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NOMENCLATURE

A partitioned entity with f fields of b bits each

A partitioned entity with f signed fields of b bits each

A partitioned entity with f unsigned fields of b bits each

A partitioned entity with f floating point fields of b bits each
Indicates a partitioned operand

Indicates a partitioned operand with identical field values
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Indicates a partitionable register taken as a single unpartitioned
value

Indicates an immediate operand encoded in the instruction itself
Indicates that the result will be added to the accumulator
Indicates that the result will be stored in the accumulator
Indicates that the difference will be added to the accumulator
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ABSTRACT

Fisher, Randall James. Ph.D., Purdue University, May, 2003. General-Purpose SIMD
Within A Register: Parallel Processing On Consumer Microprocessors. Major
Professors: Henry G. Dietz and Leah H. Jamieson.

Recent extensions to microprocessor instruction sets are intended to speed-up
multimedia algorithms by allowing SIMD parallel processing over multiple data fields
within each processor register. These extensions, while effectively supporting hand-
coding of some multimedia tasks, do not directly support a high-level parallel pro-
gramming model. Unfortunately, the extensions vary widely across different processor
families, making portability difficult to achieve. Even within one set of extensions,
each operation is supported only for certain field widths, and the widths supported
are different for different operations. This thesis will define a general-purpose SWAR
(SIMD Within A Register) programming model. This model will be implemented
for multiple target architectures: initially as compatible libraries, then as optimizing
compilers accepting a simple high-level parallel language. The new SWAR libraries
and compiler technology should enable a much wider range of applications to achieve

speed-up through SIMD execution using COTS microprocessors.



1. INTRODUCTION
1.1 Motivation

Modern commodity microprocessors employ a limited form of parallel processing
in order to speed up multimedia algorithms. While these modified architectures are
similar to certain traditional parallel processing models, they have unique and varied
constraints on how they can be used. Traditional models of parallel processing are
based on more powerful architectures and thus do not account for these constraints.
To better reflect the capabilities and limitations of these new architectures, and to
bridge the gaps between them, a new abstract model is required. We call this new

processing model SWAR (SIMD Within A Register).

1.1.1 A Brief Introduction to Processing Models

To understand why previous abstract models are not sufficient, we need to have
an understanding of these models and their purposes. Flynn’s classification of pro-
cessing systems [1] is useful in this endeavor, and we will use it to help denote the
various processing models in this discussion. While we will often treat them as be-
ing interchangeable, computer architectures and the languages used to program them
may actually be based on different processing models. In this discussion, we will dif-
ferentiate between architectural and programming models as necessary. Also, these
models are presented in an order that is not necessarily chronological, but should

highlight their salient properties.

Sequential processors execute a single instruction on a single set of scalar operands
at any given time. To reflect this fact, Flynn named this processing model SISD

(Single Instruction stream, Single Data stream). This model is the basis for most



9.

computers including the first microprocessor systems. While SISD systems are suf-
ficient for many of the computing problems we encounter on a daily basis, they are
too slow to be used to solve very large problems in a reasonable amount of time. A
desire to improve upon this situation led to the development of new architectures and

processing models.

Pipelined processors are SISD machines in which each instruction is executed in a
single processing unit with multiple stages. The processor is set up like an assembly
line with each stage performing one part of the total work needed to complete the
instruction. An instruction can occupy only one stage of the pipeline at any given
time, leaving the remaining stages available to other instructions. Thus, multiple

instructions from an instruction stream can be in the pipeline simultaneously.

In mathematics, a vector is a single-dimensional, multi-element object. Vector
programming models help programmers express operations on vectors more concisely
than do scalar models. Many of these operations are applied to each of the vector’s
elements independently or cumulatively. For example, adding two vectors is equiv-
alent to adding their elements in a pairwise manner. Vector programming models
allow such operations to be expressed as a single operation on a vector rather than

as a series of scalar operations on the vector’s elements.

Vector processors were developed to minimize the costs associated with perform-
ing vector operations. They capitalize on the fact that most vector operations are
repeated over many elements. For these operations, some of the pipeline execution
stages need only be performed once for the entire vector. Thus, vector processors
reduce execution time by removing redundancy in the execution of identical element-

wise operations.

The simplest vector processors execute repetitive vector operations by sequentially
running the vector elements through an ALU which performs an identical operation on
each element. Pipelined vector processors allow multiple ALUs to be chained together

to form an execution pipeline similar to that of a pipelined SISD processor. This
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increases the performance of the processor by allowing multiple vector operations to

not only share control stages but also to overlap in time.

While these vector processors can achieve significant speedup, they fail to fully
exploit the available parallelism of vector code. This is because they perform each
operation on only one set of corresponding elements at a time. Thus, in some sense,
they are actually just improved SISD machines. To obtain better performance, pro-
cessing models were developed in which work is performed on multiple parts of a

problem simultaneously (i.e. in parallel). This is known as parallel processing.

These new processing models were more closely matched to the large, scientific
problems which high-performance systems were intended to address than were the
scalar models upon which sequential and simple vector processors were based. These
problems included the modeling of physical phenomena such as weather and nuclear

reactions and the analysis of observed data such as satellite photographs.

In these problems, physical environments or entities are represented by large data
sets. For example, each datum may represent the value of some physical property at
one of thousands of points within an environment at some given time. At each point,
the predicted future value of this property is a function of its current value and its
value at each of the neighboring points in multiple directions. Thus, solving these
problems typically requires not only large amounts of computational power but also

timely access to both local and neighboring point data.

Parallel processors are systems which are based on parallel processing models.
These systems consist of multiple processing units which operate on multiple instruc-
tion streams simultaneously. Typically, these processing units are connected to form
an array via one or more communications networks. These interconnection networks,
which are sometimes referred to simply as the interconnect, allow point data to be
passed between neighboring processing units in one or more dimensions. Thus, these

systems were designed to be appropriate targets for large-scale scientific problems.

There are two major forms of parallelism which these systems exploit. Control

parallelism refers to the separation of a problem into multiple independent sections
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which can be executed simultaneously. Data parallelism refers to problems with a
regular nature in which the same series of operations must be applied to multiple
sets of data. Different processing models and architectures were developed to exploit

these differing forms of parallelism.

MIMD (Multiple Instruction stream, Multiple Data stream) is a parallel process-
ing model that was developed as a means of exploiting control parallelism in large
problems. The computational nodes of a MIMD processor each execute a series of
instructions which may differ from that of the other nodes. This allows each node to

execute an independent section of the problem.

MIMD processors can simultaneously run multiple unrelated sections of code or
multiple copies of identical code. This allows various programming models to be used
to program these systems. For example, the MIMD programming model is based
on the assumption that the problem is divided into pieces that may need to be
synchronized occasionally, but are otherwise completely independent. The SPMD
programming model (Single Program, Multiple Data) is similar, but is based on the

assumption that the independent pieces are identical.

While MIMD processing is quite versatile, there is a cost associated with this
flexibility due to the replication of both computational and control hardware. This
makes MIMD relatively expensive. Other processing models were developed as a

means of avoiding this cost while still benefitting from some form of parallelism.

One such model was SIMD (Single Instruction stream, Multiple Data stream),
which was developed as a relatively inexpensive means of exploiting data parallelism.
This is done by applying each operation simultaneously to as many data points as

possible. Thus, a single instruction stream is executed on multiple data streams.

SIMD systems can be divided into vector-based and array-based systems. Vector
SIMD processors, also called vector parallel processors, are single-dimensional SIMD
processors designed to operate on vector data objects. SIMD array processors are

SIMD architectures whose PEs are connected in shapes of two or more dimensions.
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Vector SIMD processors execute repetitive vector element operations in a simul-
taneous fashion. With these processors, data is loaded into a set of vector registers
which hold some fixed number of elements. Operations are then performed on some
or all of these elements simultaneously. This allows the processor to take advantage
of the data parallelism inherent in vector processing to achieve higher performance

than non-parallel vector processors.

While vector processors shorten the time required to solve certain classes of prob-
lems, they are not well-adapted to solving large multi-dimensional problems efficiently.
Array processors are better suited to these problems because they allow arrays to be
processed with their coordinate systems intact. That is, these processors allow data

from neighboring points in space to be stored in neighboring processing units.

A typical SIMD system has a single control unit, usually abbreviated CU, and an
array of multiple processing units which are often called processing elements (PEs).
The CU is responsible for reading a single stream of instructions from memory, de-
coding these instructions into control signals, and issuing the control signals to the
PE array. Each PE executes the operation defined by the control signals on its own
data stream. This data stream may be from a shared memory, but is usually from a

memory which the PE holds privately.

Using a single controller makes SIMD systems inexpensive compared to the more
general MIMD architectures in which the control unit is replicated for each of the
PEs. Yet, for data parallel problems, SIMD retains the benefits of parallel processing

associated with MIMD, thus giving it a higher performance to cost ratio.

One drawback of SIMD programming models is that they are severely limited
when compared to MIMD models because every processor must, execute exactly the
same instruction simultaneously. This limits them to SPMD-style programs which
are executed with every instruction synchronized.

This also makes the handling of high-level language control constructs, such as if
statements, difficult. Typical SIMD systems have special hardware to turn PEs on

and off (or equivalently, to block the side-effects of execution) depending on the local
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conditions of the PE. If this hardware is not present, the executed program must be

modified to nullify the effects of code that should not have been executed.

1.1.2 Multimedia Extensions

Several programming and machine models have been developed to improve per-
formance over traditional SISD computers. These were well-developed by the 1990s
when manufacturers of commodity SISD microprocessors began experimenting with

non-SISD architectures for multimedia processing.

Early work in this area focused on enhancing processors with on-chip graphical
hardware. This was typically in the form of a handful of instructions for speeding
common graphics operations. This included operations such as interpolating the
position of non-end points on a line when only the endpoints were known and testing
for the visibility of objects to determine if they should be drawn on the screen. These
efforts were very limited, and not intended for general-purpose computing. However,
they used methods that were later employed in implementing more general multimedia

extensions.

In the 1990s, several manufacturers of commodity microprocessors began expand-
ing their instruction set architectures with multimedia extensions. These were in-
tended to speedup data parallel algorithms used in graphical and audio processing
while keeping the amount of architectural modification required to implement them
at a minimum. Of the processing models mentioned, the closest match to these goals
was the vector parallel subset of SIMD. Thus, the designers of these multimedia

extensions implemented them as sets of SIMD-like instructions.

When executed, these instructions are performed on multiple streams of data
residing in a single CPU register. Thus, these extended architectures implement a
form of SIMD processing. However, they differ from previous SIMD architectures

because they have only one central processing unit (CPU) whose operation has been
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altered to act like a CU with a set of PEs, rather than an actual set of PEs driven by

a single, separate control unit.

This means that the entire set of PEs shares the CPU’s single data path. Data
can only be moved in and out of the PEs in the equivalent of block form from a single
shared memory. Thus, a memory access moves a block of consecutive bits between a
set of neighboring PEs and a single word in memory. This restriction is a significant
limitation compared with typical SIMD architectures, which could load data from

independent addresses or from private memories.

Data communication is also significantly different because there is often no equiv-
alent to the communications networks employed in typical SIMD systems. Often
SHIFT and ROTATE instructions are the only means available to move data between
these pseudo-PEs. One communication type used in later SIMD architectures is a
vector-indexed communication. This allows each PE to access data stored by some
other PE, independent of the actions of the remaining PEs. Few multimedia archi-

tectures can perform such a generalized communication.

While not exactly SIMD, these SIMD-like extensions serve their intended purpose
by allowing assembly language programmers to capture some of the potential speedup
due to the data parallel nature of the targeted algorithms. Unfortunately, few of
these extensions were designed with the intention of developing a complete processing

model.

Usually, the registers and control logic used to implement these extensions needed
to be enhanced to allow SIMD-like processing. This required considerable investment
in the redesign and modification of the existing architecture. To minimize this in-
vestment while maximizing its perceived benefits, each of the extension sets has been
targeted to support the multimedia algorithms that are believed to be most often
used on its host platform. Thus, these extensions have limited functionality and tend

to support only those data types and sizes which are normally used in multimedia.

Because of the variation in the architectures and the algorithms which are typically

run on them, the instructions and data sizes supported often differ substantially



_ 8-

between extension sets. Even within a single extension set, an instruction may exist
to perform a particular operation on one size of data, but not on another size. This
was intentionally done, based on the assumption that some operations are performed

often on certain types of multimedia data, but rarely on others.

These variations and limitations are the primary problem with multimedia ex-
tensions, and limit their usefulness substantially. As a result, these extensions are
sufficient for hand-coding architecture-specific, SIMD-parallel, multimedia operations
at the assembly level, but are less useful beyond this scope. Variations between exten-
sion sets make code portability difficult, and the lack of consistent support for differing
data sizes often forces format conversions between successive parallel operations. Fi-
nally, these extensions simply do not support certain data sizes and operations which

may be useful to applications programmers in the future.

1.1.3 My Thesis

I believe that the set of applications which can benefit from these extensions is
unknown and not limited to multimedia algorithms and data types. Also, that it
is likely that multimedia extensions will continue to evolve, with some growing into
more general systems and others dying out. Thus, not only will programmers need
to be able to port code from one architecture to another, they will also want their
code to take advantage of future capabilities without having to be rewritten for each

new architecture.

Current programming models are either target-specific, based directly on some
target’s multimedia extensions, or based on programming models which do not match
the capabilities of these architectures. These models are also unnecessarily limited
to currently common data types and sizes. This ultimately limits their usefulness
to those types of applications which we are able to foresee in the near future, and
also prevents programmers from expressing algorithms which are best suited to non-

standard data precisions. To move beyond the current situation, a general-purpose
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programming model for the form of SIMD processing described above should be

developed.

This form of parallelism, in which a single CPU register holds multiple data items
that are operated on in a SIMD manner, is referred to as “microparallelism” by
Alpern, Carter, and Gatlin [2], and belongs to a class of operation known as “sub-word
processing.” We will reserve the former term for any form of parallelism performed
within a single register, including concepts such as single-register VLIW, and the
latter term to mean any form of processing data which resides in less than a full

machine word (e.g. byte operations on a 32-bit machine).

Thus, we shall consider the SIMD form of parallelism that this thesis addresses to
be a subset of both microparallelism and sub-word processing. We refer to this form

of processing as SWAR (SIMD Within A Register) [3].

While the limitations of multimedia extensions make it difficult to develop a con-
sistent, portable, general-purpose SWAR programming model, they are not fatal. In
fact, a generalized programming model can be developed which can target standard

processor families with no SWAR-like extensions whatsoever.

It is my goal in this research to create a SWAR processing model which extends
beyond the limits of current models, and to lay the groundwork for continued devel-

opment of this form of parallel processing.

1.2 Related Work

When this work was first proposed in 1997 [4], we were unaware of any other
groups pursuing a high-level approach to general-purpose SWAR processing. Known
support for SWAR processing was limited to assembly-level programming tools and
high-level multimedia libraries. Since then, the situation has changed with various

groups now performing related work.

While some of this work is similar to that presented in this thesis, to our knowledge

there are still no other groups which take as broad an approach to SWAR processing
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as the one presented here. In this section, we discuss related work in the context of

the pursuit of a general-purpose SWAR processing model.

These efforts can be separated into four primary types: software-only methods
for SWAR processing, non-compiler tools which assist the programmer in the use of
multimedia instructions, pre-written libraries which make use of multimedia instruc-
tions, and compiler support for SWAR processing. Some of this support was discussed

in [5]. That work is updated and expanded here.

1.2.1 Software-only Methods

In his Doctoral Dissertation to the Royal Melbourne Institute of Technology [6],
Mark Spieth presented the Single Processor Single Instruction Multiple Data process-

ing model. This model is similar to that of SWAR, but is limited in several ways.

The primary goal of the research was to “explore the feasibility of the software only
solution to the parallel implementation of arithmetic operations in single processors.”
This was a less ambitious goal than that proposed here which includes the use of
SWAR hardware, expansion of the model to arbitrary data sizes, and the development

of a fully portable programming model and related compiler technology.

The work by Spieth is a more complete theoretical treatment of the subset of the
SWAR work dealing with the processing of packed standard integer data using soft-

ware techniques on unenhanced hardware, primarily as it relates to image processing.

In his thesis, Spieth explored various representations of numeric information and
provided a mathematical framework of packed number representations. The primary
method explored was aliasing, in which the sign bit of each register data field is
conceptually extended into the upper fields of the register and combined with the
data in those fields. This causes the lower field data to affect the bit patterns stored
in the upper fields. An unaliasing step is required to extract individual field data

from the register.
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Algorithms were provided for performing the operations Spieth considered to be
valid for SPSIMD processing. These include addition, subtraction, constant multipli-
cation and division, bit shifts, Boolean (i.e. bitwise logical), and conditionals within
which are included minimum, maximum, and absolute value operations. This is a

limited set compared to that of the SWAR model.

These algorithms were evaluated mathematically to determine the effects of alias-
ing on their operation and performance. It was found that aliasing places limits on the
domains of the operands of these operations. Calculations of the theoretical speedup
of these algorithms were also provided. These appear to be compared to software im-
plementations of the same operation on unpacked data rather than against possible

hardware implementations.

Spieth also examined the removal of the restrictions of the SPSIMD paradigm.
These are the restriction of operation domains to prevent overflow from occurring
and the restriction of result precisions to those of the source operands. Removal of
the first restriction would allow the operand domain to encompass a larger range of
values. Removal of the second restriction would allow intermediate calculations to

increase in precision.

In the discussion of this examination, Spieth described split word processing where
packed data is “split” into multiple packed words which each contain a subset of the
packed data. This includes techniques that were discussed early in 1997 by Professor
Dietz [3] and which are used extensively within the Scc compiler discussed later in
this thesis. One of these techniques is the wvirtual spacer technique for implementing
arithmetic operations that may overflow. Another is the general method of temporar-
ily promoting packed data to a greater intermediate precision, performing operations

at this precision, then repacking the data into its original precision.

Spieth found that removing the restrictions of the SPSIMD model using split word
processing was effective, but subject to overhead, memory interface speed, and the

set of assumptions one could make about the operands.
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Tests of the effectiveness of the SPSIMD model were performed on several hand-
coded image processing algorithms. This was done by comparing the results obtained
using the SPSIMD version with those obtained for rolled and unrolled looped, sequen-
tial implementations as baselines. This was done on five different machines, running
four different operating systems, and compiled with GCC or Borland C using their

full set of optimizations.

Spieth also briefly discussed other criteria for evaluating SPSIMD processing in-
cluding cost, convenience, and suitability. He specifically mentioned that he believed
that the development of compiler extensions would improve the situation by providing
packed data structures and parallel operations. This is one of the goals of my work

and is beyond the scope of Spieth’s.

A performance comparison of the methods used by Spieth versus those used in
the compiler implementation described in this research would be an interesting future
work. Also, Spieth’s work should be further explored for possible alternative compiler

implementations of SWAR operations which are not supported by hardware.

1.2.2 Non-compiler Tools

The lowest level of support for the use of multimedia extensions includes tools
such as profilers and debuggers. Neither of these is in the realm of a programming
model and can safely be ignored, but we will briefly mention some examples to convey

a sense of their utility.

The VTune optimization package from Intel [7] provides programmers with per-
formance tuning tools which analyze source code and offer advice for using Intel’s
multimedia extensions to improve it. This would typically be used in an ad hoc
manner with programmers performing a coding cycle of writing code, profiling, then
rewriting the code to try to get better performance. For some time, this was the only

significant means of support provided by Intel for its multimedia extensions.
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NuMega Technologies’ SoftICE for Windows 95 and SoftICE for Windows NT [8]
are debuggers which allow the disassembly of MMX instructions. These allow the
programmer to use any available method of generating code which contains multime-
dia instructions, then debug or profile the resulting assembly code. 1t is likely that
most multimedia-aware C/C++ compilation packages now include a debugger and/or

integrated disassembler.

1.2.3 Libraries

Pre-written libraries provide a high-level interface to a target’s multimedia in-
structions. These libraries are usually both application- and target- specific, and
perform common high-level operations which are comprised of multiple hardware in-
structions. They provide a means for applications programmers to exploit a target’s
multimedia extensions without being concerned with the details of the architecture;

however, they typically do not address the issues of generality or portability.

Several application-specific libraries have been developed for MMX, including sig-
nal processing [9], image processing [10], speech recognition [11], and speech to text
libraries[12]. A set of “Performance Libraries”, to which the above libraries may be-
long, are included with Intel’s Fortran and C+4 compilers. These libraries are not
intended to provide a general-purpose programming model, and support only specific

data sizes.

Apple has adapted its core math libraries to make use of Motorola’s AltiVec [13]

extensions. They plan to rewrite their other libraries for this purpose in the future.

Sun Microsystems provides a C library called “mediaLib” [14] for the VIS ex-
tension set. medial.ib can be freely downloaded in binary form for certain platforms
after a required licensing and non-disclosure agreement [15] is electronically accepted.
Documentation for medial.ib is freely downloadable, and indicates that medial.ib is
a high-level library which offers support for basic 8-, 16-, and 32-bit operations, as

well as advanced functions such as FFTs.
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The 1ibSIMD project [16] is an attempt to define a portable math library for
“commonly-used algorithms” across SIMD-enhanced and unenhanced architectures.
The goal is to support “trigonometric, complex number, quaternion and FF'T oper-
ations” on scalar, vector, and matrix objects. Functions are expected to be imple-
mented using inline assembly code to access multimedia instructions and C code for
portability to unenhanced architectures.

While plans for libSIMD are broad, its functionality is currently limited, consisting
primarily of floating-point operations. Vectors and matrices appear to be limited to
single fragment or sub-fragment lengths. The function listings in the documentation
refer to 2-vectors, 3-vectors, and 4-vectors, while matrix functions operate on 2x2,
3x3, and 4x4 matrices.

libSIMD function arguments are objects in memory and results are stored to
memory. Unless the compiler is able to perform optimizations across these procedures,
possibly via inlining, then the memory access overhead will be too great to achieve
significant speedup. Our decision to concentrate on a compiler rather than a general
library was partially due to this fact.

The primary benefit of the libSIMD library would be portability of code between
various multimedia-enhanced and unenhanced targets. However, this aspect seems
to be insufficiently developed at this time as libSIMD is currently targeted only to
AMD’s 3DNow! extension set. This should change in the future as the author targets

other multimedia extensions.

1.2.4 Compiler Support for SWAR

Current compiler support for SWAR processing consists primarily of various meth-

ods for exploiting multimedia extensions. This support falls into five major categories:

e Inline assembly and compiler intrinsics. This type of support gives the pro-
grammer low-level access to the instructions in the target’s multimedia exten-

sion set. This allows the programmer to use multimedia instructions, but with
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a minimum of compiler support. Programmers must maintain type and parti-
tioning information themselves and choose the correct intrinsic to use based on
this knowledge. In some cases, the compiler is able to optimize the resulting

low-level code.

e Classes or types which represent a fragment. Compiler support of this type is
also limited to low-level access, but type and partitioning information is tracked
for the programmer via the type or class system of the source language. This
information may be used by the compiler to ensure that the correct assembly

instruction is executed based on the partitioning of the fragment operands.

e Automatic vectorization of loops. This type of support provides an abstract
model which hides the use of extended instructions. With this type of support,
well-known techniques are used to parallelize loops in existing code. The pri-
mary disadvantage is that loops must conform to certain forms for the compiler

to recognize that they are parallelizable.

e Automatic vectorization of basic blocks. This type of support also provides an
abstract model which hides the use of extended instructions. Here, code in a
basic block is combined into operations on fragments. This is a more general
approach than vectorization of loops because the code does not have to be in
loop form to be vectorized. The primary disadvantage is the amount of work

and space required to combine the code into vector operations.

e Languages with first-class vector objects. This type of support also provides an
abstract model which hides the use of extended instructions. Here, the structure
and semantics of the language indicate which operations can be automatically
parallelized. This is more restrictive than automatic parallelization of basic

blocks, but provides a concise method for describing vector operations.

We will now look at each of these categories in turn, and describe some of the related

work which has been, or is being, conducted along these lines.
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Inline assembly is low-level code for the target machine which is inserted into
high-level language source code. This code is typically emitted directly into the
assembly code generated by the high-level language compiler. This lets programmers
use assembly language instructions of whose existence the compiler is unaware. In
many cases this is the only form of support that the compiler provides for the use of

extended instruction sets.

Compiler intrinsics are built-in functions which provide a function-call-like high-
level interface to the target’s machine instructions. Generally, these are trivial to
implement and are usually just preprocessor macros which hide inlined assembly code
which is used to execute a single instruction. These intrinsics are intended to provide
access to instructions that the programmer would not otherwise be able to use, but
generally do not provide functionality beyond the limits of the extended instruction

set.

Inline assembly and compiler intrinsics operate at too low a level to be consid-
ered for a portable general-purpose SWAR processing model. However, this is often
the starting point for other forms of support, so we will briefly survey some of the
commercial compilers which support the use of multimedia instructions via intrinsics

and/or macros.

Both Intel’s Fortran [17] and C++ [18] compilers supply a set of intrinsics for
their MMX, SSE, and SSE2 instruction sets. These intrinsics provide a means of
describing the application of these instructions to objects in memory. The compiler

is then responsible for register allocation and optimization of the resulting code.

Microsoft’s Visual C++ version 5.0 compiler [19] also provides inline assembly
support for MMX instructions as well the ability to disassemble code containing

these instructions.

Metrowerks’ CodeWarrior [20, 21] compiler provides inline assembly support for

both MMX and AMD’s 3DNow! instructions. This is one of several compilers of
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this product line which are targeted to different architectures. At least one version,
CodeWarrior for Mac OS Professional Edition [22], supports AltiVec, although it isn’t
clear how.

Q Software Solutions LCC-Win32 compiler [23] also provides intrinsic support for
MMX and 3DNow!. This compiler is an extension of the lcc compiler created by

Fraser and Hanson for their text on compiler design [24].

The VectorC{PC} [25] C/C++ compiler by codeplay, Ltd., provides inline as-
sembly support and intrinsics for the MMX, 3DNow!, and SSE extension sets. This
compiler is intended primarily for the development of graphics-intensive games.

Green Hills Software makes an optimizing C/C++ compiler [26] which supports

Motorola’s AltiVec via a set of high-level intrinsics.

The VIS Software Developer’s Kit (VSDK) [27] includes a set of macros for using
Sun’s VIS extensions. VSDK can be freely downloaded in binary form for certain
platforms after a required licensing and non-disclosure agreement [28] is electronically

accepted. The documentation for VSDK is part of the licensed package.

According to [29], C compilers which provide access via macros for Hewlett-
Packard’s MAX-2 extensions, Sun’s VIS extensions, and the multimedia instructions
of the MicroUnity and and Philips’ Trimedia architectures have been available since
the mid-1990’s. The authors had suggested that a set of industry standard macros

be developed. To the best of my knowledge, this has never been done.

Classes or Types which Represent a Fragment

A vector fragment is the amount of parallel data than can reside in a single
multimedia-enhanced register. Conceptually, long vectors of data can be broken into
multiple smaller vectors which fit into a register. It is these small vectors that we

refer to as a fragment.

Object-oriented classes or simple type definitions which represent a fragment can

provide a first-class feel to these objects and the operations on them. To do this, class
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definitions include functions which overload common operators with parallel versions
of the operation. Conversely, the use of non-class type definitions generally requires a
modification to both the high-level language and the associated compiler to support

parallel operations on these objects.

Several compilers support the use of multimedia extensions via class or type def-
initions. Usually, these fragment-based models are built on top of a set of intrinsics
and support only the operations and partitionings native to the target’s multimedia
extension set. The following is a brief survey of a few of the compilers that provide

this form of support.

The Intel C4++ compiler includes class libraries for operating on MMX, SSE, and
SSE2 fragments.

Free Pascal [30, 31| includes predefined array types for MMX and 3DNow!, and
extends Pascal through what are essentially compiler directives to allow some first-

class operations on these types.

Oxford Micro Devices’ C compiler for its A236 Parallel Video DSP chip [32], which
has instructions similar to MMX, provides predefined struct types for describing
fragments. Arithmetic and comparison operations on these types are performed on a

single fragment of data.

Motorola has developed an extension of the C programming language which in-
cludes a new “vector” type to represent a single AltiVec fragment. This extension is
not intended to be portable to other architectures, and requires a modified version
of the GNU C compiler [33], GCC, which generates AltiVec instructions to perform

operations on these “vector” objects.

Green Hills Software’s optimizing C/C++ compiler [26] also supports AltiVec via

Motorola’s “vector” extensions.
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Automatic Vectorization of Loops

Under strict conditions, and usually with hints from the programmer, some com-
pilers are able to vectorize simple data-parallel loops. This support is in the early
stages and is limited in the data types and operations that can occur in the body of the
loop, although more advance techniques are under development. This development

can be expected to follow that of Fortran loop manipulation and vectorization.

Intel’s Fortran and C++4 compilers provide automatic loop vectorization targeting

the MMX, SSE [34], and SSE2 extension sets.

Metrowerks’ CodeWarrior compiler provides vectorization for Intel’s MMX and
also for AMD’s 3DNow! extensions [20]. Metrowerks is now owned by Motorola, so one
would expect that support for Motorola’s AltiVec extensions would be forthcoming.

According to [13] this support is currently under development.

Green Hills Software’s [26] C/C++ compiler supports AltiVec via automatic vec-

torization of loops.

Codeplay’s VectorC{PC} C/C++ compiler performs automatic vectorization for
MMX, 3DNow!, Enhanced 3DNow!, SSE, and SSE2 targets [35]. A separate version
of this compiler targets the vector units of the Sony PlayStation2 [25].

The Portland Group’s Workstation compilers for Fortran 77 [36], Fortran 90, C,
and C++ [37] use a common core which supports automatic vectorization of loops

for SSE-based targets.

Veridian Systems VAST /Parallel restructuring Fortran and C/C++ preproces-
sors [38] perform automatic loop vectorization and reordering as a front-end to a
native compiler. Currently, these preprocessors only target the AltiVec multimedia

extension set.

The VAST preprocessors have a long history, dating back to the mid-1980s when
the Vector and Array Syntax Translator by Pacific Sierra Research Corporation was

used to vectorize Fortran 200 code for the CDC Cyber 205 [39].
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The VAST-F/AltiVec Fortran Preprocessor [40] “replaces vectorized Fortran loops
with calls to VAST-generated C functions containing vector instructions.” The VAST-
C/AltiVec C Preprocessor [41] “automatically replaces loops in C programs with inline

”

vector extensions (as defined by Motorola)

These preprocessors generate C code in a manner similar to that of the Scc
SWARC compiler discussed later in this work, but depend on Motorola’s modified

version of the GNU C compiler discussed previously.

According to [13], Absoft is also working on automatic vectorization of loops for
Apple’s Velocity Engine implementation of AltiVec. Their Pro Fortran compilers
for Mac O/S 9 [42] and PPC/Linux [43], however, support AltiVec via precompiled
Fortran 90/95 intrinsics and optimized benchmark and application-specific libraries.
Automatic vectorization is only supported for the PPC/Linux version, and seems to

be supported via Veridian’s VAST-F /Vector preprocessors.

The VSUIF project at the University of Toronto [44] was conducted in the mid-
to-late 1990’s to add support for vector microprocessors to the SUIF compiler [45].
The goal of this project was to provide a high-level language programming model for

using these architectures.

This compiler vectorizes loop-oriented, high-level language code into assembly
code for the target architecture. The original target was the Torrent architecture [46,
47] which was then under development at the University of California at Berkeley. The
designers planned to target Sun’s UltraSPARC with VIS afterward, and a separate
research effort was underway to create a SPARC code generator for SUIF [48]. This

was intended to provide the back-end for VIS targets.

At the time [44] was written, DeVries and Lee had achieved some success vectoriz-
ing moderately complex code. They were still working on the handling of breaks and
a method of classifying functions to determine if they would affect the vectorizability
of loops when called. This work was to be validated using the UCB Torrent simulator

before work to target the UltraSPARC was to begin.
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We are unaware of the ultimate disposition of this work, although DeVries’ Mas-
ter’s thesis is based on its implementation and performance [49]. While this project
was intended to provide high-level support for vector processing, including SWAR tar-
gets, it takes the loop vectorization approach and does not treat vectors as first-class

objects.

Automatic Vectorization of Basic Blocks

A more general approach to automatic vectorization is to search basic blocks for
code which can be parallelized via the use of multimedia extensions. This allows not
only loops to be vectorized, but also unrelated scalar code. This approach is also more
general than parallelizing code based on first-class vector objects, because the state-
ments which are automatically combined into vector fragments are not necessarily

related.

Thus, this method is able to exploit a larger amount of parallelism than any other
discussed. However, as with loop-vectorizing compilers, a compiler which vectorizes
basic blocks is placed in the position of having to detect parallelism which is not ex-
plicitly described in the high-level language. This complex task requires a significant
amount of time and space, more so than any other method of parallelization discussed

here.

There are two groups known to be performing research in this area. The first is at
the Massachusetts Institute of Technology’s Laboratory for Computer Science. The

other is at the University of Dortmund.

Work at MIT’s Laboratory for Computer Science centers around what they term
Superword Level Parallelism (SLP) [50]. This is defined as “short SIMD parallelism
in which the operands and results of SIMD operations are packed in a storage loca-
tion” [51].

The goal is to vectorize high-level sequential code throughout a basic block by de-

tecting sets of single-valued isomorphic statements (statements which have the same
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expression structure) and collecting them into a series of vector fragment operations.
This “SLP algorithm” is proposed as an alternative to the vectorization of looped
code. In fact, the SLP compiler unrolls loops in order to generate isomorphic sequen-
tial code that can be parallelized in this manner. The SLP detection algorithm is

described in [51] and elaborated on in [52].

A later report [53] presents a simplified alternative to the SLP vectorizing algo-
rithm; however, this algorithm exploits only a subset of the parallelism that the SLP
detection algorithm can. Results presented in this report were based on the per-
centage of dynamic instructions eliminated from sequential benchmarks. These were
calculated for the 128-bit AltiVec architecture and for larger hypothetical architec-

tures via SUIF. Apparently, no actual timing information was gathered.

This project is based on the vectorization of pre-existing sequential code which
may be marked-up with compiler hints to indicate the presence of hard-to-detect
parallelism. As such, it does not conform to the SWAR vector programming model.
However, it is probably a good complement to the SWAR model in that it seeks to find
parallelizable expressions which are more general than SWAR vectors. Conceptually,
one could fragment vector and array code, and apply the SLP detection algorithm to

extract parallelism from the remaining scalar code.

Work at the University of Dortmund centers around “code selection” for media

and embedded processors. The goal of this work is similar to that of the MIT group.

A compiler technique introduced in [54] and briefly described in [55] uses a data-
flow graph (DFG) as an architecture-independent intermediate representation of a
high-level language (i.e. C) source. This DFG is then walked using a pattern-matching
algorithm which pre-assigns instructions to the parts of the tree. Branches which can
be covered by a single one of the target’s SWAR instructions are tracked. When
the entire graph is covered, instructions are actually assigned with the use of SWAR

instructions maximized.

The authors seem to be unaware of similar work performed in the parallel process-

ing area. In [54] it is claimed that “SIMD instructions are so far not really exploited
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by compilers for media processors. Taking advantage of such instructions is only pos-
sible, if processor-specific assembly routines or compiler intrinsics are used, resulting
in low portability of software.” This is despite the fact that the Scc compiler for the
target-independent SWARC language was freely available for about two years before
these papers were published and contemporary compilers such as Metrowerks” Code-
Warrior [20] were capable of performing automatic vectorization of simple C language

loops for multimedia-based targets.

Languages with First-Class Vector Objects

Languages which provide first-class vector objects allow multi-fragment objects to
be defined and operated on as a single entity. This has several benefits. First, it allows
the programmer to express vector operations in a more concise manner than inline
assembly, fragment-based types and classes, or automatically vectorized scalar code.
Second, it allows portability between architectures by hiding their differences, such
as supported partitionings and register sizes, from the programmer. Third, it allows
the compiler to deal with issues such as code optimization rather than parallelism

detection.

Existing compilers for languages which support first-class vector and array ob-
jects, such as Fortran 90, have been targeted to architectures which have multimedia
extensions, but it is not clear that any of these convert first-class vector or array
operations into multimedia instructions. For example, the literature for the Veridian
Systems VAST-F/AltiVec Fortran preprocessor [40] never mentions any such support

although loop vectorization is discussed.

We are aware of only one other research effort which specifically takes this ap-
proach to supporting SWAR architectures. This is the Vector Pascal project at the
University of Glasgow. Vector Pascal [56] is an extension of the Pascal language to
support first-class operations on vector and array objects targeted to multimedia-

enhanced architectures.



- 924 -

In Vector Pascal, unary and binary operations can be performed on complete
arrays or their subsections. Certain higher-level functions, such as sqrt, abs, and

sin, are intrinsic to the language and can also operate on these objects.

Binary operations include modular and saturated addition and subtraction, other
modular arithmetic operations such as multiplication, division, and exponentiation,
and various other types of operations such as comparisons, shifts, and logicals. These
operations assume an implied identity value if one is not given. This applies to
operations on set expressions as well as numeric ones. For example, the Vector Pascal

expression /a is equivalent in meaning to the expression 1/a for any value a.

For each of the binary operators there is an associated reduction operator. This
applies the binary operation along the last dimension of its operand. These reductions
reduce the rank of the operand by one with the exception of the scalar case in which

they have no effect.

Objects of different rank can be operated on in mixed expressions with the re-
striction that, except for reductions, each variable in the expression must have rank
less than or equal to that of the Ivalue to which the expression’s value will be as-
signed. Operands which have lower rank are replicated to match the rank of the
Ivalue. Operands of higher rank must be reduced in rank via one or more reduction

operations.

User-defined functions which operate on a scalar object are automatically ex-
tended to apply to an array object of the same type in an element-wise manner. This
mechanism allows the programmer to write functions that operate on both scalars and
arrays of various sizes without having to parameterize the dimensions of its formal

parameters.

One important aspect of SIMD programming that appears to be missing from
Vector Pascal is the proper handling of parallel objects in the language’s control
constructs. No mention is made concerning if, or how, conditional constructs such

as if statements and loops are handled when their conditional expressions are non-
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scalar. This is a significant issue which should be addressed in the design of a high-

level SIMD language.

The Vector Pascal compiler uses the ILCG [57] code generation system in which a
target description language is used to denote the specifics of the target architecture.
The initial targets were the Intel 486 and Pentium with MMX. Currently Vector
Pascal targets the “Intel 486, Pentium with MMX, and P3 and also the AMD K6.” [56]
It should be noted that these are all [A32-based architectures.

1.2.5 Summary

Software-only methods, such as Spieth’s, cannot compete with those which take
advantage of available SIMD instruction set extensions and can thus be rejected in
most cases. These methods do, however, provide a level of portability between targets

which cannot currently be obtained using multimedia extension sets only.

Low-level, high-performance libraries are closely related to their target architec-
tures. These are often written to be inlined by a compiler and can thus be easily
optimized. However, they do not provide portability between architectures and are

thus insufficient for our model.

High-level libraries tend to be application-specific, intended to perform particular
algorithms or operations for well-known problems. While typically having reason-
ably portable interfaces, these libraries are not intended for use in general-purpose

algorithms and are usually too specialized for our purposes.

As a general rule, high-performance in library code comes at the price of non-
portability. Thus, it is difficult, but not impossible, to develop a portable, high-
performance, general-purpose library. Developing such a library would entail making
a trade-off between these two competing factors.

Inline assembly and compiler intrinsics are directly related to their associated
architectures, and thus operate at too low a level to be considered for a portable

general-purpose programming model. However, they can be useful for code genera-
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tion as they tend to ease the integration of unsupported hardware instructions into

preexisting compilers.

Classes and types which represent a word-sized fragment of vector data also op-
erate at too low a level to be considered for a general-purpose programming model.
These are directly related to their associated hardware architectures, encoding the
size of their registers, and often only provide access to the available hardware instruc-
tions. Thus, they generally do not present a portable programming model. This is
not to say that classes and new types cannot provide a portable level of abstraction,

only that current systems tend not to use these methods to their best advantage.

Compilers which perform automatic vectorization of scalar loops and basic blocks
tend to be overly limited in their current capabilities. Most of the current set of
vectorizing compilers are only capable of vectorizing simple loops that would be more
succinctly expressed as first-class vector operations. More complex loops, those that
cannot be expressed as vector operations, are typically too complex for these compilers

to handle.

As current compiler writers learn more about, or reinvent, the work done in the
high performance computing community over the last few decades, these compilers
will become better at generating vectorized code from scalar sources. However, we
should be developing programming models that make it easier to express complex
operations, not high-performance compilers which optimize source code based on the

wrong architectural model.

As part of the development of a new general-purpose SWAR programming model,
the subject of this thesis, we have chosen to design a language with first-class vector
objects because we believe this offers the best opportunity for performance gains over

a large range of applications and target architectures.

Unlike any of the related work, this language allows both the precision of the
data and the number of elements to differ from those supported by the hardware. It
also provides a full, portable set of vector operations which are independent of the

extended instructions available on any particular target. This language, SWARC,
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will be discussed later in this work, and is, to the best of my knowledge, the only

language which adheres to this generalized model.

1.3 Scope of Work

In this thesis, a new abstract model of parallel computation is developed which
better reflects the capabilities and limitations of modern SWAR architectures than
do current computational models. An example language based on this model is pre-
sented, as is a compiler for this language which uses various techniques to optimize
code for these architectures. Performance metrics are also developed and employed
to evaluate these implementations. This work should provide a starting point for
future research and the development of practical programming languages for SWAR

processing.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 is a study of the multimedia exten-
sion sets available in commodity general-purpose microprocessors. Chapter 3 presents
the general-purpose SWAR, processing model. Chapter 4 describes the SWARC lan-
guage which is based on the SWAR processing model and a proof-of-concept imple-
mentation of a SWARC compiler called Scc. Chapter 5 presents various evaluations

of the defined SWAR model, the SWARC language, and the Scc compiler.



_98 -



- 99 _

2. ANALYSIS OF CURRENT MULTIMEDIA
EXTENSION SETS

A new abstract model of parallel computation is needed which will better reflect the
capabilities and limitations of modern SWAR architectures than do current compu-
tational models. In order to develop a new model which adequately accounts for the
capabilities and limitations of current SWAR architectures, it is necessary to have an

understanding of the range of functionality which they support.

These architectures were created when commercial developers of microprocessors
redesigned them to improve their performance on multimedia applications. This
was done by extending their standard instruction sets with new sets of “multimedia
instructions” which operate in a SIMD manner on parallel sections of their system

data paths.

Each extension set was tailored to support the algorithms and applications which
its designers believed to be most important to their clientele. Early extensions tended
to be limited to instructions which perform operations that are frequently used in their
particular target applications, and were not intended to present a complete parallel
programming model to their users. Thus they failed to provide sufficient support for

a viable SWAR processing model.

