32 GCC 3 - 6064.3 0.872 5441660eg
s 2.91.66 int:32:32 GCC 0 - 15580.7 0.3393 5441660eg
s 2.91.66 int:32:32 GCC 1 - 6697.4 0.7894 5441660eg
s 2.91.66 int:32:32 GCC 2 - 7037.3 0.751 5441660eg
s 2.91.66 int:32:32 GCC 3 - 7311.3 0.723 54416601Worst S

-
ompiled2Best C 
har, best GCC3Worst GCC-
ompiled4Best C int



- 414 -does not provide any form of SWAR instru
tions other than the basi
 polymorphi
s(bitwise logi
al operations). However, this isn't the point of porting this 
ode to anunenhan
ed 32-bit ar
hite
ture. The point proven here is that the SWARC 
ode 
anbe ported to an unenhan
ed ar
hite
ture without modi�
ation.The speedup for S

-generated 
ode ranged from approximately 0.42x to 1.03x. Itis worth noting that the GCC-generated 
ode a
hieved speedups ranging from 0.28xto 1.00x. Thus, the 
hoi
e of 
ompiler swit
hes appears to a�e
t the performan
emore than the 
hoi
e between S

 and GCC. The results are summarized in table G.4for 2-bit S

-generated C-only 
ode using 32-bit integer fragments in the generalregisters, GCC-generated C 
ode using 32-bit integers, and GCC-generated C 
odeusing 8-bit 
hara
ters.
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Table G.4IA32 Trial RunsCompiler Data Type: Optimization Compiler Avg. Speedup Cal
ulatedBits:Fragsize Level(s) Swit
hes Time (x fa
tor) TotalS