Because of the variation in their applications, the extensions meant to support
them varied widely. However, some of these applications differ only in scope or quality,
with the underlying algorithms being equivalent. Consequently, while each extension
set is unique, its functionality may have aspects which are similar or equivalent to

those of other extensions.

Later extensions are more complete, often including improvements which address

problems with their ancestors’ designs. Thus, a type of evolution is in play which
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may ultimately lead to relatively stable and complete sets of multimedia instructions.

Unfortunately, current extension sets still have limitations.

The range of support provided by these extensions still varies widely. The scope of
these extensions also differs, with some including a large number of SWAR operations,
while others include only a few. Support is still limited to data of standard sizes, and
is still not consistent across these sizes. Also, instructions necessary for proper SIMD

operation are often lacking or limited.

The primary goal of this phase of research was to determine the capabilities and
limitations of the multimedia extension families which are available on current COTS
(commodity, off-the-shelf) processors [4]. This analysis will be used as a basis for
the design and implementation of the general-purpose SWAR programming model
undertaken in later phases of the research. This is necessary to ensure that the

developed model fairly reflects the common capabilities of current architectures.

This analysis should also be useful when deciding how an architecture’s enhance-
ments will be used within an implementation of the generalized model, and should
foster insight into the possibility of code optimization based on a target architecture’s

enhanced features.

Data collection and organization was carried out over the last few years by myself.
The data is derived primarily from programming manuals pertaining to the various
extension sets and their related architectures. Other sources of information included
journal articles and promotional literature, but manuals were used whenever possible

as they are generally the most reliable sources.

An early survey of multimedia extensions was presented by Kelley and Postiff in
[58]. That paper also discusses issues related to the circuit implementation of multi-
media extensions. A limited table of multimedia extensions was presented by Dubey
in [59]. This was apparently developed at about the time of my thesis proposal [4],
but I was unaware of it until recently. Unless noted, neither of these was used as a

source of information for the following analysis.
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In this section, several current extension sets are briefly introduced, along with
some older ones which have interesting features. In the following section, a set of
tables is presented which describe the SWAR instructions available to programmers

using these extension sets.

The multimedia extension sets analyzed in this chapter are: Digital Equipment
Corporation’s Motion Video Instructions (MVI) [60]; Hewlett-Packard Company’s
PA-RISC 1.1 Multimedia Acceleration Extensions (MAX-1) [61], and PA-RISC 2.0
Multimedia Acceleration Extensions (MAX-2) [62, 63]; Silicon Graphics MIPS-V [64]
and MIPS Digital Media Extension (MDMX) [65, 66]; Motorola, Incorporated’s Al-
tiVec [67, 68]; Sun Microsystems, Incorporated’s Visual Instruction Set (VIS) [69, 70];
Intel Corporation’s [71, 72] MMX, which is also implemented by Advanced Micro De-
vices, Incorporated [73] and Cyrix Corporation [74]; AMD’s 3DNow! [75], Enhanced
3DNow! (E3DNow!) [76], and 3DNow! Professional (3DNow!Pro); Cyrix’s Extended
MMX (EMMX) [77]; and Intel’s Streaming SIMD Extensions (SSE) [78] and Stream-
ing SIMD Extensions 2 (SSE2) [78].

MVI

The Motion Video Instructions (MVI) were originally developed by Digital Equip-
ment Corporation for their Alpha microprocessor architecture in about 1996. This
was “motivated by the desire to perform high quality software motion video encoding

using the prevalent ISO/ITU video compression standards.” [79].

MVI was clearly not an attempt to develop a high-level SWAR programming
model, and is in fact more closely related to the graphical extensions included in the

Intel i860 or Motorola 88110 processors than to other extensions studied.

MVI consists of a minimal set of instructions that perform graphical operations
such as calculating pixel differences and finding the larger or smaller of two values.

These instructions operate on data residing in the Alpha’s standard 64-bit integer
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register set. This makes the standard integer instructions available to the SWAR

programiner.

Digital was bought by Compaq Computer Corporation, which was subsequently
bought-out by Hewlett-Packard. The Alpha architecture and the MVI extensions

have been passed along as well.

PA-RISC MAX-1.0

The original version of Hewlett Packard’s Multimedia Acceleration eXtensions
(MAX-1.0) were intended to accelerate the decompression of video data for real-time

display without resorting to special-purpose hardware.

The basic design process was described by chief architect Ruby Lee as “...find-
ing the most frequent operations, breaking them down into simple primitives, and
accelerating their execution.” [61] This process resulted in a small set of general-
purpose instructions which performed basic arithmetic operations, and allowed these

extensions to be used for purposes beyond those for which they were designed.

MAX-1.0 was originally implemented on the 32-bit PA-RISC 1.1 architecture PA-
7100LC [80, 61] which was introduced in 1994. Primitive arithmetic and shift-and-
arithmetic operations were performed by the 7100LC’s two integer ALUs on the
16-bit subwords of the processor’s 32-bit integer registers. This allowed two MAX

instructions to be executed with every clock cycle at peak speed.

MAX-1.0 was superseded by the MAX-2.0 extension set with the introduction of
the PA-RISC 2.0 architecture. In each of the tables, these are combined under the
MAX heading unless there are instructions which are only in MAX-2.0. In this case,
the there is a column for each of the two versions, and those listed in MAX-1.0 are

available in both.
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PA-RISC MAX-2.0

As with MAX-1.0, Hewlett-Packard Company’s MAX-2.0 extensions [62] were de-
signed to accelerate multimedia processing without using special-purpose hardware.
MAX-2.0 was developed with the goal of introducing “instructions that provide sig-
nificant performance improvement with insignificant impact on the area, cycle-time,
and design time of the PA-RISC processor.” [81] A good description of the thoughts

of the HP designers can be found on page 1-6 of [82].

MAX-2 was first implemented on the 64-bit PA-8000 microprocessor [83, 84] in
1995 and is considered to be an integral part of the PA-RISC 2.0 architecture [82]. It is
a superset of MAX-1 which it extends to support 64-bit architectures and instructions
for controlling data alignment and layout. These include simple parallel shifts, “mix”
instructions which interleave the fields of two operands, and an instruction which
permutes the fields of a register. These instructions were chosen to significantly

accelerate media processing while still being useful for general-purpose processing [63].

MAX-2 uses the integer general registers, integer ALUs, and shift merge units
(SMUs) of the PA-8000. The two integer ALUs are similar to those of the 7100LC.
The two SMUs perform basic parallel shifting operations, the merging functions which
interleave two operands, and the generalized permute operation. This allows up
to four MAX-2 instructions to be executed simultaneously. The integer pathways
were chosen to minimize the amount of modification required and allow the use of

preexisting integer instructions such as extractions.

MAX-2 is currently available in PA-RISC 2.0-based servers such as HP’s rp8400
series. With Hewlett-Packard’s acquisitions of Compaq and Digital, and the recent
move toward support for Intel-based systems, the future of the PA-RISC architecture,
and thus MAX, is in question. It remains to be seen if they will continue to be

supported.
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MIPS-V Paired-Single

The MIPS-V instruction set adds support for partitioned operations on pairs of
single-precision floating-point data to the MIPS-IV instruction set. Pages 7-10 of [66]
contain an overview of these extensions, and detailed descriptions of the instructions
are provided in [64].

This extension set was intended to support applications related to graphics and
signal processing, such as “3D [sic] geometry processing, oil and gas, and manufac-
turing applications.” [85] It does this via a reasonable set of floating-point arithmetic
instructions, a rich set of conditional tests, and data alignment and layout operations.
This makes the MIPS-V “paired-single” extensions useful for a variety of applications.

MIPS-V was announced in 1996 [86], and was to be introduced with the H1 gen-
eration of processors following the R12000. These were scheduled for production in
the first half of 1999 [85]. At some point, MIPS changed its focus to the develop-
ment of processor cores for application specific markets, and the architectures were
reorganized. It is not clear to me if MIPS-V was ever actually implemented as a stand-
alone entity. The current MIPS64 architecture is MIPS-V compatible; however, the

paired-single extensions are an optional feature [87].

MDMX

The MIPS Digital Media Extension (MDMX) was announced at the same time
as the MIPS-V paired-single extensions [86]. It was intended to provide support for
“video, audio, and graphics pixel processing by introducing vectors of small integers.”
Pages 11-19 of [66] contain an overview of these extensions and detailed descriptions
of the instructions are provided in [65]. MDMX is one of several “Application Specific
Extensions” to the MIPS-V architecture. Its presence implies availability of the MIPS-
V paired-single extensions.

In regards to general-purpose parallel processing, a paragraph from the MIPS

Digital Media Extension definition [65] is telling:
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The MIPS MDMX is not intended for general purpose computing. Soft-
ware support for the MDMX is via shared libraries (DSOs) and assembly

language only. Compiler support is neither implied nor planned.

One of the unique features of MDMX is a 192-bit “accumulator”, which is pri-
marily used as the target for repetitive applications of cumulative instructions. It is
divided into fields which are three times as wide as the data being operated on. For
example, for a data size of 16-bits the accumulator consists of four fields of 48-bits

each.

Another of MDMXs strengths lies in the variation it allows for the second source
vector of its instructions. Almost all MDMX instructions allow this source to be a
partitioned register, an immediate value, or a scalar which the instruction replicates.
This allows a single immediate or field value to be “broadcast” to each of the fields,
and also allows mixed operations between partitioned values and scalars. Thus, this

feature makes MDMX quite versatile.

As with the MIPS-V paired-single extensions, MDMX was to be implemented in
the H1 generation of MIPS processors [85]. However, it is not clear to me that MDMX
ever was actually implemented, although similar instructions exist in the MIPS-64 [87]
and MIPS-3D [88] architectures. Its unique qualities make MDMX worth studying

in any case.

MIPS-3D

The MIPS-3D graphics extension to the MIPS64 architecture was introduced
sometime around the year 2000. It is an application-specific extension “intended for
64-bit consumer applications that need three-dimensional graphics but require mini-
mal implementation costs for low-power or System-on-Chip (SOC) solutions.” [88] As
an extension, MIPS-3D is implemented as an optional core that can be incorporated

into an application-specific processor design.
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MIPS-3D uses the MIPS64 floating-point unit and operates on “paired-single”
floating-point data. It consists of 13 instructions for absolute value calculation, ad-
vanced arithmetic operations such as reciprocal approximation, reductions, data con-

version, and aggregate conditionals.

Having only learned of this extension recently, I have decided not to discuss it to
any significant depth at this time. However, by adding support for reductions and
aggregate conditionals, it address two of the primary deficiencies in current SWAR

extensions.

AltiVec

Motorola Incorporated’s AltiVec [68] extension to the PowerPC architecture was
developed in the late 1990s and incorporated into the MPC7400 processor [89] in 1999.
It was developed to support high-performance computing and high-bandwidth net-
working applications such as array processing, Internet routers, and video processing

systems [67].

AltiVec includes integer and floating-point SWAR, instructions. These are exe-
cuted by a special-purpose vector processing unit which operates on data stored in
a set of 32 128-bit vector registers. Its completeness and ability to operate on both
integer and floating-point data make AltiVec one of the better designed extension sets

from a parallel processing stand-point.

The PowerPC architecture was jointly developed by Motorola, Apple Computer
Incorporated and International Business Machines Corporation. However, Motorola
has been the primary developer of AltiVec, with Apple a major consumer, and IBM
declining to participate in the effort. AltiVec is a well-defined, general-purpose set of
extensions which is likely to have continued use in high-performance and embedded

systems in the future.
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VIS

Sun’s VIS [70, 69, 90] instruction set was intended to support networked appli-
cations such as video conferencing, data encryption, and collaborative software and
also scientific applications such as systems modeling and image processing.

VIS is best suited to handling 16- and 32-bit data, with some support for 8-
bit pixel data. The instructions included tend to be special-purpose and limited in
the data precisions supported. For example, a fairly large set of multiplications is
available, but these are all mixed-precision operations that operate on 8- and 16-bit
operands. By contrast, there is no support for the addition or subtraction of 8-bit
data at all.

One of the design goals for VIS was allow good data flow between memory and the
floating-point registers. This is supported with a reasonable set of loads and stores
including block accesses and masked stores. These improve throughput and support
SIMD processing. This may be VIS’s greatest strength.

VIS was implemented in 1995 with the 64-bit, first-generation V9 architecture
UltraSPARC-I processor TrGrNo:95. The UltraSPARC-I had a single pair of fully-
pipelined graphics add and multiply units. VIS was subsequently implemented in the
UltraSPARC-II, a second-generation V9 processor with two floating-point/graphics
units [91].

A somewhat extended version, referred to as VIS 2.0 is available in current pro-
cessors such as the UltraSPARC IIT Cu [92]. The version discussed in this thesis is
now called VIS 1.0.

MMX

The MMX extension set, was designed by Intel Corporation and introduced in
1996 in later Pentium (Pentium with MMX) processors [93, 71]. MMX was cloned by
Advanced Micro Devices, Incorporated [73], Cyrix Corporation [74], and others such
as Rise Technology Company [94].
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It was originally “...designed to enhance performance of advanced media and com-
munication applications” [72] while retaining “full compatibility with existing oper-
ating systems and software.” [93] An overview of the MMX extensions is provided
in [72], and detailed descriptions of the instructions are available in [95]. A short

summary, including cycle counts, is available in [93].

MMX operates on integer data stored in the CPU’s floating-point (FP) registers.
These cannot be used for floating-point operations while MMX is in use. Also, the TA-
32’s standard integer instructions cannot be used on the data stored in these registers.
In this sense, MMX is less useful than extensions which operate on their standard

integer registers.

The MMX extensions provide a fairly wide range of support for a high-level par-
allel programming model; however, they are limited to 8-, 16-, and 32- bit SWAR
operations which are not implemented consistently across these field sizes. There are
also no reduction operations nor minimum or maximum instructions which could be
used for emulating unsupported saturation arithmetic operations. Despite these lim-
itations, MMX is one of the more complete sets of SWAR extensions and has become
a permanent feature of Intel TA-32 architecture processors with a large number of

other extensions built on top of it.

SSE

Intel’s Streaming SIMD Extensions (SSE) [78] serve two purposes. First, they
fill in some of the missing pieces of MMX. Second, they add a set of 32-bit floating-
point SWAR instructions which operate on a new set of eight 128-bit registers. With
these extensions, the Intel architecture is divided into three sections: the basic 1A32

architecture, the integer SWAR MMX, and the floating-point SWAR SSE.

SSE is very complete, but lacks 64-bit support and leaves the Intel TA-32 architec-

ture with two different SWAR register sets for different types of data. In this respect
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AltiVec is better, and has more registers to work with. However, SSE has better
memory handling and the ability to move data between registers.
SSE was introduced with the Pentium III architecture in 1999 and continues to

be part of the IA-32 architecture.

SSE2

Intel’s Streaming SIMD Extensions 2 (SSE2) is a set of integer instructions primar-
ily intended to provide MMX equivalent functionality to data stored in the 128-bit
SSE register set. SSE2 also includes 64-bit floating-point extensions to SSE and
various integer extensions to MMX. These are intended to fill-in gaps in the earlier
extension sets to make them more complete.

Combined, SSE and SSE2 form the most powerful set of SWAR extensions cur-
rently available. They allow both integer and floating-point data to be stored and
operated on in the same register set. This, and their comprehensive support for
data of standard precision, places the SSE/SSE2 pair on par with Motorola’s AltiVec
extensions.

SSE2 was implemented with Intel’s Pentium 4 (previously code-named Willamette
[96]), and is now a permanent feature of the TA-32 architectural line. The future of
SSE2 depends on whether this 32-bit line of processors remains viable given Intel’s
development of the TA-64 architecture and on the extent to which its functionality is

incorporated into this newer architecture.

3DNow!

AMD’s 3DNow! [75] expands the MMX instruction set by filling in some of its
gaps and by including a set of 32-bit floating-point instructions. This was intended to
support “floating-point-intensive and multimedia applications”, and was expected to
improve frame rates for high-resolution graphics, modeling of physical environments,

three-dimensional imaging, and video and audio playback quality.
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3DNow! uses the same registers as MMX. This allows mixed-mode expressions to
be evaluated easily. It also allows the MMX polymorphic operations to be applied to

floating-point data for masking or extraction purposes.

3DNow! adds basic arithmetic, comparison, and maximum/minimum operations
for floating-point data, as well as more advanced mathematical operations such as
reciprocals and square roots. It also includes instructions for converting between

integer and floating-point formats and instructions for cache prefetching.

3DNow! was first implemented on the K6-2 processor in 1998, a two-pipeline
processor with separate MMX ALU units, but shared 3DNow! resources. It has

subsequently been implemented on the K6-IIT and current Athlon processors.

Enhanced 3DNow!

AMD’s Athlon extensions to 3DNow! and MMX [76], which we will refer to as
Enhanced 3DNow! or E3DNow!, was intended to provide better support for DVD-
quality audio and video streaming and digital signal processing than did these earlier

extension sets.

E3DNow! fills gaps in the MMX and 3DNow! extension sets. It extends 3DNow!
with a few instructions for floating-point accumulation, type conversion, and double-
word swaps. It extends MMX with a large set of instructions. These perform various
arithmetic operations, cache-bypassing stores for streaming purposes, and store syn-

chronization, word layout manipulation, and advanced prefetching operations.

E3DNow! was first implemented on the Athlon processor [97] in 1999 and continues

to be implemented on current AMD architectures.

3DNow! Professional

AMD’s 3DNow! Professional [98] was designed primarily to synchronize AMD’s

multimedia extensions with Intel’s SSE, and thus ease code migration between these
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competing architectures. As with AMD’s other multimedia extensions, 3DNow! Pro-

fessional is implemented on the MMX registers and data path.

The use of the Athlon’s MMX register set means that, unlike the Intel IA32 archi-
tecture, the AMD architecture does not require support for the same set of operations
to be implemented for two separate register sets. All of the SWAR instructions added

to the AMD architecture are available for use with its single enhanced register set.

On the other hand, the AMD architecture does not have the potential for par-
allelism that the Intel architecture has with its separate MMX and SSE data paths
and register sets. Thus, while it may be more difficult to program the Intel architec-
ture for optimal performance, the potential pay-off may be higher, depending on the

number of pipelines available.

3DNow! Professional was to be implemented in certain Palomino-core Athlon pro-
cessors starting in 2001. These included the desktop Athlon MP, but apparently not
earlier mobile Athlon 4 processors (or at least, not the one in my notebook com-
puter). 3DNow! Professional is currently implemented in Thoroughbred-core Athlon
XP processors [99] released starting in the first half of 2002. 3DNow! Professional can
be expected to be included in Athlon MP and XP line processors for the foreseeable

future.

Extended MMX

Cyrix’s Extended MMX (EMMX) [77] was intended to extend the MMX exten-
sion set in two ways. First, it extended MMX’s functionality by including arithmetic
instructions such as average, magnitude, and multiply high in order to make it more
generally useful. Second, it added flexibility by including “implied destination” in-

structions.

Implied destination instructions target a register whose use is not explicitly in-
dicated in the instruction, but rather implied by the use of its sequentially paired

register. Each pair consists of the registers whose numbers differ in only the least
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significant bit position. Effectively, these instructions are three register instructions
rather than the IA32 standard of two. This allows the instruction to avoid overwriting

one of its sources.

According to [77], EMMX was implemented on the MII processor. The GXm was
also intended to support EMMX according to a preliminary version of the Cyrix CPU
Detection Guide [100]. Unfortunately, EMMX was phased out at about the time of

Cyrix’s acquisition by National Semiconductor Corporation.

In 1999, Cyrix was sold to VIA Technologies, Incorporated. The Cyrix MII is
listed as a current VIA product [101]; however, it apparently has been supplanted
by the VIA C3, a 1GHz processor which supports MMX and 3DNow! [102]. This

processor was formerly known as the VIA Cyrix MIII [103].

2.1 Tables of Multimedia Extension Support for SWAR

The following tables contain information about the extension sets studied. This
information was gathered from various sources, but was primarily taken from speci-

fications in architectural and programming manuals.

In general, the description and tabulation of each extension set includes only
those instructions that are part of that extension set and not those that are part
of the underlying architecture or extension sets. For example, instructions that are
included in MMX are not listed as being part of SSE, although in current architectures

support for SSE implies support for MMX.

Exceptions have been made for extensions which operate on data that resides in
the general register set of the underlying architecture. In this case, existing instruc-
tions that may be useful for SWAR processing have been included. Specifically, the
descriptions for DEC’s MVI and HP’s MAX-1 and MAX-2 extensions include stan-
dard integer instructions which can be usefully applied to partitioned data stored in

the integer registers on which these extensions operate.
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For this analysis, the instructions have been categorized into groups which perform
related types of operations. These include arithmetic instructions, shifts and rota-
tions, bitwise-logical and bitwise-reduction instructions, various types of conditional
instructions and instructions which support control flow, data movement, replication,
and type conversion instructions, various types of data layout instructions, memory

accesses, and cache management instructions.

Some explanation of the notational conventions used within the tables is required
before the tables themselves are presented. These conventions are intended to allow
the data in these tables to be described concisely. Periods have been left off from the

abbreviations used in order to minimize the amount of space used.

In the row headings of the tables, the abbreviation “Part” indicates a partitioned
operand, “Scalar” indicates a partitioned operand with identical field values, “Ele-
ment” indicates one field of a partitioned operand, “Single” indicates a partitionable
register taken as a single unpartitioned value, and “Immed” indicates an immediate

operand contained in the instruction itself.

Also in the row headings, the abbreviation “Acc” denotes the use of a separate
accumulator, with “Acc Init” indicating that the operation will clear the accumulator
first. “Acc” by itself indicates that the result of the operation will be added to
the value in the accumulator. “Acc Diff” indicates that the operation will find the
differences between the operands, then add these differences to the accumulator. The
notation “Acc Sub” indicates that the result of the operation will be subtracted from

the accumulator.

Within the body of the tables, the notation “NxB” indicates an operand or result
partitioned into N fields of B-bit integers which may be signed or unsigned. A trailing
“u” indicates that the field data is treated as unsigned, and a trailing “s” indicates
that it is treated as signed.

Where such an entry is listed by itself or in a comma-separated list of values,
it indicates that a form of the operation where both the operands and result have

the listed partitioning is supported by the extension set. Where an entry contains
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an arrow, the notation shows the form of the operands separated by an operator,

followed by the arrow and then the form of the result.

The first table contains architectural information about representative CPUs which
implement these extensions. The remaining tables describe the forms of the instruc-
tions contained in each set. In most cases, separate entries have been made for each
instruction. These tables are keyed to the similarly numbered tables in Appendix C

which list the corresponding instruction mnemonic for each entry.

2.1.1 Sources and Architectural Features

Table 2.1 lists the primary sources of information and the architectural parameters

of a representative processor for each of the enhanced architectures.

For each extension set, the primary source of information contained in this and
the following tables is indicated in the row labeled “Primary Source”. Data for each

extension set was taken from the listed primary source unless otherwise noted.

The rows labeled “# R/W MM Registers” indicate the number of read/write
registers available for use by the corresponding multimedia extension set. Those
labeled “# R/O MM Registers” indicate the number of read-only registers available
for use. Some architectures reserve register 0 for use as a fast means of obtaining a

constant zero value and do not allow this register to be written to.

The rows labeled “# Bits/MM Register” indicate the total number of bits that
can be stored in a single register used by the corresponding extension set. This
ultimately limits the amount of SWAR parallelism that can be obtained within a
single multimedia pipeline.

The next row indicates which of the corresponding architecture’s register sets
are used by the multimedia extension set. Multimedia extensions usually operate on
data in modified existing processor registers, but some use register sets that have been
added expressly for use by the resident extension set. Those that are implemented

using existing registers have the advantage of being able to make use of existing
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instructions, while those that are implemented using dedicated register sets typically

have fewer restrictions on their individual use.

In some cases, multiple sets of registers are used, depending on the specific in-
struction applied. For example, SSE includes instructions that operate on data in the
SSE-specific register set, and also instructions that operate on the MMX-specific set.
Note that only DEC’s MVI and HP’s MAX extensions are applied to their respective

general integer register sets.

The next row indicates the maximum number of memory operands that may be
accessed by instructions that are not specifically intended for memory access purposes.
Note that the extensions based on the Intel IA32 architecture allow memory operands
for most instructions while those based on RISC architectures do not. Because of this,
we will not differentiate between register and memory operands when discussing Intel
[A32-based extension sets unless necessary. Also note that any particular instruction

may use a different number of memory operands than the maximum.

The row marked “Maximum Source Operands” indicates the maximum number of
source operands that may be used by an instruction in the corresponding extension
set. This is generally inherited from the underlying architecture. Any particular

instruction may have a different number of source operands than the maximum.

The next row indicates whether or not one of the source operands will be over-
written by the result of a typical instruction in the extension set. If reused, these
operands will have to be copied before the overwriting instruction is applied. Ar-
chitectures which allow non-source destinations help the programmer to avoid this

problem as long as there are available registers.

2.1.2 Arithmetic Instructions

Tables 2.2 through 2.7 show groups of arithmetic SWAR operations including
addition, subtraction, minimum, maximum, multiplication, combined operations, di-

vision, and more advanced arithmetic operations. Each table is described in turn.



_ 46 -

Table 2.1
Comparison of Multimedia Instruction Set Extensions

'"From [66].
2Reads as 0.
3From [61].

4Does not include load and store instructions.

Architectural Feature DEC HP HP SGI SGI Motorola
MVI MAX-1 | MAX-2 | MIPS-V MDMX AltiVec
Primary Source [60] [61] [82] [64] [65] [104]
# R/W MM Registers 31 31 31 32 32 /17 32
# R/O MM Registers 12 12 12 0 of 0
# Bits/ MM register 64 32 643 64 64 / 1927 128
Which registers? Integer | Integer | Integer Float Float or AltiVec Vector
Accumulator?!
Maximum Memory
Operands? 0 0 0 0 o' 0
Maximum Source
Operands® 2 2 2 3 3 3
Source Overwritten
as Destination? No No No No No No
Architectural Feature Sun Intel Intel Intel
VIS MMX SSE SSE2
Primary Source [90] [95] [95] [95]
# R/W MM Registers 32 86 8 8
# R/O MM Registers 0 08 0 0
# Bits/ MM register 64 645 128 128
Which registers? Float | Float® | SSE-specific | SSE-specific
or Float or Float
Maximum Memory
Operands? 0 1 1 1
Maximum Source
Operands® 2 2 2 2
Source Overwritten
as Destination? No Yes Yes Yes
Architectural Feature AMD AMD AMD Cyrix
3DNow! | E3DNow! | 3DNow!Pro EMMX
[75] [76] [98] [77]
# R/W MM Registers 8 8 8 8
# R/O MM Registers 0 0 0 0
# Bits/ MM register 64 64 64 64
Which registers? Float Float Float Float
Maximum Memory
Operands* 1 1 1 1
Maximum Source
Operands® 2 2 2 2
Source Overwritten
as Destination? Yes Yes Yes No for implied

®Does not include unique destination operand.

SFrom [105].
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Addition Operations

Table 2.2 contains information on the various forms of addition available in the
studied extension sets. These include modular and saturations addition, high-word

results, and various reductions.

Modular addition, also known as wrap-around addition, is “normal” computer
addition in which the stored result is the low n bits of the actual result, where n is
the size of the space in which the result is to be stored. This is equivalent to taking
the actual result modulo the maximum value storable in the available space. Each
extension set includes some form of modular addition except for MVI, which does

not, and the extensions to MMX, which use the MMX instructions for this purpose.

Most extension sets only allow the modular addition of two partitioned registers;
although, as already indicated, those based on the Intel IA32 architecture also allow a
memory location to be used as an operand. SSE, 3DNow!Pro, and SSE2 also contain
instructions which modularly add together only the lowest element from each of two
operands. By contrast, MDMX only allows modular addition to the accumulator

all other addition is saturated.

Because of its ubiquity and familiarity, modular addition should be included in

any general-purpose SWAR programming model.

Saturation addition is a form of computer addition in which the result is set to
the maximum storable value of the same sign when an overflow occurs. This form
of addition is used primarily for multimedia applications in which the data value
represents some physical parameter whose value should not wrap with incremental
changes. For example, the volume level on an audio mixer should not suddenly drop

to 0 when the user attempts to increase the volume above the maximum.

Again, most of the families support some form of saturation addition, but MVI,
MIPS-V, VIS, E3DNow!, and SSE do not. On those architectures which do not

support them, these operations can be often be emulated. One possibly method is
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to use a larger-precision addition, then limit the result to the values representable in

the lower-precision form.

Saturation arithmetic is seldom used for numeric computation, but the saturation
form of result is often more attuned to the needs of a numeric programmer than
one might realize, and may be used more often in the future. Because it is reason-
ably available and can be relatively easily emulated on most architectures, saturation
arithmetic should be included in any general-purpose SWAR programming model.

An NxB “modular addition high” (also known as “addition carry-out”) zero-
extends the carry bits that would result from a partitioned addition of the NxB
addends and stores them in an NxB result. Only AltiVec has this operation, and
thus it is not a good choice for inclusion in a portable model; however, it is useful for
emulating other operations such as saturation addition.

“Saturation reduce-add with an element” (Sat. RedAdd with EL) performs a
saturation addition of all of the fields of one partitioned register and the low field of
a second partitioned register. That is it performs a reduction addition on the first
partitioned register and also adds in the low field of the second. The result is stored

in the low field of a third partitioned register whose other fields are zeroed.

Only AltiVec includes this operation. This is unfortunate because it can be used
to optimize the implementation of reductions, which occur fairly frequently in SIMD
algorithms and are often costly to emulate. Because of this, and despite the lack of
support for reductions by other extension families, reductions should be included in
a generalized SWAR model to facilitate traditional SIMD processing.

“Saturation partial reduce-add with even elements” (Sat. Part. RedAdd w/Even)
performs a saturation addition on the N/2 sets of two neighboring fields of one parti-
tioned register and the even element of the corresponding set of elements of a second
partitioned register. The result is then stored in the even element of the corresponding
set of elements of a third partitioned register whose odd elements are zeroed.

“Saturation partial reduce-add with a partitioned value” (Sat. Part. RedAdd

w/Part) performs a saturation addition on the N/2 (or N/4) sets of two (or four)
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neighboring fields of one partitioned register and with the corresponding element in
a second partitioned register. The result is then stored in the corresponding element

of a third partitioned register.

The previous two instructions are only included in AltiVec, and are a bit too
esoteric for general-purpose work. They are most likely to be used, if at all, as

optimizations in the implementation of other operations.

“Saturation reduce-add and pack” (Sat. RedAdd and Pack) performs separate
saturated reduction additions on the elements of each of the sources, then packs the
sums into a partitioned result. This instruction is only included in 3DNow!, and

would be most useful for optimizing the implementation of reduction operations.

“Saturation reduce-add/subtract and pack” (Sat. RedAdd/Sub and Pack) per-
forms a saturated reduction addition on the elements of one of the sources and a re-
duction subtraction on the elements of a second source, then packs the differences into
a partitioned result. These two instructions are only included in Enhanced 3DNow!,
but may be useful for implementing reduction operations, depending on how they are

defined in the programming model.

Subtraction Operations

Table 2.3 contains information of the various forms of subtraction available in the
studied extension sets. These include modular and saturation subtraction, high-word

results, and sums and reduced sums of absolute differences.

As with addition, modular subtraction is “normal” computer subtraction, in which
the stored result is the actual result modulo the maximum value storable in the
register. Each of the extension families include some form of modular subtraction
except for MVI and the extensions to MMX, which again use the MMX instructions.
For each family, the supported forms correspond to the supported forms of modular

addition.
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Table 2.2
SWAR Addition Operations

Operation Types DEC HP HP SGI SGI Motorola
MVI MAX-1 MAX-2 MIPS-V MDMX AltiVec

Modular Addition!

Part/Part - - - 16x8,
2x16 4x16 8x16,

2x32f%:3 4x32

Immd/Part - - - - - -

Part/Part w/Acc - - - - 2-8x8u—8x24s, -

(w/ or w/o Init) 2-4x165—4x48s

Scalar/Part w/Acc - - - - 2-8x8u—8x24s, -

(w/ or w/o Init) 2-4x165—4x48s

Immd/Part w/Acc - - - - 2-8x8u—8x24s, -

(w/ or w/o Init) 2-4x165—4x48s

Element /Element - - - - - -

Saturation Addition

Part/Part - 2x16s, 4x16s, - 8x8u,4x168 16x8s,16x8u,

2x16u+2x16s | 4x16u+4x16s 8x16s,8x16u,
—9x16u —4x16u 4x32s,4x32u,4x32f*
Scalar/Part - - - - 8x8u,4x16s -
Immd/Part - - - - 8x8u,4x16s -

Modular Add. High

Part/Part

4x32u

[Sat. RedAdd w/EL

[4x32s+low 1x32s—low 1x32s

Sat. Part. RedAdd - - - - - 4x32s

w/Even

Sat. Part. RedAdd 16x8s+4x32s—4x32s,

w/Part - - - - - 16x8u+4x32u—4x32u,
8x16s+4x32s—4x32s

Sat. RedAdd - - - - - -

and Pack

Sat. RedAdd/Sub - - - - - -

and Pack

'Modular signed and unsigned addition are equivalent.
2Calculated to infinite precision, then rounded according to current rounding mode in FCSR.
3Generates exception on overflow or underflow.
4Rounds to nearest.
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Table 2.2 cont’d.
SWAR Addition Operations

Operation Types Sun Intel Intel Intel
VIS MMX SSE SSE2

Modular Addition’

Part/Part 8x8, 16x8
2x16,4x16, 4x16, 8x16
1x32,2x32 2x32 4x32f2 4x32

2x64,2x64f

Immd/Part - - - -

Part/Part w/Acc - - - -
(w/ or w/o Init)
Scalar/Part w/Acc - - . -
(w/ or w/o Init)
Immd/Part w/Acc - - - -
(w/ or w/o Init)
Element/Element - - low 1x32f2
low 1x64f

Saturation Addition

Part/Part - 8x8s,8x8u, - 16x8s,16x8u,
4x16s,4x16u 8x16s,8x16u

Scalar/Part - - - -
Immd/Part - - , -

Modular Add. High

Part/Part - - - N

Sat. RedAdd w/EL |

Sat. Part. RedAdd - - B -
w/Even

Sat. Part. RedAdd - - B -
w/Part

Sat. RedAdd - - - -
and Pack

Sat. RedAdd/Sub - - , N
and Pack

!Modular signed and unsigned addition are equivalent.
2Generates exception on overflow or underflow.
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Table 2.2 cont’d.
SWAR Addition Operations

Operation Types AMD AMD AMD Cyrix
3DNow! E3DNow! | 3DNow!Pro | EMMX

Modular Addition”

Part/Part - - -
2x32f

Immd/Part - - , -
Part/Part w/Acc - - - -
(w/ or w/o Init)
Scalar/Part w/Acc - - . -
(w/ or w/o Init)
Immd/Part w/Acc - - - -
(w/ or w/o Init)
Element /Element - - low 1x32f -

Saturation Addition

Part/Part - -
4x16s?
2x32f
Scalar/Part - - - -
Immd/Part - - - -

Modular Add. High

Part/Part - - - N

Sat. RedAdd w/EL || - - _ N

Sat. Part. RedAdd - - B -
w/Even

Sat. Part. RedAdd
w/Part - - - -

Sat. RedAdd 2-2x32f— - - -
and Pack 2x32f

Sat. RedAdd/Sub - 2-2x32f— - -
and Pack 2x32f

'Modular signed and unsigned addition are equivalent.
2Stores result to implied destination register.
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Because of its ubiquity and utility, and because it is the complement of modu-
lar addition, modular subtraction should be included in any general-purpose SWAR

programming model.

As with modular subtraction, each family supports the forms of saturation sub-
traction which correspond to the supported forms of saturation addition. For com-
pleteness, and for the same reasons that saturation addition should be included, sat-
uration subtraction should be included in any general-purpose SWAR programming

model.

An NxB “subtraction high” (also known as “subtraction carry-out”) zero-extends
the complement of the carry bits that would result from a subtraction of the NxB
operands and stores them into an NxB result. As with the addition high, only AltiVec
includes this operation. Thus, it is not an operation that should be required in a

general-purpose model.

“Saturation reduce-subtract and pack” (Sat. RedSub and Pack) performs separate
saturated reduction subtractions on the elements of each of the sources, then packs

the subresults into a partitioned result.

“Reduce-add of absolute differences” (RedAdd of Abs. Diffs) takes the parallel
absolute differences of the operands, then performs a reduction addition on these
subresults. This operation is supported by several of the extension families, and is

used primarily for finding pixel differences in graphics applications.

Extended MMX includes an instruction which performs a “sum of absolute dif-
ferences and saturation accumulate” (Sum of Abs. Diffs; Sat Acc.) operation which
is similar to the above operation but accumulates with an operand in memory rather
than performing a reduction. These instructions are probably too application-specific
to be included in a general-purpose SWAR programming model, but may be useful

for optimization purposes.
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Table 2.3
SWAR Subtraction Operations

Operation Types DEC HP HP SGI SGI Motorola
MVI MAX-1 MAX-2 MIPS-V MDMX AltiVec

Modular Subtraction?

Part/Part - - - 16x8,
2x16 4x16 8x16,

2x32f%:3 4x32

Part/Part w/Acc Diff - - - - 2-8x8u—8x24s, -

(w/ or w/o Init) 2-4x165—4x48s

Scalar/Part w/Acc Diff - - - - 2-8x8u—8x24s, -

(w/ or w/o Init) 2-4x165—4x48s

Immd/Part w/Acc Diff - - - - 2-8x8u—8x24s, -

(w/ or w/o Init) 2-4x165—4x48s

Element /Element - - - - - -

Saturation Subtraction

Part/Part - 2x16s, 2x16s, - 8x8u,4x16s 16x8s,16x8u,

2x16u-2x16s | 2x16u-2x16s 8x16s,8x16u,
—2x16u —2x16u 4x32s,4x32u,4x32f4

Scalar/Part - - - - 8x8u,4x16s -

Immd/Part - - - - 8x8u,4x16s -

Subtraction High

Part/Part - - - - - 4x32u

Sat. RedSub - - - - - -

and Pack

[RedAdd of Abs. Diffs  [[8x8u—1x64u | - | - - - -

[Sum Abs Diffs; Sat Acc. ||

"Modular signed and unsigned subtraction are equivalent.

2Calculated to infinite precision, then rounded according to current rounding mode in FCSR.

3Generates exception on overflow or underflow.

4Rounds to nearest.
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SWAR Subtraction Operations

Operation Types Sun Intel Intel Intel
VIS MMX SSE SSE2

Modular Subtraction?

Part/Part 8x8, 16x8,
2x16,4x16, 4x16, 8x16,
1%32,2x32 2x32 4x32f2 4x32,

1x64,2x64,2x64f

Part/Part w/Acc Diff - - - -

(w/ or w/o Init)

Scalar/Part w/Acc Diff - - - -

(w/ or w/o Init)

Immd/Part w/Acc Diff - - - -

(w/ or w/o Init)

Element /Element - - low 1x32f2

low 1x64f

Saturation Subtraction

Part/Part - 8x8s,8x8u, - 16x8s,16x8u,

4x16s,4x16u 8x16s,8x16u

Scalar/Part - - - -

Immd/Part - - - -

Subtraction High

Part/Part - - - -

Sat. RedSub - - - -

and Pack

[ RedAdd of Abs. Diffs [ 8x8u—1x64 | - | 8xBu—1x16u® | 16x8u—2x16u? |

Sum Abs Diffs; Sat Acc.

!Modular signed and unsigned subtraction are equivalent.

2Generates exception on overflow or underflow.
3Upper 3x16 is zeroed. There is no possibility of overflow.
4Bach 64-bit quadword is reduced to a 16 bit sum. The remaining fields are zeroed.
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Table 2.3 cont’d.
SWAR Subtraction Operations

Operation Types AMD AMD AMD Cyrix
3DNow! E3DNow! 3DNow!Pro | EMMX

Modular Subtraction!

Part/Part - - N
2x32f

Part/Part w/Acc Diff - - , -
(w/ or w/o Init)
Scalar/Part w/Acc Diff - - - -
(w/ or w/o Init)
Immd/Part w/Acc Diff - - , -
(w/ or w/o Init)
Element /Element - - low 1x32f -

Saturation Subtraction

Part/Part - -
4x16s2

Scalar/Part
Immd/Part - - - -

Subtraction High

Part/Part - - - -

Sat. RedSub - 2-2x32f— - -
and Pack 2x32f

[ RedAdd of Abs. Diffs || - | 8x8—1x16u®-T | - [ N

| Sum Abs Diffs; Sat Acc. || - | - | - | 8x8u’

!Modular signed and unsigned subtraction are equivalent.

2Stores result to implied destination register.

3Upper 3x16 is zeroed. There is no possibility of overflow.

4T was not able to confirm the (un)signedness of this.

5One operand must be memory. Result is stored in implied register.
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Maximum and Minimum Operations

Table 2.4 contains information on the various forms of maximum and minimum
operations and operations pertaining to the sign or magnitude of the field data which

are included in the studied extension sets.

Most of the families have some form of complementary maximum and minimum
instructions. These are both ubiquitous and basic enough to be included in a general-
purpose model. They are normally used to obtain the larger or smaller value of the
corresponding elements from two partitioned operands. However, they can also be
used in the emulation of unsupported saturation operations to limit result values to

the required storable range.

Extended MMX includes a partitioned binary “magnitude” instruction which,
for each pair of corresponding elements, stores the value with the larger absolute
magnitude without changing its sign. However, EMMX is the only family which
includes such an instruction; and it is unclear if any current CPU implements the
EMMX extensions. Thus, this type of operation probably should not be included in

a general-purpose model at this time.

MIPS-V includes “absolute value” and “negate” instructions for operating on
single-precision floating-point data. While absolute value would be a useful instruc-
tion to include in a programming model, none of the families support it for integer
data. Thus, it also should probably not be included in a general-purpose model at

this time. In contrast, negation is easily emulated on almost all architectures, so it

probably should be included.

Enhanced 3DNow!, 3DNow!Pro, SSE, and SSE2 each include a instructions to gen-
erate a zero-extended bitmasks from the sign bits of the fields of a partitioned register.
These instructions are not particularly useful except for implementing conditional op-
erations. Because of this, they should not be included as individual operations in a
general-purpose programming model, but may be useful in the implementation of

others.
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Table 2.4
Maximum and Minimum Operations

Operation Types DEC HP SGI SGI Motorola Sun Intel
MVI MAX | MIPS-V | MDMX AltiVec VIS | MMX
Maximum
Part/Part 8x8s,8x8u, - - 8x8u, 16x8s,16x8u, - -
4x16s,4x16u 4x16s 8x16s,8x16u,
4x32s,4x32u,4x32f!
Scalar/Part - - - 8x8u, - - -
4x16s
Immd/Part 8x8s,8x8u, - - 8x8u, - - -
4x16s,4x16u 4x16s
Element /Element - - - - - - -
Minimum
Part/Part 8x8s,8x8u, - - 8x8u, 16x8s,16x8u, - -
4x16s,4x16u 4x16s 8x16s,8x16u,
4x32s,4x32u,4x32f!
Scalar/Part - - - 8x8u, - - -
4x16s
Immd/Part 8x8s,8x8u, - - 8x8u, - - -
4x16s,4x16u 4x16s
Element /Element - - - - - - -
[ Magnitude Part/Part || - [ - ] - | - | - | - 1T - ]
[ Abs. Value Part/Part || - | - [ 2x32f | - | - | - 1T - ]
| Negate Part/Part [ - | - ] 2x32f | - | - [ -1 - ]
[ Generate Sign Mask || - [ - ] - | - | - | - 1T - ]
Operation Types Intel Intel AMD AMD AMD Cyrix
SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMX
Maximum
Part/Part 8x8u, 16x8u, 8x8u, -
4x16s, 8x16s, 4x16s
4x32f 2x32f 2x32f
2x64f
Scalar/Part - - - - - -
Immd/Part - - - - - -
Element /Element low 1x32f - - low 1x32f -
low 1x64f
Minimum
Part/Part 8x8u, 16x8u, 8x8u, -
4x16s, 8x16s, 4x16s
4x32f 2x32f 2x32f
2x64f
Scalar/Part - - - - - -
Immd/Part - - - - - -
Element /Element low 1x32f - - low 1x32f -
low 1x64f
[ Magnitude Part/Part || - | - | - | - | - | 4x16s
[ Abs. Value Part/Part || - | - | - | - | - | -
[ Negate Part/Part I - | - | - | - | - | -
Generate Sign Mask 8x8s—1x32, | 16x8s—1x32, - 8x8s—1x32 -
4x32f—1x32 2x32f— 1x32
2x64f—1x32

140.0 > -0.0, and max(NaN, anything) = QNaN.
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Multiplication Operations

Table 2.5 contains information on the various forms of multiplication instructions
available in the studied extensions. These include modular and saturated multipli-
cation, multiplications producing the upper word of their results, multiplication by

sign bits, and averages.

MDMX, AltiVec, VIS, and MMX each include some form of modular integer
multiplication. MDMX’s multiplies each generate a result in the accumulator, which
is large enough to maintain the full precision of the result. On the other architectures
multiplies only operate on some of the source fields or store only part of each result

in a space that is smaller than that necessary to hold the entire result.

Integer multiplications supported by AltiVec operate on the even or odd fields of
their source registers and create a result with fields that have twice the precision of
their source fields. SSE2 has a set of similar instructions which operate on the even
fields of their operands, but these are limited to unsigned data. VIS includes several
types, with results of various forms, each of which multiplies an 8-bit partitioned
register by a 16-bit register. MMX and SSE2 include 16-bit versions which generate

the lower 16-bits of their results.

Some of these instructions can be used to perform multiplications on data which
is of smaller precision than that supported. They can also be used to perform partial
multiplications of larger-precision data. Thus, the multiplication of unsupported data

precisions can usually be emulated, but not always easily or inexpensively.

MIPS-V, SSE, and 3DNow!Pro each include partitioned 32-bit modular floating-
point multiplies, while SSE2 includes a 64-bit version. SSE and 3DNow!Pro also
include an instruction which multiplies the low elements of a register which is parti-

tioned into 32-bit floats. Again, SSE2 includes a 64-bit version.

Because multiplications often occur in numeric processing, they should be included
in a general-purpose programming model. Multiplies are fairly easy to emulate if some

form is available, and can be emulated by a shift-add sequence otherwise. The VIS
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forms are rather esoteric, having been designed to be used primarily through a set
of intrinsics. Thus, they would not be good models for operations included within a
general-purpose programming model. However, they can be used to support such a

model with some care.

The “multiply high” instruction stores the upper part of the result of a modular
multiplication. It is used to complement multiplication instructions in which the
stored value is the lower part of the full result. In each case, the stored part of the
result resides in the same number of bits as the source data. Thus, there is no change
of partitioning when using this type of instruction. These instructions are useful for
emulating saturation multiplication, but are probably not useful enough on their own

to make visible as part of a high-level programming model.

MDMX includes a few forms of saturated integer multiplication, while 3DNow! in-
cludes a saturating 32-bit floating-point multiply. Saturation multiplication is gener-
ally used for multimedia algorithms, but not for numeric computation. The extension
families which include multiplies usually support either modular multiplication forms

or saturating forms, but not both.

Integer saturation multiplication often can be emulated with other operations.
However, floating-point saturation multiplication may be impossible to emulate on
some targets, and modular floating-point multiplication may be impossible or ex-
pensive to emulate if the target only supports saturation multiplication. For these
reasons, one may argue either way on the point of whether or not saturation multi-

plication should be included in a general-purpose model.

It is only on overflow that saturation operations differ from the corresponding
modular operation, so one might argue that it should be acceptable to ignore the
problem. However, the purpose of saturation math is to guarantee that the result

does not overflow; thus, it should always work properly.

For the sake of completeness, both modular and saturation operation should be
included, for both integer and floating-point data, but without any guarantee that the

target can support both forms. This is similar to how floating-point multiplication
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is handled by the C programming language, in which there is no guarantee of the

correctness of the result on overflow.

“Multiply by sign” is supported only by MDMX. This instruction multiplies an
immediate value, a single-valued partitioned operand, or a partitioned value by the
sign bits of the corresponding fields of a partitioned register. If a field in this register
is 0, the corresponding result will also be 0. Because it is a special-purpose instruction
which is only supported by one target, it should not be included as part of a portable

programming model.

Some form of average instruction is supported by most of the extension families.
This operation is commonly used in image and video processing but may be less useful
in a general-purpose environment. Because of this, it is also arguable as to whether
or not an averaging operation should be included in a general-purpose SWAR model,

although it is relatively easy to emulate and widely supported.

Combined Arithmetic Operations

Several of the extension families contain instructions which are combinations of
multiplications and other operations. These instructions are intended for use in im-
plementing specific algorithms such as FFTs. Few are implemented by more than
one family, and none should be used as the basis for operations in a general-purpose
programming model. For this reason, these instructions are not discussed in detail;
however, an entry in table 2.6 is provided which may be useful for optimization pur-

poses.

Division and Advanced Arithmetic Operations

Table 2.7 lists arithmetic instructions useful for performing division and more

complex arithmetic operations such as square roots and exponentials.
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Table 2.5
Multiplication Operations

DEC HP HP SGI SGI
MVI | MAX-1 | MAX-2 | MIPS-V MDMX

Motorola
AltiVec

Operation Types

Modular Multiplication T

Part/Part - - - 2x32f%:3 - odd 16x85—8x16s,
odd 16x8u—8x16u,
even 16x8s—8x16s,
even 16x8u—8x16u,
odd 8x16s—4x32s,
odd 8x16u—4x32u,
even 8x16s—4x32s,

even 8x16u—4x32u

Immd/Part - - - -
Part/Part w/Acc - - - -
(w/ or w/o Init)

2-8x8u—8x24s, -
2-4x165s—4x48s

Scalar/Part w/Acc
(w/ or w/o Init)
Immd/Part w/Acc

(w/ or w/o Init)
Part/Part w/Acc Sub
(w/ or w/o Init)
Scalar/Part w/Acc Sub
(w/ or w/o Init)
Immd/Part w/Acc Sub
(w/ or w/o Init)
Part/Element

Element /Element

2-8x8u—8x24s,
2-4x168—4x48s
2-8x8u—8x24s,
2-4x168—4x48s
2-8x8u—8x24s,
2-4x168—4x48s
2-8x8u—8x24s,
2-4x168—4x48s
2-8x8u—8x24s,
2-4x165—4x48s

Modular Mul. High

Pt/Pt Store in Enh.
Pt/Pt Store in Implied
Pt/Pt Acc. w/Implied

Sat. Multiplication

Part/Part - - - - 8x8u,4x16s -
Scalar/Part - - - - 8x8u,4x16s -
Immd/Part - - - - 8x8u,4x16s -
Mult. by Sign (-,0,+)

Part/Part - - - - 4x16s -
Scalar/Part - - - - 4x16s -
Immd/Part - - - - 4x16s -
Average - - - - 16x8s,16x8u,”

2x16u’

8x16s,8x16u,
4x32s,4x32u

L AltiVec byte numbering is the reverse of the field numbering used in this document.
2Generates exception on overflow or underflow.

3Calculated to infinite precision, then rounded according to current rounding mode in FCSR.
4Each of these performs (sum+1)/2.

’Round to odd : NewLSB <- sum(bit1) | sum(bit0). Sum before shift.
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Table 2.5 cont’d.
Multiplication Operations

Operation Types Sun Intel Intel Intel
VIS MMX SSE SSE2
Modular Multiplication T
Part/Part (4x8u)x(4x16s) 4x16 8x16,
—4x245—4x16s2,
(odd 8x8s)x(4x16s)
—4x245—4x1683,
(even 8x8u)x(4x16s)
—4x245—4x32s*
—4x16s3,
(odd 4x8s)x(2x16s)
—2x245—2x32s°, even 2x32u— 1x64u,
(even 4x8u)x(2x16s) even 4x32u—2x64u,
—2x24s—2x32s?
4x32f
2x64f
Immd/Part - - - -

Part/Part w/Acc - - - -
(w/ or w/o Init)
Scalar/Part w/Acc - - . -
(w/ or w/o Init)
Immd/Part w/Acc - - - -
(w/ or w/o Init)
Part/Part w/Acc Sub - - - -
(w/ or w/o Init)
Scalar/Part w/Acc Sub - - - -
(w/ or w/o Init)
Immd/Part w/Acc Sub - - - -
(w/ or w/o Init)

Part/Element (4x8u)x(upper 2x16s) - - -
—4x24s—4x16s2,
(4x8u)x(lower 2x16s)
—4x245—4x165>
Element/Element - - low 1x32f

low 1x64f

Modular Mul. High
Pt/Pt Store in Enh. - 4x16s 4x16u 8x16u,8x16s
Pt/Pt Store in Implied - - - -
Pt/Pt Acc. w/Implied - - - -

Sat. Multiplication
Part/Part - B B B
Scalar/Part - - - -
Immd/Part - - , -
Mult. by Sign (-,0,4)
Part/Part - - - N
Scalar/Part - - , -
Immd/Part - - - -

Average - - 8x8ub, 16x8u,
4x16u 8x16u

! Calculated to infinite precision, then rounded according to current rounding mode in FCSR.
2Most significant 16 bits of 24 are stored after rounding to nearest value.

3Rounds to nearest by adding 1/2 of lowest included position, then truncating lower bits.
4Sign-extended.

5Left-shifted logical by 8 bits.

6Performs (sum+1)/2.
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Table 2.5 cont’d.
Multiplication Operations

Operation Types AMD AMD AMD Cyrix
3DNow! | E3DNow! | 3DNow!Pro | EMMX

Modular Multiplication
Part/Part - - -

2x32f

Immd/Part - - - -
Part/Part w/Acc - - - -
(w/ or w/o Init)
Scalar/Part w/Acc - - - -
(w/ or w/o Init)
Immd/Part w/Acc - - - -
(w/ or w/o Init)
Part/Part w/Acc Sub - - - -
(w/ or w/o Init)
Scalar/Part w/Acc Sub - - - -
(w/ or w/o Init)
Immd/Part w/Acc Sub - - - -
(w/ or w/o Init)
Part/Element - - - -

Element /Element - - low 1x32f -

Modular Mul. High
Pt/Pt Store in Enh. 4x16sT 4x16u - 4x16s2
Pt/Pt Store in Implied - - - 4x16s>
Pt/Pt Acc. w/Implied - - - 4x16s>

Sat. Multiplication
Part/Part 2x32f - - -
Scalar/Part - - - -
Immd/Part - - - -
Mult. by Sign (-,0,+)
Part/Part - - Z N
Scalar/Part - - - -
Immd/Part - - - -

Average 8x8u’ 8x8u?, - 8x8u or
4x16u® 8x84

'"Rounds to nearest, then truncates low 16 bits.

2Adds 0x4000 (bit 14) to product, then takes bits 30-15 as result.

3Performs (sum+1)/2.

4M2 versions prior to v1.3 perform 8x8; after v1.3 perform 8x8u. Both perform sum/2.
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Table 2.6

Multiply/Mod. Add

Operation Types DEC HP SGI SGI Motorola
MVI | MAX MIPS-V MDMX AltiVec
Multiply, then Add - - - - -
Neighboring Fields
Multiply/Mod. Add - - 2x32f7 - 4x32f7
2-8x16—8x32+38x16—8x16
Negated - - 2x32fT - -

Multiply/Sat. Add

2-8x165—8x325—8x17s7

+8x16s% —8x16s
Multiply(w/Rnd)/Sat. Add - - - - 2-8x165—8x32s
—8x18s6
+8x16s7+(8x185)”1”
—8x16s
Multiply/Mod. Subtract - - 2-2x32f—2x32f - -
2x32f—2x32f!
Negated - - 2-2x32f—2x32f - 4x32f8
Multiply/Mod. Subtract —2x32f—2x32f!

Multiply, then Modular
Add Neighbor w/Part

2-16x8u—16x16u
+4x32u—4x32u,
2-8x165s—8x32s
+4x32s—4x32s,
2-8x16u—8x32u
+4x32u—4x32u,

(16x8s)x(16x8u)—16x16s

+4x32s—4x32s

Multiply, then Saturate
Add Neighbor w/Part

2-8x16s—8x32s
+4x32s—4x32s,
2-8x16u—8x32u
+4x32u—4x32u

!Partitioned multiply of two operands, followed by partitioned addition with a third operand. Sum

(or difference) calculated to infinite precision, then rounded according to FCSR mode.

2Partitioned multiply of two operands, followed by partitioned addition with a third operand, then

rounded to nearest.

38x16 modular add. The lower half of each 32-bit field is discarded.

“High 17 bits of field.
5Sign-extended to 17 bits.
5High 18 bits of field.

"Sign-extended to 17 bits, then shifted left logically to 18 bits.

8Partitioned multiply of two operands, followed by partitioned subtract of third operand, negated,

then rounded to nearest.
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Table 2.6 cont’d.
Combined Arithmetic Operations

Operation Types Sun Intel Intel Intel AMD Cyrix
VIS MMX SSE SSE2 3DNow! (All families) | EMMX
Multiply, then Add - 2-(4x168) - 2-(8x16s) - -
Neighboring Fields —4x32s —8x32s
—2x32s —4x32s

Multiply/Mod. Add

Negated
Multiply/Mod. Add

Multiply/Sat. Add

Multiply(w/Rnd)/Sat. Add

Multiply/Mod. Subtract

Negated
Multiply/Mod. Subtract

Multiply, then Modular
Add Neighbor w/Part

Multiply, then Saturate
Add Neighbor w/Part
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SSE and 3DNow!Pro include 32-bit floating-point divide and square root instruc-
tions which operate on two partitioned registers or on the low elements of two parti-

tioned registers. SSE2 provides the same functionality for 64-bit elements.

AltiVec, SSE, and 3DNow!Pro each include instructions which approximate 32-
bit partitioned floating-point reciprocals and reciprocal square roots. SSE, 3DNow!,
and 3DNow!Pro also support low element forms of these instructions, although the
3DNow! versions are implemented as a series of three instructions rather than just

one.

AltiVec also includes a set of instructions which perform partitioned 32-bit floating-

point base-2 logarithmic (logox) and exponential (2%) approximations.

Because each of these instructions is supported by a few targets at most, they
should not be incorporated into a portable programming model. One may choose to
make an exception for division because it is the inverse of multiplication. While it can
be an expensive operation for targets which do not support it, division can usually be

serialized without too much of a penalty compared to its typically long clock count.

2.1.3 Shift and Rotate Instructions

Table 2.8 lists forms of shift and rotate instructions which are available in the
extension sets studied. These include logical and arithmetic shifts, shift-and-add and

shift-and-subtract instructions, and simple rotations.

Logical shifts are a basic operation that should be included in any general-purpose
programming model which allows bit manipulation. MDMX and AltiVec include
integer shifts by partitioned and replicated scalar values. Using partitioned registers
simplifies the use of general expressions as shift counts by allowing each element to
be shifted by a different amount. Using a replicated scalar shift count requires that

the same count be used for each, although it can be a dynamic value.

AltiVec also includes full-register shifts in which the count is stored as a single

value in a vector register. The Alpha architecture’s full-width integer shifts can also
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Table 2.7
Division and Advanced Arithmetic Operations

Operation Types DEC HP SGI SGI Motorola | Sun Intel
MVI | MAX | MIPS-V | MDMX AltiVec VIS | MMX

Divide

Part/Part - - - - - - -

Element /Element - - - - - . -

Square Root
Part/Part - - - , N , B
Element /Element - - - - - . -

Reciprocal Approx.

Part - - - - 4x32f - -
Element - - - - - - -
Recip. Sq. Rt. Approx.
Part - - - - 4x32f - -
Element - - - - - - -
Loga(x) Approx.
Part - - - - 4x32f - -
2% Approx.
Part - - - - 4x32f - -
Operation Types Intel Intel AMD AMD AMD Cyrix
SSE SSE2 3DNow! E3DNow! | 3DNow!Pro | EMMX
Divide
Part/Part 4x32f - - 2x32f -
2x64f
Element /Element low 1x32f - - low 1x32f -
low 1x64f
Square Root
Part/Part 4x32f - - 2x32f -
2x64f
Element /Element low 1x32f - - low 1x32f -
low 1x64f
Reciprocal Approx.
Part 4x32f - - - 2x32f -
Element low 1x32f - low 1x32f! - low 1x32f -
Recip. Sq. Rt. Approx.
Part 4x32f - - - 2x32f -
Element low 1x32f - low 1x32f! - low 1x32f -
Loga(x) Approx.
Part - - - - - -
2% Approx.
Part - - - - - -

!Performed using three instructions: the first is accurate to 14 bits, the second is an intermediate
step, and the third is accurate to 24 bits.
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be used by MVI in this manner, as long as one considers the register to be partitioned
into a single field. Full-register logical shifts can be used to emulate partitioned shifts,
and are very important for the emulation of many other unsupported operations.
MMX and SSE2 go one step further by including shifts by a single-valued register
which operate on a partitioned operand. This eliminates the need to emulate these

particular instructions with a series of full-register shifts.

MVI, MAX-2, MDMX, MMX, and SSE2 also include shifts by immediates. These
are useful for implementing common operations such as multiplication by a constant.
However, they have limited usefulness in an environment where the shift count will
often be an expression rather than a static constant. These shifts are still quite useful

as they can be used internally by a compiler to emulate unsupported operations.

Arithmetic right shifts are typically supported in the same forms as logical right
shifts or in a subset of these forms. For example, in MDMX 8-bit data is considered
to be unsigned pixels, so signed (i.e. arithmetic) shifts are not included for use with
this field size. These instructions are basic to many numeric algorithms and should
be included in a general-purpose model both for their utility and for the sake of

completeness.

MVT also includes full-register “shift-and-add” and “shift-and-subtract” instruc-
tions which are intended for use in emulating multiplication and division for these
RISC systems. These instructions are not as useful in a SWAR environment be-
cause the arithmetic parts of these operations are not partitioned. HP’s MAX-1
includes partitioned “shift-and-saturation-add” instructions which are limited to 16-
bit operands. These instructions are more general than simple shifts, and can be used
wherever simple shifts can be. However, shift-and-add and shift-and-subtract are not
operations that should be included in a general-purpose model because of their lack
of portability.

Only AltiVec includes a “rotate” instruction, which is partitioned and indexed by
a partitioned register. Even though only one target supports rotations, they are fairly

easy to implement using shifts, so they could be included in a general-purpose model.
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One should note that in a model which allows multi-word lengthed vectors, a rotation
would actually consist of a series of shift instructions, with some masking, rather than
being comprised of rotate instructions. Thus, rotate instructions are actually only

useful in certain special cases.

2.1.4 Bitwise-Logical and Bit-Reduction Instructions

Bitwise-logical operations are extremely important for SWAR processing. These
operations make enable masking for conditional constructs possible, as well as vec-
tor element accesses and the masking of non-data bits. By definition, all one-bit
partitioned operations are bitwise operations. Also, many operations which are un-

supported for some field size can be emulated by using bitwise operations.

We refer to these operations as being polymorphic because they perform exactly
the same function regardless of the partitioning or signedness of their operands [106].

That is, they can assume the form of any partitioning of the data.

Polymorphics can form the basic building blocks for more advanced operations.
Basic digital logic gates perform bitwise-logical operations. These, in turn, form
the basis of more complex digital logic including the processors whose attributes are
discussed in this chapter. Similarly, complex SWAR operations can be implemented
as series of polymorphics. Because of their simple utility, these operations should be

included in any general-purpose programming model.

Many of these operations are actually combinations of others, and thus not all of
them need be supported. However, it is important that a working set from which
necessary operations can be derived is supported. For example, MMX includes the
instructions AND, ANDN, OR, and XOR, but not a simple one’s complement oper-
ation. This basic operation, which is used to generate PE enable masks for if-else
conditional execution, must be derived from the available polymorphic instructions.

MMX’s ANDN, which complements one of its arguments then ANDs it with the other,
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Table 2.8
Shift and Rotate Operations

Operation Types DEC HP HP SGI SGI Motorola Sun
MVI MAX-1 | MAX-2 | MIPS-V | MDMX AltiVec VIS
Shift Left Logical®
Part by Part - - - - 8x8, 16x8, -
4x16 8x16,
4x32
Part by Scalar - - - - 8x8, -
4x16
1x128 by 16x82
Part by Single 1x64 - - - - -
1x1283
Part by Immd 1x64 - 4x16 - 8x8, - -
4x16
Shift Right Logical®
Part by Part - - - - 8x8u, 16x8u, -
4x16u 8x16u,
4x32u
Part by Scalar - - - - 8x8u, - -
4x16u
Part by Single 1x64u - - - - 1x1283 -
Part by Immd 1x64u - 4x16u - 8x8u, - -
4x16u
Shift Right Arithmetic?
Part by Part - - - - 4x16s 16x8, -
8x16,
4x32
Part by Scalar - - - - 4x16s - -
Part by Single 1x64s - - - - - -
Part by Immd 1x64s - 4x16s - 4x16s - -
Shift Left and Add
by 1 bit - - - - - - -
by 2 bits 1x64u - - - - - -
by 3 bits 1x64u - - - - - -
Shift Left and Sat. Add®
by 1,2, or 3 bits - 2x16s - - - - -
Shift Teft and Subtract®
by 2 bits 1x64u - - - - - -
by 3 bits 1x64u - - - - - -
Shift Right and Sat. Add
by 1,2, or 3 bits - 2x16s - - - - -
Rotate”
Part by Part - - - - - 16x8, -
8x16,
4x32

LShift left logical and shift left arithmetic are equivalent.

2Shift count is scalar value mod 8.

3Shifted by number of bytes encoded in bits 6 through 3 (121-124 in AltiVec notation) of the single.
4Shift right logical is indicated as being unsigned. Shift right arithmetic is indicated as being signed.
5Shifts are signed saturated, then signed saturating addition is performed.

6Shifts the minuend then subtracts the unshifted subtrahend from it.

TRotating left by x bits is equivalent to rotating right by B-x bits in an NxB register.
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Table 2.8 cont’d.
Shift and Rotate Operations

Operation Types Intel Intel Intel AMD AMD AMD Cyrix
MMX | SSE SSE2 3DNow! | E3DNow! | 3DNow!Pro | EMMX

Shift Left Logical®
Part by Part - - - - - - -
Part by Scalar -
Part by Single 4x16, - 8x16, - - - -

2x32, 4x32,
1x64 2x64
Part by Immd 4x16, - 8x16, - - - -
2x32, 4x32,
1x64 2x64,
1x1282

Shift Right Logical®
Part by Part - - - - - - N
Part by Scalar - - - - - - R

Part by Single 4x16u, - 8x16u, - - - -
2x32u, 4x32u,
1x64u 2x64u
Part by Immd 4x16u, - 8x16u, - - - -
2x32u, 4x32u,
1x64u 2x64u,
1x128u2

Shift Right Arithmetic?
Part by Part - - - - - - -
Part by Scalar - -
Part by Single 4x16s, - 8x16s, - - - -

2x32s 4x32s
Part by Immd 4x16s, - 8x16s, - - - -
2x32s 4x32s
Shift Left and Add
by 1 bit - - - - - - -
by 2 bits - - - - - - -
by 3 bits - - - - - - -

Shift Left and Sat. Add?
by 1,2, or 3 bits - - - - B B N
Shift Left and Subtract®
by 2 bits - - - - B z N
by 3 bits - - - - - _ -
Shift Right and Add
by 1,2, or 3 bits - - - - - B -
Rotate®
Part by Part - - - - - - N

1Shift left logical and shift left arithmetic are equivalent.

2Shifted by number of bytes encoded in 8-bit unsigned immediate.

3Shift right logical is indicated as being unsigned. Shift right arithmetic is indicated as being signed.
4Shifts are signed saturated, then signed saturating addition is performed.

5Shifts the minuend then subtracts the unshifted subtrahend from it.

SRotating left by x bits is equivalent to rotating right by B-x bits in an NxB register.
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can be used to do just that by ANDing the complement of the enable mask with all
"1’s. This generates the enable mask for the else body from that for the if body.

All of the families include a working set of these instructions or reuse those of
their base family or underlying architecture. For example, AMD’s 3DNow! reuses
the MMX polymorphic instructions, while MVI uses those of the underlying Alpha

architecture.

A general-purpose model need only include a working set of polymorphics. What-
ever set is chosen should be easy to emulate on any given target using the available
instructions. Because of this, a small, limited set should be chosen. For example, one
could choose to incorporate in the model only those operations supported by the C

programming language: AND, OR, XOR, and one’s complement.

Certain instructions perform what are essentially reduction operations on the in-
dividual bits of an operand. We will refer to these as bit-reduction operations. These
include instructions which produce a count of the "1’ bits or leading or trailing 0’ bits
in their operands. These can be used to gather information about the aggregate state
of the data elements stored in a partitioned register. Note that only DEC’s MVI has

these instructions and these are actually part of the underlying Alpha architecture.

Table 2.9 lists the polymorphic and bitwise-reduction operations supported by

each of the extension families studied.

2.1.5 Conditionals

Supported conditional instructions fall into three basic categories: those which
generate result masks or condition codes, those which modify the flow of control, and

those which manipulate data.

Result masks include bitmasks and fieldmasks. A bitmask contains one bit per field
indicating if the condition is true or false for that field. These are usually stored in
a general-purpose integer register. A fieldmask is a partitioned value in which all the

bits of each field are set if the condition is true, or cleared if the condition is false, for
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Table 2.9
Polymorphic Operations

Operation Types DEC HP HP SGI SGI Motorola Sun
MVI | MAX-1 | MAX-2 | MIPS-V MDMX AltiVec VIS

AND
Part/Part 1x64 1x327 1x647 - 8x8,4x16 1x128 1x32,1x64
Part/Tmm 1x64 - - - 8x8,4x16 - -
Part/Scalar - - - - 8x8,4x16 - -
ANDN (AB or AB)?
Part /Part 1x64 | 1x32T 1x647 - - 1x128 1x32,1x64
Part/Tmm 1x64 - - - - - -
NAND (AB)
Part/Part - - - - - - 1x32,1x64
Part/Imm - - - - - - -
OR
Part/Part 1x64 1x327 1x647 - 8x8,4x16 1x128 1x32,1x64
Part/Imm 1x64 - - - 8x8,4x16 - -
Part/Scalar - - - - 8x8,4x16 - -
ORN (A+ Bor A+ B)?
Part/Part 1x64 - - - - - 1x32,1x64
Part/Imm 1x64 - - - - - -
NOR
Part/Part - - - - 8x8,4x16 1x128 1x32,1x64
Part/Imm - - - - 8x8,4x16 - -
Part/Scalar - - - - 8x8,4x16 - -
XOR
Part/Part 1x64 1x32T 1x64T - 8x8,4x16 1x128 1x32,1x64
Part/Tmm 1x64 - - - 8x8,4x16 - -
Part/Scalar - - - - 8x8,4x16 - -
XORN (A @ B)
Part/Part 1x64 - - - - - -
Part/Tmm 1x64 - - - - - -
NXOR (A®B)
Part/Part - - - - - - 1x32,1x64
Part/Imm - - - - - - -

[ Population [[ 1x64 | - | - | - | - | - | -

| Leading 0 bits [[ 1x64 | - | - | - | - | - | -

[ Trailing 0 bits [[ 1x64 | - | - | - | - | - | -

T Also nullifies the next instruction on condition.
2Not simultaneously.
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Table 2.9 cont’d.
Polymorphic Operations

Operation Types

Intel
MMX

Intel
SSE

Intel
SSE2

AMD
3DNow!

AMD
E3DNow!

AMD
3DNow!Pro

Cyrix
EMMX

AND

Part/Part
Part/Imm
Part/Scalar

4x32f

1x128,2x64f

2x32f

ANDN (AB or AB)!

Part/Part
Part/Imm

1x128,2x64f

NAND (AB)

Part/Part
Part/Tmm

OR

Part/Part
Part/Tmm
Part/Scalar

1x128,2x64f

ORN (A4 Bor A + B)!

Part/Part
Part/Tmm

NOR

Part/Part
Part/Tmm
Part/Scalar

XOR

Part/Part
Part/Imm
Part/Scalar

Tx128,2x64f

XORN (A @ B)

Part/Part
Part/Imm

NXOR (A®B)

Part/Part
Part/Tmm

Population

Leading 0 bits

Trailing 0 bits

!Not simultaneously.
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the corresponding field(s) of the operand(s). Fieldmasks are normally stored in the

same register set as their operands and are intended for use as SIMD enable masks.

Because of the nature of SWAR processing, enable masking must be used to limit
the effects of conditionally executed code to those register fields for which the con-
dition holds. Though some partitioned instructions can use bitmasks and condition
codes directly; generally, they must be converted to fieldmasks for use in enable

masking.

Condition codes represent the status or relationship of the operand(s) of a con-
ditional operation. There may be one set per register field, in which case each set
represents the condition of the corresponding field(s) of the operand(s), or one set
per register, in which case they represent the aggregate condition of the fields in the
register. Control codes are usually implemented as a bitmask which is stored in a

“control register”.

Control flow modification includes conditional instruction nullification and branch-
es. Instruction nullification skips the instruction which follows the test or blocks any
effects it might have. This instruction is usually a jump which is used to skip the
following section of code. Similarly, branching instructions may jump if the condition

is true or continue to the next instruction if not.

Because the effects of a nullifying or branching instruction cannot be separated
on a per-field basis, the usefulness of these instructions is limited to aggregate tests,

such as ANYs or ALLs, or to situations when the field tests can be serialized.

Data manipulation includes conditional moves, clears, and loads. Normally, these
instructions are used to conditionally generate particular values or to select data from
one of two execution paths. Again, the usefulness of these instructions is generally

limited to aggregate or serialized tests.
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Condition Testing Operations

Table 2.10 lists SWAR  instructions which test conditions and generate masks or
condition codes as a result. It also includes certain instructions which manipulate

data based on the values of these objects.

Each of the families except HP’s MAX has a set of instructions which conditionally
set a fieldmask or a bitmask, or are extensions of families which do. The basic com-
parison tests include “equality”, “inequality”, “greater than”, “less than”, “greater
than or equal”, and “less than or equal”. Generally, an architecture supports a subset
of these tests which allows the others to be emulated. This holds true for the studied
extension families. Thus, a general-purpose programming model should not exclude

any of these basic tests.

SSE, SSE2, and 3DNow!Pro include tests for checking if IEEE-compliant floating-
point data can be ordered (i.e. that it does not consist of NANs). NANs (not a
numbers) are bit patterns that do not represent valid floating-point values. Compar-
isons which operate on floating-point numbers may allow for one or both operands
to be NANs. In this case, the operands may not be comparable, and are said to
be wunordered. 1f both operands are valid numbers, they are said to be ordered or

orderable.

These extension families also include floating-point “not less nor equal” and “not
less than” tests which account for unorderedness, while MIPS-V includes these and
a large set of variations on the basic tests for floating-point data. These tests are
either combinations of the basic tests, or tests for situations which should not occur
or should be hidden from the programmer. Thus, these tests should be internal or
used as optimizations; they should not be a visible part of a high-level programming

model.

AltiVec includes a “compare bounds” instruction which tests if the magnitude of
one operand is less or equal to the magnitude of the other. This is equivalent to

comparing the absolute values of two operands, and is essentially a combination of
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simpler tests. Each of the AltiVec tests also have a form in which the CR6 field of
the processor’s condition register is modified if the condition holds for all or none of

the fields. This allows aggregate tests to be performed on partitioned register data.

SSE also includes instructions which compare two floating-point fields and set
the processor’s condition codes accordingly. These are most likely to be used in
conjunction with the underlying TA32 instructions for control flow. Because they do

not set a field or bitmask, they are less useful for SWAR enable masking.

Conditional Flow Control Operations

Table 2.11 lists instructions which can modify the flow of a program based on
some condition. This may be done by branching or nullifying subsequent instructions

which would normally cause change in flow.

MVI and MAX each contain conditional branch instructions which can be used as
tests for control structures that must be able to handle parallel data. For example,
a “while” loop executes as long as the conditional expression is non-zero. One way
to convert this construct for use with SWAR data is to modify the test to be true as
long as the expression is true for any field. This is equivalent to performing an ANY
test on the partitioned conditional expression before entering the loop body, which is
executed under an enable mask of the fields for which the condition holds. Conditional

branch instructions make it easier to implement this type of parallel construct.

MAX includes a set of instructions which perform a logical or arithmetic operation
then nullify the next instruction if an aggregate condition holds. These are typically
used with a subsequent unconditional jump which is nullified, and therefore not taken,
if the condition holds. This allows a section of code to be executed only if the

aggregate condition holds.

Full-width (i.e. 1xN) branch or null-next instructions are not generally useful
for parallel conditionals because they cannot take a different action for each field.

It may be possible to construct a jump table to handle each combination of field
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Table 2.10
Condition Testing Operations

Operation Types

DEC
MVI

HP
MAX

SGI
MIPS-V

SGI
MDMX

Motorola
AltiVec

Forms of Result

Bitmask

FP CC Bits

FP CC Bits

Field Mask or
All/None Bits

Equality!

Part/Part

Part/Tmm
Part/Scalar
El/El

2x32f

8x8,
4x16

8x8,4x16
8x8,4x16

16x8,
8x16,
4x32,4x32f

Inequality”

Part/Part

Part/Imm
Part/Scalar
El/El

Greater Than

Part/Part

El/El

2x32f

16x8s,16x8u,
8x16s,8x16u,
4x32s,4x32u,4x32f

Less Than

Part/Part

Part/Tmm
Part/Scalar
El/El

8x8u,
4x16s

8x8u,4x16s
8x8u,4x168

Greater or Equal

Part/Part
Part/Tmm
Part/Scalar

Less or Equal

Part/Part

Part/Tmm
Part/Scalar
El/El

8x8u,
4x16s

8x8u,4x16s
8x8u,4x168

Not Less nor Equal

Part/Part
Element /Element

2x32f

Not Less Than

Part/Part
Element /Element

2x32f

!Compare for (in)equality signed and unsigned are equivalent.
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Table 2.10 cont’d.
Condition Testing Operations

Operation Types Sun Intel Intel Intel AMD AMD AMD Cyrix
VIS MMX SSE SSE2 | 3DNow! | E3DNow! | 3DNow!Pro | EMMX
Forms of Result Bitmask! Field Field | Field Field - Field -
Mask | Mask | Mask Mask Mask
Equality?
Part/Part 8x8, 16x8, - -
4x16, 4x16, 8x16,
2x32 2x32 4x32f | 4x32, 2x32f 2x32f
2x64f
Part/Imm - - - - - - - -
Part/Scalar - - - - - - - -
El/El - - 1x32f | 1x64f - - 1x32f -
Inequality?
Part/Part 4x16, - - - -
2x32 4x32f | 2x64f 2x32f
Part/Imm - - - - - - - -
Part/Scalar - - - - - - - -
El/El - - 1x32f | 1x64f - - 1x32f -
Greater Than 3
Part/Part 8x8s, - 16x8, - - -
4x16, 4x16s, 8x16,
2x32 2x32s 4x32 2x32f
El/El - - - - - - - -
Less Than
Part/Part - - - - -
4x32f | 2x64f 2x32f
Part/Imm - - - - - - - -
Part/Scalar - - - - - - - -
El/El - - 1x32f | 1x64f - - 1x32f -
Greater or Equal
Part/Part - - - - 2x32f - - -
Part/Imm - - - - - - - -
Part/Scalar - - - - - - - -
Less or Equal 3
Part/Part - - - -
4x16,
2x32 4x32f | 2x64f 2x32f
Part/Imm - - - - - - - -
Part/Scalar - - - - - - - -
El/El - - 1x32f | 1x64f - - 1x32f -
Not Less nor Equal
Part/Part - - 4x32f | 2x64f - - 2x32f -
Element /Element - - 1x32f | 1x64f - - 1x32f -
Not Less Than
Part/Dart , , Ix32F | 2x64f , , 2x32f ,
Element/Element - - 1x32f | 1x64f - - 1x32f -

!Bitmask stored in an integer register.
2Compare for (in)equality signed and unsigned are equivalent.
31 was never able to confirm (un)signedness of these, but assume signed as per fixed point format.
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Table 2.10 cont’d.
Condition Testing Operations

Operation Types DEC HP SGI SGI Motorola Sun
MVI MAX | MIPS-V | MDMX AltiVec VIS
Forms of Result Bitmask - FP CC FP CC | Field Mask or | Bitmask!
Bits Bits All/None Bits
Not (Greater or Equal) Pt/Pt || - - 2x32f - - -
Greater or Less Than Pt/Pt [ - - 2x32f - - -

| |
| |
Not (Greater or Less) Pt/Pt [ - | - [ 2x32f
| |
| |
| |

| | | |
| | | |
| | | |
>3 || - I
| | | |
| | | |

Not Greater Than Pt/Pt [ - -

Greater, Less, or Equal Pt/Pt || - - 2x32f - - -
Not (Gr., Less, or Eq.) Pt/Pt || - - 2x32f - - -
Ordered

Part/Part - - 2x32f - - -
Element /Element - - - - - -
Unordered

Part/Part - - 2x32f - - -
Element /Element - - - - - -
Unordered or Equal Pt/Pt [ - - 2x32f - - -
Signaling Equal Pt/Pt [ - - 2x32f - - -
Signaling Not Equal Pt/Pt [ - - 2x32f - - -
Ordered or Greater Than Pt/Pt || - - 2x32f - - -
Unordered or Greater Pt/Pt [ - - 2x32f - - -
Ord. or Greater or Eq. Pt/Pt || - - 2x32f - - -

Ordered or Less Than Pt/Pt [ - - 2x32f - - -
Unordered or Less Than Pt/Pt || - - 2x32f - - -
Ordered or Less or Eq. Pt/Pt || - - 2x32f - - -
Unord. or Less or Eq. Pt/Pt [ - - 2x32f - - -
Ord. or Greater or Less Pt/Pt || - - 2x32f - - -

| | |
| | |
| | |
| | |
| | |
| | |
Unord. or Grtr. or Eq. Pt/Pt || - | - [ 2x32f | -
| | |
| | |
| | |
| | |
| | |
| | |

Compare Bounds?Pt/Pt [ -
Set Cond. Codes
Ordered El/El - - - - - _
Unord. El/El - - - - - ,

! Bitmask stored in an integer register. This can be used for masked stores.
2Clears bit 0 of result field if vA <= vB, and clears bit 1 if vA >=-(vB). In either case, the remaining
bits are cleared.
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Table 2.10 cont’d.
Condition Testing Operations

Operation Types Intel Intel Intel AMD AMD AMD Cyrix
MMX SSE SSE2 | 3DNow! | E3DNow! | 3DNow!Pro | EMMX

Forms of Result Field Field | Field Field - Field -
Mask | Mask | Mask Mask Mask

Not (Greater or Equal) Pt/Pt [ -
Greater or Less Than Pt/Pt [ -
Not (Greater or Less) Pt/Pt IR
Not Greater Than Pt/Pt [ -
Greater, Less, or Equal Pt/Pt [ -
Not (Gr., Less, or Eq.) Pt/Pt [ -

Ordered

Part /Part - 4x32f | 2x64f - - 2x32f -
Element /Element - 1x32f | 1x64f - - 1x32f -
Unordered

Part/Part , Ix32f | 2x64f - - 2x32f -
Element /Element - 1x32f | 1x64f - - 1x32f -

Unordered or Equal Pt/Pt [ -
Signaling Equal Pt/Pt [ -
Signaling Not Equal Pt/Pt IR
Ordered or Greater Than Pt/Pt [ -
Unordered or Greater Pt/Pt IR
Ord. or Greater or Eq. Pt/Pt || -

| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
Unord. or Grtr. or Eq. Pt/Pt [ - [ - [ - ] - [ N [ , [ ~ |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |

Ordered or Less Than Pt/Pt IR
Unordered or Less Than Pt/Pt [ -
Ordered or Less or Eq. Pt/Pt [ -
Unord. or Less or Eq. Pt/Pt [ -
Ord. or Greater or Less Pt/Pt [ -
Compare Bounds!Pt/Pt [ -

Set Cond. Codes
Ordered El/EIl - 1x32f | 1x64f - - 1x32f -
Unord. El/El - 1x32f | 1x64f - - 1x32f -

LClears bit 0 of result field if vA <= vB, and clears bit 1 if vA >=-(vB). In either case, the remaining
bits are cleared.
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Table 2.11
Conditional Flow Control Operations

Operation Types DEC HP HP SGI SGI Motorola | Sun
MVI | MAX-1 | MAX-2 | MIPS-V | MDMX AltiVec VIS

Branch On...
None True 1x64 - - - - - -
Any True 1x64 - - - - - -
All Equal (Part/Part) - 1x32 1x64 - - - -
All Equal (Part/Immed) - 1x32 1x64 - - - -
All Tnequal (Part/Part) - 1x32 1x64 - - - -
All Inequal (Part/Immed) - 1x32 1x64 - - - -
Operate and Null Next On...
AND/Any True? - 1x32 1x64 - - - -
AND/None True? - 1x32 1x64 - - - -
ANDN/Any True? - 1x32 1x64 - - - -
ANDN/None True? - 1x32 1x64 - - - -
OR/Any True? - 1x32 1x64 - - - -
OR/None True? - 1x32 1x64 - - - -
XOR/Any True? - 1x32 1x64 - - - -
XOR/None True? - 1x32 1x64 - - - -
XOR/Any False? - 2x32 - - - -

2x16 4x16

4x8 8x8
XOR/None False? - 2x32 - - - -

2x16 4x16

4x8 8x8
Add Complement/Any False? - 2x32 - - - -
(A+B) 2x16 4x16

4x8 8x8
Add Complement/None False? - 2x32 - - - -
(A+ B) 2x16 4x16

4x8 8x8

result, but this would be an O(2%")-sized table for an NxB partitioning. For this
reason, these instructions are not included in table 2.11. Full-width branches or null-
next instructions based on conditions that are equivalent to a reduction of the field
conditions (such as an unpartitioned equality test which is equivalent to a partitioned

ALL-equal test) are useful, and are included in the table.