 010530 int:2:32 S

 0 / GCC 3 - 9029.7 0.801 5435001S

 010530 int:2:32 S

 1 / GCC 3 - 9029.9 0.801 5435001S

 010530 int:2:32 S

 2 / GCC 3 - 8869.6 0.816 5435001S

 010530 int:2:32 S

 3 / GCC 3 - 8736.8 0.828 5435001S

 010530 int:2:32 S

 0 / GCC 3 {fe-bvt 8993.0 0.804 5435001S

 010530 int:2:32 S

 1 / GCC 3 {fe-bvt 13259.8 0.546 5435001S

 010530 int:2:32 S

 2 / GCC 3 {fe-bvt 8977.9 0.806 5435001S

 010530 int:2:32 S

 3 / GCC 3 {fe-bvt 12811.6 0.565 5435001S

 010530 int:2:32 S

 0 / GCC 3 {no-be-
ofold {no-be-peep 11067.3 0.654 5435001S

 010530 int:2:32 S

 1 / GCC 3 {no-be-
ofold {no-be-peep 17094.1 0.4231 5435001S

 010530 int:2:32 S

 2 / GCC 3 {no-be-
ofold {no-be-peep 11543.7 0.627 5435001S

 010530 int:2:32 S

 3 / GCC 3 {no-be-
ofold {no-be-peep 11063.0 0.654 5435001S

 010530 int:2:32 S

 0 / GCC 3 {no-be-
ofold 13329.4 0.543 5435001S

 010530 int:2:32 S

 1 / GCC 3 {no-be-
ofold 8949.7 0.808 5435001S

 010530 int:2:32 S

 2 / GCC 3 {no-be-
ofold 9105.7 0.794 5435001S

 010530 int:2:32 S

 3 / GCC 3 {no-be-
ofold 9129.2 0.792 5435001S

 010530 int:2:32 S

 0 / GCC 3 {no-be-peep 11414.6 0.634 5435001S

 010530 int:2:32 S

 1 / GCC 3 {no-be-peep 15728.9 0.460 5435001S

 010530 int:2:32 S

 2 / GCC 3 {no-be-peep 11213.7 0.645 5435001S

 010530 int:2:32 S

 3 / GCC 3 {no-be-peep 11477.7 0.630 5435001S

 010530 int:2:32 S

 0 / GCC 3 {no-fe-
ofold {no-be-
ofold 11583.6 0.625 5435001S

 010530 int:2:32 S

 1 / GCC 3 {no-fe-
ofold {no-be-
ofold 8859.9 0.817 5435001S

 010530 int:2:32 S

 2 / GCC 3 {no-fe-
ofold {no-be-
ofold 8615.7 0.840 5435001S

 010530 int:2:32 S

 3 / GCC 3 {no-fe-
ofold {no-be-
ofold 8841.0 0.818 5435001S

 010530 int:2:32 S

 0 / GCC 3 {no-fe-
ofold 7037.6 1.0282 5435001S

 010530 int:2:32 S

 1 / GCC 3 {no-fe-
ofold 9833.9 0.736 5435001S

 010530 int:2:32 S

 2 / GCC 3 {no-fe-
ofold 9175.9 0.788 5435001S

 010530 int:2:32 S

 3 / GCC 3 {no-fe-
ofold 9125.7 0.793 5435001S

 010530 int:2:32 S

 0 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 16283.1 0.444 5435001S

 010530 int:2:32 S

 1 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 15685.0 0.461 5435001S

 010530 int:2:32 S

 2 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 11604.4 0.623 5435001S

 010530 int:2:32 S

 3 / GCC 3 {no-fe-
ofold {no-be-
ofold {no-be-peep 11597.6 0.624 5435001GCC 2.7.2.1 
har:8:32 GCC 0 - 26276.9 0.2753 5435001GCC 2.7.2.1 
har:8:32 GCC 1 - 10349.3 0.6994 5435001GCC 2.7.2.1 
har:8:32 GCC 2 - 10773.6 0.674 5435001GCC 2.7.2.1 
har:8:32 GCC 3 - 10887.6 0.664 5435001GCC 2.7.2.1 int:32:32 GCC 0 - 19702.7 0.367 5435001GCC 2.7.2.1 int:32:32 GCC 1 - 7234.4 1.0005 5435001GCC 2.7.2.1 int:32:32 GCC 2 - 7264.5 0.996 5435001GCC 2.7.2.1 int:32:32 GCC 3 - 7757.5 0.933 54350011Worst S

-
ompiled2Best dna32, best overall3Worst GCC-
ompiled4Best C 
har5Best C int, best GCC-
ompiled
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APPENDIX HLINPACK PERFORMANCEThe SWARC 
ode used to repla
e 
ore loops in the C/C++ Linpa
k 100x100 Ben
h-mark in
luded the following sour
e:/* lp.S
 - Compile with S

 -
 -k -mK6-2 -O5 */void swar_saxpy(float:32[VECTSIZE℄ x, float:32[VECTSIZE℄ y, float s){ y += (s * x);}void swar_sdot(float:32[VECTSIZE℄ x, float:32[VECTSIZE℄ y, float s){ s += (x * y);}void swar_ss
al(float:32[VECTSIZE℄ x, float s){ x = x * s;} Currently, 
oating-point operations are only supported for 3DNow! and AltiVe
.The 
ode should be 
ompiled with the 
orre
t target swit
h to allow the 
ompiler totake advantage of SWAR 
oating-point instru
tions.H.1 Results for 3DNow!The following two tables report performan
e results on a 1GHz AMDAthlon-basedHP Pavilion N5470 laptop 
omputer. The �rst of these reports average MFLOPS us-ing rolled standard C 
ode. The se
ond reports average MFLOPS using S

-generatedSWARC 
ode.



- 418 -Table H.1Results for rolled C 
odeVECTSIZE OPTIME Average 201 Average 2002 1 267.99 249.222 2 268.10 249.232 4 268.01 249.222 100 267.90 (Worst) 249.89 (Best)4 1 268.17 248.78 (Worst)4 2 268.17 248.794 4 268.28 (Best) 248.994 100 268.10 249.398 1 268.19 249.298 2 268.08 249.108 4 268.08 249.158 100 267.98 249.8716 1 268.01 249.5616 2 267.93 249.6316 4 268.01 249.6916 100 267.93 249.6332 1 268.10 249.3332 2 268.01 249.3332 4 268.01 249.4832 100 268.10 249.33In both 
ases, the sour
e was sent through the S

 
ompiler, whi
h generated C
ode from the SWARC 
ode. This was passed by S

 to the native C 
ompiler (GCC2.96), whi
h generated the exe
utable. The S

-generated 
ode was 
alled by theexe
utable 
onditionally depending on the de�nition of a ma
ro.In the �rst table, table H.1, VECTSIZE and OPTIME are irrelevant be
auseVECTSIZE is only used within the SWARC 
ode and OPTIME was the time thatS

 was allowed to spend generating a s
hedule for this SWARC 
ode. The SWARC
ode was not 
alled by the exe
utables in this set of runs.In the se
ond table, table H.2, VECTSIZE represents the �xed ve
tor length usedfor generating 
ode. Currently, the S

 
ompiler does not allow for variable ve
torlengths. The length of ea
h ve
tor must be de
lared or the 
ompiler will assign it alength of one element. OPTIME was the time allowed for the S

 
ompiler to attemptto �nd the best s
hedule for ea
h basi
 blo
k.For the rolled C 
ode, the best run with a dimension of 201 a
hieved 268.28MFLOPS, while the best run for a dimension of 200 a
hieved 249.89 MFLOPS. Inea
h 
ase, the varian
e was negligible.