Conditional Data Manipulation Operations

Table 2.12 lists instructions which manipulate data based the results of some
conditional test. These include instructions which move data or clear or load registers

when some condition is met. They also include instructions which select a set of values

from a set of operands depending on some condition.
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Table 2.11 cont’d.
Conditional Flow Control Operations

Operation Types Intel Intel | Intel AMD AMD AMD Cyrix
MMX | SSE | SSE2 | 3DNow! | E3DNow! | 3DNow!Pro | EMMX

Branch On...

None True - - - - - - -

Any True - - - - - - -

All Equal (Part/Part)

All Equal (Part/Immed)
Any Inequal (Part/Part)
Any Inequal (Part/Immed)

Operate and Null Next On...

AND/Any True?
AND/None True?

ANDN/Any True?
ANDN /None True?

OR/Any True?
OR/None True?

XOR/Any True?
XOR/None True?

XOR/Any False?

XOR/None False?

Add Complement/Any False?
(A+B)

Add Complement/None False?
(A+ B)
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MVI includes instructions which will move a register or load an immediate value
based on the equivalent of an ANY or NONE test. It also includes instructions that
conditionally zero (clear) the fields of an 8x8 partitioned register based on the value

of a bitmask, which is usually generated by one of the MVI testing instructions.

HP’s MAX includes instructions which clear a register to generate a “false” value,
then perform a comparison for equality or inequality, and conditionally nullify the
following instruction based on the result. The possibly nullified instruction is usually
used to load an immediate value which represents “true” into the cleared register.
These instructions can be used to implement or optimize aggregate tests for SIMD-

style loops and conditionals.

Extended MMX includes instructions which load the fields of a register based on
the value of the corresponding fields of a partitioned register. These can be used to

implement or optimize certain conditional or trinary operations.

The MIPS-V extension family includes instructions which move the fields of a
register based on the value of the corresponding control code bit. These also can be

used to implement or optimize certain conditional or trinary operations.

Full-width (i.e. 1xN) conditional move instructions are not generally useful for
parallel conditionals because they cannot take a different action for each field. For
this reason, these instructions are not included in table 2.12. Full-width conditional
moves based on conditions that are equivalent to a reduction of the field conditions

are included in the table.

MDMX and AltiVec include partitioned “pick” or “select” instructions which se-
lect between one of two operands for each field based on the truth of the corresponding
bit in a bitmask. In MDMX this bitmask is in an integer register and in AltiVec this
bitmask is in a third vector register. These instructions are useful for implementing
trinary operators or for selecting between the results of two conditional instruction
streams. The choice of a 128x1 select for AltiVec is very good as it allows it to be

used polymorphically.
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Table 2.12
Conditional Data Manipulation Operations

Operation Types DEC HP HP SGI SGI Motorola | Sun
MVI MAX-1 | MAX-2 | MIPS-V | MDMX AltiVec VIS

Move Reg/Imm On...
None True 1x64 - - - - - -
Any True 1x64 - - - - - -

Zero Masked Bytes | 8x8bm | - [ - [ B [ 7 [ N [ ]
Zero UnMasked Bytes | 8x8bm | - [ - [ - [ - [ _ E

Clear Reg & Null Next/All
Part/Part - 1x32 1x64 - - - -
Part/Imm - 1x32 1x64 - - - -
Part/Scalar - - - - - - -
Clear Reg & Null Next/Not All
Part/Part - 1x32 1x64 - - - -
Part/Imm - 1x32 1x64 - - - -
Part/Scalar - - -

Load Reg. On...
Zero - - - - - - -
Non-Zero - - - - - - -
Negative - - - - - - -
Non-Negative - - - - - - -

Move Reg. On...

CC bit TRUE - - - 2x32f - - -
CC bit FALSE - - - 2x32f - - -
Pick True ! 2

Part/Part - - - - 8x8,4x16 128x1 -
Part/Imm - - - - 8x8,4x16 - -
Part/Scalar - - - - 8x8,4x16 - -
Pick False T 2

Part/Part - - - - 8x8,4x16 128x1 -
Part/Imm - - - - 8x8,4x16 - -
Part/Scalar - - - - 8x8,4x16 - -

!Chooses destination field from source v, or v; based on value of condition code bit corresponding
to that field.

2Chooses destination bit from source vector A or B based on value of corresponding bit in source
vector C. This is more general, but possibly harder to generate than MDMX condition code bits.
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Table 2.12 cont’d.

Operation Types

Intel
MMX

Intel
SSE

Intel
SSE2

AMD
3DNow!

AMD
E3DNow!

AMD
3DNow!Pro

Cyrix
EMMX

Move Reg/Imm On...

None True
Any True

Zero Masked Bytes

Zero UnMasked Bytes

Clear Reg & Null Next/All

Part/Part
Part/Tmm
Part/Scalar

Clear Reg & Null Next/Not All

Part/Part
Part/Imm
Part/Scalar

Load Reg. On...

Zero
Non-Zero
Negative
Non-Negative

8x8
8x8
8x8s
8x8s

Move Reg. On...

CC bit TRUE
CC bit FALSE

Pick True

Part/Part
Part/Imm
Part/Scalar

Pick False

Part/Part
Part/Tmm
Part/Scalar
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2.1.6 Data Movement, Replication, and Type Conversion Operations

Table 2.13 lists the instructions available in each of the extension families for

supporting data movement, replication, and type conversion operations.

MMX includes instructions to move data between its enhanced (i.e. partition-
able) registers and also between these and the underlying TA32 architecture’s general-
purpose integer registers. SSE includes instructions to move unaltered data between
the SSE registers, but not between the MMX and SSE registers. SSE2 includes
instructions to correct this problem, and also includes instructions to move data be-
tween the SSE registers and the integer register set, and to allow data to be moved

in various ways between the SSE registers.

Such instructions are not necessary in DEC’s MVI or HP’s MAX extensions be-
cause these extensions use the general-purpose registers of the underlying architecture.
For example, MAX-2 has an instruction for moving a full-width (64-bit) object be-
tween the general registers that is actually part of the PA-RISC 2.0 instruction set

architecture.

Neither MDMX nor AltiVec include instructions which are used solely for moving
data between their enhanced registers or between these and their general registers.
Similarly, MVI does not include instructions used solely for moving data within its
general register set. Moving data between registers within the same register set can
usually be emulated. For example, in AltiVec, a register can be bitwise-ORed with
itself and the result stored in the target register. However, writing data between
different register sets usually cannot be emulated. In these cases, data must be

moved via the architecture’s memory subsystem.

This is the case for AltiVec. Unfortunately, memory addresses for AltiVec are
held in the PowerPC’s general-purpose integer registers. This causes some addressing
forms to be very expensive to execute. For example, when an array or vector element
is indexed using vector indexing, the index must be moved from a vector register to

memory, then from memory to an integer register where it can be used in an indexed
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load. This triples the number of memory accesses required for each vector indexed

element access.

MIPS-V includes an instruction for moving data between registers in “packed
single” (2x32f) format, and another to create this format by packing two single-
precision values, taken from two floating-point registers, into a single floating-point

register.

VIS includes instructions for moving either 32 or 64 bits of data between its
enhanced registers. It also has a set of complementary instructions which allow the
moved data to be stored in complemented form. This effectively performs a one’s

complement operation on the data.

While MDMX does not include instructions for moving partitioned data between
its enhanced registers, it does include multiple instructions for moving data between
the floating-point registers and the accumulator. These are not useful as part of a
portable model, as none of the other extension families has a separate accumulator.
However, they would be necessary for using the accumulator to operate on floating-

point data if included in such a model.

AltiVec has a set of “splat” instructions which replicate either a field of the source
register or an immediate value into all of the fields of the target register. This is the
only instruction in any of the families which performs an actual replication, although
MDMX and SSE each include instructions which effectively replicate one operand. A
general-purpose model should include the field replication to convert scalar data to

partitioned data for mixed-mode operations.

MDMX also includes instructions for scaling data within the accumulator. These
instructions shift each field of the accumulator right by the number of bits specified by
a secondary source, round these values to an integer value by truncation or rounding
upward or downward with half values, then saturate these values to fit in the fields of
the destination register. The secondary source may be a partitioned register, a scalar,
or an immediate value. These instructions may be useful for implementing various

type conversions.
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AltiVec, 3DNow!, E3DNow!, and SSE include instructions to convert data in their
enhanced registers between integer and floating-point type. The SSE conversions
actually move data between the SSE registers and the MMX or TA32 register sets, si-
multaneously making the conversion. AltiVec also includes instructions which round
floating-point data to integer-valued floating-point data. SSE2 includes instructions
for converting between floating-point formats within the SSE registers. These instruc-
tions may be used for visible type casting by a programmer or for internal operations

by a compiler.

2.1.7 Data Extraction, Insertion, and Permutation Operations

Table 2.14 lists the instructions available within each of the extension families for

supporting field extraction, insertion, and permutation operations.

In general, insertions take a bit or byte field from a source and place it in a
contiguous section of the destination. Extractions typically take data from a section
of the source, align it with the least significant bit of the destination, and zero- or
sign- extend it to fill that destination. These instructions could be used in a vector

processing model to implement vector element accesses.

Enhanced 3DNow!, SSE, and SSE2 each include instructions to allow a field to
be extracted from an enhanced register to an integer register. The complementary
instructions which allow a field to be inserted from an integer register or from memory
without altering the remaining fields are likewise included. SSE also includes an
instruction which takes the low field of a 4x32f operand from an SSE register or
memory and inserts it into the low field of a second SSE register. 3DNow!Pro has
an instruction that performs the same operation on a 2x32f operand, while SSE2 has

one for 64-bit operands.

MVI, AltiVec, and VIS include “byte shift right and extract” instructions which

shift the source data right by n bytes, then clear the upper fields to leave the data in
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Table 2.13
Data Movement, Replication, and Type Conversion Operations

Operation Types DEC HP HP SGI SGI Motorola Sun
MVI | MAX-1 | MAX-2 MIPS-V MDMX AltiVec VIS
[ Move Reg.—Enh. Reg. [ N/A [ N/A [ N/A | - | - | - | -
[ Move Enh. Reg.—Reg. || NJ/A [ N/A [ N/A ] - | - | - E
Move Enh. Reg. - - - 1x32,
—Enh. Reg. 1x32! 1x64! 1x64
2x32f
Move Comp. Enh. Reg. - - - - - - 1x32,
—Enh. Reg. 1x64
[ Pack Singles to Part I - [ - -] 2-32(—2x32f | - - -
Modular Move Acc—Reg
Low Third of Acc. - - - - 3x64—8x8u, - -
3x64—4x16s
Middle Third of Acc. - - - - 3x64—8x8u, - -
3x64—4x16s
High Third of Acc. - - - - 3x64—8x8u, - -
3x64—4x16s
Move Regs. to Low Acc. - - - - 2-8x8u—3x642, - -
2-4x16s—3x64
Move Reg. to High Acc. - - - - 8x8u—3x64, - -
4x16s—3x64
Replicate Field - - - - - 16x8, -
(Element /Part)? 8x16,
4x32
Replicate Sign-Extended - - - - - 16x8, -
Immediate to Part? 8x16,
4x32
Shift Rt, Rnd, & Sat Acc
toward 0 - - - - 8x8u, - -
4x16s,
4x16u
to nearest away from 0 - - - - 8x8u, - -
4x16s,
4x16u
to nearest toward even - - - - 8x8u, - -
4x16s,
4x16u
Convert int. to flt. - - - - - 4x32u—4x32f° -
4x325—4x32f5
Convert flt. to int. - - - - - 4x32f—4x32u® -
4x32f—4x32s5
Round flt. value to int.
to nearest - - - - - 4x32f -
toward zero - - - - - 4x32f -
toward —+infinity - - - - - 4x32f -
toward -infinity - - - - - 4x32f -

L Also branches if condition is met.

2Moves source register V; to low third, source register V, to middle third, and a set of
fields consisting of the sign bits of the fields of V; to the upper third.

3Field selected is indicated by unsigned immediate.

4Sign-extends 5-bit immediate to size of fields, then replicates.

5Converts to nearest, then divides by 2%"™™5  where uimm5 is a 5-bit unsigned immediate.

6Shifts left by a 5-bit unsigned immediate, converts and rounds toward zero, then saturates.
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Table 2.13 cont’d.
Data Movement, Replication, and Type Conversion Operations

Operation Types Intel Intel Intel
MMX SSE SSE2
[ Move Reg—Enh. Reg. [[ 1x32u—1x64u’ | - | 1x32u— 1x128u’ |
[ Move Enh. Reg—Reg. [ 1x64—51x327 | - | 1x128—1x322 |
Move Enh. Reg—Enh. Reg. 1x64 low 2x64—low 2x64,

low 2x64— 1x64,1x64—low 2x643,
1x128 (un)aligned,

4x32f (un)aligned 2x64f (un)aligned
Move Comp. Enh. Reg. - - -
—Enh. Reg.
[ Pack Singles to Part I - - [ -
Modular Move Acc—Reg
Low Third of Acc. - - -
Middle Third of Acc. - - -
High Third of Acc. - - -
[ Move Regs. to Low Acc. I - [ - [ - |
[ Move Reg. to High Acc. I - | - [ - |
[ Replicate Field I - [ - [ - |
Replicate Sign-Extended - - -
Immediate to Part?
Shift Rt, Rnd, & Sat Acc
toward 0 - - -
to nearest away from 0 - - -
to nearest toward even - - -
Convert int. to flt. - 2x32s—low 2x32f°, 2x32s—low 2x64f0
1x32s—low 1x32f7 1x32s—low 1x64f7,
4x325—4x32f,
low 2x32s—2x64f
Convert flt. to int. - low 2x32f—2x328:9 2x64f—2x328:9
2x64f—low 2x32'0,
low 1x32f—1x3211:9 low 1x64f—1x328:9,
4x32f—4x32s
Convert flt. to ft. - - 2x64f—low 2x32f10
low 2x32f—2x64f12
low 1x64f—low 1x32f12,
low 1x32f—low 1x64f!2
Round flt. value to int.
to nearest - - -
toward zero - - R
toward +infinity - - -
toward -infinity - - -

1Zero-extended.

2Truncated.

3Upper quadword cleared.

4Sign-extends 5-bit immediate to size of fields, then replicates.

5Source is MMX register or memory. Destination is SSE register. High fields are left unchanged.
6Source is MMX register or memory. Destination is SSE register.

"Source is integer register or memory. Destination is SSE register. High fields are left unchanged.
8Source is SSE register. Destination is MMX register or memory.

9Cvt* uses rounding mode specified in MXCSR. Cvtt* truncates the fractional part.

10G0urce is SSE register or memory. Destination is SSE register with upper half cleared.
1Source is SSE register. Destination is integer register or memory.

12Gource is SSE register or memory. Destination is SSE register.
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Table 2.13 cont’d.
Data Movement, Replication, and Type Conversion Operations

Operation Types AMD AMD AMD Cyrix
3DNow! E3DNow! 3DNow!Pro EMMX

Move Reg—Enh. Reg. [ - [ , [ , [ ,

Move Enh. Reg—Reg. [ - [ B [ _ [ B

Move Enh. Reg—Enh. Reg. - - -

2x32 (un)aligned

Move Comp. Enh. Reg. - - - B
—Enh. Reg.

Pack Singles to Part [ - - [ _ [ -

Modular Move Acc—Reg

Low Third of Acc. - - B N
Middle Third of Acc. - - - -
High Third of Acc. - - - R

Move Regs. to Low Acc. [ B [ B [ ~ [ -

Move Reg. to High Acc. [ - [ - [ _ [ -

Replicate Field [ - [ B [ N [ ,

Replicate Sign-Extended - - - N
Immediate to Part!

Shift Rt, Rnd, & Sat Acc

toward 0 - - - B
to nearest away from 0 - - - -
to nearest toward even - - - -

Convert int. to flt. 2x32s—2x32f | even 4x16s 2x328—2x32f, -
—2x32f 1x32s—low 1x32f

Convert flt. to int. 2x32f—2x32s 2x32f 2x32f—2x327 -

—2x32s3 low 1x32f—1x322

Convert flt. to flt. - - - N

Round flt. value to int.

to nearest - - - _
toward zero - - - -
toward +infinity - - - -
toward -infinity - - - R

1Gign-extends 5-bit immediate to size of fields, then replicates.
20vt* uses rounding mode specified in MXCSR. Cvtt* truncates the fractional part.
3Sign saturated to 16 bits, then sign-extended to 32.
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zero-extended form. MVI, MIPS-V, and MDMX include “byte shift left and extract”

instructions which shift the data left before clearing the upper fields.

MVTI’s byte extraction instructions operate on a single source object and are well-
suited for field extraction. Those of the other extension families operate on a pair of
source objects and are best suited to handling unaligned memory accesses, although

they also can be used for field extraction.

MVTI also includes “byte shift and insert” instructions which shift the source data
left or right by n bytes, then clear all but the byte, word, doubleword, or quadword
starting at the n'* byte and going upwards through the register. The byte count n
may be stored in a register or may be an immediate value. These instructions allow
the programmer to select a set of contiguous bytes from the right end of the source

and place them in any set of bytes in the destination with the other bytes cleared.

MAX includes “bit shift left and extract” instructions which take up to B bits
from the right-hand field of an NxB partitioned register, starting at any bit position
and extending to the left, then copy them into the target register, aligned with its
right end. The number of bits copied may be taken from an immediate or stored in a
shift amount register (SAR). If the count is from the SAR, the copied segment is sign-
or zero- extended to fill the target field. The left-hand field (if N>1) is undefined. If
the count is an immediate, it is an undefined operation if the copied segment extends

beyond the end of the source field.

MAX also includes “merge, bit shift right and extract” instructions. In these,
the rightmost fields of two NxB sources are concatenated and the resulting value is
shifted right. The lower B bits of the 2 B-bit concatenation are then extracted. Again,
the shift count can be an immediate value or from the SAR, and the left-hand field

of the destination register is undefined.

Complementing these extraction instructions, MAX also contains “deposit” in-
structions which perform “bit shift left and insert” operations. In an NxB partitioned
operation, these take up to B bits from the right end of the source and copy them

into the target register. Writing begins at any of the rightmost B bit positions in the
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target register and extends to the left. The target register field may or may not be
zeroed before the copy. Again, the number of bits copied may be from an immediate
value or the shift count register. If the count is from the SAR, the copied segment
is truncated to prevent it from extending beyond the target field. If the count is
an immediate, the operation is undefined if the copied segment extends beyond the

target field.

Any of the above instructions would be useful in implementing register field or
vector element accesses in a general-purpose model. Because of their wide variety, it

is probably best to hide their differences beneath a layer of abstraction.

Usually, when one inserts a field of data into a register, one needs to ensure that
the surrounding data is not modified. As we have seen, MAX has bit shift and
insert instructions which perform this operation on various sizes of data. However,
MVT’s extract and insert instructions always clear the surrounding data. To deal with
this issue, MVI has a set of instructions which clear a segment of data in a register
without affecting the surrounding data. The result can then be logically ORed with
the result of an insertion instruction thus inserting the selected field without affecting

the surrounding data.

Two types of segment-clearing instructions are available in the MVI extensions.
A “clear segment low” instruction clears the byte, word, doubleword, or quadword
starting at a given byte (0 to 7, stored in a register or as an immediate), and going
upwards through the register. A “clear segment high” clears the remainder of the
bytes in the word, doubleword, or quadword which would have been chosen by the
clear-segment-low given the same arguments and assuming the target of the clear-

segment-high was concatenated to the high end of the target of the clear-segment-low.

Permutations are typically generalized to perform any of the possible rearrange-
ments, with or without repetition, of the fields of their source operand(s). There are
two primary methods in which the applied permutation can be chosen. One is via an
immediate value which is specified at compile time. The other is via a variable vector

index which may not be known until run time.
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MAX-2, E3DNow!, SSE, and SSE2 have permute instructions which use an im-
mediate value to indicate which fields of the single source to copy. SSE2 also has
instructions which permute the lower or upper fields of a single source operand based
on an immediate value. SSE, SSE2, and 3DNow!Pro also have permutations which
select fields from two operands based on immediate index values. In contrast, Al-
tiVec’s permute uses a vector register to choose fields from two other vector registers

to be copied to the destination register.

Permutes indexed via an immediate are useful for static data layout and element
replication, but are not useful dynamically. Permutes indexed via a register can be
used to implement dynamic constructs. An example is the MPL router[ezp1] . exp2
construct in which exp2is evaluated on the PE whose number is equal to the evaluated

value of expl.

In this construct, ezp1 is an arbitrary expression. The permute operation could
be quite useful here, but is much less so if it cannot be indexed by anything but a
compile-time constant. Because so few of the extension families support any kind
of permute at all, and because only AltiVec supports a variably-indexed permute,

constructs such as the MPL router should be avoided for now.

Operations such as byte and word swaps are special cases of permutation. En-
hanced 3DNow! includes an instruction to swap the two fields of a 2x32f partitioned
register. Its operation is covered by E3DNow!’s more general permute instruction.
Thus it is unnecessary, but may be temporally or spatially less expensive to execute

than the equivalent permute.

2.1.8 Interleaving Operations

Table 2.15 lists the various instructions which interleave fields from two partitioned
sources to form a combined result. In general, these instructions combine only certain

fields from their sources to form their results.
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Table 2.14
Data Extraction, Insertion, and Permutation Operations

Operation Types DEC HP HP SGI SGI
MVI MAX-1 MAX-2 MIPS-V MDMX

[ Extract Field to Reg. || - [ - [ B [ , [ ,

[ Insert Selected Field [ - [ - [ N [ B [ N

[ Insert Low Field [ - [ B [ N [ , [ B

Byte Shft Rt & Extract

By Tmmed. 8x8u—1x[8,16,32,64]! - - - -

By Register 8x8u—1x[8,16,32,64]" - - - -

Byte Shft Lt & Extract

By Immed. 8x8u—1x[16,32,64] - - - 2-8x8u—8x8u,
2-4x165—4x16s

By Register 8x8u—1x[16,32,64] - - 2-8x8u—8x8u,

2-4x168—4x16s
2-2x32f—2x32f

Byte Shft Rt & Insert 1x[16,32,64]—8x8u’ - - - -
into Zeroed Reg

Byte Shft Lt & Insert 1x[8,16,32,64] —8x8u' - - - -
into Zeroed Reg

Bit Shft Lt & Extract? - 1x32s3, right 2x32s3, - -
1x32u? right 2x32u*
- 1x64s3,
- 1x64u?
Merge, Bit Shft Rt B 2-1x32—1x32 | 2-1x32— 1x32, - B
& Extract 2-1x64—1x64

Bit Shift Left & Insert
into Zeroed Reg®

from Immed - 1x32 1x32, - -
1x64

from Reg - 1x32 1x32, - -
1x64

Bit Shift Left & Insert
into Unchanged Reg?®

from Immed - 1x32 1x32, - -
1x64

from Reg - 1x32 1x32, - -
1x64

Clear Segment Low |

1,2,4,0r 8 bytes

Clear Segment High |

2,4, or 8 bytes

Permute

Part/Indexed by Part - , B
Part/Indexed by ITmm - - 4x16 - -

Swap Fields [ - [ - [ B [ , [ _

'[...] indicates that there are multiple separate instructions — one for each of the values listed.
2Also nullifies next instruction if condition is met.

3Sign-extended.

1Zero-extended.

®Also nullifies next instruction if condition is met.
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Table 2.14 cont’d.
Data Extraction, Insertion, and Permutation Operations

Operation Types Motorola Sun Intel Intel Intel
AltiVec VIS MMX SSE SSE2
[ Extract Field to Reg. || - | - [ - [ 4x16T-1x327 ] 8x16% —1x322
| Insert Selected Field || - | - | - [ low2x16"—4x16" | low 2x16"—8x16>
[ Insert Low Field [ - | - | - | low 4x32f—4x32f |  low 2x64f—2x64f
Byte Shft Rt & Extract
By Immed. 2-16x8—16x8 - - - -
By Register 2-8x8—8x8 - - -
Byte Shft Lt & Extract
By Immed. - - - - -

By Register - - - - -

Byte Shft Rt & Insert - - - B -
into Zeroed Reg

Byte Shft Lt & Insert - - - B -
into Zeroed Reg

Bit Shft Lt & Extract® - 7 B N B

Merge, Bit Shft Rt - - B - -
& Extract

Bit Shift Left & Insert
into Zeroed Reg®

from Tmmed - - _ _ _

from Reg - - - - _

Bit Shift Left & Insert
into Unchanged Reg®

from Tmmed - - _ _ _

from Reg - - - - -

Clear Segment Low |

Clear Segment High || B | N | N | _ | ~

Permute

Part/Indexed by Part 2-16x8—16x8 - - - -

Part/Indexed by Imm - - - 4x167, low 4x165 high 4x166,
4x326

2-4x32f—4x32f6
2-2x64f— 2x64f8

Swap Fields [ - [ - [ B B [ N

'Field selected is (unsigned immediate mod 4).
2Zero-extended.

3Field selected is (unsigned immediate mod 8).
4From integer register

5Also nullifies next instruction if condition is met.
6 Also nullifies next instruction if condition is met.
"Source fields selected by a 4x2 immediate.
8Source fields selected by a 2x1 immediate.
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Table 2.14 cont’d.

Data Extraction, Insertion, and Permutation Operations

Operation Types AMD AMD AMD Cyrix
3DNow! E3DNow! 3DNow!Pro EMMX
[ Extract Field to Reg. [ - [ 4x16T—>1x32? - -

| |
Insert Selected Field I - | low 2x16% —4x16" | - |
Insert Low Field I - | - | low 2x32f—2x32f |

Byte Shft Rt & Extract

By Immed. - - -
By Register - - -

Byte Shft Lt & Extract

By Immed. - - -

By Register - - -

Byte Shft Rt & Insert - - N
into Zeroed Reg

Byte Shft Lt & Insert - - N
into Zeroed Reg

Bit Shft Lt & Extract® - B "

Merge, Bit Shft Rt - - R
& Extract

Bit Shift Left & Insert
into Zeroed Reg®

from Tmmed - - -

from Reg - - -

Bit Shift Left & Insert
into Unchanged Reg®

from Tmmed - - -

from Reg - - -

Clear Segment Low I - [ - [ _ [

Clear Segment High [ - [ , [ i [

Permute
Part/Indexed by Part - - _ _
Part/Indexed by Imm - 4x16° -
2-4x32f—4x32f6
[ Swap Fields I - | 2x32f _ [ _

'Field selected is (unsigned immediate mod 4).
2Zero-extended.

3From integer register

4 Also nullifies next instruction if condition is met.
5Also nullifies next instruction if condition is met.
6Source fields selected by a 4x2 immediate.
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VIS includes an instruction which interleaves the fields of two (N/2)xB sources to
form a single NxB result. This is the only interleave in which the result contains all
of the fields of its original operands. These operands are stored as 32-bit “pixel” data
in 4x8u format. The interleaved result is stored in a 64-bit floating-point register in

“fixed” format.

MAX-2 includes instructions for interleaving the odd numbered fields of the two

source operands into a result value and others for interleaving the even-numbered

fields.

Several of the extension families have instructions which interleave the upper
(higher-numbered) fields of the two source operands into a single result and corre-

sponding instructions which interleave the lower fields.

VIS includes an interleave instruction that scales (shifts), truncates, and clips
(saturates) each of the fields of a 2x32 operand to a single byte. This is stored in
the low byte of the corresponding field of the result and is zero-extended to obtain a
2x32u intermediate value. A second 2x32 operand is parallel left shifted by one byte
to obtain a 2x32u intermediate value in which the low byte of each field is zeroed.
These intermediate values are then merged via a bitwise-OR operation to form an

8x8u result.

Both MIPS-V and MDMX include instructions to interleave the even fields of one
operand with the odd fields of the second. In MDMX, the second operand may be
an immediate, a single-valued partitioned register, or a partitioned register. MDMX
includes alternate forms of these instructions in which the order of the data fields
in each of the operands is reversed before the interleave is performed. MIPS-V also
includes an instruction to interleave the odd fields of the first operand with the even

fields of the second.

While interleaves may be useful internally for implementing data layout, type cast,
or vector element access operations, it is not clear that they should be exposed at the

programming layer. More importantly, the forms are not universally implemented or
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consistent, and it may be difficult to emulate any particular form chosen for such a

model.

2.1.9 Catenating, Packing, and Unpacking Operations

Table 2.16 lists the instructions available for catenating or unpacking SWAR data.

These terms are not used consistently, so we will provide our own definitions here.

To catenate two partitioned values means to copy a subset of the fields of one
to the upper half of the result and a subset of the fields of the other to the lower
half while maintaining the relative ordering of these fields. Note that there is no

requirement that the selected fields of either source be contiguous.

To pack a source operand means to compact a subset of its fields from 2B bits
(or more generally, from some number of bits greater than B) to B bits, shifting the

fields as necessary, while maintaining their relative ordering.

To unpack a source operand means to expand a subset of its fields from B bits to
2B bits (or more generally, to some number of bits greater than B), shifting the fields

as necessary, while maintaining their relative ordering.

MDMX includes instructions which catenate either the odd fields or the even
fields of two operands to form a partitioned result of the same layout. Each of these
allow one of the operands to be an immediate value or replicated scalar. AltiVec
includes instructions to catenate the even fields of two vector operands, but none
for odd fields. MDMX also includes instructions which catenate either the upper or
lower fields of their operands. Again, one of these may be an immediate or replicated
scalar value. SSE includes a similar pair of instructions which operate on partitioned

register operands.

Because these forms of catenation are not universally implemented, one may wish
to exclude catenations from a general-purpose programming model. However, multi-
word length vectors would not normally be catenated on a per word basis, but by

copying the fragments of one operand after those of the other. Thus, the lack of
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Table 2.15
Interleaving Operations

Operation Types DEC HP HP SGI SGI Motorola Sun
MVI | MAX-1 | MAX-2 | MIPS-V | MDMX AltiVec VIS
[ Interleave (Merge) I - - | - | - | - | - | 2-4x8u—8x8u |
Interleave odd (left) - - 4x16, - - - -
2x32
Interleave even (right) - - 4x16, - - - -
2x32

Interleave upper

Part/Part - - - 8x8, 16x8, -
4x16 8x16,

2x32f 4x32

Part/Imm - - - - 8x8, - -
4x16

Part/Scalar - - - - 8x8, - -
4x16

Part/Zero - - - - 8x8 - -

Interleave lower

Part/Part - - - 8x8, 16x8, -
4x16 8x16,

2x32f 4x32

Part/Tmm - - - - 8x8, - -
4x16

Part/Scalar - - - - 8x8, - -
4x16

Part/Zero - - - - 8x8 - -

[ Scale, Trunc, Clip & Merge! [[ - - - - - - 2-2x32—8x8u

Interleave even w/odd
Forward or Reverse

Part/Part - - - 4x16 - -
2x32f

Part/Tmm - - - - 4x16 - -

Part/Scalar - - - - 4x16 - -

Interleave odd w/even
Forward or Reverse
Part/Part - - - 2x32f - - -
Part/Imm - - - -

Part/Scalar - - - - - - -

I Left shifts logically by 8 bits an 8x8u, then takes a 2x32, left shifts it logically by the GSR value,
truncates the lower 23 bits of each field to form a 2x24, then unsigned saturates it to a 2x8u which
is then ORed with the 8x8u register.
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Table 2.15 cont’d.
Interleaving Operations

Operation Types Intel Intel Intel AMD AMD AMD Cyrix

MMX SSE SSE2 3DNow! | E3DNow! | 3DNow!Pro | EMMX

[ Interleave (Merge) I - [ - - - | - | - | - |

Interleave odd (left) - - - - - - -
Interleave even (right) - - - - - - -
Interleave upper
Part/Part 8x8, 16x8, - - - -

4x16, 8x16,

2x32 4x32f 4x32, 2x32f

2x64,2x64f

Part/Tmm - - - - - - -
Part/Scalar - - - - - - -
Part/Zero - - - - - - -
Interleave lower
Part/Part 8x8, 16x8, - - - -

4x16, 8x16,

2x32 4x32f 4x32, 2x32f

2x64,2x64f

Part/Tmm - - - - - - -
Part/Scalar - - - - - - -
Part/Zero - - - - - - -

Scale, Trunc., Clip & Merge!

Interleave even w/odd
Forward and Reverse

Part/Part

Part/Tmm
Part/Scalar

Interleave odd w/even
Forward and Reverse

Part/Part
Part/Tmm
Part/Scalar

I Left shifts logically by 8 bits an 8x8u, then takes a 2x32, left shifts it logically by the GSR value,
truncates the lower 23 bits of each field to form a 2x24, then unsigned saturates it to a 2x8u which
is then ORed with the 8x8u register.
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universality should not inhibit the designer from including vector catenations in a

general-purpose model.

Only a few types of instructions meet the above definition of a pack. These come
in various forms. Some are general-purpose, while others are intended for specific
operations such as converting data to proprietary pixel formats. These instructions
are also probably best used internally, within the implementation of a model, and

probably should not be visible to a high-level programmer.

AltiVec and MMX each include instructions which pack the fields of their two
operands to half-size using signed or unsigned saturation. These intermediate values
are then catenated to form a single partitioned result. SSE2 extends the MMX

instructions for use on the SSE integer set.

AltiVec also includes an instruction which converts data from two partitioned
operands to a pixel format. The pixel data is then concatenated and stored in a
partitioned destination register. This proprietary operation should not be made part
of a programming model which is intended to be portable, but may be useful for

implementing type casts or other operations.

MVT includes instructions which truncate the fields of a register to a single byte
by discarding the upper bits, then copy the resulting fields into the low end of the
result register. These instructions maintain the relative ordering of the fields and zero

any unused fields.

VIS includes special-purpose instructions for scaling and packing graphics data in
pixel format. These instructions logically shift each field left by the scale factor (0
to 15 bits) in the UltraSPARC’s Graphics Status Register (GSR). These values are
then rounded by truncating the bits lower than an implicit binary point (bits 0-6 for
a 16-bit field, bits 0-15 for a 32-bit field). Finally, they are saturated to fit in the
fields of the result. The GSR can be manipulated with the “rd” and “wr” instructions
to change the applied scaling factor. The operation performed by this instruction is

obviously too specialized for general-purpose processing.
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Several instructions for unpacking or expanding data fields are also available in
the various extension families. These instructions are most likely to be useful for
implementing type casts in a general-purpose programming model or for internally

converting unsupported data types to supported ones for emulation purposes.

Both MDMX and AltiVec include instructions which copy the lower N/2 fields of
an NxB partitioned register to a destination register, maintaining their relative order,
then sign-extend the data to form an N/2xB result. Complementary instructions
which unpack the upper fields of their sources are also available in each of these

extension families.

MVT includes unpacks which complement its “pack low byte” instructions. These
copy the data from the lower fields (bytes) of the source register to the destination
register starting with the lowest numbered field. Data is zero-extending as needed to

fill the larger fields of the destination register.

Two instructions are included in AltiVec which complement its pixel-packing in-
struction. These convert packed pixels back to an unpacked form. One unpacks the
lower fields of the packed pixel while the other unpacks its upper fields. These propri-
etary operations should not be made part of a programming model which is intended

to be portable.

VIS also includes an instruction which unpacks the lower fields of one NxB operand
to a Nx2B result in which the original B data bits are centered in each field and the
surrounding bits are cleared. This instruction is intended to complement VIS’s pixel-
packing instruction, but is more generally useful because it leaves the data intact

(although shifted).

2.1.10 Memory Access Instructions

Table 2.17 lists memory access instructions that may be useful for SWAR process-
ing and are available for use by the various extension families. Each of these families

has some means of accessing memory. Some include new instructions for loads and
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Table 2.16
Catenating, Packing, and Unpacking Operations

Operation Types DEC HP SGI SGI Motorola
MVI MAX | MIPS-V MDMX AltiVec
Catenate odd
Part/Part - - - 8x8, -
4x16
Part/Tmm - - - 8x8, -
4x16
Part/Scalar - - - 8x8, -
4x16
Catenate even
Part/Part - - - 8x8, 16x8,
4x16 8x16
Part/Imm - - - 8x8, -
4x16
Part/Scalar - - - 8x8, -
4x16
Catenate upper
Part/Part - - - 4x16 -
Part/Imm - - - 4x16 -
Part/Scalar - - - 4x16 -
Catenate lower
Part/Part - - - 4x16 -
Part/Tmm - - - 4x16 -
Part/Scalar - - - 4x16 -
Unsigned Saturate, - - - - 2-8x16s—16x8u,2-8x16u—16x8u,
Pack, and Catenate 2-4x325—8x16u,2-4x32u—8x16u
Signed Saturate, - - - - 2-8x165—16x8s,
Pack, and Catenate 2-4x32s—8x16s
Pixel Pack - - - - 2-4x32—8x16
and Catenate
Truncate & Pack 2x32—8x8 - - - -
Low Byte 4x16—8x8
Scale, Truncate, - - - - -
& Clip
Unpack Lower - - - 8x8u—4x16s 16x8s—8x16s,
& Sign Extend 8x165—4x32s
Unpack Upper - - - 8x8u—4x16s 16x8s—8x16s,
& Sign Extend 8x165—4x32s
Unpack Low Bytes 8x8u—2x32 - - - -
& Zero Extend 8x8u—4x16
[ Unpack Lower Pixel ]| - - - - 8x16—16x8
[ Unpack Upper Pixel || - - - - 8x16—16x8

Zero Expand
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Table 2.16 cont’d.
Catenating, Packing, and Unpacking Operations

Operation Types Sun Intel Intel Intel
VIS MMX SSE SSE2

Catenate odd

Part/Part - - - -

Part/Imm - - - -

Part/Scalar - - . -

Catenate even
Part/Part - - - N

Part/Imm - - - _

Part/Scalar - - . -

Catenate upper
Part/Part - - 4x32f -
Part/Imm - - -

Part/Scalar - - - -
Catenate lower
Part/Part - - 4x32f -
Part/Imm - - - -
Part/Scalar - - . -
Unsigned Saturate, - 2-4x16s—8x8u - 2-8x16s—16x8u
Pack, and Catenate
Signed Saturate, - 2-4x165—8x8s, - 2-8x165—16x8s,
Pack, and Catenate 2-2x32s—4x16s 2-4x32s—8x16s
Pixel Pack - - - -

and Catenate

Truncate & Pack - - - -

Low Byte
Scale, Truncate, 4x16—4x8u, - - -
& Clip 2x32—2x16s!

Unpack Lower - - N -
& Sign Extend

Unpack Upper - - B -
& Sign Extend

Unpack Low Bytes - - B -
& 7Zero Extend

Unpack Lower Pixel || - | - I N |

Unpack Upper Pixel || - [ B [ ] N |

Zero Expand [ 4x8u—d4x16u | - [ - ] N |

!Takes a 2x32, left shifts it logically by the GSR value, truncates the lower 16 bits to form a 2x31,
then signed saturates it to a 2x16s.
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Table 2.16 cont’d.
Catenating, Packing, and Unpacking Operations

Operation Types

AMD
3DNow!

AMD
E3DNow!

AMD
3DNow!Pro

Cyrix
EMMX

Catenate odd

Part/Part
Part/Imm

Part/Scalar

Catenate even

Part/Part
Part/Imm

Part/Scalar

Catenate upper

Part/Part
Part/Imm
Part/Scalar

2x32f

Catenate lower

Part/Part
Part/Imm
Part/Scalar

2x32f

Unsigned Saturate,
Pack, and Catenate

Signed Saturate,
Pack, and Catenate

Pixel Pack
and Catenate

Truncate & Pack
Low Byte

Scale, Truncate,
& Clip

Unpack Lower
& Sign Extend

Unpack Upper
& Sign Extend

Unpack Low Bytes
& Zero Extend

Unpack Lower Pixel

Unpack Upper Pixel

Zero Expand
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stores, while others use the existing access instructions, and still others allow memory

operands to their instructions.

The alignment of data in memory may have to be accounted for as some archi-
tectures cannot perform unaligned accesses while others prevent unaligned accesses
by auto-aligning them. An aligned access is one in which the address is divisible by
the number of bytes accessed, N. Such an access is referred to as being “aligned on
an N-byte boundary”. An wunaligned access is one in which the address is not on an
N-byte boundary. An auto-aligned access is one in which the least significant bits of
the address are ignored; thus, the effective address is aligned on some non-minimal

boundary even if the requested address was not.

When operating on long vectors of data, one would normally load as much of the
vector as possible in order to maximize parallelism. In this case, one would perform
a load of a word-sized fragment of the vector. The entire fragment would then be
operated on, then stored with a word-sized store. For long vectors, alignment need

only be an issue when accessing the first and last fragments of the vector.

By contrast, when loading a single element using a word-sized load, the entire
enclosing memory fragment is loaded. The fragment may need to be shifted to justify
the proper element within the register. Then, the element must be zero- or sign-

extended to fill the register and clear out the surrounding data.

When storing a single field value to a particular vector element in memory, the
value must be aligned with the element’s position in the corresponding memory frag-
ment, then stored without affecting the surrounding data. This is usually accom-
plished by loading the fragment from memory, masking out the old data in the ele-
ment’s position, shifting the new data to this position in another register, combining

these via a bitwise OR, and finally storing the updated fragment back to memory.

When copying one element from a vector in memory directly into another, we
would like to load the element, shift it into position, then store it without affecting

the surrounding data. In practice, the element is typically loaded, converted to a
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single value by justifying it with the least significant bit (Isb), sign- or zero- extended
to fill the register, then stored as in the previous paragraph.

Element load and store instructions, which move a single field of data, are only
useful if they eliminate some of the above masking or alignment steps. Otherwise, they
are not an improvement over full-sized load or stores except in special-case situations.

Any implementation of a portable processing model will have to be implemented
on any of the target systems. Each extension family has its own set of peculiarities
with regards to memory accesses. These are usually inherited from the memory
system of the underlying architecture either by necessity or by convention.

MVTI uses the memory access instructions of the underlying Alpha architecture.
These include a set of 8-, 16-, 32- and 64- bit loads and stores which require aligned
accesses, and 64-bit loads and stores which do not.

The MAX extension sets also use the memory accesses of their underlying ar-
chitectures. In each case, a set of 8-, 16-, and 32- bit aligned loads and stores are

included, as are instructions to store from one to four or one to eight bytes to an

unaligned address. The 64-bit MAX-2 also includes 64-bit aligned loads and stores.

MIPS-V includes 64-bit auto-aligned loads and stores which are also used by the
MDMX family of extensions. The underlying MIPS-IV memory-access instructions
are also available to both MIPS-V and MDMX.

AltiVec includes 8-, 16-, and 32- bit aligned element loads and stores. The element
loads load the data into a vector register in the same relative position that it occupies
in the aligned memory quadword (128-bits) which contains it, making the surrounding
bits undefined. The element stores store the data from a vector register into the
aligned memory quadword (128-bits) which contains the address in the same relative
position that it occupies in the vector register, without affecting the surrounding bits.

The AltiVec Technology Programming Environments Manual [68] is inconsistent
in its description of vector element loads (lvebx, lvehx, lvewx). In table 4-15, they are
described as loading the data into the low-order bits of the target vector register, with

the remaining bits “set to boundedly undefined values”. In the individual descriptions
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of these instructions (which are usually more accurate), they are described as loading
the data into the same relative position within the target vector register as its relative

position in the quadword (128 bits) that it occupies in memory.

AltiVec also includes 128-bit auto-aligning loads and stores and two “load vector
index” instructions which are used for obtaining unaligned data. These instructions
load a predefined constant vector value into a register and rotate it left or right by
zero to sixteen bytes, depending on the address requested. When the same address is
used with a load, it is auto-aligned and returns the aligned fragment that contains the
requested address. The index vector is then used as the index to a permute instruction
which aligns the retrieved fragment. If the requested address was unaligned, this
process must be repeated for an access of the next aligned fragment in memory. The

results are then combined to form the intended unaligned access.

VIS includes aligned 8- and 16- bit loads and stores. It also includes block loads
and stores which move an aligned block of 64 bytes between memory and an aligned
set of eight consecutive floating-point registers without altering the cache. There is

also a variation of the block store which forces a cache flush.

MMX includes an unaligned 32-bit move instruction which can also be used to
load or store 32-bit data between the integer registers and the MMX registers. A
64-bit unaligned move is also included which can load or store data between memory
and an MMX register or between two MMX registers. These same instructions are

used by all [A32-based extension families.

SSE includes several memory access instructions. One instruction moves 128-bits
of aligned data between memory and an SSE register or between two SSE registers as a
set of 32-bit floats. There is also an unaligned version of this instruction. 3DNow!Pro
has aligned and unaligned versions of this for the MMX register set, while SSE2 has
64-bit aligned and unaligned floating-point versions.

Another set of SSE instructions moves pairs of unaligned 32-bit floating-point
data between memory and either the upper or lower halves of an SSE register with-

out affecting the surrounding data. In order to maintain compatibility with SSE,
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3DNow! Professional must provide similar functionality, although it isn’t clear what
form this would take. SSE2 provides similar instructions for operating on 64-bit

floats.

Another SSE instruction moves 32 bits of float data between memory and the low
field of an SSE register and also clears the upper fields. This same instruction can
store data from the low 32-bit field of an SSE register to memory without affecting
surrounding data. 3DNow! Professional contains an equivalent instruction, while

SSE2 contains a set for 32-bit integer, 64-bit integer, and 64-bit floating-point data.

SSE2 also has a 2x64 integer aligned load and a corresponding unaligned load.
It also contains complementary stores and a complementary store which generates a

non-temporal hint.

Enhanced 3DNow! and SSE each include a 64-bit store which is intended to min-
imize cache pollution when storing data from an MMX register. SSE also includes a
non-polluting partitioned 32-bit floating-point store from an SSE register. An MMX
register version of this instruction is available in 3DNow!Pro. SSE2 rounds these
out with a 64-bit floating-point SSE register version and a 32-bit instruction which
stores data from an integer register. Each of these instructions generates a cache-

management hint that the data is “non-temporal”.

One instruction found in Enhanced 3DNow! and SSE loads a selected 16-bit field
in an MMX register from memory without affecting the surrounding fields. It can also
be used as an insert instruction which takes its source data from an integer register.

SSE2 extends this instruction for use with SSE registers.

The loading of immediate values is often handled in interesting ways. For example,
the MAX family of extensions use the PA-RISC “load offset” instructions which are
primarily intended for calculating and loading indexed addresses for memory accesses.
MAX also has available an instruction which can load a 21-bit immediate, shifted by
11 bits, into a 32-bit register. This instruction is intended for address generation,
but can also be used to load immediate values for computation. The MAX-2 version

sign-extends the loaded data to fill a 64-bit register. VIS includes instructions which
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can load '0” or "1’ bits into all of the bits of a 32- or 64- bit floating-point register

thus supplying a means of loading these commonly-used values (0 and -1).

Various extensions also include “masked store” instructions. These store the fields
of a partitioned register based on the value of a corresponding bit in a bitmask. VIS
includes 8-, 16-, and 32- bit masked store instructions in which this bitmask is stored
in an integer register, typically generated by a comparison instruction. Enhanced
3DNow! and SSE include an 8-bit instruction in which this bitmask consists of the
most significant bits (MSbs) of each byte of an 8x8 partitioned operand. A byte
from the source operand is stored if the MSb of the corresponding byte in the second

operand is a ‘1’. SSE2 includes a version of this for use with the SSE registers.

MVI, Enhanced 3DNow!, and SSE each include a store synchronization (store
sync) instruction which ensures that stores preceding the synchronization point in
program order complete before stores which follow. This is known as weak synchro-
nization because the order of every pair of stores is not necessarily maintained. That
is, two stores which are scheduled before the synchronization point may be reordered.
Only the order of stores occurring before the synchronization point versus those oc-

curring after it are enforced.

SSE2 also includes a load synchronization instruction which ensures that loads
which precede the synchronization point complete before loads which follow it. Fur-
thermore, SSE2 includes a memory synchronization instruction which ensures that all
loads and stores which precede the synchronization point complete before any loads
or stores which follow it. MAX has a similar instruction which weakly enforces the
order of all memory accesses including loads and stores and semaphore, cache flush,

and cache purge instructions.

Although it isn’t really a memory access instruction, SSE2 also includes a spin-
wait hint instruction that lets the processor know that the process is executing a
spin-lock loop. These loops are typically used to synchronize processes that are in
contention for some shared resource or to block a process until some condition is

met. The Pentium 4 processor would normally detect such a loop and treat it as a
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“memory order violation” [95]. This hint is used to suggest to the processor that it

ignore the supposed violation.

2.1.11 Cache Management Instructions

Table 2.18 lists the instructions available for supporting cache management. While
these are not strictly SWAR operations, intelligent use of the memory subsystem is
a necessity on current SWAR architectures to achieve speedup. Generally, the pro-
grammer should be unaware of these issues, so cache management should be handled
internally by the compiler. Cache management is also rarely portable between archi-
tectures, so these operations should not be made visible by a portable programming

model.

As a general rule, data prefetches are auto-aligned. That is, when a prefetch
specifies a particular address, the aligned line-sized memory block is brought into
the cache. Some older architectures allow unaligned prefetches which bring in the

memory block that starts at the requested address.

HP’s MAX-2 allows simple prefetching to be done using the standard load instruc-
tions by targeting the read-only general register 0. The block to be fetched lies at
the auto-aligned value of the requested address. For write accesses, the block may be
marked dirty upon being fetched. 3DNow! includes similar instructions which fetch a
32-byte block, but whose address may or may not be auto-aligned, depending on the

underlying architecture.

The PA-RISC architecture’s load and store instructions also take a “cache hint
completer” (i.e. an opcode extension) which indicates a suggested action to take
relating to the cache. One hint indicates that the data will only be used once (i.e. has
that it has spatial locality, but not temporal locality). Hence, the data can be loaded
into a buffer rather than into the cache, thus preventing the cache from becoming

polluted by the temporary data.
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Table 2.17
Memory Access Operations

Operation Types DEC HP HP SGI SGI Motorola
MVI MAX-1 MAX-2 MIPS-V | MDMX AltiVec
Load Aligned? 1x8u—1x64u, 1x8u—1x32u, 1x8u—1x64u, - 1x8,
1x16u—1x64u, | 1x16u—1x32u, | Ix16u—1x64u, 1x16,
1x32s—1x64s, 1x32u 1x32u—1x64u, 1x32,
1x64, 1x64 1x642
1x1282

Load Unaligned! B , , N ,
1x64

Load Field [ - [

Load Immediate || - [ 1x21—51x64% [ 1x21—51x64% | - | - | -

Load Zeros - - - N B -

Load All Ones - - B B _ N

Load Alignment - - - - - 1x128
Vector
Store Aligned 1x64—1x8, 1x32—1x8, 1x64—1x8, - 1x8,
1x64—1x16, 1x32—1x16, 1x64—1x16, 1x16,
1x64—1x32, 1x32 1x64—1x32, 1x32,
1x64, 1x64 1x642
1x1282
Store Unaligned 1to4x8 1to4x8 - - -
1t08x8
1x64

Store Aligned - - - B B N
w/Cache Flush

Masked Store

by Bitmask - - - B B N

by MSb of Part - - - - - -

Store Sync || Weak

Memory Sync [ - Weak

| | | | |

Load Sync [ - [ B [ B [ B [ N [ "
| | | | |
| | | | |

Spin-wait Hint || N

!Unsigned type implies zero-extension. Signed type implies sign-extension.
2 Auto-aligning.
3Data shifted left by 11 bits, then sign extended to left into upper 32 bits.
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Table 2.17 cont’d.
Memory Access Operations

2x32f—upper 4x32f3,
2x32f—lower 4x32f%,

Operation Types Sun Intel Intel Intel
VIS MMX SSE SSE2

Load Aligned? 1x8u—1x64u, -

1x16u—1x64u,

4x32f 2x64,2x64f

64x8—8-1x64

Load Unaligned?! - 1x32u—1x64u | 1x32f—low 4x32f2, 1x32—low 4x327,
1x64 1x64—low 2x642,1x64—low 2x64f2

1x64f—high 2x64f3,
1x64f—low 2x64f4,

8-1x64—64x8

4x32f 1x128,2x64f
[ Load Field I - | - | 1x16—4x16" | 1x16—8x16° |
[ Load Immediate || - [ B [ B [ , |
Load Zeros 1x32, - - N
1x64
Load All Ones 1x32, - - N
1x64
Load Alignment - - B N
Vector
Store Aligned 1x64—1x8,
1x64—1x16,
1x327
1x648,
2x64,2x648 |
4x32f,4x32f8 2x64f,2x64f8

Store Unaligned

low 2x32—1x32
1x64

low 4x32f—1x32f,

upper 4x32f—2x32f,
lower 4x32f—2x32f,

low 4x32—1x32,
low 2x64—1x64,low 2x64f—1x64,
high 2x64f— 1x64f,
low 2x64f—1x64f,

4x32f 2x64,2x64f
Store Aligned 8-1x64—64x8 - - _
w/Cache Flush
Masked Store
by Bitmask 8x8, - - N
4x16,
2x32
by MSb of Part - - 8x8 16x8
[ Store Sync I - | - | Weak | - |
| Load Sync || - | - | - | Weak |
[ Memory Sync || - | - | - | Weak |
[ Spin-wait Hint | - | - | - | Yes |

!Unsigned type implies zero-extension. Signed type implies sign-extension.
2High fields cleared.

3Low field(s) left unchanged.
“High field(s) left unchanged.
SField selected is (immediate mod 4).
6Field selected is (immediate mod 8).
"Data from integer register is stored with a non-temporal hint.
8With Non-temporal hint.



- 117 -

Table 2.17 cont’d.
Memory Access Operations

Operation Types AMD AMD AMD Cyrix
3DNow! E3DNow! 3DNow!Pro EMMX
Load Aligned - - -
2x32f
Load Unaligned - - 1x32f—low 2x32f -
1x64—1x32f
1x64—1x32f
2x32f
[ Load Field [ - | ixi6axi6! | - I
[ Load Immediate || - [ - [ _ [ - |
Load Zeros - - - z
Load All Ones - - - z
Load Alignment - - - z
Vector
Store Aligned - -
1x642
2x32f,2x32f2
Store Unaligned - - z
low 2x32f—1x32f,
2x32f—1x64,
2x32f—1x64,
2x32f
Store Aligned - - - N
w/Cache Flush
Masked Store
by Bitmask - - B -
by MSb of Part - 8x8 - -
Store Sync [ - Weak - -

Load Sync

Memory Sync

Spin-wait Hint

'Field selected is (immediate mod 4).
2With Non-temporal hint.
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MVI and AltiVec include instructions which issue a “prefetch hint” or “store hint”
indicating that the data block should be prefetched because it probably will be loaded
from or stored to, respectively. AltiVec also includes versions of these instructions
which hint that the data should not be cached because it is expected to be “transient”.
That is, that it won’t be accessed many times after the load or store is completed.

MVI has a separate store hint for transient data.

The AltiVec prefetch instructions also associate a strided data stream with an
identifying number. This identifier, which ranges from in value from 0 to 3, is used
to indicate from which stream data should be prefetched. Whenever a stream is

associated with an identifier, all associations it has with other identifiers are removed.

A separate instruction is included to disassociate an identifier from its associated
stream without associating it with another. Another instruction disassociates all
identifier /stream pairs. These are apparently the only instructions in any of the

extension families which take non-unit, variable, strided accesses into account.

Enhanced 3DNow! and SSE each include a set of instructions which hint that a
32-byte block should be prefetched and also to which cache level the data should be
sent. This allows the programmer to treat the memory system in a more hierarchical

manner than a simple hint would.

MVT also includes an “evict hint” which indicates that a particular cache line
would be a good choice for removal (eviction) from the cache because it will not be
accessed in the near future. This instruction may initiate a write-back of the cache
line if it is dirty.

SSE2 includes a “flush line” instruction which causes the specified cache line
to be flushed to memory, thus cleanly freeing it for future use. MAX-1 includes
instructions for flushing the data and instruction caches if they are separate entities
or the combined cache if not. These instructions write the flushed line back to memory
if it is dirty.

MAX-1 also includes instructions which will flush an entire cache, writing lines

back if they are dirty. It also includes an instruction which “purges” a data cache
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Table 2.18
Cache Management Operations

Operation Types DEC HP HP SGI SGI Motorola Sun
MVI MAX-1 MAX-2 | MIPS-V | MDMX AltiVec VIS

[ Prefetch Data Line [ - | | | | | | |
[ Prefetch Data Line for Write || - | | | | | | |
| Prefetch Hint || 512 bytes! | | | | | | |
| Prefetch Hint Transient I - | | | | | | |
[Store Hint [B5i2bytes™ [ - [ - [ - [ - [T Yes [ -]
| | | | | c 1 -]
| | | | | - |
| | | | | [ - |

[ Store Hint Transient [[ 64 bytes
| Disassociate ID and Stream(s) | -
[ Evict Hint [ Yes

Flush Line - Data,Instr. - - - - -
Purge Line - Data - - - - -
Flush Cache - Data,Instr. - - - - -

Operation Types Intel Intel Intel AMD AMD AMD Cyrix
MMX SSE SSE2 | 3DNow! | E3DNow! | 3DNow!Pro | EMMX

| Prefetch Data Line || - | | - | 32 bytes® - | -
[ Prefetch Data Line for Write [[ - ] | - [ 32 bytes® - | -
| Prefetch Hint I - ] | 32 bytes? | -
[ Prefetch Hint Transient I - ] - | -
| |
| |
| |
| |

| Store Hint || N
[ Store Hint Transient I -
[ Disassociate ID and Stream(s) || -

| |

| |

| |
- [ - ]

SR

| | |

[ Evict Hint I - | | |

Flush Line - - Yes - - N _
Purge Line - - - - - - R
Flush Cache - - - - - - -

LA subset or superset of the requested block may be moved.

2Defines the data stream by specifying up to 256 units, of size up to 32 bytes, strided by up to 32768
bytes. Also associates an identifier number between 0 and 3 with the data stream.

3Unaligned on some architectures.

4Allows hint as to which cache level to prefetch to: t0 = all cache levels; t1 = all cache levels except
Oth; t2 = all cache levels except Oth and 1st; nta = non-temporal cache structure.

line. Depending on the implementation, this instruction may skip the write-back of

a dirty line when executed by a level-0 (i.e. a privileged) instruction.
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2.2 Summary of Multimedia Extension Sets

on General-Purpose Microprocessors

In this section, the salient features of the studied extension families are reviewed.
This should help us to understand the relative strengths and weaknesses of each to

allow for better design in the future.

None of these extension families appears to be an attempt to develop a high-
level SWAR processing model. Support is usually limited to 8-, 16-, and 32-bit
field sizes, and is usually not consistently available across these sizes. Instructions
tailored to specific algorithms are often available; however, instructions for interfield
communication, conditional parallel execution, and partial result combination usually

are not.

The range of support provided by these families varies widely, with some including
a large number of SWAR operations, while others include only a few. There is usually
some support for basic modular (wrap-around) and saturating arithmetic, data layout,
and data repackaging between integer and partitioned storage formats. Basic bitwise,
condition testing, and communication operations are sometimes supported, though
some families do so via standard integer operations rather than as part of the extension

family.

2.2.1 MVI

From a review of the Alpha Architecture Handbook [60], it is obvious that the
designers of MVI had a particular set of target algorithms in mind when choosing
the instructions to include, and were not attempting to develop a high-level SWAR
programming model. In fact, the stated goal of Digital Equipment Corporation’s

43

MVI extensions is to “...enable support for graphics and video algorithms”.

Because MVI uses the Alpha’s integer registers, its standard integer instructions

are available to the SWAR programmer. This means that the polymorphic, shift,
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data layout, and memory access instructions are directly usable and are available for

emulating partitioned operations.

MVTI is weak in arithmetic instructions, having only a pixel error instruction which
performs an 8x8u—1x64u reduce-add of the absolute differences of the corresponding
elements of two sources. Other instructions must be emulated using the standard

integer arithmetic instructions.

MVTI includes a reasonable set of partitioned maximum and minimum instructions

which are useful for emulating saturation operations which are not directly supported.

MVT does not include partitioned multiplication or division operations, so these
must be emulated using shifts, adds, and subtracts. A standard set of 64-bit integer
shifts are included in the Alpha architecture, including shift-and-add and shift-and-
subtracts. Partitioned shifts are not included, but can be emulated using the standard

shifts.

A reasonable set of polymorphics is supported by the Alpha architecture which
makes it possible to emulate many unsupported instructions. Also, instructions which
perform a population count, a count of leading 0 bits, and a count of trailing 0 bits
eliminate the need to perform a reduction in software to test global conditions such

as ANY or ALL true.

MVI is also weak in the number and type of comparison operations it includes.
The only partitioned comparison included is an 8x8u greater than or equal test. This
instruction generates a bitmask with ones in the bits representing the fields where
the condition is true, and zeroes in the others. The “zap” and “zapnot” instructions
can then be used to easily mask the set of true or false fields as needed. This is a
reasonable solution to providing enable masks for conditionals, but the single testing
type is too restrictive to be of much value.

The standard integer equality test can be used as a global test (ALL equal), but
is only useful for emulating partitioned tests if they are serialized. The 64-bit “beq”
and “bne” instructions can be used as branch on none- or any- true, respectively,

as can the “cmoveq” and “cmovne” instructions. These may be useful for SWAR
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looping constructs because the decision on whether to enter the body is aggregated

across the fields of a fragment rather than being separate for each field.

MVT contains several shift instructions for inserting and extracting fields from a
partitioned register. Also included are several instructions for clearing the upper or
lower sections of a register. These instructions are useful for several types of data
layout and rearrangement operations and allow data movement to or from a particular

field in a low number of steps.

Operations for packing 16- and 32- bit fields to 8-bit fields are available, as are
operations for unpacking 8-bit fields to 16- and 32- bit fields, but not between 16-
and 32- bit fields. Thus, packing 32-bit fields to 16-bit fields requires packing to 8

bits, then unpacking to 16 bits.

The Alpha architecture also includes a set of load and store instructions which
allow 8-, 16-, 32-, and 64- bit operations. The loads always write into the least
significant end of the register and zero- or sign- extend the data into the rest of the
register. This prevents direct loading of a field without disturbing the rest of the
fragment, but allows fields to be loaded individually then ORed together to form the
partitioned fragment. Stores always write the least significant end of the register to
memory without disturbing the remainder of the word, thus allowing nearly direct
field stores. A store synchronization instruction is available to flush currently pending

stores.

A set of cache prefetch hints are also included which give the programmer some
control over the operation of the cache. This control may be useful when operating

on long vectors.

MVI is by far the weakest of the stand-alone extensions. Most general-purpose

SWAR operations would have to be emulated if only MVT is available.
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2.2.2 PA-RISC MAX-1

MAX-1 arithmetic instructions include 16-bit modular and signed saturating ad-
dition and subtraction. Unsigned saturating addition and subtraction are also sup-
ported, but these combine a signed operand with an unsigned one to form an unsigned
saturated result. This makes pure unsigned saturation arithmetic difficult, because it
forces the programmer to offset one operand and perform corrections to the saturation

step.

The lack of reduction operations makes a fundamental step in task-based SIMD
arithmetic algorithms expensive because it must be emulated. This is normally done
using shifts and parallel instructions. These are supported to some extent, so emula-

tion is possible for reduction operations, but will be expensive.

Also lacking are instructions which result in the upper half of the result of an
addition or subtraction. While this is not a problem in itself, these instructions are

sometimes useful for emulating unsupported operations.

MAX-1 does not contain partitioned maximum or minimum operations. This has
two consequences. First, these operations must be emulated if they are included in
a SWAR programming model. Second, they cannot be used to emulate unsupported
saturation operations. This compounds the effects of not having pure unsigned satu-

ration arithmetic instructions.

Multiplication and division by integer or fractional constants is supported using
shift-and-add instructions. These perform a left or right shift of one 16-bit operand
followed by signed saturation addition with the other. Because they are only intended
to support multiplication and division, these shifts are limited to one-, two-, or three-
bit counts, and are equivalent to performing a multiplication or division by a value

of two, four, or eight.

These shift-and-operate instructions are more general than simple shifts, but their

limitations make them less useful than they could be. In general, high-level language
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shift operations would be constructed as a series of these instructions. This may

require non-trivial compiler technology to implement.

A 16-bit unsigned average instruction which rounds its result to an odd value is
also available. This is intended to optimize graphics algorithms, such as smoothing,

which use this common operation. It is less useful for arithmetic algorithms.

Because MAX-1 instructions are performed on the integer register set, the PA-
RISC’s standard bitwise operations are available for use in SIMD masking and the
emulation of more complex operations. A sufficient working set is provided to allow
the emulation of any required operation.

MAX’s bitwise instructions can also be used to test a condition and nullify the
next instruction in the program. This instruction is usually an unconditional jump.
Thus, the construct emulates a branch, and is likely to be most useful for tests on
the aggregate condition of the fields in a partitioned object.

Partitioned conditional instructions in MAX-1 are limited to a handful of “unit”
tests which perform an operation such as XOR or add-with-complement, then null
the next instruction if an ANY or ALL test fails. There are no tests which generate
a bitmask or fieldmask that could be used for SIMD enable masking. This is a

significant disadvantage.

However, MAX-1 does include a fairly rich set of full-register test, branch, load,
and null-next instructions. These are arguably more useful in a SWAR environment
than the few unit operations which are included because they test aggregate condi-
tional information. However, as aggregate tests, their useful operation often overlaps.
Thus, from the stand-point of SWAR processing, MAX-1’s set of conditional instruc-
tions is not as rich as is appears to be at first glance.

The implementation of operations which mix scalar and partitioned data often
requires that the scalar object be replicated to form a partitioned object upon which
the actual operation is performed. MAX-1 does not provide any means of performing
this replication step, so it would have to be emulated if mixed expressions are allowed

in the high-level programming model.
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MAX-1 also includes shift-left-and-extract instructions which allow an arbitrary
number of bits to be extracted from a partitioned register starting at an arbitrary
bit position in the register. This would be used to extract a field of data from within
a partitioned register and thus to implement vector element accesses in a vector

processing model.

MAX-1’s bit shift-right-and-extract instructions shift the concatenation of two n-
bit registers by up to n bits, then extract the low n bits into the destination register.
This is intended to be used for data alignment before or after an unaligned memory
access, but could be used for vector shifts, in which elements are shifted between

fields.

A set of bit-shift-left-and-insert instructions allow 32 or 64 bits to be extracted
from a source register and inserted into an arbitrary bit position in a target register.
These can either clear the other fields of the target register or leave them unchanged.
This is useful for altering single field values directly, for extracting particular field
values based on conditional tests, or for gather and scatter operations in which a long

vector may be compressed to optimize execution, then returned to its original state.

Other than its shift-right-and-extract instructions, MAX-1 is completely bereft of
combinatorial operations such as interleaves and catenations. It also lacks packs and
unpacks. This makes it hard to perform type conversions or to emulate operations
by converting data to a supported precision (e.g. using 16-bit additions to implement
8-bit additions).

A full set of loads and stores is included which allow any multiple of a byte to
be accessed directly. Although it is intended for constructing an effective address, a
load immediate instruction is also available which allows a 21-bit value to be loaded.
Immediates are normally loaded using a “load offset” instruction which adds the
immediate to the contents of a base register. By using register 0, which always
generates 0, the immediate can be loaded. An instruction which stores multiple bytes
starting at an unaligned position is also available. This is useful for optimizing the

storing of long data vectors.



- 126 -

MAX-1 includes a memory access synchronization instruction. This weakly en-
forces the ordering of all memory accesses including semaphore touches and cache
flushes. MAX-1 also allows many of its instructions to provide cache hints, and
includes a set of cache management instructions for flushing cache lines. These al-
low separate data and instruction caches to be handled separately and also allow a

privileged process, or the operating system, to evict lines belonging to user processes.

While MAX-1 is more complete than MVI, it is limited in scope. Because of
this, a large amount of emulation would be needed to be implement a full SWAR
programming model using MAX-1. Its limitation to 16-bit parallel objects restricts
its usefulness for character stream and standard integer processing. However, it’s
biggest fault is probably the lack of instructions that would support the emulation of
operations on data of unsupported precisions. MAX-1 would be a difficult, but not

impossible, target for a SWAR architecture.

2.2.3 PA-RISC MAX-2

MAX-2 extends the MAX-1 extension set in two major ways. First, it extends
the existing MAX-1 instructions to make use of the 64-bit PA-RISC 2.0 architecture.

Second, it adds support for data alignment and rearrangement operations.

One of the limitations of MAX-1 was the lack of a set of simple, generalized
shifts. This is resolved in MAX-2 with the addition of shift by immediate instructions
which operate on 16-bit partitioned data. These instructions make the emulation of
unsupported operations easier to implement using MAX-2 than they would be using
MAX-1. They still suffer from the limitation that the index is not variable. This type
of operation is difficult to emulate using constant-count shifts, so there is still room

for improvement.

A generalized permute by immediate instruction allows arbitrary reordering of the

fields of a partitioned register including replications. This instruction addresses one
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of the problems with MAX-1 by providing a means of converting scalar data into a

partitioned form for use in mixed expressions.

Other problems addressed by the permute instruction are type conversion and the
emulation operations on unsupported data sizes. Permute allows values to be packed
and unpacked, thus making it less costly to convert between sizes and to emulate

n-bit operations with 2n-bit operations.

Permute can also be used to perform a large number of operations which resemble
communications. For example, a single field value may be replicated such as in a
broadcast or each field value may be passed to its neighbor such as in a nearest

neighbor communication operation.

Unfortunately, the permute’s index vector is an immediate value. Thus, it must be
known at compile-time. This limits the usefulness of the permute as a communication
operation to fixed patterns. This is not a problem for type conversions and emulation,
which are defined at compile-time anyway. Thus, MAX-2’s permute is still very useful
for implementing a generalized SWAR model.

MAX-2 also has a reasonable set of interleaving “mix” instructions which support
16- and 32- bit field sizes. These are most useful for promoting and demoting data
for emulating operations on unsupported field sizes. These can be used to address the
data conversion problem. The operation of these instructions is actually covered by
the permute. Thus, these instructions are only useful if they provide a performance

improvement over using the permute instruction.

MAX-2 also extends MAX-1’s functionality by supporting cache prefetching. This
is accomplished by using the “Idd” or “ldw” instructions to “load” general register
0, which is actually read-only. The “ldd” instruction indicates a load for read, while
“ldw” indicates a load for write.

MAX-2 supports a reasonable range of SWAR operations; however, the supported
field sizes for any given operation are often severely limited. Thus, a large amount
of emulation would be required to implement a general-purpose model. While the

additions beyond MAX-1 are not as useful as they could be, they do address some
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of the primary problems with MAX-1 and make MAX-2 a usable target for SWAR

processing.

2.2.4 MIPS-V

The MIPS-V extensions include arithmetic instructions for modular addition, sub-
traction, and multiplication. Unary absolute value and negate instructions are also
available. These instructions allow basic math operations to be performed on floating-

point data.

MIPS-V does not include saturation operations, nor does it include minimum or

maximum operations which could be used to emulate saturation operations.

Various forms of multiply-add and multiply-subtract instructions are also in-
cluded, but these are not particularly useful for a generalized SWAR model. They

are most likely to be used as optimizations for special situations.

No divide or reciprocal instructions are included in the MIPS-V extensions. Thus,
floating-point division will have to be serialized if it is included in the general-purpose
model. MIPS-V also lacks the square root, log, and exponential instructions included

in some of the other floating-point extension families.

MIPS-V’s rich set of partitioned conditional tests is by far the largest of any of
the extension families. These instructions allow tests for multiple combinations of
conditions including orderedness and unorderedness. These tests set condition code
bits which represent the result of the test on each field. Conditional move instructions

merge each field of the source into the result based on the values of these bits.

The “cvt.ps.s” instruction packs two floating-point single values into a 2x32f par-
titioned value. This allows two non-consecutive 32-bit values to be easily combined

into a partitioned register without involving extra masking steps.

The “alnv.ps” instruction extracts either the low or middle 2x32f from the 4x32f

concatenation of two 2x32f sources, and is usually used for data alignment. For the
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purposes of SWAR processing, it is most useful for performing neighbor communica-

tions on multi-fragment vectors or aligning unaligned memory accesses.

A set of instructions allow the upper, lower, or a mix of the even and odd fields
of the two sources to be interleaved. These also may be used to facilitate certain

communication operations.

Auto-aligning instructions for loading and storing the floating point registers are
included which are used by both the MIPS-V ISA and MDMX. These load the aligned
64-bit block which contains the given address rather than the 64-bit block starting at
the address.

As a floating-point extension supporting IEEE-compliant computing, MIPS-V
does fairly well; however, the lack of support for division is disturbing. Support
for saturation arithmetic is non-existent; thus, a model which includes saturation

math will be difficult to implement on MIPS-V.

2.2.5 MDMX

Data stored in the accumulator is always signed, and operations which target the
accumulator are always modular. Instructions which target the accumulator include

addition, subtraction, and multiplication.

J

Data exists as a “bit array” until one of the partitioned operations is applied,
at which time the data is converted into 8x8u or 4x16s form. From then on, the
SHFL instruction must be used to convert between 8x8u and 4x16s forms, otherwise
the data becomes undefined. Conversion from 4x16s to 8x8u requires data to be

saturated with MIN or MAX and rearranged via SHFL.

MDMX instructions which target the floating-point (FP) registers are always sat-
urated, and are performed on either 8-bit unsigned or 16-bit signed data. These
include instructions for addition, subtraction, maximum, minimum, and multiplica-
tion. A 16-bit signed multiply by sign instruction is also available; however division,

reciprocal, square root, log, and exponential are not.
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A full set of shift instructions is also included, as is a reasonable set of polymor-
phics, both of which operate on the data in the FP registers.

A sufficient set of conditional tests is included for most SWAR operations. These
instructions set the floating-point condition code bits based on the result of the test
in each field. The “pick” instructions can then use these bit values to select which of
two sources they will copy their field results from.

Another interesting feature of MDMX is that condition codes are used and can
be read or written in subsets. Most of the extension families avoid using condition
codes, presumably to avoid their “side-effect” status.

Several instructions are included for moving data between the accumulator and
the FP registers and for packing the data in the accumulator into the more compact
forms used in the FP registers.

A set of instructions which perform a byte-shift-left-and-extract operation on the
concatenation of two source registers are included. These are most useful for multi-
fragment communication operations such as field shifts or rotates, and for aligning
unaligned data accesses.

MDMX includes a solid set of combining operations for use with the FP regis-
ters. Interleave upper, lower, and even-with-odd instructions are included, as are
several forms of concatenation. These instructions are most useful for promoting and
demoting data for emulation.

MDMX also includes instructions for sign-extending 8-bit values to 16-bit values.
These instructions can save several when promoting 8-bit data to 16-bit data. Because
of the relative completeness of the MDMX 8-bit instruction set, these instructions are
not as important to SWAR processing using MDMX as they would be to extension
families for which more 8-bit operations must be emulated.

Because MDMX is limited to 8-bit unsigned and 16-bit signed data, a significant
amount of emulation would be necessary to implement a general-purpose model which
includes 8-bit signed or 16-bit unsigned operations. This is not fatal, and MDMX’s

versatility and range of operations make it a reasonable target for SWAR operations.
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2.2.6 AltiVec

Arithmetic operations consist of modular and saturation addition and subtraction
on 8-, 16-, and 32- bit integer data, and saturation addition and subtraction on 32-bit
floating-point data. A 32-bit unsigned addition high is also included which can be
used to emulate 64-bit unsigned additions. The corresponding subtract high is also

included.

A 32-bit signed reduce-add-with-element can be used to quickly perform multi-
word reductions. Partial reduce-add instructions, which reduce subsections of a reg-

ister into a partial result are also included.

Modular multiplications on 8- and 16- bit data multiply either the even or odd
fields of the sources, yielding a result with doubled field widths. This allows satu-
ration multiplication to be easily emulated. An interesting set of multiply-add and
multiply-subtract instructions are available, but these are somewhat esoteric, and

would probably only be used for optimizations.

Maximum and minimum instructions operating on signed and unsigned integers

and floats are included, as are a full set of integer averages.

A single-precision floating-point reciprocal approximation instruction can be used
to perform floating-point division. Floating-point reciprocal square root, log base
two, and exponential approximations are available, but also are likely only to be used

for optimization.

Partitioned shifts and rotates include 8-, 16-, and 32- bit logical and arithmetic
operations, but 128-bit shifts must be performed in multiple steps by shifting by
bytes, then by bits within the bytes. Full-width shifts are often used in emulation,
and the lack of these is a potential problem. However, a set of polymorphics sufficient
to perform enable masking and emulation is included.

Conditionals include a full set of integer equality and greater than tests and a

32-bit floating-point greater than or equal test as well. These yield a field mask

which sets all the bits in each field of the result to either '0’s or '1’s depending upon
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the result of the test. Such a mask is immediately usable for enable masking in a
SWAR environment. This form of result is probably the best single choice possible

for partitioned tests.

Pick true and false instructions are also included which can be used to perform
trinary operations easily. A 32-bit compare bounds instruction indicates the rela-
tionship of two floating-point operands, but is likely to be used only in special case

situations.

AltiVec includes field replication for 8-, 16-, and 32- bit fields. This is most useful
for converting single-valued data to vector form — an operation which occurs often in
SIMD code. This can also be used to optimize the replication of other-sized fields as
well. Field selection is via an immediate value, which limits the usefulness of these
instructions to non-variable field indexing and internal emulation. Taking the field
number from a register would allow variably-indexed fields to be selected for replica-
tion; however, this functionality is provided by a generalized permute instruction and

would thus be redundant.

Replication of a 5-bit immediate, sign-extended to the field size, is also included.
These can be used to load small magnitude constants in one step or larger constants
in two for the supported field sizes. They can also be used to load constants into

smaller fields in multiple steps.

Instructions for converting data between integer and floating-point type are also
included, as is an instruction for rounding floats to an integer floating-point value.

These instructions are useful for type conversion and casting.

The “vsldoi” instruction allows a 16-byte sequence to be extracted from the con-
catenation of two 16-byte values. It is intended for alignment purposes, but can be

used for vector shifts or communication operations.

AltiVec’s “vperm” instruction performs a general permutation on two source regis-
ters to form a single result, indexed via a third register. This allows it to be used both

statically for data layout and type conversions, or dynamically to support variably-
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indexed element accesses or data communications such as a router operation in

MPL [107].

AltiVec includes several forms of interleaves and unpacks including saturating
forms which can be used for type conversion and to emulate unsupported saturation
operations. The “unpack-and-sign-extend” instructions allow signed data to be con-
verted to larger precisions easily. This would be an expensive operation otherwise,
and is one which occurs often when emulating saturation operations. The pack and
unpack pixel operations are less useful and unlikely to be used by a general-purpose

compiler.

AltiVec also includes instructions to load or store aligned vector elements and to
load or store 128-bit blocks. These operate without changing the relative position of
the element in the enclosing 128-bit block. Unfortunately, the loads are not as useful
as they could be. When loading a single element, it needs to be aligned, thus requir-
ing a shift operation. Also, the AltiVec loads leave the surrounding bits undefined,
thus requiring a masking operation to clear them. When loading an element into a
previously loaded fragment, we would like the surrounding elements to be unchanged,
but AltiVec doesn’t guarantee this, so again we must perform masking to insert the
element properly. AltiVec’s element stores are more useful in that they don’t clobber
surrounding data. This allows element stores without performing masking; however,

if the data to be stored is single-valued, alignment is still required.

One problem with AltiVec is that data cannot be moved directly between the
vector and general-purpose integer registers. Thus, array indices generated in the
vector registers must be moved via memory to the integer registers for use in a load

or store instruction.

The load-vector-for-shift instructions load a vector value which can be used as as
the index for a permute operation to extract a 16-byte sequence from the concate-
nation of two 16-byte fragments. This can be used to implement vector shifts and

rotates, but is intended for the alignment of unaligned memory accesses.
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AltiVec also includes instructions to provide hints about whether data should or
should not be prefetched for loads or stores. These define a data stream which can
contain up to 256 units of up to 32 bytes each, strided by up to 32768 bytes. This

allows hints about data stored in various memory layouts to be easily indicated.

AltiVec is a rather complete set of extensions. As a general rule, support is broad
and available for each of the standard data sizes below 64 bits. Support for 64-bit

data is, however, lacking.

Overall, AltiVec is a very good target for a general-purpose SWAR model, but the
lack of 64-bit operations in a 128-bit environment leaves a large gap. Also, the lack
of simple data moves between register sets and the mediocre memory access system

make generalized addressing difficult.

2.2.7 VIS

A reasonable set of modular arithmetic instructions is included for 16- and 32- bit
operations. Addition and subtraction instructions are included, as is a reduce-add of

the absolute differences of 8-bit field values.

A large number of multiply instructions are included, each of which multiplies
four 8-bit values with one to four 16-bit signed values. These typically produce a
24-bit intermediate value which is then converted to the format of the final result.
Few of these will be generated by a general-purpose compiler except as a special case

optimization.

Minimum and maximum operations are not supported by VIS, nor are divide,
reciprocal, square root, logarithmic, or exponential instructions. The lack of support
for saturation arithmetic or for maximum and minimum operations will make the

emulation of saturation operations difficult for anyone attempting to implement them.

A large set of polymorphics is also included in the VIS extensions and can be used

to facilitate the emulation of unsupported operations.
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Several comparison operations are available which operate on 16- and 32- bit
partitioned data. These set a bitmask in an integer register, which can then be used

by a masked store instruction.

VIS includes an “faligndata” instruction which performs a “byte shift right and
extract” operation. It also includes “fpack32”, “fpack16”, and “fpackfix” instructions
which perform “scale, truncate, and clip” or “scale, truncate, clip, and merge” oper-
ations and were intended to be used to convert between VIS’ pixel and fixed-point
formats. They are the only forms of shift instruction included in VIS. Unfortunately,
these forms are not particularly useful for emulating those operations which are not
supported by VIS. The lack of simple bitwise shifts severely limits emulation possi-
bilities.

An interleave instruction allows two 4x8u partitioned registers to be merged into
a single 8x8u, and can be used for field size promotion, as can an unsigned expand

instruction which zero-extends the fields.

VIS includes 8- and 16- bit loads and stores, and block loads and stores which
move 64 bytes of data between memory and eight of the 64-bit floating-point registers.

Instructions are also included which clear or set all the bits in a register.

Masked store operations in which the fields to be stored are indexed via an integer
bitmask are available to limit the effects of a store to a specific set of fields. These can
be used to implement SIMD enable masking for high-level conditional code. While
the masked store is a good idea, it would be better if it was indexed by a field mask

instead of a bit mask. This would allow better integration with SIMD masking code.

Despite Sun’s claim to the contrary, VIS seems to be designed for specific al-
gorithms rather than for a general-purpose model. The selection of esoteric instruc-
tions over simple or generalized instructions makes supporting a truly general-purpose

model more difficult than is necessary.
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2.2.8 MMX

The MMX extension family, originally from Intel Corporation [93, 71], and cloned
by Advanced Micro Devices, Incorporated [73], Cyrix Corporation [74], and others
such as Rise Technology Company [94], was originally “...designed to enhance per-
formance of advanced media and communication applications” [72] while retaining
“full compatibility with existing operating systems and software.” [93] An overview
of the MMX family is provided in [72], and detailed descriptions of the instructions

are available in [95]. A short summary, including cycle counts, is available in [93].

The MMX extensions provide a fairly wide range of support for a high-level par-
allel programming model; however, they are limited to 8-, 16-, and 32- bit SWAR

operations which are not implemented consistently across these field sizes.

MMX operates on data stored in the floating-point (FP) registers. These registers
cannot be used for floating-point operations while MMX is in use, and the standard
integer instructions cannot be used on the data stored in these registers. In this sense,

MMX is less useful than the families which partition their standard integer registers.

The supported arithmetic instructions include a reasonably complete set of modu-
lar and saturated addition and subtraction instructions, 16-bit modular multiply and

signed multiply high instructions.

A multiply-add instruction is useful for certain algorithms, but is only likely to be

used as a special-case optimization by a SWAR-based compiler.

Maximum and minimum instructions, which are useful for emulating saturation
operations, are not included in the MMX instruction set. This means that emulation
of saturation operations is expensive using only MMX. Divide and reciprocal are

excluded, as are square root, log, and exponential instructions.

Shifts on 16-, 32-, and 64- bit fields are included, and are sufficient for most SWAR
needs. A solid set of polymorphics is also included. These make it possible to emulate

many SWAR operations which are not supported directly by MMX instructions.
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Partitioned comparison instructions return a field mask which is immediately us-
able for enable masking in a SWAR environment.

A full set of interleave upper, interleave lower, and catenate even instructions
support data promotion and demotion for the emulation of unsupported SWAR op-
erations.

Memory access instructions include the “movq” and “movd” instructions which
are capable of moving data both between floating-point (FP) registers and between
these and memory. Also, most MMX instructions allow one of the sources to be in
memory, thus eliminating the need for a separate move in certain cases.

Despite its limitations, MMX is one of the more complete families of SWAR
extensions. However there are enough gaps that Intel felt the need to address them

as part of the SSE extensions (see section 2.2.13).

2.2.9 3DNow!

3DNow! [75] includes 32-bit saturated floating-point addition, subtraction, and
multiplication, and a saturating 32-bit floating-point reduce-add-and-pack which will
substantially reduce the number of instructions necessary to perform a vector reduc-
tion on floating-point data.