- 419 -Table H.2Results for SWARC 
odeVECTSIZE OPTIME Average 201 Average 2002 1 408.28 402.272 2 408.09 402.502 4 407.52 (Worst) 401.57 (Worst)2 100 407.90 402.824 1 464.86 487.244 2 463.76 487.004 4 464.53 486.684 100 464.53 487.148 1 540.28 586.588 2 540.91 586.968 4 540.91 587.278 100 540.75 587.0416 1 550.75 616.65 (Best)16 2 551.28 (Best) 616.3016 4 551.01 616.6416 100 551.17 616.3432 1 521.63 559.4332 2 521.41 557.5332 4 521.91 558.9532 100 520.97 558.54In 
omparison, the best run for SWARC 
ode with a dimension of 201 a
hieved551.28 MFLOPS with a VECTSIZE of 16 and a 2 se
ond maximum optimizationtime. This is an improvement of 551:28�268:28268:28 = 105% over the best rolled C 
ode.The best run for SWARC 
ode with a dimension of 200 a
hieved 616.65 MFLOPSwith a VECTSIZE of 16 and a 1 maximum se
ond optimization time. This is animprovement of 616:65�249:89249:89 = 147% over the best rolled C 
ode.The worst run for SWARC 
ode with a dimension of 201 a
hieved 407.52 MFLOPSwith a VECTSIZE of 2 and a 4 se
ond maximum optimization time. This is animprovement of 407:52�268:28268:28 = 51:9% over the best rolled C 
ode.The worst run for SWARC 
ode with a dimension of 200 a
hieved 401.57 MFLOPSwith a VECTSIZE of 2 and a 4 se
ond maximum optimization time. This is animprovement of 401:57�249:89249:89 = 60:7% over the best rolled C 
ode.VECTSIZE was limited to 32 be
ause longer VECTSIZEs led to basi
 blo
kswhi
h required more tuples than the 
urrent 
ompiler 
ould handle. Noti
e that thebest VECTSIZE for the SWARC version was an intermediate value (8 or 16 elementsper subve
tor).



- 420 -Table H.3Results for rolled C 
odeVECTSIZE OPTIME Average 201 Average 2002 1 175.37 177.45 (Worst)2 2 175.67 177.45 (Worst)2 4 175.37 177.542 100 175.37 177.544 1 175.53 181.33 (Best)4 2 175.53 180.754 4 174.75 (Worst) 180.624 100 175.53 180.758 1 175.53 180.758 2 175.99 (Best) 180.718 4 175.45 180.608 100 175.45 180.6016 1 175.45 180.8916 2 175.45 180.6016 4 175.39 180.6216 100 175.45 180.6032 1 175.45 180.6032 2 175.99 180.7132 4 175.53 180.6632 100 175.53 180.7564 1 175.31 177.4564 2 175.45 177.4564 4 175.37 177.4564 100 175.61 177.40H.2 Results for AltiVe
The following two tables report performan
e results on a 500MHz PowerPC G4-based Apple PowerBook laptop 
omputer. Again, the �rst of these, table H.3, reportsaverage MFLOPS using rolled standard C 
ode. The se
ond, table H.4, reportsaverage MFLOPS using S

-generated SWARC 
ode.The same 
ompilation pro
ess was used as for the 3DNow! trials, with the sameversion of the S

 
ompiler being used. Version 2.95.3 of GCC was used to 
ompilethe �nal C 
ode for the PowerPC target.Again, VECTSIZE and OPTIME are irrelevant in the �rst table and have thesame meaning in the se
ond as in the previous se
tion.For the rolled C 
ode, the best run with a dimension of 201 a
hieved 175.99MFLOPS, while the best run for a dimension of 200 a
hieved 181.33 MFLOPS. Inea
h 
ase, the varian
e was relative small.



- 421 -Table H.4Results for SWARC 
odeVECTSIZE OPTIME Average 201 Average 2002 1 49.48 49.732 2 49.46 (Worst) 49.69 (Worst)2 4 49.60 49.732 100 49.48 49.734 1 93.34 94.024 2 93.34 94.144 4 93.36 94.024 100 93.50 94.028 1 126.34 127.418 2 126.34 127.418 4 126.68 127.418 100 126.29 127.4116 1 150.69 152.2916 2 150.75 152.2716 4 150.69 152.2916 100 150.69 152.2932 1 160.03 167.59 (Best)32 2 160.40 (Best) 167.1732 4 160.36 167.1532 100 160.32 167.2064 1 96.27 97.1064 2 96.31 96.9364 4 96.52 96.9164 100 96.31 96.91In 
omparison, the best run for SWARC 
ode with a dimension of 201 a
hieved160.40 MFLOPS with a VECTSIZE of 32 and a 2 se
ond maximum optimizationtime. This is a degradation of 175:99�160:40175:99 = 8:9% versus the best rolled C 
ode. Thismeans that the best S

-generated 
ode had signi�
antly slower performan
e thanthe 
orresponding GCC-generated 
ode.The best run for SWARC 
ode with a dimension of 200 a
hieved 167.59 MFLOPSwith a VECTSIZE of 32 and a 1 se
ond maximum optimization time. This is adegradation of 181:33�167:59181:33 = 7:6% versus the best rolled C 
ode. Again, this meansthat the S

-generated 
ode was signi�
antly slower than the 
orresponding C 
ode.
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