Floating-point maximum and minimum instructions are also included, as are in-
structions to approximate the reciprocal and reciprocal square root of a floating-point
element. While the last of these is most likely to be used only in optimizations, the
reciprocal can be used to emulate divides which are not directly supported otherwise.

Floating-point comparisons result in field masks as in MMX, which, because they
use the same register set, can be used to mask integer or floating-point vectors.

Instructions are included for converting between 32-bit signed integer and floating-
point data, which allow type conversion and casting to be performed easily.

A limited set of cache management instructions are also included for prefetching

a 32-bit data line and marking it dirty (written to) when useful.
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Because 3DNow! is an extension of MMX, MMX’s shifts, polymorphics, loads,
and stores can all be used with 3DNow!. To make MMX more complete, 3SDNow! also
includes a 16-bit signed modular multiply high and an 8-bit unsigned average instruc-

tion.

In summary, 3DNow! is a good first step toward adding floating-point SWAR
capabilities to MMX and improving its coverage. There is still room for improvement

which is addressed by the Athlon extensions to 3DNow! (see section 2.2.10).

2.2.10 Enhanced 3DNow! and MMX

A 32-bit floating-point reduce-subtract-and-pack performs a subtraction on the
elements of two registers, then packs the results. This is the complementary operation
to 3DNow!’s reduce-add-and-pack. Another floating-point instruction performs an
addition on one register, a subtraction on another, and then packs these results into
the destination. Depending on how a reduce-subtract is defined in the programming

model, one or the other of these instructions could be used to implement the operation.

The “psadbw” instruction performs a reduce-add on the differences of two 8x8
integer values to form a 16-bit unsigned result. This can be used to optimize reduction

code which can be expensive without such support.

E3DNow! also includes 8-bit unsigned and 16-bit signed integer maximum and
minimum instructions. These can also be used to emulate 8-bit signed and 16-bit
unsigned maximum and minimum operations and saturation operations using larger

data sizes.

The “pmovmskp” instruction is used to generate a bit mask consisting of the sign
bits of the 8-bit elements of a partitioned register. This would be more useful if it
could be used in direct conjunction with the “maskmovq” instruction which performs
a masked store of the bytes with a set sign bit. However, the bitmask forms do not

match; thus, pmovmskp is not particularly useful.
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Enhanced 3DNow! also includes a 16-bit unsigned multiply high, and 8- and 16-
bit unsigned average instructions which fill in missing parts of the MMX integer

instruction set.

Instructions to convert between 16-bit signed integers and 32-bit floating-point
elements are included to complement the conversions between 32-bit data types in-

cluded in 3DNow!.

A 16-bit field extraction operation can be used to quickly access vector elements
which start on a 16-bit boundary, but is not as useful for others, as it would require
as many instructions as a mask and align operation using full-width operations. The
corresponding 16-bit insert instruction is also included. These instructions can be
used to move data between the integer and MMX register sets, and the insert can

also move data from memory into an MMX register.

A 16-bit permute, indexed via an immediate, can be useful for emulation and
data promotion, but is not as useful as a permute indexed via another register. An
instruction for swapping 32-bit floating-point fields is also included. It can also be
used to swap the upper and lower halves of the register when it holds integer data,
but its operation can also be performed with a permute, so it is actually redundant.

A cache-bypassing store is included, as is a store synchronization instruction which
enforces the order of stores which occur before the synchronization point versus those
that occur afterward.

Enhanced 3DNow! fills in many of the gaps in MMX and 3DNow! and includes
instructions which will facilitate the implementation of a general-purpose model on

the Athlon architecture. With these extensions the Athlon has become a mature

SWAR architecture.

2.2.11 3DNow! Professional

AMD introduced the 3DNow! Professional [98] extensions to the Athlon instruc-

tion set in order to bring its various multimedia extensions to par with Intel’s Stream-
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ing SIMD (SSE) extensions (see section 2.2.13). This set of 52 instructions includes
those found in SSE which are not found in MMX, 3DNow!, or Enhanced 3DNow!.

2.2.12 Extended MMX

Cyrix’s Extended MMX (EMMX) [77] has two purposes. First, it extends the
MMX extension set by a few instructions. Second, it adds flexibility by including in-
structions which target a register whose use is not explicitly indicated in the instruc-
tion, but rather implied by the use of its sequentially paired register whose number
differs only in the least significant bit. Effectively, these instructions are three register
instructions rather than the IA32 standard of two, and allow the instruction to avoid

overwriting one of its sources.

16-bit signed saturation addition and subtraction are included, both of which
repeat the functionality of an existing instruction, but target an implied register.
Similarly, a set of 16-bit signed multiply high instructions allow the result to be

stored or accumulated with an implied register.

One addition to MMX is an 8-bit unsigned saturating sum of absolute differences
instruction which accumulates with the partitioned value in the implied register.
Another addition is a 16-bit signed magnitude instruction in which each element of
the result is the element with the larger absolute value of the corresponding elements
of the sources. Neither of these is likely to be used as anything but an optimization
by a general-purpose compiler.

An 8-bit average is also included, which performs a signed operation for CPUs

prior to version 1.3, and unsigned for versions after 1.3.

A set of 8-bit partitioned conditional loads is also included which load each field

based on the value of the corresponding field of a test register.

To the best of my knowledge, EMMX has not been implemented on any publicly-
available CPU, although according to a preliminary version of the Cyrix CPU Detec-
tion Guide [100], the GXm was intended to support EMMX.
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The implied register concept is interesting, but it is unlikely that EMMX will be
implemented (if it hasn’t already been) because it has been overtaken by the more

advanced extensions from AMD and Intel.

2.2.13 SSE

Extensions to MMX include an 8-bit unsigned reduce-sum of absolute differences,
8-bit unsigned and 16-bit signed maximum and minimum operations, and an instruc-
tion to generate a bit mask of the sign bits of an 8x8 partitioned register. A 16-bit
unsigned modular multiply high is also included, as are 8- and 16- bit unsigned aver-
ages.

Instructions to insert or extract 16-bit fields into or out of an MMX register are
included. These are the equivalent of the E3DNow! instructions of the same name.
Similarly, a 16-bit permutation operation is included and suffers the same limitations

as its E3DNow! counterpart.

The “pinsrw” instruction can be used to load a selected 16-bit field into an MMX
register. The “movntq” instruction can be used to store the contents of an MMX
register while minimizing cache pollution, and the “maskmovq” instruction performs
an 8-bit masked store based on the sign bits of the register fields. A store synchroniza-
tion instruction ensures the ordering of stores occurring before the synchronization

point versus those that occur afterward.

The floating-point extensions in SSE include partitioned and low element forms
of basic modular arithmetic. These include addition, subtraction, multiplication,
maximum, and minimum instructions. They also include division and square root,

and reciprocal and reciprocal square root approximations.

A basic set of polymorphics is also included which would be useful for emulation,
but a lack of shifts tends to limit any such hopes.

Several partitioned and single element forms of conditional operations are included

which result in a field mask usable for SIMD enable masking. These test basic con-
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ditions and also the orderedness (validity) of floating-point data. Instructions to set

the condition codes based on the value of the low element are also included.

32-bit interleaves and concatenates operate on the SSE registers and allow for
changes in data layout, type promotion, and vector shifts. A permutation instruction
which is indexed via an immediate is also included. It can be used internally by a

compiler, but is not as useful as a vector-indexed permute would be.

Instructions to load or store SSE registers either in their entirety or by subsection
are available, as are instructions to move data between SSE registers or between SSE
and MMX registers. Also included are instructions to convert data between integer

and floating-point formats.

2.2.14 SSE2

SSE2 includes instructions for performing basic 64-bit floating-point partitioned
and element operations including addition, subtraction, multiplication, division, max-

imum, minimum, and square root.

The MMX set of polymorphics are also included for use with the SSE registers,
as are several forms of comparisons. A relatively large set of type conversions is also
supported. New moves, shuffles, and unpacks are included to make handling 64-bit

floating-point data easier.

With this set of instructions, the Pentium 4 architecture is a mature SWAR ar-
chitecture. Emulation of unsupported operations is reasonably well-supported, and
numerical analysts are able to use SWAR instructions for 64-bit floating-point com-

putation.

2.3 Other SWAR architectures

This dissertation focuses on commodity microprocessors that are likely to be used

as the primary processor in a desktop computing system. However, there are several
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special-purpose processors with SWAR architectures that I wish to acknowledge at

this time.

These architectures range from communications processors to digital signal pro-
cessors (DSPs), and were not intended for general-purpose computation. For this
reason, they were not included in the earlier analysis although a properly designed

SWAR model should be applicable.

This section contains a brief survey of these special-purpose SWAR architectures.

MicroUnity MediaProcessor

The MediaProcessor [108] by MicroUnity Systems Engineering, Incorporated is
a 128-bit “broadband processor” which was designed to “communicate and process

digital video, audio, data, and radio frequency signals at broadband rates....”

The MediaProcessor supports “SIGD” (Single Instruction on Groups of Data)
parallelism “over data types of all sizes.” This is done by dividing its 128-bit data path
into 64-, 32-, 16-, 8-, 4-, 2-, and 1-bit sections. Integer operations can be performed
on any of these data sizes. Single- and double-precision floating point operations are
also supported. In terms of supported field sizes, this makes the MediaProcessor the

most flexible of any of the architectures discussed.

Analog Devices ADSP-2116x SHARC

Analog Devices’ ADSP-2116x Super Harvard ARChitecture (SHARC) [109, 110]
family of processors are 32-bit system-on-a-chip digital signal processors used primar-

ily for embedded applications.

These processors have two processing elements which can be used in SIMD mode.
Each of these consists of an ALU, a shifter, and a multiplier, and operates on its own
set of registers. When operated in SIMD mode, the second processor is driven by the

same instruction stream as the first, otherwise it is idle.
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Data can be operated on in 16-bit floating-point format, 32-bit fixed or floating-
point format, or 40-bit extended floating-point format. A wide range of relatively

powerful instructions are supported as is saturation arithmetic.

Analog Devices ADSP-TS101S TigerSHARC

Analog Devices ADSP-TS101S TigerSHARC DSP [111] is the first of a new line of
embedded processors derived from the SHARC family. This new family is intended for
use in telecommunications systems and multiprocessor signal-processing applications.

The TigerSHARC’s computational blocks have two SIMD-driven 64-bit processing
elements similar to those of the SHARC family. The processor can read and execute
up to four instructions at a time in a VLIW manner using a 128-bit memory bus.
Supported data types include 8-, 16-, and 32-bit fixed-point and floating-point formats

and an extended 40-bit floating-point format.

Equator Technologies MAP-CA

Equator Technologies, Incorporated’s MAP-CA Broadband Signal Processor [112]
is a VLIW architecture with processing units which can operate in a SWAR manner
on 8-, 16-, 32-, and 64-bit data objects.

The MAP-CA is intended to support “broadband multimedia applications” as an
embedded system in “infrastructure and end-point products.” These include products
such as set-top systems, video surveillance systems, and copiers. Another important

application is real-time software-based data compression and decompression.

3DSP UniPHY

3DSP Corporation’s UniPHY (Universal Physical Layer Signal Processor) [113] is
an embedded DSP with SWAR-like SIMD operation intended for broadband network-

ing and signal processing. The UniPHY processor has a set of twelve SIMD execution
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units which operate on 8-, 16-, and 32-bit data objects. These are connected to a
32-word, 32-bit register file and can be executed in parallel using a set of “expansion

instructions” .

Philips TriMedia CPU64

Philips Research’s TriMedia CPU64 processor [114] is intended for use in appli-
cations supporting connectivity between consumer electronic devices such as video
recorders and personal computing systems. The CPU64 is a VLIW processor which
supports SWAR-like processing in each of its function units. These operations can

be performed on 8-, 16-, and 32-bit data objects in a 64-bit data space.

Texas Instruments TMS320c8x Family

Texas Instruments’s TMS320 [115] family of DSPs are MIMD processors designed
for video and image processing as well as telecommunications. These processors have
between two and four 32-bit parallel processing elements, each of which can perform

SWAR “multiple-byte arithmetic” on 8- or 16-bit data.

Texas Instruments MVP

Texas Instruments’ Multimedia Video Processor (MVP) [116] is a digital signal
and graphics processor based on the TMS320 and TMS340 processor families. It
was intended to support applications such as image generation and processing, data
compression for network transmission, and integrated multimedia-based computing
environments.

The MVP consists of between one and eight processing elements which can operate
in MIMD fashion. Each of these is a 32-bit processor capable of performing arithmetic
SWAR operations on 8- and 16-bit data. These were intended to support digital

signal, pixel, integer, and fixed-point processing.
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3. DEFINITION OF A GENERAL-PURPOSE
SWAR PROGRAMMING MODEL

Having studied and rejected previously-defined programming models, we turn to the
task of developing a new public-domain, high-level model to allow general-purpose
programmers to more fully exploit the data parallelism of their applications when

targeting current COTS SWAR processors.

A well-designed model should be familiar, yet should more closely reflect the
capabilities of current SWAR architectures than do current programming models.
It should expand upon these capabilities when this can be done reasonably while
promoting code portability between these and other architectures. It should also avoid
the imposition of arbitrary limits which would preclude its future application. Such

a model should remain viable beyond the lifetimes of current SWAR architectures.

The most salient aspect of these architectures is their vector SIMD nature. This
has several implications for the design of a programming model including the expres-
sion of data parallelism and the execution of multiple control paths. A large number
of programming languages have been developed in the past for use with SIMD and
vector systems. The study of these languages presented in appendix A was under-
taken to determine how these issues were addressed in these earlier languages. We

will use and build upon these ideas during the development of the new model.

To be viable, this new programming model must allow the programmer to achieve
his or her goals efficiently. It should allow the programmer to express data parallelism
in a manner which is natural. It should also allow the programmer to use familiar
programming methods which have been logically extended for SIMD-style processing.
Thus, this model should be based on older, more established models, but must be

consistent with the operation of current SWAR architectures.
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SWAR processors are not as versatile as traditional SIMD array processors. Be-
cause of this, the programming models developed for these earlier systems promote
the use of features and capabilities which are not available on current SWAR systems.
Care must be taken to limit the new model to those facilities which have a SWAR
counterpart and to avoid those which do not. The study of previous architectures
presented in appendix A was undertaken to determine the similarities and differences

between current SWAR systems and earlier vector and SIMD architectures.

One of the purposes of a general-purpose programming model is to provide a
means for expressing the use of commonly available functionality. If the model does
not provide the expressiveness needed by programmers, then they will be forced to
use a different model. Toward this end, the model should incorporate and allow the

use of features which are common to a majority of its intended targets.

While the model should allow expressiveness, it should not incorporate esoteric
operations which cannot be easily constructed of more common ones. To be portable,
every part of the model must be implemented for every target. Any operation included
as part of the model will have to be emulated on all targets that do not support it as
a hardware operation. Highly specialized operations are likely to require emulation
on multiple targets and will be correspondingly difficult to port. Thus, they should

be avoided.

Having said that, the model should not be limited to the capabilities of the least
powerful architecture. It must be complete enough to allow a programmer to describe
the algorithms to be employed, and should be self-consistent so that a programmer
may have a reasonable expectation that its functionality is not arbitrarily limited.
These properties should hold even if the support provided by some target architecture

is lacking.

Thus, in defining this new model, a balance must be struck between promoting
code portability by rejecting esoteric capabilities and providing functionality that is

reasonably complete and exploitative of the advanced capabilities of various targets.
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To address these issues, and as a first step in developing a new SWAR model, 1
analyzed various multimedia extensions. The purpose was to find the range of sup-
port for SWAR processing defined by each extension, to identify commonly supported
operations, and to determine which advanced features may be useful in the imple-
mentation of the final model. This analysis was presented in the previous chapter

and now provides a basis for the design of a new SWAR programming model.

3.1 Relationship to Previous Architectures

Multimedia extensions perform parallel operations on identically-typed data stored
in a single processor register. Each instruction causes an identical operation to be
simultaneously applied to each piece of data in the register. Thus, this new class of
architecture is a limited form of SIMD in which data parallel computation is imple-
mented within a single processor. We refer to this class of architecture as “SIMD
Within A Register” (SWAR) to highlight the fact that SIMD-like processing is per-

formed on sets of data stored in individual processor registers.

The parallel data exploited by these extensions is stored in fields which are laid-
out linearly across individual CPU registers. Generally, no provision is made for
arranging these fields in other geometries. Thus, the natural layout for data on these
systems is one-dimensional vectors rather than multi-dimensional arrays. Because
the instructions performed by these processors treat their registers as linear arrays,
they are vector processors. Thus, the most natural model for an architecture which

incorporates multimedia extensions is a vector parallel SIMD model.

This is in contrast to SIMD array processors such as Westinghouse’s SOLOMON
prototypes [117, 118], the University of Illinois’ ILLIAC TV [119], the ICL DAP [120,
121], and the Goodyear MPP [122, 123]. These systems were designed to operate on
multi-dimensional arrays for applications such as image processing and the simulation
of processes in physical environments. They had interconnection networks that could

perform regular communications operations in multiple directions. These allowed
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them to take the form of the data objects on which they operated. Thus, they were

well-suited to an array processing model while SWAR architectures are not.

Later SIMD array processors had more advanced interconnection networks. The
IBM GF11 [124, 125, 126] had a set of 576 pipelined PEs that were fully connected via
a non-blocking Benes network [127]. The Thinking Machines” CM-1 [128, 129, 130]
and CM-2 [131, 130] had multiple networks including a packet-switched hypercube
router network which allowed any two PEs to communicate directly. The MasPar MP-
1 [132, 133, 134] and MP-2, which were developed slightly later, had similar networks
and also an “X-net” which could perform a large number of regular communications
patterns. These networks are beyond the capabilities of all but the most advanced of

the current SWAR architectures.

SWAR architectures are a cross between purely pipelined SIMD processors such
as the CRAY-1 [135] and SIMD parallel vector processors such as the CDC Cyber
205 [136, 126] or NEC SX-2 [137, 138]. The modern microprocessors upon which
SWAR architectures are based are pipelined processors which overlap multiple in-
structions in stages. SWAR instructions are also overlapped in this manner; however,
they perform in SIMD mode when executed. Thus, SWAR processors are similar to

pipelined vector processors which have multiple identical functional units.

Several historic vector processors fall into this last category. For example, the TI-
ASC [139] could support up to four identical vector pipelines which could be operated
in a SIMD manner [140]. The NEC SX-2, Fujitsu VP200 [141] and VP2600 [142, 141],
and Hitachi S810/20 [141] and S820/80 [143] are all examples of this category of

architecture.

The CDC STAR-100 [144, 125] was also closely related. It was a pipelined vector
processor with SWAR capabilities. Each of its two vector pipelines could process
one 64-bit operation or two simultaneous 32-bit operations. Special logic inserted
between the two halves of the 64-bit datapath broke the carry chains between them.

This effectively separated the datapath into two independent parts which performed
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identical operations. This method of partitioning the processor is essentially the same
method used in modern SWAR architectures.

Special-purpose single-1C SIMD processors such as the NCR GAPP [145, 146, 147]
and BLITZEN from the Microelectronics Research Center of North Carolina [148] are
also related to SWAR architectures. They are also single-chip processors, but are more
advanced in the sense that they are array processors. Future COTS SWAR processors
are likely to be single-chip array processors such as these with bit-slice or word-slice

features similar to those of the MPP [122, 123] or the ILLIAC IV [119].

3.2 Relationship to Previous Programming Models

As a SIMD model, we would expect the new model to be similar to the program-
ming models developed for previous SIMD architectures. Thus, if possible, concepts
traditionally associated with SIMD processing should be incorporated into the SWAR
model. In this section, some of the various programming models and languages used
for parallel processing are discussed.

Most early programming languages such as FORTRAN and Algol were based on
scalar programming models. Operations in these languages applied to single-valued
objects and not to multi-valued objects such as vectors and arrays. As SIMD archi-
tectures were developed, parallel languages were derived from these scalar languages.

Later programming models treated vectors and arrays as single entities rather
than a collection of scalar data. These models more closely captured the essence of
vector and array processing. Other models were also developed which treated more
complex, irregular collections of data as single entities. Each of these types of models

will be discussed in turn.

Scalar Models

So-called “vectorizing” compilers analyze code written in a scalar source language

to find operations and functions which can be parallelized. These are then translated
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into vector- or array-based parallel code for the target architecture. Thus, the pro-
gramming model is a scalar one, but the target architecture is based on a vector or

array model.

There have been a number of vectorizing compilers developed over the years for use
with standard scalar languages such as Fortran and, more recently, C. The NX Fortran
compiler [149] was a fully vectorizing compiler for Fortran 66. Other vectorizing
compilers for scalar languages include Cray’s CF'T, Fujitsu’s Fortran 77, IBM’s VS
Fortran, Alliant FX/8 Fortran, NEC SX Fortran, and Intel’s C/C++.

With the goal of developing a model that closely matches the intended target
architectures in mind, we will reject scalar programming models as being inconsistent

with current commodity SWAR architectures, which are vector-based.

Modified Scalar Models

Some programming languages use scalar models which have been modified to
operate on all elements of a vector or array simultaneously. Operations are denoted
as indexed vector or array element operations which are similar or identical to scalar
elemental operations. In some cases, special forms of indexing are used to indicate
that the operation should be applied concurrently to multiple elements. In other cases,
high-level language constructs are used to select indices and embody statements that

operate on the elements indexed.

Generally, these mechanisms denote what should be first-class vector or array op-
erations as a set of scalar operations. Thus, they allow parallelism while maintaining
a scalar model. Some of these mechanisms allow flexible access to subsets of an ob-
ject’s elements and can be useful even in a vector or array model. Because of this,

we will discuss a number of them briefly.
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Wildcard Indexing

ILLIAC IV FORTRAN [150] used wildcard indezing to indicate that a particular
dimension of an array was to take on all possible values. This was denoted using a
syntax that matched a scalar array element access, but with an asterisk as the index
for the parallelized dimension.

CFED [151, 152] used an extended form of wildcard indexing which allowed rota-
tions to be defined by adding or subtracting an offset from the wildcard.

Wildcard indexing presents vector and array operations as a collection of scalar
operations over the matching elements of the parallelized object. This should be
unnecessary in a vector model, as this would represent an operation applied to the
entire vector. That is, it would indicate a first-class vector operation which should

be expressed more succinctly in a vector model.

Control Vector Indexing

Parallel conditionals in ILLTAC IV FORTRAN were handled using control vector
indexing. This allows a vector to be used as an index whose values indicate whether
or not an operation should be applied to the corresponding element of the indexed
multi-valued object.

Control vectors must be generated by some conditional means, so their func-
tionality can be implicitly performed by conditional language constructs such as a

parallelized if statement. Thus, they should be unnecessary.

Index Sets

Index sets are used to specify which elements within a parallel object that an
operation would be applied to. They are essentially lists of indices and/or ranges of
indices which should be included. Thus, they define a subspace of the parallel object
to which they are applied.
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Actus [153] employed a form of index sets which were treated as first-class objects
that could be operated on to form more complex sets of indices.

Index sets are useful as notational devices, but are probably unnecessary as first-
class objects because their functionality, like that of control vectors, can be performed

by conditional language constructs and parallel variables.

Vector Indexing

Some languages allow vector objects to be used as indices to vector or array
accesses. These have a notation similar to scalar array element accesses, but used a
vector name as the index. This is sometimes referred to as vector subscripting. Actus
was also one of the first languages to allow vector subscripting.

Vector indexing is a useful concept, but requires a level of data movement un-
available on most SWAR architectures. They can be used to represent a permutation
of the data in a parallel object, an operation that is only well-supported on highly-

connected architectures such as the Connection Machine or the MP-1.

Extent of Parallelism

Actus introduced the concept of an extent of parallelism. This was the parallelism
width applied to a vector or array object along a particular axis. It was intended to
be independent of the size of the target architecture.

The maximum extent of parallelism and the axis along which it could be applied
were specified when an object was declared. When the object was accessed in an
expression, the extent of parallelism used for that access was specified using an index
notation. This could be smaller than the declared maximum, to allow tailoring to the
target architecture, but had to run along the same axis.

To simplify the expression of a series of statements which use the same extent of
parallelism, Actus introduced the within construct. This specified an default extent

of parallelism to be used by all statements within its body, and was similar to Pascal’s
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with construct. The default was indicated within the body by a sharp symbol (#)

used as an index.

The extent of parallelism, like index sets, is most useful as a notational device

which allows a subspace of a parallel object to be specified for operation.

Triplet Notation

Triplets were a concise notation that defined the first and last elements of a vector
or array to be accessed in parallel along a particular dimension and, optionally, the
stride between them. This allowed parallel operations on regularly-spaced scalar

elements to be specified without the use of looping constructs.

Triplets are most useful for non-unit stride accesses. Because current SWAR
architectures are not particularly well-suited to this type of access, triplets would

tend to promote inefficient use of the target architecture.

According to [154], triplets were introduced in VECTRAN [155] and BSP For-
tran [156]. Various forms of triplet notation have been used in later languages, in-

cluding Fortran 90 [157] and High Performance Fortran (HPF) [158]

The DO FOR ALL Construct

IVTRAN [159] introduced a DO FOR ALL construct which was used to indicate that
certain array element assignments and intrinsic function calls within its body could
be executed in parallel. The elements operated on could be limited to a subarray
using an index set notation which allowed a subrange of indices along each axis to be

selected.

DO FOR ALL should be unnecessary in first-class vector and array models because
it simply denotes the parallel application of an operation or function to a subset of
the object’s elements chosen a priori or via a conditional test. This can be done using

parallelized standard condition constructs.
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The where/otherwise Construct

VECTRAN introduced a conditional where/otherwise construct which is similar
to a parallelized if/else. This construct applied implicit enable masking to array
element assignments in its scalar bodies. The where section was enabled only for those
elements which passed the test, while the otherwise section applied the opposite

enable mask within its body.

This construct appears in later languages in various forms. For example, Fortran
90’s WHERE and ELSEWHERE statements have bodies which consist of first-class array
assignments that are conformable to, and masked by, the construct’s test expression.

In this form, the where construct is useful for vector- and array-based models.

The identify Statement

VECTRAN also had an identify statement which allowed irregularly-shaped
subarrays to be aliased (i.e. named) for later parallel operations. This separated the
selection of a subset of elements from the use of this selection in parallel assignments.
This is essentially equivalent to storing the result of a parallel conditional test in
a variable for later use, and is thus unnecessary in a language which supports this

functionality.

The FORALL Construct

CM Fortran [160, 131] included a FORALL statement [161] which was essentially
equivalent to a FOR loop in which the iterations were known to be parallelizable. To
ensure this, the body of a FORALL was restricted to single array element or section

assignment.

The FORALL was equivalent to VECTRAN’s identify, except that it combined the

separate aliasing and assignment statements into a single construct. It also allowed
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subspace selection by value or position. FORALL is notationally convenient, but should

be unnecessary if parallelized standard conditional constructs are available.

Parallelized Conditional Constructs

Many scalar-based languages provide parallelized versions of their standard con-
ditional constructs. For example, Actus had parallel if, while, for, and case con-

structs which embodied scalar element access statements.

These constructs require that the conditional test be evaluated for each PE, ele-
ment, or individual index, and that the correct set of statements be executed for each

one, depending on whether or not it passed the test.

Because they are more general than many of the subspace selection mechanisms
discussed above, these constructs can be used to emulate or replace them. This sug-
gests that it may be a better strategy to use parallelized conditional constructs rather
than to use less general selection mechanisms. This translates to vector and array
models as well as scalar models, and is a common method for handling conditional

execution in each case.

Array Models

The most commonly used non-scalar models in parallel processing are multi-
dimensional array models. Some of these treat arrays as first-class objects, meaning
that they can be operated on as a single aggregate object rather than as a set of
scalar elements via looping or parallelizing constructs. Other models treat arrays as

pseudo-first-class objects via modified intrinsic functions or operator overloading.

Current SWAR architectures are vector parallel processors and are thus not par-
ticularly good at array processing. In particular, they lack the memory access and
communications mechanisms necessary to carry out array processing efficiently. Thus,

an array model is not the best choice for supporting these architectures. However,
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it is instructive to look at languages based on array models to see how they have

incorporated parallel operations on aggregate data.

First-class Arrays

Truly first-class operation on arrays are written using array names as operands
without the need for indexing or special language constructs. Operations described
in this manner are applied to the aggregate object as a single transaction and may
therefore be parallelized. Normally, unary operations are applied to each element of
the operand while binary operations are applied in an element-wise manner to a pair

of conformable operands.

A fair number of languages are based on first-class array models. Several of these

which are discussed below.

The first significant programming language to incorporate vectors and arrays as
first-class objects was APL [162]. It had a mathematically-oriented notation in which
algorithms where essentially descriptions of expressions to be evaluated. APL allowed
vector and array operations to be described in a high-level, portable manner. It
introduced a large number of intrinsic functions which could be performed on scalars,
vectors, and arrays, including reductions and scans. Many of its features have been

absorbed by later parallel languages.

GLYPNIR [163] was an early SIMD language for programming the ILLIAC TV. Tt
was based on ALGOL 60 [164, 165], an early scalar language whose primary contribu-
tions were block structure, dynamically-allocated variables, and recursion. GLYPNIR
introduced separate CU and PE data types. These were essentially storage class speci-

fiers which indicated where the data should be stored, and thus exposed the separate

control and parallel units of the ILLIAC IV.

GLYPNIR’s PE variables were first-class parallel objects. They were stored and
operated on in parallel across the entire PE array. These variables represented a

sword of data residing at the same address on each of the PEs. PE variables could
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also be used to index a vector of swords. This allowed a slice of data residing at

various address on the set of PEs to be accessed.

GLYPNIR also introduced parallelized conditional constructs including IF, ELSE,
FOR, DO, WHILE, and FOR ALL. These used implicit PE masking to limit operations to
those PEs for which the condition held.

NX Fortran [149] was a version of Fortran 66 with first-class vectors and arrays.
It allowed array assignments if the shape of the data to be assigned conformed to the
shape of the destination object. It also allowed promotion of scalars to multi-valued
objects via replication. The NX Fortran compiler was a fully vectorizing compiler for
Fortran 66, and could thus parallelize scalar code as well as array code.

C* was a parallel language for the Thinking Machine’s Connection Machines.
It evolved through three models of parallelism, each of which was based on multi-
dimensional arrays.

The original version of C* [166] had mono and poly storage classes which were
similar to GLYPNIR’s CU and PE data types. A poly object was one which was
allocated on each of the PEs in the Connection Machine’s three-dimensional PE
array. Operations performed on these objects were parallelized.

C* allowed the standard C assignment operators to be used as unary reductions.
These operated under the “as if serial” rule, which required that their results be
equivalent to executing the elemental operations in some undetermined order.

A subset of PEs could be selected for processing based on the concept of the active
set of PEs. All parallel operations were performed on the current active set of PEs.
This set could be explicitly selected using a selection statement or implicitly set via
conditional constructs.

The format of the selection statement was [selector].statement. The selector
could be a processor variable, an array of processors, an indexed value represent-
ing a consecutive series of processors, or a list of any of the above. This allowed
any subset of processors to be chosen at any time to execute a statement, and thus

provided a great deal of flexibility.
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An active set could also be selected using standard C conditional constructs. The
if, else, and while constructs performed their tests on the current active set, and
reduced that set during the execution of their bodies by eliminating the PEs for
which the condition did not hold. These constructs could be nested and operated
under the “rule of local support”. This required that the body was executed only if

the condition held for at least one active PE.

C* also introduced the notion of a local processor and provided for inter-processor
communication. The this keyword represented a pointer to data stored on the local
processor. It could be indexed to indicate a different processor in a linear ordering of
the PEs. For example, this[i]—x represented the variable z on the PE i steps from
the local PE. This provided an explicit means of linear communication between PEs

which allowed the local PE to access data on others.

The second version of C*, described in [167] and [168], was based on a C++ class-
like construct called a domain. A domain defined both a data structure and a set
of functions which could operate on it. An array of domain instances represented a
first-class parallel. Execution of a member function caused parallel execution over

the instances of the domain.

Choosing a set of active PEs was now done by executing one of the member
functions of a given domain. Syntactically, this was similar to the selection operator
in the original C*, except that the selector was now a domain name and the statement
applied was now a member function. This function was executed by a PE if, and only

if, it contained an instance of the domain.

The third version of C* [169, 131] was developed based on first-class shapes.
Shapes are n-dimensional arrays of various sizes. They could be independently de-
scribed and associated with objects as necessary. A default current shape could be
set using a with statement. In general, objects had to be of the current shape in

order to be operated on in parallel.

Conditional selection was defined in terms of an active set of data positions in the

current shape. This was set by the language’s conditional constructs. A VECTRAN-



- 161 -

like where statement limited the active position set to those for which a conditional
test held. A related else clause could be used to limit the active position set to those
for which the condition failed. C* also provided an everywhere statement to allow

all positions to be made active during a single statement.

Other changes included the replacement of this with pcoord which indicated
the local PE’s index along a given axis in the current shape, the concept of “left
indexing” which allowed assignment to objects residing on other (non-local) PEs,

and the addition of a Boolean data type.

Fortran 90 [157] allows first-class arrays which can be operated on in an element-
wise fashion. It also allows mixed expressions on conformable objects, and treats
scalars as being able to assume any shape. It incorporates many of the parallelism

mechanisms discussed above such as triplet notation and WHERE constructs.

MPL [107, 170, 171], the MasPar Programming Language, was another SIMD
variant of C which treated arrays as first-class objects. It had a plural type modifier
which indicated that an object was multi-valued with its elements spread across the
MasPar architecture’s three-dimensional PE array. Operations on these objects were

parallelized.

MPL supported inter-PE communication in a manner which exposed the target’s
architecture. This was done using a set of three new constructs: proc, router, and
xnet. These allowed the programmer to specify an expression to be evaluated on
another PE with the results communicated over one of the target’s interconnection

networks.

Pseudo-First-Class Arrays

Languages which do not have first-class arrays may handle them in a manner
which hides this fact and allows them to appear to be first-class objects. For example,
arrays can be treated as first-class objects if they are manipulated using functions

rather than operators. This allows the array to be passed to, and returned from,
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functions as a single object and appear as a single entity in expressions which call

these functions.

Some languages have intrinsic functions which are a required part of the language.
Parallel languages are sometimes formed by using modified intrinsic functions to
extend scalar languages for parallel operation. These functions perform element-wise
or reductive operations on vector or array objects without requiring the definition of
new language operators or the modification of existing ones. This makes it possible

to treat non-first class vector and array objects as first-class objects.

Several vector and array languages have used this method of parallelization. NX
Fortran provided intrinsics for generating first-class vectors and arrays. Vector LRL-
TRAN [172] included the reduction intrinsics Q8SUM and Q8PROD and the selection
intrinsics Q8MASK and Q8MERGE. Fortran 90 added the MAXVAL, MINVAL, and COUNT
reduction intrinsics, and CM Fortran added the DIAGONAL and REPLICATE intrinsics

for array formation.

Some languages allow their intrinsic functions to be overloaded with user-defined
functions. As with operator overloading, this can be used to hide parallelization
performed by the compiler, and thus give the appearance of parallel operation on
first-class objects. For example, C* allowed function overloading based on the shape

of a function’s arguments.

Another common method of providing pseudo-first-class operation is to allow op-
erator overloading. When an overloaded operator is used in an expression, a user-
defined function is performed on the operands. As with a modified intrinsic, this
function may hide parallelizing scalar constructs or scalar operations which can be
parallelized by the compiler. This gives the appearance that the language supports
first-class parallel operation without it actually doing so. Fortran 90 is one language

which allows a limited amount of both operator and intrinsic function overloading.
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Vector Models

Single-dimensional, non-scalar vector models are less commonly used in parallel
processing than are multi-dimensional array models. This is because most parallel
architectures are based on two- or three-dimensional arrays of processors and thus

are better served by multi-dimensional array models.

Vector architectures are less common, and are typically programmed via the vec-
torization of scalar code or the emulation of array code. That is, they are usually
programmed using a scalar or array model. However, true vector models are more
consistent with the operation of current commodity SWAR architectures than are
scalar or array models. For this reason, the SWAR model described in this thesis is

a vector model.

The number of pure, first-class vector languages is significantly smaller than the
number of array languages. Below, a few vector languages which have some interesting

features are briefly discussed.

Vector LRLTRAN [172, 154] was a language which supported first-class vectors of
REAL, INTEGER, or BIT data. It allowed vectors to be used in mixed expressions with
extension performed as needed to make vector operands of differing lengths match.
This was done by appending elements of the identity value for the given operation to
the shorter vector. On assignment, scalars were replicated to match the shape of the

destination object.

Vector LRLTRAN also allowed vectors to be passed to, or returned from, func-
tions. This was done using vector descriptors, which were used to hold the address
and length of vectors. These were visible objects which could be modified during

execution, and thus allowed vectors to be dynamically reshaped under user control.

Vector LRLTRAN had several methods for selecting vector elements to be oper-
ated on. First, it had a flexible indexing system in which vector expressions could
be used and ranges of indices included or excluded from the set. Alternatively, it

allowed BIT vectors to be used as control vectors. It also allowed subvectors to be
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aliased using dynamic equivalencing then used as first-class objects in a manner sim-
ilar to VECTRAN’s identify statement. A set of intrinsic functions were included

to perform reductions and selection on vector objects.

C[ | (C brackets) [173] is a vector extension of ANSI C. Vectors are first-class
objects with a declarable fixed stride between elements in memory. Higher-degree
objects can be declared, but are treated as vectors of vectors. As with Vector LRL-

TRAN, vectors can be operated on, passed to functions, and used as return values.

Pointer arithmetic has a consistent interpretation in C[ |, with element and subar-
ray accesses taking the declared stride into account. The standard C operators were
parallelized. The C* maximum and minimum operators are also available, as are new
operators for population count (?), leading zero count (%), and word reversal (@).
Unary reduction operators are also available, and are denoted by enclosing the cor-
responding C operator in a bracket pair. For example, reductive addition is denoted

by the operator [+].

C[ ] allows vectors of bit fields to be assigned values via a gather operation on an
integer vector of fixed stride. However, the language is primarily intended to support

data of standard precisions, and does not treat bit fields as first-class objects.

AJL (Anar Jhaveri’s Language) [174] was a vector calculator language which pro-
vided basic arithmetic operations and intrinsic trigonometric functions. These could
operate on both scalar (mono) and vector (poly) objects in a first-class manner. How-

ever, it was not intended to be a general-purpose programming language.

Predefined constants were available including pi, e, and the number of elements
in a vector (#). AJL also included vector assignment from a list of elemental values,
generation of linearly ranging vectors, and vector shifts, shuffles, and inverse shuffles.
Operations were limited to vectors of equal lengths, and only standard precision

elements were supported.
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NESL [175] is a language in which parallel data is described as recursive sequences.
This allows complex, irregular, nested data structures to be described and operated
on. Operations performed on a sequence can be performed in parallel across each of

its elements or across a subset determined by a qualifying condition.

The following example from [175] shows the syntax of a typical NESL expression:

{negate(a): a in [3, -4, -9, 5] | a < 4}

This expression applies the built-in function negate () to each element of the sequence
[3, -4, -9, 5] which has a value less than 4.

NESL is based on VCODE [176], a stack-based vector language which allows
segmented vectors. Seqgment descriptors are used to define the number of elements in
each segment of a vector. Most vector operations are applied to their vector operands
in a segment-wise fashion and element-wise within each segment. Reductions are
applied to each segment individually.

VCODE is, in turn, based on CVL [177], a low-level vector library for the C
language. CVL provides a large number of vector operations on segmented or unseg-
mented vectors of type int, double, or cvl bool (which may take any useful form
such as chars or bits. Vectors are passed to functions via handles, which indicate the
position and layout of the vector in a dedicated vector storage area.

The sequence model is probably too irregular to be a good match for current
SWAR architectures. It is also dissimilar to the majority of languages used for high-
performance computing.

An unnamed fine-grained, parallel version of C developed at NASA’s Goddard
Space Flight Center [178] was intended to be applicable to targets of various shapes,
including serial, vector, and array processors. Thus, the model took on the shape of
the target architecture. To support bit-slice targets, all variables could be assigned a

bit size which the compiler would use as a minimum required precision.
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This language had a parallel storage class that represented data spread across
the target’s PEs. Parallel objects were first-class and could be used in expressions
involving standard C operations which were parallelized in an element-wise fashion.
The C assignment operators were modified to work with parallel objects, performing

element-wise assignment or reductive assignment as necessary.

Interprocessor communication was implemented via arithmetic on pointers to
parallel objects and treated the target’s PEs as a ring. By adding an offset, n,
to such a pointer, the element on the PE n steps away along the ring could be ac-

cessed.

This language was only partially implemented, and only for the serial Apple Mac-
intosh II. It appears to have been abandoned or neglected afterward, as I have been

unable to find any other references to it.

3.3 The General-Purpose SWAR Processing Model

The goal of this research was to develop a general-purpose programming model
for a class of architecture currently represented by the extension sets studied in the
previous chapter. Ultimately, a programming model is an abstraction which pro-
vides the programmer with a more suitable or portable target than the actual target
architecture or architectures. Thus, defining a programming model is equivalent to

choosing the abstraction that is provided to the programmer.

In this chapter, I develop a new general-purpose SWAR programming model in
a general sense. That is, we will try to delineate what should be part of the model
and what should be excluded while leaving implementation issues, such as how a
particular operation is described, for the next chapter. There, I will discuss some im-
plementations of this model. The overall purpose is to provide a consistent, portable,

generalized abstraction for this class of architecture.
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3.3.1 Classification

In trying to develop a new programming model, one must first decide if it will be
imperative, functional, or logical. That is, will algorithms be described as a series
of assignments to storage locations, as functions which can be treated as first-class
objects, or as a set of logical rules from which conclusions can be determined? This

question must be answered before one can progress to the details of language design.

Traditionally, the majority of languages used for parallel processing have been
imperative languages which operate via side-effect. That is, they allow for the as-
signment of values to variables. This is directly related to the actual storage of data
in the sense that a compiler assigns a value to a particular variable by storing it in
the corresponding storage location. Because most programmers are familiar with this
form of programming, and because it is well-established, the model which is developed

in this thesis will be an imperative programming model.

3.3.2 Data Representation

How data is represented in a model determines how the programmer can use it to
solve his or her current task. It is especially important to carefully choose how parallel
data objects will be represented because processing this type of data is the primary
goal for the new model. The type of data allowed in the model is also important. A
model which is limited to a single data type, for example 8-bit integers, will probably
not be useful for most programmers. Thus, the allowed types and precisions must be

chosen thoughtfully.

Parallelizable Objects

As a form of SIMD architecture, SWAR architectures exploit data parallelism by
applying an identical instruction to multiple streams of data simultaneously. This

is sometimes modeled by SIMD languages as an operation on some form of multi-
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valued data object. For example, we could describe such an action as an operation
on a single-dimensional vector of data. This would be a natural choice for a SWAR

programming model, but is not the only possible choice.

Despite the fact that SWAR architectures are vector parallel, there are several
reasons why we might want to consider an array model rather than a vector model.
First, many of the large-scale problems faced by the scientific community require the
modeling of physical processes in the three-dimensional real world. Second, vector
processing is really just a subset of array processing in which all arrays are one-
dimensional. Third, the set of operations performed on mathematical vectors are
similar to the set of operations performed on arrays. Finally, an array model would
not have to be expanded to incorporate arrays once array-based SWAR architectures
become commonplace. From these arguments it seems clear that it would be better

to develop an array-based model.

While it is true that many applications are array-based, there are also some that
are vector-based. More importantly, given that we cannot know what applications
will be developed using this new model, it is best to develop one which matches the
intended hardware targets as closely as possible. In this case, a vector model would

fit current SWAR architectures better than an array or scalar model.

Another problem is that a strong model tends to encourage the programmer to use
its most powerful features. The more these features differ from the actual hardware,
the more difficult they are to implement. Hence, they are less portable and often

implemented incorrectly or inefficiently when they are ported.

Given the limitations of current SWAR architectures, it would probably make
more sense to develop an array-based SWAR processing model if and when SWAR
array processors become commonplace. Single-chip array architectures such as the
NCR GAPP and three-dimensional architectures based on three-dimensional chip
layouts [179] should come to dominate at some future time. In the meantime, it is

probably wiser to develop a model which relates more closely to the current batch
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of vector-based, commodity SWAR processors. Thus, the model defined here is a

vector-based model.

Vector Length

Once we have decided on vectors as the primary parallelizable data object, we must
now decide what a vector is comprised of. The first issue is vector length. For any
given data precision on any given architecture, there is a natural number of elements
that can fit into a single register. For example, MMX registers are 64-bits long, and
thus can accommodate eight 8-bit vector elements or four 16-bit elements. We refer
to the set of data in a register as a vector fragment, and the natural length of this
fragment as the fragment length. Some programming models codify this fragment
length as the vector length. For example, it is used as the length of a vec_* in
AltiVec.org’s version of GCC for AltiVec-based processors [180].

While this may seem to be a reasonable thing to do, there are two problems with
this approach. First, real-world data rarely fits this natural machine width. Second,
it incorporates the specifics of the current architecture in the model, thus limiting
the model’s usefulness to the current architecture. We wish to avoid both of these
problems, and can best do so by making the vector length variable. Thus, the general-
purpose SWAR programming model allows all finite, positive, integral vector lengths.
Note that vector length may be limited by external constraints such as the physics of

the target machine or the limits of the operating system used.

Data Types

We must next decide what type of data the elements of a vector can consist of.
The type of data which current SWAR architectures were designed to handle falls

into two primary categories, both of which allow signed or unsigned data:

1. Integer data of various precisions typically representing digitized sampled analog

signals or digital values generated by some multimedia program.



- 170 -

2. Single-precision (32-bit) and double-precision (64-bit) floating-point data typi-
cally representing the value of some physical property or the placement and/or

orientation of some object in the three-dimensional real-world.

Unfortunately, people considering the use of SWAR architectures often limit their
view to only common multimedia data types and thus overlook other categories of
data which could be operated on using SWAR technology. Two examples are character
and Boolean data. Each of these is used extensively in various applications, but rarely

is either treated as a parallelizable data type.

The data types supported by the programming model may differ from those sup-
ported by the target architecture if these data types can be emulated or promoted
internally by the compiler. This requires that the operations defined by the model be
implemented using the data types and instructions supported by the target architec-
ture. Where this can be done, the SWAR model need not be limited to the data types
which are directly supported by the hardware. We can thus consider other possible
data types and decide to what extent these types should be supported by the new

model.

Integer Data All SWAR architectures support parallel integer processing at some
level, but usually do so only for standard multimedia data sizes. This is based on
the seemingly reasonable assumption that programmers want to use the data sizes
that are natural for the data they are manipulating and that these types are known
to language designers. For example, people working with grayscale pixels want 8-bit
objects and those working with color pixels want 24- or 32-bit objects.

The problem with this assumption is that it eliminates generality from the lan-
guage. No one knows what will be the full range of vector applications that people
will invent. The data they may wish to manipulate may be best described using 3-bit
or 6-bit objects. If so, the programming model shouldn’t prevent the programmer

from expressing operations in these terms, even if the compiler is eventually forced
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to implement them using other data sizes. To exclude data sizes from the model is

to eliminate the possibility of exploiting them.

Perhaps an analogy is called for here. Suppose your favorite soft drink is root
beer. You go to the local store to purchase a 6-pack and find that they don’t carry
it. Instead, you find a cola, which you decide is close enough. You check out, they
use your shopper’s card to track what you purchased, and then order more cola. A
week later, you again go in looking for root beer, but only find cola. The process
repeats a few more times. Now the store has a long history of your purchases of cola.
They know that your favorite soft drink is cola. In fact, they know that many of their
customers’ favorite soft drink is cola. Because of this, they decide never to carry any
other kind of soft drink, and will use your long history of buying cola as evidence of

your preference for it.

The same thing happens with data types. Because everyone uses 8-, 16-, 32-,
or 64-bit data sizes, why support anything else? If you look at all the C code ever
written, you’ll see that nobody ever uses 2-bit data types. They can’t because there
aren’t any. This circular reasoning is used as an excuse to avoid providing more

general programming models.

SWAR operations on data of non-standard precisions such as this can be performed
using reasonably straight-forward, if not always efficient, methods of emulation. We
shall see that this is possible on both multimedia-enhanced and unenhanced archi-
tectures. Also, data which has an unsupported precision usually can be promoted
to some supported type by the implementation of the model (i.e. the compiler or
library). Thus, it is often a straight-forward task to emulate operations on this type

of data.

Because we can easily emulate operations on small data sizes by promoting them
to larger, supported sizes, it is illogical to have the programming model enforce the
use of only a few data sizes. If we do not adjust programming models to allow for
more flexibility, we will pay a performance price when single-chip, bit-slice parallel

architectures become widely available.
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In order to support the widest range of applications, the general-purpose SWAR
programming model supports integer data of any bit precision. As with vector length,
external constraints may place bounds on the precision of data supported, but the
model itself does not. For example, precisions greater than the number of bits in one

of the target’s registers may be disallowed by the implementation.

Floating-point Data While several SWAR architectures support floating-point
processing, a significant number do not. These architectures would require emulation
if floating-point processing is included in the model. Such emulation is usually difficult
to do efficiently.

A floating-point operation is a series of integer operations which denormalize the
data, then operate on the integer mantissa and exponent separately, and finally nor-
malize the result. These steps can be done on an integer architecture, but the number
of steps involved will probably offset any gains made via parallelization.

This should become less of an issue in the future as more SWAR architectures
incorporate floating-point support. For now, a portable SWAR model should not
require the incorporation of floating-point operations, but should not prevent them
either. That is, support for parallel floating-point operations should be architecture-
dependent.

If it makes sense to allow any precision of integer data, why not allow any precision
for floating-point data? From a theoretical stand-point, there is no reason not to do
this. Suppose we have real-valued data that is limited in range to a set of values that
can be expressed using a 4-bit mantissa and a 4-bit exponent. Why should we not be
able to express this?

Again, the problem becomes one of finding the balance between generalization of
the model and limiting it to discourage operations which are unlikely to provide per-
formance gains (or worse, likely to cause losses). Current architectures are generally
limited to 32-bit parallel floating-point operations, with only SSE2 supporting 64-bit

floating-point operations. Any other size of floating-point data will require emulation.
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The emulation of odd-sized floating-point operations is possible, but is probably
unreasonably inefficient. On an integer-only architecture, it is inefficient for the same
reasons that emulating single- and double-precision floating-point operations are. For
sizes which do not match a standard integer size, it is even worse. If standard-sized
floating-point operations are supported by hardware, then the possibility exists for
using temporary promotion techniques. In this case, the compiler needs to be able to
manipulate the bit patterns of the floating-point data in order to create the proper
form for calculation and extract the correct bits from the result. Again, this would
probably be unreasonably inefficient and may even require that the data be moved

to an integer register first.

Because non-standard floating-point types can be unreasonably difficult and inef-
ficient to emulate, and because it is unlikely that they will become widely supported
in the near future, there is probably no significant loss in excluding them from a cur-
rent SWAR model. Thus, the current general-purpose SWAR model will only support
32- and 64-bit floating-point data on an architecture-dependent basis. Support for

non-standard floating-point types will be left for the future.

Character Data Character data is often overlooked as a parallelizable data type
because it is not considered numeric. However, characters are in fact typically stored
using an integer code. For example, the ASCII [181] character set consists of 7-
bit integer values which are used for storing and transmitting text. Thus, many
operations on character data are in fact integer operations, even if the programming

model used does not treat them this way.

Consider searching for a string in a text stream. This is a parallelizable task
that could benefit from SWAR functionality. In fact, the size of a character on most
systems (8-bits) is the same as that of a 256-color pixel — a data type which is
well-supported by most multimedia extensions. However, in order for this algorithm
to be parallelized, the model must treat the data as having a parallelizable type. A
well-designed SWAR model should do this. Thus, the general-purpose SWAR model
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treats character data as a form of integer data with the same attributes with respect

to parallelization.

Boolean Data Boolean (true/false) data could also benefit from SWAR processing,
especially given that this information can theoretically be represented with one bit
per datum. In this case, bitwise logical operations can be used to perform parallel
operations across the single-bit fields of a register. This yields the highest possible
parallelism on a SWAR system and should thus be supported. Similar to the handling
of character data, these logical types are treated as a form of integer data by the

general-purpose SWAR model.

Enumerated Data Enumerated data types should also be supported. For example,
in a digital logic simulator, we may want to represent four states for each contact
point between gates: high, low, high-Z, and indeterminate. This would require 2-
bits per contact point. This data size does not match any multimedia data type, so
multimedia architectures do not support it. Consequently, the programming models
developed for these architectures fail to provide any means of expressing data of this
form. This prevents the programmer from obtaining the highest possible performance
when using enumerated data even if the hardware can directly support it. A good
SWAR programming model should not impose this type of restriction. Thus, as with
character data, enumerated data is treated as a form of integer data by the general-
purpose SWAR model. An implementation may provide for explicit enumerated types

such as in the C language.

Aggregate Data Elements consisting of aggregate data types such as C structs
or Pascal records may also be useful. Data such as vectors of complex numbers could
be represented in this manner with multiple elements stored in a single register or
with each element striped across multiple registers. Other types or representations of
data such as cylindrical or spherical coordinates could also be expressed as vectors of

aggregate data.
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While this may be useful, it opens up a new set of questions that which should be
avoided for the time being. For example, which of the two layouts just mentioned,
unstriped or striped, would be the better default method of representation? Should
the user be able to specify which to use? If so, should this be via an explicit or implicit

indication in the language? If not, how should the compiler make this decision?

Other questions also arise. For example, how large or complex a structure should
the implementation consider to be parallelizable? Should the compiler be responsible
for determining when to parallelize a vector of aggregate elements? If so, then a
compiler implementing the model becomes significantly more complex than it would
be without vectors of aggregates. If not, then some limitation must be built into the
model to free the implementation from making this decision. While these questions
are interesting, they should be avoided at this time to make the work reasonably

manageable.

One may also dismiss vectors of aggregate objects for the simple reason that they
do not fit well with the operation of current SWAR, architectures. While some aggre-
gate types are equivalent to small arrays of identically-typed data, in general they are
comprised of objects of dissimilar types. Such types differ from the identically-typed
parallel streams which SWAR instructions expect. Rather than trying to distinguish

between these classes of aggregate elements, we will reject them altogether.

3.3.3 Parallel Operations

The general-purpose SWAR model treats vectors as first-class objects. Thus, a
language which implements the SWAR model should support a fundamental set of
vector operations in a manner which is easily expressed and meaningful. This set of
operations should reflect those which are typically performed on vectors, but must
also reflect the capabilities of current SWAR architectures. The operations that are
supported by the SWAR model must be chosen to balance these goals. In this section,

I build on the analysis of multimedia extensions from the previous chapter to delineate
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a set of operations that should be supported by a language which implements the

general-purpose SWAR model.

Modular and Saturation Operation

One issue that can be addressed before specific operations are discussed is that of
modular versus saturation operation. Recall that modular operations store only the
low bits of the result which will fit into the destination, throwing any overflow bits
away. The stored result is the calculated result modulated by the maximum storable
value. Saturation operations handle overflow by fixing the result at the most positive

or most negative representable value depending on the direction of overflow.

Multimedia operations are often performed on data which represent digitized sam-
ples of analog signals. Instructions which operate on this type of data need to do so
without changing its meaning. For example, digitized music may be played through
a “mixer” program which adjusts the relative strength of various data sources. An
attempt to increment the strength of a signal beyond the highest value should not re-
sult in the lowest value. This would cause the signal’s strength to drop unexpectedly
and thus unacceptably. It would be better if the signal strength simply stayed at the

maximum. Saturation operations were developed for this type of situation.

Certain multimedia extensions expect the data to be of this type and thus pro-
vide only saturating operations while others assume that the data should be handled
modularly as with traditional computing. Other extensions use one or the other de-
pending on the data size and the operation performed. Thus, there is significant

variation between SWAR targets.

As a general-purpose model, SWAR should support both types of operations.
Exactly how this is done is left to the implementation. For example, the SWARC
language described in the next chapter associates saturation or modularity with the
type of the data vectors. The type of operation applied is based on the resolution
of the data types of the operands. Other languages based on the SWAR model
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could instead associate saturation or modularity with the operations themselves. For
example, separate operators could exist for modular addition and saturation addition.

This mirrors the actual operation of the hardware.

Operations which, by their nature, never overflow have equivalent modular and
saturated forms, and should be included for both if for either. For example, unsigned
integer division always results in an integer value which is smaller in magnitude than
the dividend. Thus, it never overflows, so the modular and saturated cases never

differ.

Arithmetic Operations

Basic modular and saturation arithmetic functions should be included for all data

types and precisions with some caveats.

The general-purpose SWAR model includes modular and saturation addition and
subtraction for all data types. Binary maximum and minimum are also included
for all types. These are non-overflowing by nature, so there is no difference in their
behavior under modular or saturation operation. Unary negation is also included for
all signed forms and can be emulated as subtraction from 0 if necessary. Unsigned

unary negation is optional.

Multiplication is included in all cases. One may wish to avoid saturation mul-
tiplication which is sometimes expensive to emulate. However, it should probably
be included for the sake of completeness, and for this reason it is included in the

general-purpose SWAR model.

Division, which generally results in a value that is within the bounds of the divi-
dend and is thus non-overflowing (with the exception of signed division of the largest
negative number by -1), is included in all cases. Modulus (division remainder) is
included for integer vector types. Its result is always smaller and of the same sign as
the dividend, and thus never overflows. Modulus is nonsensical, and thus excluded,

for floating-point types.
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Binary averaging is supported by most current architectures and is easily emulated
for most types. However, in multimedia applications, averaging usually involves a
rounding step which does not follow normal arithmetic rounding rules. For this
reason, averaging is considered optional. If it is supported, it should be included for
all vector data types and should be clearly and consistently defined. Also, because its
result always falls between the two operands and thus never overflows, both modular
and saturated versions should be supported.

More advanced operations such as square roots and exponentials should be avoided
due lack of consistency or availability across architectures. These operations are not

easily emulated and would thus be difficult to port between architectures.

Reductive Arithmetic Operations

Reductive versions of associative arithmetic operations are also included in the
general-purpose SWAR model. The order and method of reduction are dependent
on the implementation. This allows reordering of operands and logarithmic or serial
implementation. Reductive versions of non-associative operations are not supported
by the model. Thus, reductive addition and multiplication are allowed, but reductive

subtraction, division, and modulus are not.

Combined Arithmetic Operations

The combined arithmetic operations supported by the various extensions are not
consistently implemented across architectures, and should thus be avoided for porta-
bility sake. This does not preclude the use of instructions which perform these op-
erations because any implementation of the model is free to optimize code sequences
when possible. Such operations include MMX’s multiply-add (MADD) instruction
which performs a parallel multiply followed by a semi-reductive addition.

Certain vector operations also fall into this category. For example, it could be

argued that a vector dot-product should be one of the operations defined by the
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model because it is a common operation in vector mathematics. However, it could
also be argued that dot-product is really a composition of an elementwise multiply
and a reduction addition and is thus redundant. Exactly how this common operation
is provided for, if at all, should probably be left as a language definition decision.

A similar question arises for vector cross products. These operations generate a
multi-dimensional array from two single-dimensional vectors. Because we would like
to avoid array processing in the current model, we should avoid vector cross-products

at this time.

Shift and Rotate Operations

Simple shifts include logical and arithmetic shifts left and right. These are well-
supported across the various integer extension sets with the exception of VIS, which
requires some non-trivial patchwork. For VIS, the aligndata instruction can be
used to perform byte-wise shifts while its various pixel packing instructions can be
used to perform bit-wise shifts. Because simple shifts are widely implemented and
fundamental to bit processing, they are included in the general-purpose SWAR model.

Rotates are directly supported only by AltiVec, but they can be emulated with
relative ease using shifts and polymorphics. Thus, the inclusion of rotates in a gen-
eralized model are debatable, but probably worthwhile. Both left and right rotates
should be included for symmetry. The general-purpose SWAR model includes each
of these.

Combined operations such as shift-and-adds are only supported by a few architec-

tures and should be excluded from the general-purpose model as separate operations.

Bitwise Logical Operations

Bitwise logical (a.k.a. Boolean [182, 183]) operations are the basic building blocks
of all complex binary computation [184]. These operations allow programmers to

perform more complex operations than are directly supported by the model. Thus,
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a model which includes these operations is both extensible and powerful. These
operations should be part of any programming model that includes the concept of a
Boolean type or exposes binary digits to the programmer.

A programming model need not support every type of Boolean operation, but
should include a working set. This set might not match that of any target architecture.
For example, a binary NAND operation is sufficient to perform any other Boolean
operation; thus, no other Boolean operation is necessary. However, it is often easier
for the programmer if a larger set of Boolean operators is provided. For example,
AND, OR, and NOT are often available and are familiar to most programmers. The

particular working set implemented is left as a language-dependent decision.

Bit-Reduction Operations

Reductive versions of the working set of associative bit-wise logical operations
should also be supported. More complex bitwise reductions, such as population
counts, need not be visible to the programmer. Instructions which perform these
operations are scarce and are usually difficult or expensive to emulate. Thus, they

are excluded from the general-purpose SWAR model.

Conditional Operations

A reasonable set of conditional operations needs to be supported in order to allow
decisions to be made. Otherwise, the usefulness of the model will be severely limited.
As with bitwise logical operations, only a working set needs to be chosen when the
model is implemented as a language. However, to promote self-consistency within the
model, a complete set of conditional operations should be included.

One issue concerning conditional operations is whether they can appear outside
the test sections of conditional constructs. Some languages disallow the use of con-
ditional operations anywhere other than in these test sections. However, there are

also languages which assign numeric values to these conditional expressions and al-
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low them to be used within arithmetic expressions. To allow as much flexibility as
possible, conditional operations should be assigned some value. Doing so requires
definitions for these values. These values are dependent on the implementation of the
model.

Another issue is that of “orderedness”, which is probably better referred to as
“orderability”. Certain bit patterns are not interpretable as valid floating-point num-
bers. IEEE standard 754 defines these patterns as NaNs (Not-a-Numbers). The value
of a NaN cannot be compared to other values, thus they are said to be “unordered”.
NaN patterns are not normally generated by a properly written high-level program
operating under well-defined circumstances; however, they may result from improper
conversion or interpretation of integer values. Thus, it should not be necessary, nor
would it normally be desirable, to expose this aspect of floating-point operation to

the programmer. For these reasons, these tests are excluded from the general-purpose

SWAR model.

Reductive Conditional Operations

Reductive versions of the working set of conditional operations supported by an
implementation of the model may also be supported. For example, a language may
support a reductive greater-than operation which is true if the elements of a vector
are ordered and false if they are not. These are somewhat esoteric operations, and
difficult to emulate, so we may wish to avoid them. However, their inclusion would
provide another level of consistency. Given this trade-off, these operations should

probably be optional.

Logical Operations

Logical operations are used to combine conditional operations into more complex
expressions. These enable programmers to create more complex tests than simple

conditional operations allow. A working set of these should be included in any imple-
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mentation of the general-purpose SWAR model. As with conditional operations, the
results of logical operations need not be visible to the programmer but allow more

flexibility if they are.

Reductive Logical Operations

Reductive associative logical operations produce a result which represents the
aggregate condition of the parallel elements. For proper execution of conditional
constructs under SIMD semantics, an implementation must internally perform oper-
ations of this sort. For example, a parallelized while loop should be executed while
the test condition holds for any of the parallel elements. This “any” test is essential a
reductive logical-OR of the result of applying the conditional operation to the parallel

elements.

In terms of a programming model, the question is whether the programmer should
be provided with mechanisms for performing similar operations. As with non-reductive
logical operations, it is arguable whether the results of these operations should be ex-
posed. Again, visibility allows for more flexibility. Thus, these operations should
probably be explicitly available to the programmer. Therefore, a set of reductive
logical operations which complement the chosen set of associative logical operations

should be included.

Conditional Assignment Operations

Conditional assignment is yet another issue. “Pick” instructions select one of two
possible results based on the value of an index register. Their operation is similar to
that of the C trinary operator, in which the result of a conditional test causes one
statement to be executed if the result is true and another to be executed if the result
is false. In the case of a pick instruction, the executed statements would both be

assignments to the same variable. Because this is actually a shorthand version of a
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particular if-else construct, it is redundant. Inclusion of such an operation should

thus be optional.

Data Storage and Movement Operations

Imperative languages represent the storage of data using assignment statements.
These are operations in which a value is stored for future processing to a storage
location designated by a variable. This allows long, complex expressions to be split up
into smaller ones, thus simplifying the expressions used. It also allows a programmer
to reuse common subexpressions. These are expressions which appear in one or more

others. Thus, the task of coding is made easier by the use of assignments.

An imperative vector model should allow vector assignment. That is, it should
allow data to be assigned to a vector as a aggregate object. A simple example would
be copying one vector to another. This should be expressed as a single operation,
not as a series of operations on the vectors’ elements. Thus, the SWAR model allows

vector assignment.

On assignment, data may actually be stored to a memory location or register.
Usually, the difference in destinations is hidden from the programmer and registers
are used only by the compiler. Thus, assignment is an abstraction which hides the
actual operation performed. As an optimization, instructions which perform moves
between registers may be used internally by a compiler to implement assignments
when an actual memory access is unnecessary. This can increase performance by

allowing stores to be used only when the data must be written to memory.

Instructions for moving data between vector registers are often used to copy data
before performing an operation which destroys one of its operands. They are also used
to make a copy that can be handled differently from the original. These operations
are usually internal to the compiler and not exposed to the high-level programmer.
However, some languages do allow explicit assignment to “register” variables as a

means of hinting that the data will be used often or does not need to be stored
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in memory. Although it should be unnecessary, exposure of the use of registers is

considered an implementation-dependent issue.

Instructions for moving data between scalar and vector registers are used to load
or store vector fragments when this cannot be done directly between the vector reg-
isters and memory. They are also used to allow operations to be applied to vector
fragments which cannot be applied to them while they are in the vector registers.
These instructions would normally be applied internally by the compiler as part of
a multiple instruction operation. There should be no reason to expose this to the

programmer.

A well-designed vector model should allow scalar to scalar assignment to allow
vector elements to be operated on in a reasonable manner and to ease the construction

of mixed expressions which include scalar subexpressions.

Reductive Assignment Operations

A well-designed vector model should also allow vector to scalar assignment. This is
often the last step in a parallel processing algorithm in which data has been distributed
to multiple processors for identical processing. This separates the task into parallel
subtasks whose results must be later combined. This combination step is a reductive
step in which some function of the subresults is performed to obtain the single result

of the overall task.

This step should be easily expressed as an assignment of a vector to a scalar.
Because there are various operations that one may wish to perform to obtain the
single result, a variety of reduction operations should be available for use in this
last step. Conceptually, the result of the reductive function is stored in a scalar
storage location; thus, this step should be representable as a combined reductive
assignment operation. Any of the reductive operations included in the model should

be combinable with assignment to provide vector to scalar assignment.
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Replicative Assignment Operations

Scalar to vector assignment should also be supported. This is often one of the
first steps in a typical parallel processing algorithm. The initialization of vectors to
a single value, such as zero, is a common operation. The scalar value is replicated
and assigned to each of the vector’s element. Expressing this operation as a single
replicative assignment of the scalar value to the vector object is a much more elegant
solution than expressing it as a series or loop of scalar assignments to each of the
vector’s elements. Thus, the general-purpose SWAR model allows scalar to vector

assignment which operates in a replicative fashion.

Type Conversion Operations

In a typed language, one may wish to provide for the conversion of data from one
type to another. There are various reasons for this. A data’s type usually defines
its storage format. The primary purpose of type conversion is thus to ensure that
data has the correct format during processing. This means that type conversion is
equivalent to converting between data formats. This is necessary to properly evaluate
mixed expressions, to ensure that data is stored in the proper format, and to match

function parameter and return value formats.

When type conversion is performed internally by the compiler to support mixed
expressions it is called type coercion. For example, it is sometimes useful to use data
which is stored in an integer format in an expression involving floating-point data.
The conversion of data from integer to floating-point formats is necessary for this type
of processing to be performed properly. Most languages have semantic rules which

define when such conversion takes place.

Type coercion is also performed when an expression has been evaluated to a value
of one format and needs to be stored in a location which has a different size or

is assumed to hold data of another format. The value must then be converted to
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the correct format before being stored. This conversion is typically internal to the

compiler, but is known to the programmer via the semantics of the language.

Often, conversion can be performed explicitly by the programmer using type-
casting operations. These allow the user to perform conversion outside of mixed
expressions and other situations in which the compiler would perform implicit con-
version. For example, when passing an integer value to a function which expects a
floating-point value, it is convenient to simply perform the conversion without storing
the data to a floating-point variable or constructing a mixed expression. Type casts

allow the programmer to specify such an action.

As with other operations, the level of support that a model can safely include for
type conversion depends on the capabilities of the target architectures. The various
extension sets include a large number of instructions which can be used to convert
data between various types. Some of these were intended for this purpose, while
others were not. Some instructions allow data to be converted between integer types
of various sizes, while others can be used to convert between floating-point and integer

data types.

Packs and unpacks can be used to convert between integer types of various preci-
sions. As defined previously, packing instructions convert data to smaller precisions,
then pack them into a smaller section of the register without changing their relative
order. This is equivalent to performing a vector type conversion from one precision
to another. In current multimedia extensions, this conversion is accompanied by a
saturation operation. This forces each data element to the representable value nearest

its original value.

Unpacking instructions perform the inverse of packing instructions, converting
data to larger precisions using sign- or zero-extension as necessary. As with packs,

this is equivalent to performing a vector type conversion between precisions.

Interleaving instructions also can be used to convert integer data from a smaller

to a larger precision. This is done by filling a register with zeroes or with fields which
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are filled with the sign bits of the corresponding fields of the original register. These

are then interleaved to form larger fields of zero- or sign-extended data.

Instructions which directly convert data between floating-point and integer forms
are included in several extension sets. In implementations of the model which al-
low floating-point data, these instructions may be used internally to implement type

coercion or explicitly to implement type casts.

In order to allow maximum flexibility, a general form of type casting should be
included in the model and type coercion rules should be defined to allow for mixed-

type and mixed-precision expressions. These rules are implementation-dependent.

To handle mixed-dimensional operations which are applied to a vector and a scalar,
it is sometimes useful to convert the scalar operand to a vector which “conforms”
to the shape of the vector operand by replicating the scalar’s value. This allows
computation to proceed using vector operands only. This conversion may be done

implicitly as with type coercion or explicitly as with type casting.

Support by the various multimedia extensions for replication is mixed. Only
AltiVec has explicit replication instructions. A few extensions have a number of
operations which can pair a partitioned operand with a scalar one. However, most of
the extensions have little support for replication or mixed operations. Despite this,
as a general rule replication can be emulated using polymorphics and shifts. Thus,
they are reasonably portable, though often inefficient, and should not be excluded
from the model. For this reason, scalar to vector conversions via type coercion and
casting are allowed by the general-purpose SWAR model. This promotes flexibility

while simplifying the programming task.

Vector Element Access Operations

To provide generality and to ease the handling of boundary conditions and singu-
larities, general-purpose vector programming models should allow vector elements to

be operated on individually. Where available, extraction and insertion instructions
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can be used to implement vector element accesses. These instructions allow sections
of a partitioned register to be isolated for further processing or recombined with other

data.

While several multimedia extensions contain this type of instruction, others do
not. On these architectures, it is generally possible to emulate basic forms, although
several instructions may be required to do so. Thus, they should not be excluded. The
SWAR model assumes that vector elements can be individually accessed, operated

on, and assigned as scalar objects.

Vector Generation Operations

One problem that is not well-addressed by current multimedia extensions is that
of combining single items of data into partitioned form. That is, the creation of a
vector from a set of scalars. This often takes several steps because data must be

positioned, masked, then inserted into the destination.

This leads to the question of how such an operation should be expressed by the
programmer. Specifically, should the programmer describe this as a single operation
or as the several operations that are typically used? By using elemental assignment,
the programmer can express this as multiple separate operations. However, mecha-
nisms which allow vector generation to be expressed as a single operation would also

be useful and should be included in an implementation of the model.

Vector Catenation Operations

Mathematical vectors are not often concatenated, but the catenation of character
vectors (i.e. strings) is a fairly common operation. A general-purpose model should

include operations of this type.
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Linear Interelement Communications Operations

Shifts and rotates can also be used to emulate one-dimensional communications
operations, treating the register fields as in a linear array or ring. This is the most
natural form of “inter-PE” communication for these architectures, and one which
closely represents the use of traditional SIMD interconnects. Thus, inter-field shifts
and rotates should be supported if only from a communications stand-point. Specif-
ically, linear communication between data fields is supported by the SWAR model
via vector shifts and rotates. These move data linearly and regularly between vector

elements.

Non-linear Interelement Communication Operations

Advanced communications operations such as shuffles and permutations require
more complex operations than most current multimedia extensions support. Because
of this, these more advanced communications operations will be avoided. We will,
however, discuss the capabilities of current SWAR architecture with respect to com-
munications operations.

Interleaving instructions combine data in two registers by alternating between
them, while swaps exchange data between the fields of a single register. These in-
structions can be used to implement various forms of interfield communication which
exhibit regular access patterns. Neither interleaves nor swaps are consistently im-
plemented across multimedia architectures. Thus, the particular communications
patterns exhibited by these architectures differ. Because of this, communications op-
erations with patterns which require this type of operation should be avoided in the
current general-purpose model.

The catenating instructions included in the various multimedia extension sets com-
bine subsets of their operands’ elements without changing their relative order. Thus,
these instructions also perform operations which resemble various regular communi-

cation schemes. As with interleaves and swaps, these instructions are inconsistently
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implemented so the operations they perform should not be included in the current

model.

Packs and unpacks can also behave like regular communications operations. Packs
gather data from alternate fields (PEs) of a register and pass it to a contiguous set
of fields, while unpacks perform the inverse operation. These operations are not
implemented by all multimedia extensions, are inconsistently implemented when they
are, and can be expensive to emulate. Thus, the communications operations they

represent should also be avoided.

Permutation instructions allow the fields of one or two registers to be rearranged
or replicated. These operations are equivalent to communications using advanced
interconnection networks such as the router networks of the Thinking Machines” CM-

2 or MasPar MP-1.

Only a few extension sets include permutation operations. Due to their general-
ity, they are difficult to emulate on architectures which do not support them. This
makes them difficult to port. Thus, these operations should be avoided despite their
acceptance and use in previous SIMD programming models. These operations are

thus excluded from the current SWAR programming model.

As technology advances, more architectures will incorporate advanced intercon-
nections between the fields of their registers. This will allow more complex operations
such as permutations to be portable between architectures. At that time, advanced
communications should be incorporated into the model. Until then, incorporation of
such operations will only encourage the programmer to write code which cannot be

implemented efficiently on most SWAR architectures.

Cache Management Operations

Cache management is inherently architecture-dependent. One must be aware
of the size of cache lines and memory blocks to order operations intelligently. For

example, when should a hint be given that a memory location will soon be needed?
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Should it occur at the beginning of a block of code or the beginning of the statement
in which the access occurs? This depends on the size of the source code block versus
that of the cache lines. This decision also requires consideration of the availability of
space in the cache.

Generally, this knowledge should be hidden from the programmer so that he or
she may concentrate on the description of the algorithm at hand, not the mechanics
of execution or machine control. Moreover, an optimizing compiler is likely to make
modifications to the order of execution. This leaves the programmer without clear
knowledge on which to base cache management decisions. In this case, cache manage-
ment operations would blindly impose constraints on the reordering of instructions.

For these reasons, cache management operations should not be exposed to the

programmer in a portable programming model, and are not in the general-purpose

SWAR model.

3.4 Properties of a Well-Designed High-Level Language for SWAR

With the completion of this phase of research, we are now in a position to enumer-
ate a set of properties that a well-designed high-level SWAR language should exhibit,
and also to establish guidelines for implementing the general-purpose SWAR model
as a full-scale high-level programming language.

The primary characteristics of such a language are:

The primary parallelizable object is a one-dimensional vector.

Vectors consist of one or more identically-typed data elements.

Vector element types are architecture-independent.

e The elements of a vector are identical in type and precision.

The elements of a vector are single-valued and non-aggregate.
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e The elements of a vector have integer or floating-point type or some other type

which is treated as a form of one of these types.
e Vector integer elements may have any precision subject to external constraints.

e The allowed precision and handling of floating-point vector elements is

implementation-dependent.
e The layout of a vector in memory is implementation-dependent.
e Vector operations are consistent across data types and precisions.
e Vector operations are architecture-independent.

e Vector operations are closely matched to the capabilities of current SWAR ar-

chitectures.

3.5 Development of the Model

The general-purpose SWAR programming model was developed jointly by Profes-
sor Hank Dietz and me to address several concerns.

Originally, Professor Dietz suggested that the we should look at multimedia exten-
sions such as MMX because he believed that they would be interesting architectures
to target.

We then designed the SLIME (SIMD Language for Intel Multimedia Extensions)
programming language for use in the fall 1996 undergraduate Compiler and Language
Translation Systems Course (EE468) which he was teaching and for which I was the
assistant.

This language is a small MPL-like SIMD language in which the number of pro-
gramming elements depends on the precision of the data to be operated on in parallel.

There are two data types in the SLIME language: int and plural. An int is a

single standard C integer which is visible to each of the PEs. A plural is a multiple-
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valued object with a single name making only one element of the object visible to

any given PE.

The precision of a plural object is given on the command line when the compiler
is run, and is required to be one of 8, 16, 32, or 64. All plural objects are compiled
with this precision and have a fixed number of elements. This number is 64 divided by

the given precision. Thus, a plural object fills a 64-bit wide MMX register perfectly.

Originally, students were to implement a compiler for SLIME which would gener-
ate C-code using macros to execute the necessary MMX instructions. However, while
the SLIME programming model requires all operations to be implemented for any
of the given precisions, MMX does not include instructions for each of these. Thus,
unsupported operations required emulation which we did not want the students to

have to implement in the time allotted.

Subsequently, I made a brief survey of the multimedia sets then in existence. Over
time, I have expanded and refined this survey into the tables found in chapter 2. Dur-
ing my initial investigation, I found the available multimedia extension sets to be both
incompatible and incomplete. Also, it was clear that none of these extensions were
designed to support a general-purpose parallel processing model, but were instead in-
tended to support particular algorithms. Professor Dietz then suggested that perhaps

we should attempt to develop a general-purpose model.

As we began working on this model, I realized that the supported data sizes were
chosen based on the designers’ beliefs about which data sizes would be most com-
monly used by their respective customer bases. Because this had led to incompatible
extension sets, it was clear to me that this was not the path to follow when designing
a general-purpose model. Rather than to assume knowledge of the data sizes needed
by the application programmer, I argued that one cannot, and therefore should not,
guess which data sizes will be most useful to a future applications programmer.

It was also clear that limiting the size of the parallel data set to fit into one register
was not necessary, and that few real applications would use data sets of exactly the

“correct” size. For example, there are 3.2 billion gene pairs in the human genome.
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A good programming model should not preclude the description of algorithms which
address large data sets such as these. In fact, a good model should allow the pro-
grammer to describe operations on these data sets easily. Thus, as a basic model, we
opted for a SIMD model in which vectors are first-class objects with any number of
elements of any precision.

It is important here to stress the difference between the model and any particular
implementation of the model. Practical considerations, such as finite memory, cannot
be avoided; and certain situations, such as data precisions which are greater than the
size of a register, will not result in speedup. While a particular implementation of the
model may avoid these situations, they should not be incorporated into the model.

As an example, suppose we had chosen to limit data precision to the maximum
precision that would have provided speedup using MMX. Because MMX registers are
64 bits wide, the maximum size would have been 32 bits. While none of the extension
sets contemporary with MMX included instructions for data which exceeded this
precision, several current extensions do. Had the 32-bit limit been incorporated into
the model, it could not have been used by a programmer to take advantage of the
64-bit capabilities of these architectures when they became available. Similarly, if we
incorporate a 64-bit limit into the model, it will not allow the programmer to take

advantage of any 128-bit hardware support in the future.
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4. PROOF-OF-CONCEPT IMPLEMENTATIONS OF THE
MODEL

Having defined a new abstract model of parallel computation which better reflects
the capabilities and limitations of modern SWAR architectures than do current com-
putational models, we now develop prototype implementations of this model and

optimizations which exploit the capabilities of various target processors.

4.1 Prototype Libraries for SWAR Processing

My original plan of study called for the development of a set of small, portable
libraries for writing SWAR, algorithms. These were to be optimized to their target
architectures and share a common portable interface to show that the model could

be applied in this manner.

Two prototype libraries were created to address this goal. The first, called lib-
MMX, provided a means to access MMX instructions in a manner similar to C func-
tion calls. The second, SWARIib, was intended to show that a portable library

interface could be developed for SWAR processing.

4.1.1 libMMX

[ started by creating the original incarnation of the libMMX library [185]. This
provided access to the MMX set of extensions via C preprocessor macro calls. This
library defined a union type, equal to the size of an MMX fragment, which could be
treated as a repartitionable array of fields. Operations on objects of this type were

performed using macros which hid the actual register usage from the programmer.
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This is the correct approach for a portable library, but makes the library useless as
a compiler target. Later versions of this library [186], based on a version by Professor
Dietz, were written to expose register usage to make them more useful for compiler
work. A set of similar libraries are used by the Scc compiler discussed in section 4.3

to support its various targets.

Following the development of this prototype library, we decided that the design
of a high-level programming language and compiler should be given higher priority
than was originally called for in the research plan. We felt that a compiler would
be needed to perform aggressive optimizations and instruction scheduling in order to

achieve a reasonable amount of speedup over large code segments.

When using libraries, the programmer is forced to perform these tasks and is less
likely to achieve significant speedup over a large amounts of code. For this reason,
development of a portable SWAR library was not pursued until after the compiler
was relatively mature; and then, only as a proof-of-concept implementation. The

resulting library framework was called SWARIib.

4.1.2 SWARIib

SWARIib does not implement a full general-purpose model, but implements enough
of one to show that it could be done. Currently, SWARIib has only been targeted to

MMX and AltiVec, but would be implemented similarly for any target.

SWARIib allows the programmer to create vectors of unlimited length, but violates
the requirement that any field size be allowed by only allowing power-of-two field sizes.
It also limits field sizes to those smaller than a fragment, but this is allowable as it

does not limit the obtainable parallelism.
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Each vector is implemented using a C struct which contains the vector’s type
and layout information and also a data pointer. This pointer points to an allocated
area of memory which is treated as an array of fragments holding the actual data®.

In an application, vector pointers, called swar_vectors are first declared, then
swar_alloc() is called to allocate and initialize the data structure for the vector.
This function takes a vector length, data precision, and signedness and saturation
indicators as arguments, stores this information, and allocates memory to hold the
vector data. The user is responsible for initializing this data after the return.

The swar_vector names can be used in calls to macros which implement the
basic operations of the model. Type information is not passed explicitly in these
calls. This provides a level of abstraction which makes the vectors look somewhat
like first-class objects; however, basic operations must be performed via functions or
macros rather than by using operators as one would with truly first-class objects. An
implementation in an object-oriented language would allow first-class operation using
operator overloading, but would be limited in the operators allowed.

SWARIib could have been implemented as a library in which type information is
given as part of the name of each operation performed, but the current implementation
more closely matches that of the SWARC language (section 4.2). This has a negative
effect on type assessment. While a compiler can perform type assessment statically
and arrange for correctly typed operations to be performed, a macro library in which
data types are passed as arguments or as part of an argument must be assessed
during execution, thus making the resulting code slower than the corresponding code
generated by the compiler.

An example of a SWARIib vector operation is swar_add(). This macro takes
three pointers, which look like simple variable names, derives type information from
the underlying data structures, and then performs a (hopefully) properly typed vector

addition. This is done by executing the MMX or AltiVec instruction(s) necessary to

!This area is dynamically allocated and thus needs to be encapsulated to force correct alignment.
This is not, currently done, but is a relatively minor error which should not need to be corrected to
prove the viability of SWARIib.
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perform the operation on each of the corresponding pairs of fragments of the source

vectors and storing each subresult in the corresponding fragment of the result vector.

Currently, SWARIib assumes that the result type is the same as the destination
argument, and treats the sources as being of this type. This is incorrect because
the result type should be a resolution of the source arguments’ types cast to the
destination’s type. While this leads to incorrect results, it is something that an
observant user should be able to work around, and it should not be necessary to fix

this to prove that the SWAR model can be implemented as a library.

Each target has a set of operations for which it lacks hardware support. These
must be emulated in the library; however, the library currently contains no emulation.
Emulation in SWARIib would be similar to emulation in the Scc compiler described
in section 4.3. T am confident that it could be done in the framework of a library, and

that it would be time-consuming to do so.

As an example of emulation, MMX does not have an instruction which performs
an 8-bit unsigned maximum operation (max8u), but it does have an 8-bit unsigned
greater-than comparison and a set of polymorphics. The max8u can be emulated as

a series of operations similar to the following:

gt8u(argd, argl, i);
and(i, argl, j);
not(i, 1i);

and(i, arg0, i);
or(i, j, i);

Here, arg0 and argl are the arguments to the max8u. i and j are temporary
variables used to make the example clearer. In each call, the destination is the final
argument with the sources preceding it.

After processing, each vector is freed by calling swar_free (). This deallocates the
vector data and struct. Finally, swar_end () is called to perform any operations, such
as MMX’s emms instruction, necessary to put the processor back into a non-SWAR

processing mode.
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A completed version of SWARIib would be a full implementation of the SWAR
model as a library. Using the methods described in this section, a portable library
could be developed which would satisfy the requirements of the SWAR model. How-
ever, as was previously stated, it became clear that a fully operational compiler would
be necessary to achieve significant performance over anything but a trival code se-
quence. Thus, this library was not fully implemented, nor was it made available to

the public.

4.2 The SWARC Vector Language

After the development of basic SWAR libraries, the next task was to define and
develop a new, high-level programming language based on the SWAR model for even-

tual placement in the public domain.

We chose to do this rather than to add new classes to an object-oriented language
such as C++ because we be believed that it would be difficult for a C++ compiler to

optimize vector code and because it would allow more flexibility for future research.

To simplify this task, we developed a module language which could take advantage
of available C libraries and integrate well with ordinary C code. This allowed us to
avoid writing support libraries for the language which would have been necessary to

build a complete application otherwise.

The language itself is intended to allow the programmer to easily describe SWAR
data and algorithms in a portable manner. The language is similar to C, but allows
parallel data to be represented as vectors. In accordance with the general-purpose
SWAR programming model described in section 3.3, vectors are first-class objects
which can be of any length, subject to external constraints such as the amount of

available memory.

To make applications portable between targets with varying word sizes, supported

field sizes, and data alignments, the language only allows the programmer to specify
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minimal constraints on data precision and layout. This allows the compiler to choose
which field sizes and layouts will actually be used based on the target’s capabilities.
The remainder of this section describes the SWARC module language which we

have developed and is adapted from [5].

4.2.1 Type System
Base Types

The SWARC language includes the C language’s base data types to make the
integration of SWARC and C code easier than it would be otherwise. This allows
arguments to be passed from C code to SWARC functions without having to be cast
to a vector form first. Aggregate types such as structs and unions are not allowed
in this prototype language; however, single-dimensional arrays of a base type are
allowed.

The base types allowed in SWARC code are char, int, and float, with chars
considered to be 8-bit ints. These may be modified with any of the modifiers signed,
unsigned, and const. Also, the int type may be modified or replaced with the size
modifiers short, long, and long long. The storage classes extern, register, and
static can also be applied to a base type and have the same meanings as in C.

In addition to the normal C modifiers, two additional attributes are allowed in
SWARC. These are the modular and saturation attributes which allow the pro-
grammer to specify which form of overflow handling should be used by operations
performed on the object. Thus, overflow handling is specified by data type using a
single operator for both modular and saturated operations.

The general form for declaring C data in SWARC is the same as in C with the
exception that arrays are always one-dimensional and the dimension follows the base

type name, not the name of the variable. The general form is thus:

storage-class modifiers base-type [dimension] name
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where everything but the base type and name are optional.

There are no explicit Boolean or enumerated types in SWARC. Each of these must
be handled as a type of integer. Boolean types can be handled as 1-bit unsigned ints,
while enumerated types can be handled using n-bit ints where n = [logam| for m

values. Macro definitions can be used to assign names to these values.

Vector Types

SWARC extends the C type system with a first-class vector type which allows
one-dimensional arrays of any length to be defined. These objects may be accessed as
an aggregate entity as opposed to C arrays which can only be accessed one element
at a time.

In its most general form, the type declaration for SWARC vector data specifies
an object whose elements are laid-out either as an ordinary C array or packed as the
compiler sees fit using a specified minimum precision. The syntax for declaring such
an object is similar to the bit-field specification used in C struct declarations, and

takes the general form:
storage-class modifiers base-type:preclwidth] name

where the storage class, modifiers, and base type are as described above, and every-
thing is optional except the base type and name.

The precision specifier : indicates that the object should have a SWAR (i.e.
compiler-chosen) layout, and that the minimum precision required for the data may
be specified with an optional integer precision. This precision specifies the minimum
precision to be used for element data and may take any positive integer value subject
to external constraints.

Omitting the precision specifier indicates that the object should have a C, rather
than a SWAR, layout. Using the precision specifier without an integer precision is
equivalent to specifying a SWAR layout with the native precision for the equivalent

C layout type.
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Note that while the compiler may store data with a higher precision than specified,
saturation is always to the declared precision of the data. Also note that when a
precision is specified, the integer base types, which include char, short int, int,
long int, and long long int, are equivalent.

The optional [width] specifier indicates the C layout array dimension or the
number of SWARC layout vector elements. If the [width] is omitted, it is taken to

be one.

Examples

Some examples of SWARC declarations are in order at this point:

e “char c” is equivalent to the C declaration “char c¢”, and specifies that c is a

single variable of type char.

e “float: f”7 isequivalentto “float:32 f” on most architectures, and specifies

one single-precision floating-point variable.
e “int:7 i” declares i to be an integer with at least seven bits of precision.

e “long:[14] 1” declares 1 to be a vector with 14 visible elements, each of which
is an integer field with the same number of bits of precision as a C object of

type long int.

e “char:7[14] c¢” declares ¢ to be a vector with 14 visible elements, each of

which is an integer field with at least seven bits of precision.

Type Coercion

These type extensions require several modifications to the C type coercion rules.
Scalar objects are promoted to the dimension of the other type. This allows a scalar
object to be used as an operand to a vector operation without the programmer ex-

plicitly converting the scalar into a vector.
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If neither object is a scalar and the dimensions are mismatched, the wider object
is truncated to the width of the other. This can be used with vector shifts to extract
subvectors from a vector if necessary. An implementation may optionally generate a
warning about the mismatch.

Expressions which mix C and SWAR layout objects, result in the SWAR layout
even if this requires the precision to be reduced. Otherwise, an expression with mixed
precision yields a result with the higher precision. This is primarily to allow scalars
to be converted to the precision of a vector (which is usually smaller) rather than
forcing the entire vector to be converted to the precision of the scalar.

Finally, modular expressions are cast to saturated expressions when mixed. This
ensures that overflow causes saturation even when generated by interaction with mod-

ular data.

Summary

This type system allows the programmer to specify vectors of any length and
element precision, and thus conforms to the general-purpose SWAR model. It allows
programmers to specify data types which match the precision of the data in question
while leaving the compiler free to use the whatever precision and layout works best

on the target architecture.

4.2.2 Control Constructs and Statements

Control flow constructs in SWARC are a superset of those in C, and operate
similarly to those in MPL [107]. From the point of view of the programmer using
SWARC, conditionally executed statements must be applied only to those vector
elements for which the condition is true. Because SWAR instructions are applied
across all the elements stored in a CPU register, a conditionally executed instruction
must be applied under an enable mask which limits its effects to the elements which are

enabled for the operation. SWARC control constructs must be modified to properly
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deal with this situation and to hide the underlying operations from the applications

programmer. The SWARC constructs include:

e ifstatements, which operate as do C if statements if the conditional expression
has a width (i.e. vector length) of one. Otherwise, the if body is executed
iff the condition is true for some enabled element of the conditional vector.
In this case, the body is executed under enable masking to limit the effects
to those elements for which the condition is true. Likewise, the else body is
executed, under masking, iff the condition is false for some enabled element of

the conditional vector.

e where statements, which operate as do SWARC if statements, except that the
where and elsewhere bodies are always executed. These bodies are masked to

limit their effects to the correct set of elements.

e cverywhere statements, which enable all elements of the vector for the statement

which follows. These are used to temporarily interrupt the current enable state.

e while statements, which operate as do C while statements if the conditional
expression has a width of one. Otherwise, the while body is executed as long as
the condition is true for at least one enabled element in the vector. An element
is disabled when the condition becomes false for that element, and stays that
way until the loop is exited. Thus, the set of enabled elements is monotonically
non-increasing with each iteration. Once all the elements become disabled, the
loop exits, and the enable mask is restored to its condition before entering the

loop.

e for statements, which are related to the SWARC while in the same way that
the C for is related to the C while.

e do statements, which are related to the SWARC while in the same way that
the C do is related to the C while.
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e continue and break statements, which operate as in C except that an optional

expression indicates how many nesting levels to continue or break from.

e return statements, which operate as in C except that no expression is allowed

to be returned from a SWARC function.
e labels, block statements, and empty statements, which all operate as in C.

e function calls, which operate as in C except that arguments are passed by ad-
dress, not by value. The call is executed as the body of an implied everywhere.

This ensures compatibility with ordinary C code.

e A special block statement, which encloses ordinary C code and can be inserted
wherever a statement can appear, or as a top-level declaration. These blocks
are enclosed by a ${ $} pair, and will be emitted into the output code. Within
these blocks, a dollar sign is used wherever a pound sign should appear in the

output C code.

4.2.3 Operators

The standard C operators work as usual on C-layout data. Their definitions have

been modified to work in a consistent and intelligent way with SWARC vector data:

e The unary and binary arithmetic operators operate as in C but in parallel
on the elements of vector operands. These include addition and identity (+),
subtraction and negation (-), multiplication (), division (/), and modulus
(%). Incrementation (++) and decrementation (--) are included only as prefix

operators.

e The arithmetic assignment operators also work in C. These include additive
(+=), subtractive (-=), multiplicative (*=), divisional (/=), and modular (%=)

assignment operators. The associative additive and multiplicative assignments
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are extended as in C* [169, 187] to perform reductions when storing a vector

value into a scalar or when the operator is used as a unary prefix.

The bit shift operators (<< and >>) and assignments (<<= and >>=) operate as
in C but are applied in an elementwise manner to vector operands. Bit rotates
are not currently supported in the language; however, they probably will be in

the future and use a notation similar to that of vector element rotates.

The binary bitwise logical operators (&, |, and ") are included and operate as in

C, but within each field on vector data.

Bitwise logical assignment operators (&=, |=, and "=) are also included and op-
erate as in C. These perform reductions when storing a vector into a scalar or
when the operator is used as a unary prefix. The unary one’s-complement op-
erator (7) is also extended for parallel operation; however, there is no reductive

version of this.

Comparison operators operate as in C, but evaluate to 0 in every false field and
-1 (all 1" bits) in every true field. This modification to the C definition makes
the implementation of enable masking significantly simpler. These operators
include less-than (<), less-than-or-equal (<=), greater-than (>), greater-than-or-

equal (>=), equal (==), and not equal (!=) operators.

Reductive comparisons are not included, primarily due to a notational conflict.
Following the convention use for arithmetic and logical reductions, a reductive
“greater-than” operations would be annotated as (>=) which conflicts with the
greater-than-or-equal operator. Because they are not commonly used, these

operations were not included in the language.

Logical operators operate as do comparison operators. These include logical-

AND (&&), logical-OR (11), and logical-NOT (!).
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e The trinary conditional operator (7:) works as in C, but applies enable masking

to block side-effects from affecting elements for which the condition does not

apply.

e The C assignment operator (=) is defined as in C, but is extended to perform
replication when assigning a scalar value to a vector and in elementwise fashion
when assigning a vector value to a vector. Assignment of a vector value to a

scalar is disallowed unless a reductive assignment operator is used.

e The typecast operator ((type)) has also been extended to allow SWARC types

and is used as in C.

e The sizeof operator operates as in C, returning the size of its operand in bytes.

This operand may be a type or object.

e The array generation operator ({}) has been extended to allow vector genera-
tion. This is typically used at initialization. Vector generation via concatenation
is currently unsupported by the language. This is somewhat in keeping with

the C language from which SWARC is derived.

e The array element operator ([ 1) has been extended to allow individual vector

element accesses.

New operators have also been added to facilitate operations common to SIMD

processing to be performed in the SWAR environment:

e Binary minimum (7<), maximum (?>), and average (+/) operators have been
added to facilitate the computation of these values for scalars and vectors.
Reductive unary and reductive assignment versions are also available, and take

the forms: 7<=, ?>= and +/=.

e Unary reductive and reductive assignment versions of the binary logical oper-
ators (&&= and ||=) have been added to perform the SIMD ANY and ALL

operations for assignments and reductions.
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e The vector element shift ([<<n] and [>>n]) and rotate ([<<%n] and [>>%n])
operators have been added to ease the implementation of inter-element commu-

nication and similar algorithms.

e The typeof operator returns the type of its expression argument. This allows

parameterized functions to be written to handle many types.

e The widthof operator returns the declared dimension of its expression argu-

ment.

e The precisionof operator returns the declared precision of its expression ar-

gument.

4.2.4 An Example Function

An example of code that can be written in SWARC is the Linpack benchmark
DAXPY loop, which is actually performed as a SAXPY (Single-precision AXPY) on
most SWAR hardware. A C version of the original loop looks like this:

for (1 = 0;i < mn; i++)
dy[i]l = dy[i]l + daxdx[il;

In SWARC, the same code is written as a vector expression. Here, we show the
code wrapped in a function body which can be in-lined or copied directly into the
SWARC source:

void swar_saxpy(float:32[VECTSIZE] x, float:32[VECTSIZE] y, float s)
{

y += (s * x);

Note that the algorithm is expressed as operations on vectors much as it would
be in mathematical notation. Thus, this SWARC code is more natural than the
looped C code. Also, this code describes the data and operations to be performed
without exposing the structure of the target architecture. Thus, it is portable across

multiple architectures. This allows users to write portable SIMD functions that can
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be compiled into efficient SWAR-based modules and interface code which allows these

modules to be used within ordinary C programs.

4.3 The Scc Compiler

The experimental SWARC module compiler, Scc, is the first implementation of a
compiler for a general-purpose SWAR language. Scc is a cross-compiler which targets
several SWAR-capable architectures. These include the Intel TA32 architecture using
standard C code and MMX, 3DNow!, Enhanced 3DNow!, and AltiVec architectures
using C code with inlined assembly macros which make use of these extensions.

Sce is intended to be not only a proof-of-concept implementation of the SWAR
model, but also to provide a framework for further SWAR research. To this end, the
source code for Scc will be placed into the public domain when this dissertation is
deposited.

Any portable SWAR language such as SWARC must provide the programmer with
a consistent programming model. Any compiler for such a language must manage the
inconsistencies of the target architectures to implement this model. The compiler
must provide emulation for unsupported operations and correctly implement SIMD-

style control constructs.

4.3.1 Organization

The Sce compiler consists of the front end, a back end, and a set of utilities which
are used throughout the compiler. The purpose of the front end is to determine
what type of processing must be performed on each source file, parse SWARC source
code, and convert the SWARC source into a type-coerced, optimized intermediate
representation (IR) tree representing the vector operations. The back end has the task
of converting the intermediate vector tree into lists of tuples representing operations
on word-sized data fragments, and generating C code to implement the operations

described by these tuples based on the capabilities of the target architecture.
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The primary flow of data through the compiler follows a path from the main

function, through the parser, the fragmenter, and finally the scheduler.

4.3.2 The Front End

The front end consists of six major functional units. These determine how each
source will be handled, parse SWARC sources to form an intermediate representation
(IR) tree, and perform type checking, type coercion, and vector-based optimizations

such as constant-folding of vector operations.

The parser was built using PCCTS (the Purdue Compiler Construction Tool Set,
see the network newsgroup comp.compilers.tools.pccts). As it reads the SWARC
source code, it generates top-level declarations and prototypes for the C output. As
each function body is parsed an IR tree is built to represent it. This tree has a child-
sibling structure and contains nodes which represent scalar and vector operations. It
is optionally passed to the front end optimizer before being passed to the back end

for code generation.

The front-end optimizer reconfigures the IR tree for a function by performing sev-
eral optimizations. These include constant folding on scalar and vector operations,
removal of code to compute conditionals with constant values and the related unused
conditional bodies, and aggressive vector-level algebraic simplification. These opti-
mizations depend not only on the type of the values, but also on their precision and

size.

Figure 4.1 is a representation of the IR tree that the front end generates for our
SAXPY example. The notation “2x32f” indicates an entity or operation which has
two fields containing 32-bit floating point values. We see that the ADD performs a
2x32f addition on the 2x32f value loaded from memory location y and the product
of the scalar (1x32f) object a, which is cast to a 2x32f value, and the 2x32f object z.
The 2x32f result is then stored in .
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BLOCK

Y
EXPR 4x32

Y
STORE 4x32f "y" 1,1

Y

ADD 4x32f
Y
LOAD 4x32f "y" 1,1 > MUL 4x32f
\i
CAST 4x32f
\i
LOAD 1x32f "a"1,1 > LOAD 4x32f "x" 1,1

Fig. 4.1. IR tree for SWAR SAXPY

4.3.3 The Back End

The back end consists of three major functional units. These divide vector data
into word-sized fragments, generate a tuple tree for each fragment, schedule the tuples,
and generate output code.

Vector operations encoded in the IR tree as single tree nodes need to be converted
into a series of equivalent operations on the word-length fragments of their vector
arguments. This is done by the fragmenter, which converts the IR tree into lists of
tuple DAGs (directed, acyclic graphs) which more closely represent the operations
performed by hardware.

Note that fragmenting is not strip mining, although it serves a similar purpose.
The primary difference is that fragmenting does not generate any loops, expensive
indexing, or conditional end-of-vector tests. Instead, it generates longer sequences
of fragment-based code that have the minimum possible overhead and maximum

flexibility in scheduling. Future versions of Scc may use strip mining in combination
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Fig. 4.2. Fragmentation of a Vector Addition

with fragmenting for very long vectors, where excessive fragmented code size might

limit performance.

In figure 4.2, we see how an 8-element vector addition is fragmented into four
word-sized parallel additions. In the diagram, and this discussion, the notation n-fxb
indicates an entity with n parts, each of which has f fields of b bits. In the top half
of the figure, a single vector addition is conceptually applied to two vectors, each of
which has eight 32-bit data elements. Assuming that the target’s registers have a
width of 64 bits, the fragmenter can only pack two 32-bit fields into each fragment as
a 2x32 SWAR entity. The lower half of the figure shows how the vector is fragmented,
with each pair of elements assigned to a single fragment. The corresponding fragments

of the two vectors are then added with a single hardware operation.

The operations and field sizes supported by hardware vary widely across target
architectures. These differences must be accounted for during the construction of the
tuple trees. Data promotion to supported field sizes and emulation of unsupported

operations are performed as vector operations represented by IR tree nodes are con-
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verted to fragment operations represented by tuples. The tuple generation functions
used must account for many special cases and variations while constructing the tuple

DAGs.

As the tuple trees are generated, common subexpression elimination is performed
by reusing previously generated, equivalent tuple trees when possible. Reduction in
strength optimizations can also be performed in these functions; however, care must
be taken, because these optimizations depend on the availability of an instruction
with the correct data type and field width. Finally, several compiler optimizations
can be applied at the fragment level during the generation of tuples to lessen the
overhead of enable masking and spacer manipulation or to take advantage of the
special situations created by the use of fragmentation, spacer bits, and enable masks.

These optimizations will be discussed in section 4.4.

Once a tuple tree list for a basic block has been generated, the fragmenter calls
the scheduler to generate output code for the list. The combined scheduler/register-
allocator then performs a modified exhaustive search of the possible schedules for
the tuple list based on schedule permutation [188]. A detailed model of the target

pipeline is used to estimate the cost of each schedule.

The scheduler attempts to find an optimal schedule by first building an initial
schedule, then trying to improve it by placing restrictions on operations such as
memory accesses and relaxing these restrictions until a viable schedule can be gener-

ated.

Once a schedule for the basic block is found, output code is generated for it. This
schedule is known to be optimal for the target architecture based on the pipeline
cost estimation. This cost estimate takes into account emulation overhead, multiple
pipeline usage, target-specific instruction costs, operand source differences, and costs
related to register renaming. Unfortunately, our current cost estimation model over-
estimates the expected cost of memory references in certain circumstances. This

causes the scheduler to choose non-optimal code sequences in certain situations.
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Returning to our SAXPY example, the C code generated by Scc for the SWAR

version targeting an AMD K6-2 (with four elements to keep it brief) is given below.

void swar_saxpy(p64_t *x, p64_t *y, float *a)

{
register p64_t *_cpool = &(mmx_cpool[0]);
{
movqg_m2r (* (((p64_t *) a) + 0), mm0);
pand_m2r (*(_cpool + 2), mm0);
movq_r2r (mm0, mml);
psllg_i2r (32, mmoO);
por_r2r (mm0, mml);
movq_r2r (mm1, mm2);
pfmul_m2r (x (((p64_t *) x) + 1), mml);
pfmul_m2r (x (((p64_t *) x) + 0), mm2);
pfadd_m2r (x (((p64_t *) y) + 1), mml);
pfadd_m2r (x(((p64_t *) y) + 0), mm2);
movq_r2m(mml, *(((p64_t *) y) + 1));
movqg_r2m(mm2, *(((p64_t *) y) + 0));
+
_return: femms();
}
p64_t mmx_cpool[] = {
/¥ 0 x/ 0x0000000000000000LL,
/¥ 1 x/ Oxffffffffffff£f£fLL,
/* 2 */ 0x00000000ffffffFFLL,
/* 3 */ Oxfffff£FF00000000LL

};

The first five statements inside the inner block load the 32-bit float value a into
both fields of a 64-bit register. The sixth copies this value for use with another
fragment. The remaining instructions perform the SAXPY on the two fragments of
the vector data in x and y. Note that the above code is not optimally scheduled due

the aforementioned errors in the current cost estimation code.
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4.4 Implementation of Compiler Optimizations For SWAR

One goal of this research was to develop compiler optimizations which could be
used to enhance code performance and alleviate the negative effects of emulation on

performance.

In [106], we introduced and discussed several static compiler optimizations that
apply to SWAR programming. These were based on tracking data, spacer, and mask
values, and aggressively simplifying code dealing with spacers and masks. While some
of these techniques can only be applied for particular types of targets and field sizes,
others apply to all targets, and some can be implemented at both the vector and

fragment levels.

The Scc compiler forms a framework for research on SWAR-based optimizations
of vector and fragment operations and instruction scheduling for SWAR-capable tar-
gets. In this section, we discuss how these optimizations have been implemented
within the framework of the Scc experimental compiler. We will briefly reintroduce
these optimizations here, but refer you to [106] for a more detailed discussion. Four
such optimizations are: promotion of field sizes, SWAR bitwise value tracking, sim-

plification of spacer manipulation, and enable masking optimization.

4.4.1 Promotion Of Field Sizes

In SWARC, the application programmer may specify the minimum number of bits
of precision required for a value. The compiler may choose to use more bits for storage
of these values in order to make use of specialized hardware on the target architecture.
For example, 16 bit values are handled very well by HP’s PA-RISC MAX-2 [62], but
smaller sizes are not. Thus, operations on vectors that were declared to contain
14-bit values will be converted into more efficient code sequences for MAX-2 if the
vectors are internally promoted to 16-bit fields instead of being handled using 14-bit

emulation.
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In general, for each SWAR target, there are certain field sizes that are less effi-
cient than some larger field size and should not be used internally. However, not all
smaller field sizes are less efficient than a larger size. In some cases, the field size is
small enough that the gain in parallelism outweighs the overhead of converting to an

unsupported field size.

Current Sce compiler targets only directly support field sizes of 8-, 16-, 32-, and 64-
bits. Data of any other field size must be promoted to one of these or any operations
on it will have to be emulated by the compiler. The Scc compiler emulates 1-, 2-, and
4-bit support, as these field sizes are reasonably efficient. All other unsupported field

sizes are promoted to the next larger supported or emulated field size.

Certain field sizes do not supply any added parallelism over the next larger size.
This is true whenever the fragment length in fields is equal for both field sizes. In this
case, it is only beneficial to emulate the smaller field size if the extra bits can be used
to increase the number of spacer bits (this will be explained in section 4.4.3) between
data fields. Otherwise, promoting the data to a higher precision allows the amount of
emulation code necessary to be minimized without affecting the performance of the

output code.

In Sce, promotion of data precision is performed in the back-end during the frag-
mentation phase because this is the first point in the compilation process that the
parameters of the target are known. Promotion depends not only on the size of
the target’s registers, but also on the set of instructions available to operate on the

supported field sizes.

4.4.2 Vector Algebraic Simplification and Bitwise Value Tracking

In [106], we introduced the topic of bitwise value tracking as it related to the
optimization of compiler-inserted masking operations. These are primarily composed

of bitwise AND and OR operations and left and right shift operations using constant-
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valued masks and shift distances. Consider the following example in C in which the

low byte of a 16-bit word is moved into the high byte with masking:

x = (( (x & 0x00ff) << 8 ) & 0xff00);

Simple constant folding will not improve the above code because no single oper-
ation has two constant operands. However, by aggressively applying the algebraic
properties of the operations involved, we can restructure the code so that constant

folding can be applied. Distributing the shift over the inner expression yields:

x = (( (x << 8) & (0x00ff << 8) ) & 0xff00);

which can be folded to:

x = (( (x << 8) & 0xff00 ) & 0xff00);

From here, we see that the AND operations can be folded because they are associa-
tive and each has a constant operand. In this particular example, they also happen to
have the same value, although this is not true generally. The code is finally converted

to the equivalent, but simpler, form:

x = ((x << 8) & 0xff00);

Note that unless we are able to fold the operations at each step, we will be simply
replacing one set of operations with an equal number of different operations which
are probably equally expensive. A strict set of conditions must be met to make this

optimization worthwhile:

e The top-level operation op! must have one operand which evaluates to a con-

stant value, and another which is a tree rooted at an operation op2.

e op2 must have one operand which evaluates to a constant, and a second which

is a tree rooted at an operation op3, over which op2 is distributive 2.

2Note that the distributed form of an expression is only approximately equal to the non-distributed
form in finite-precision arithmetic
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e op3 must have one operand which evaluates to a constant, and be associative
with opl. Note that opl and op3? may differ. For example, in 1-bit fields,

additions and exclusive-ORs are associative.

e Other restrictions may be imposed due to the exact form of the expression tree
and the asymmetry of any of the operation’s properties. For example, op! or
op3 may be required to be commutative so that operands may be reordered and

associative combining of operations applied.

After ensuring that the above conditions are met, the algorithm to perform this

optimization on an expression tree has four basic steps:
e Distribute op2 over op3.

e Reorder the tree if necessary, depending on the commutative properties of op1

and opd.
e Combine op1 and opé3.
e Perform constant folding on the tree.

After this last step, op! has been eliminated from the tree. This process can then
be continued up the expression tree in the attempt to remove more operations.

In Scc, this optimization can be applied at the vector level to algebraically sim-
plify vector operations, and at the fragment level to optimize masking and spacer

operations on the tuple trees for each fragment.

4.4.3 Spacer Value Tracking and Simplification of Spacer Manipulation

Spacer bits form buffer zones between the fields of a software-partitioned register.
For example, we may place three 10-bit data fields in a 32-bit register with one spacer
bit, which does not contain data, placed between each pair of these fields. These bits
catch carries from, and supply borrows to, the data fields of the register to keep these

actions from affecting the other data fields.



- 219 -

The values of these bits usually need to be preset to an operation-dependent value
before each operation that generates carries or borrows, otherwise they may propagate
these effects to another field. After such an operation, these values may have been
altered by a carry or borrow, and may need to be reinitialized to properly isolate
the fields. By tracking the range of values of spacer bits between operations we can
statically determine when these preset and isolation operations can be eliminated.

Also, in a series of vector operations, these spacer manipulations often result in
redundant operations which can be eliminated and operations that can be optimized
via bitwise value tracking. For example, consider computing e=((a+b)-(c+d)) us-
ing a SWAR representation employing spacer bits identified by the mask s. The
unoptimized form of the operation contains a large number of preset and isolation

operations:

e = (((((a& "s) + (b & "s)) & "s) | s) -
((((c & "s) + (d & "s)) & "s) & "s)) & “s;

As discussed in [106], reduction of these operations can yield a significantly tighter

code sequence:

e = (((a+Db) | s) -
((c +d) & "s)) & "s;

For field sizes in which many operations must be emulated, the manipulation of
spacer bits may be a significant fraction of all the instructions executed. Thus, opti-
mization techniques which reduce the frequency of spacer manipulations are desirable.

A generalized, but rudimentary form of spacer manipulation is implemented in
the front-end of the current Scc compiler. Currently, it should be strong enough to
detect and optimize code, such as that above, in which the necessary conditions for
optimization are easily checked. However, it does not currently do so because the
compiler is not building identical trees for the mask loads.

Full spacer value tracking, in which the value of the spacer bits is determined and
maintained for each node of the IR tree is not currently performed. Such processing

would be especially useful in the back-end, where masking tuples are often generated
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to handle partially-filled fragments. These operations do not appear in front-end

processing.

4.5 Comparison with Concurrent Work

In chapter 1, we discussed work performed at MIT’s Laboratory for Computer
Science concerning Superword Level Parallelism (SLP) and also the VSUIF project
at the University of Toronto. In this section, we will compare the approach taken for
our Scc compiler with the approaches taken by these other research groups.

Any compiler targeting multimedia-enhanced processors will have to perform each

of the following steps regardless of the source language or target architecture:
e Find parallelizable code in the source.
e Convert the parallelizable code into parallelized fragment-based operations.
e Output fragment code as sequential instructions.

The primary difference between our approach and that of the University of Toronto
and MIT groups is in how the first two of these steps are performed. The first of
these steps is concerned with identifying parallelizable code in the source. How this
is done depends on the source language and its structure.

Both the Toronto and the MIT groups make modifications to the SUIF compiler
to convert sequential C source code into parallelized output. Thus, neither of these
groups allows for non-standard data types. Omnly our approach incorporates this
possibility in the programming model. This is done through a significant modification
of the source language.

In our approach, the source is written as first-class vector code (which conceptually
could be extended to array code). Detection of parallelism here is simple vector
operations are inherently parallelizable. Thus the first step is trivial, and the second

consists of simply fragmenting the vector code and scheduling it.
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The Toronto approach is essentially traditional vectorization. The compiler vec-
torizes loops of sequential scalar code, written in a language such as C. This is then
strip-mined at the fragment level to form fragment code, with the target architecture

treated as a parallel vector machine.

The SLP approach is more complex. In this approach, looped, sequential scalar
code is unrolled, then the entire basic block is searched for code which can be combined
into fragments. Hence, this approach builds fragments in the direction opposite to

that of our approach or that of the Toronto group.

In order to find combinable statements, the SLP detection algorithm starts by
finding references to adjacent memory locations which can be accessed with a single
load or store instruction. For example, accesses of adjacent array elements generally
can be combined unless they cross an alignment boundary on a target which cannot
handle unaligned accesses. Thus, the SLP compiler tries to combine operations on
data which is already allocated in packed form. This keeps the cost of packing low,
but the cost of having the parallelizing compiler locate data stored in pre-packed form
is high.

In our approach, data is expected to be explicitly stored as a pre-packed vector.
Vector operations are thus not only known to be parallelizable, but are also known to
be in pre-packed form. This makes it trivial for the compiler to recognize this type
of parallelism and eliminates the costs associated with packing and unpacking native
vector data. The downside is that our approach forces the programmer to store data

in packed form or, if necessary, convert it by hand.

After the source has been converted to fragment-based operations, the third step
is similar for each of the compilers. Optimizations such as common sub-expression
elimination and constant folding are performed and some form of scheduling technique
is used to schedule the sequential fragment operations.

One of the primary problems with the design of multimedia sets has been the
lack of sufficient mechanisms to minimize the costs of manipulating data layouts. It

is costly to pack data into the proper form for SWAR-like parallelism to be applied.
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Often the speedup obtained through exploiting this parallelism is offset by the expense
of packing and unpacking the data. If sufficient mechanisms are not provided for

dealing with this issue, then the problem must be avoided or minimized.

Our approach to dealing with this issue is to force the data to be laid-out in packed
form (as SWAR vectors) at all times. This eliminates the need to convert data layouts
from unpacked to packed form and vice versa. One problem with our approach is that
we allow vector code to be linked with non-vector code. This means that in certain
cases, the programmer must ensure the proper data layout by generating the data
in packed form or by performing packing before passing the data to vector-based
functions. This is not really part of the SWAR model, but is related to the way in

which it is currently supported within the SWARC language/Scc compiler framework.

The SLP group handles this issue while choosing how single-valued operations are
combined to form operations on fragments. Part of the SLP combination algorithm
determines if a result can be reused in packed form in a subsequent instruction. If

so, it is left packed; otherwise, it is unpacked for storage.

One negative aspect of our compiler implementation concerns the size of the prob-
lem attacked. In our approach, a large amount of sequential fragment code may be
generated when a vector operation on long vectors is fragmented. This is represented
by a large graph in memory during compilation. Scheduling the fragment operations
represented by this graph is both time and space intensive and may take several

minutes to compile a fairly small benchmark.

The MIT group faces a similar problem, which is exacerbated by the fact that their
approach is to unroll any loops, then coalesce single-valued operations into fragment-
based operations. Thus, their compiler generates even larger internal representations
embodying the individual statements before packing them into fragment-based oper-
ations. Packing and scheduling these operations is also time-intensive, and since the
problem set is larger (single-valued operations versus fragment operations) it is more

time-consuming than our approach.
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These problems are avoided by the Toronto group’s strip-mining approach because
loops in the source code are converted directly into loops in the output code without
unrolling or fragmentation. This keeps the problem size small and minimizes the
time required to generate output code. However, it lessens the possibility of interloop

optimization, especially in regards to masking and emulation code.
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5. EVALUATION OF GENERAL-PURPOSE SWAR
MODEL AND IMPLEMENTATIONS

To ensure that the new SWAR model is a viable replacement for current parallel pro-
gramming models and that it allows programmers to exploit the SWAR technology of
various CO'TS processors, it is necessary to analyze the performance of an incarnation
of the model. The SWARC language developed in the previous chapter is one such
incarnation. This language was implemented using the Scc compiler which is also

described in the previous chapter.

By studying the coding of various benchmarks and applications, we can deter-
mine if the model is portable and complete. By studying their performance, we can
determine if performance gains are possible and develop an intuition about the type

of performance gains that can be expected.

The goal of the final phase of this research was to develop and employ metrics to
examine the measurable effects of SWAR-based technology. In this chapter, I will dis-
cuss a set of benchmark programs that have been used to evaluate the SWAR model,
the SWARC language, and the Scc compiler. These include a brute-force test of arith-
metic expression handling, an algorithm for increasing the resolution of LCD panels,
an algorithm which mimics DNA subsequence searches using non-standard precision

data, and a version of the Linpack benchmark modified with modular SWARC code.

5.1 An Integer Expression Validation Program

The “valid” program is used to ensure that the Scc compiler generates proper
code for the majority of binary operations allowed in the SWARC language. This

program was the primary means of testing the compilation of mathematical, logical,
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and conditional expressions, and gives a good indication of how well the compiler has

been ported to a given target.

Basic arithmetic operations tested are: addition, subtraction, multiplication, di-
vision, modulus, minimum, and maximum. Logical AND and OR are also included,
as are the bitwise logical AND, OR, and XOR operations. The bitwise logical com-
bination AND-NOT is also tested, primarily because this validation program was
originally developed for an MMX target. The equality, inequality, less-than, less-than-
or-equal, greater-than, and greater-than-or-equal comparisons are also included. Bit
shift instructions are not. Each of the operations tested is done so for both modular

and saturated data.

For each operation, a test is conducted which compares the results of Scc-compiled
SWARC code and C code compiled by the native C compiler for every possible element
value replicated throughout the register. That is, given a particular data precision,
for every representable m and n, the operation is applied to one vector that consists
of elements which each have the value m while the other has elements which each

have the value n.

Currently, this validation program tests operations on vector fragments consisting
of signed or unsigned integer elements with power-of-two data precisions up to 32 bits.
This test flags any discrepancies in calculation as compared against the C version of
the same operation. The causes of these discrepancies can then be studied and action

taken to correct errors.

By default, element precisions of up to 8 bits are tested when the program is run
because this type of exhaustive testing can usually be done quickly for these smaller
precisions. Exhaustive testing for larger precisions takes significant time (on the order
of days or centuries) to test on current hardware. To allow useful testing to be done
in reasonable time, 16-bit tests are limited to one type of data (unsigned modular,
unsigned saturated, signed modular, or signed modular) per run. In addition, both

operand values can be strided in non-unit intervals for tests on 32-bit data elements.
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The sources for this program are not included in this dissertation, but are part of

the Scc compiler distribution. Some sections are included in appendix E.

This program has been successfully ported to several target architectures including
AMD KG6-IT and Athlon systems using 3DNow! , Intel Pentium and Pentium 4 systems
using MMX, and a Motorola 7400 system using AltiVec. It has even been ported to an
unenhanced Pentium laptop computer by generating standard C code for the target.
This shows that vector arithmetic expressions can be properly described, compiled,

and ported to various enhanced and unenhanced target architectures.

5.2 An Integer Benchmark — Subpixel Rendering

One benchmark test was conducted by Professor Dietz and others in a classroom
setting in 1999. The purpose of this informal test was to determine what, if any,
performance gains could be obtained for Scc-generated SWARC code versus optimized

serial C code and hand-generated SWAR code.

Color Liquid Crystal Display units are commonly found on laptop computers and
are becoming more prevalent for desktop and television systems. Each pixel of one
of these displays actually consists of a set of three monochromatic “subpixels” of
different colors: red, green, and blue. These are usually arranged as vertical stripes
that have 1/3 the width of the full pixel. By using these subpixels to triple the
horizontal resolution used, the quality of the displayed image can be significantly

improved [5].

Unfortunately, treating subpixels like full pixels results in color fringing. To rem-
edy this, a 5-point software filter was used which applies 1/9, 2/9, 3/9, 2/9, 1/9
weightings to the linear set of subpixels surrounding each subpixel on the display.
While this matches well with the SWAR vector model, the filter is relatively expen-
sive due to odd weightings and because the memory reference pattern for subpixels

has a non-unit stride of three bytes.
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An optimized serial C version of this filter has been in use with the PAPERS
video wall library for some time. The problem of coding this filter was also assigned
to 16 individual students as part of a SWARC project in the “Programming Par-
allel Machines” course (Spring 1999 in Purdue’s School of Electrical and Computer
Engineering). Students could write their own MMX code by hand or they could
write SWARC code then use the Scc compiler to generate C code which could by

hand-tuned or an executable which was ready to run.

At least a few of the students achieved more than 5x speedup over the optimized
C code using Scc-generated MMX code. While some students wrote their own MMX

code by hand, the fastest version used unedited Scc-generated code.

This benchmark showed that the SWAR model could be used to describe a useful
parallel algorithm, that this could be coded using the SWARC language, and that the
Scc compiler could be used to generate parallel MMX integer code for standard preci-
sion data and achieve significant performance gains for this algorithm over optimized

serial code.

5.3 An Integer Emulation Benchmark — Gene Matching

A third benchmark program operates on integer data of a non-standard preci-
sion. This forces the compiler to emulate unsupported operations on all current
multimedia-enhanced architectures. The benchmark can thus be used as a test of
the Scc compiler’s ability to generate correct emulation code. This program, dna.Sc,
mimics a series of searches for a particular sequence of nucleotides in longer chains of

DNA.

The SWAR model and the SWARC language allow a natural description of these
entities and the algorithms which manipulate them. Each DNA chain is represented
by a fixed-length (350-element) vector of 2-bit pseudo-random data which represents

the four possible nucleotides at each position in the chain. Similarly, the target se-
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quence is represented by a shorter, fixed-length (3-element) vector which also consists

of 2-bit data.

These data objects match the physical entities which they describe more precisely
than do the objects one would be forced to use under other programming models.
This allows the compiler to generate better output code. For example, describing
these entities as vectors of 2-bit objects allows the maximum amount of parallelism
to be exploited during execution. It also allows the programmer to avoid structural

overhead, such as looping constructs, required by non-vector models.

The core of this program was written in the SWARC language and is shown in
appendix F. It was ported via the experimental Scc module compiler to various
multimedia-enhanced target architectures and even to targets which do not directly
support any form of SWAR parallelism. While this program contains some non-

portable sections, they are entirely restricted to the C interface code.

The program was compiled and run on several platforms including a 166MHz
Pentium-based laptop computer with no multimedia support, a 300MHZ K6-2 desk-
top system with 3DNow!, a 1.5GHz Pentium 4 system with and without using MMX,
and a 500MHz PowerBook G4 with and without using AltiVec.

This benchmark proves that the SWARC language can been successfully used to
describe algorithms which are best suited to data of non-standard precisions. That
it can be ported between a diverse set of targets proves the portability of the SWAR
model and the SWARC language. Also, this benchmark shows that speedup can be
obtained on various target architectures for data types which they do not directly

support.

The rest of this section is a discussion of the results obtained from porting this
program to various target architectures and an analysis of the problems encountered
during the development of this program. For each target, the benchmark was run for
Scc-generated code using 2-bit integers and employing various fragment sizes, com-
piler optimization levels, and optimization types. It was also run for GCC-compiled

C code using 32-bit integer data and separately for C code using 8-bit character data.



- 230 -
5.3.1 Analysis of Results on AltiVec Target

The AltiVec code generated by Scc achieved speedup, though significantly less
than one would hope given AltiVec’s 128-bit registers and the 2-bit data. The optimal
speedup would have been approximately 128/2 or 64x over serial 32-bit integer or 8-
bit character code. The average speedup obtained over measured trials ranged from
about 3.8x to about 4.6x  only 1/16 of the optimal speedup. The results of these

trials are given in table G.1 in appendix G.

Correct operation of the Scc-generated AltiVec code was assumed to be verified by
comparing the results with the GCC-generated C versions and finding no difference
in the calculated totals. The operation of the C programs was verified by hand using

smaller DNA vectors.

Note that the best speedup, 4.636x, was achieved by Scc-generated C code op-
erating on 32-bit fragments of 2-bit data vectors in the PowerPC’s general register
set. While this code was incorrect (the calculated total is slightly off, probably due
to incorrect handling of end fragments), it is remarkable because it does not use the

AltiVec instruction set.

The best speedup using the AltiVec instructions was 4.567x, which is nearly as
good. Given that the AltiVec registers are four times as large as the PowerPC’s
general registers, we would expect the 128-bit fragment AltiVec SWAR code to be
about four times as fast as the 32-bit fragment SWAR integer code. It is instructive

to examine why this level of performance was not achieved.

The primary problem is that loads and stores are inefficient. This is partly due
to the interaction of the Scc compiler with the underlying C compiler. Scc generates
variables using this compiler, which is assumed to be the GNU C compiler, GCC. GCC
allows an aligned attribute to be associated with variables and types; however, it only
applies to statically allocated objects. Thus, the alignment of automatic (i.e. local)
variables and function parameters is not guaranteed, and Scc is forced to assume that

they are unaligned.
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AltiVec memory accesses are auto-aligning. That is, a given address is converted
to the nearest aligned address before memory is accessed. Thus, aligned loads into
the vector registers can be accomplished with a single instruction but unaligned loads

require extra processing.

To handle an unaligned load at address addr, two auto-aligning loads must be
executed: one which loads the 128-bit (16-byte) object starting at the aligned address
below addr, and one which loads the 128-bit object starting at the aligned address
above addr. These are followed by an instruction which loads an alignment index

fragment which is then used in a permute instruction to rearrange the bytes as needed.

Thus, a typical load to an AltiVec register takes four times as many instructions
as a load to a general register. In fact, depending on the precision of the object being
loaded, the load may require up to two more instructions to place the object into the

bit field that Scc considers to be field 0.

In its current incarnation, Scc simply assumes that all loads and stores, except
those which access the statically allocated constant and spill pools, are unaligned.
Thus, because of the way in which variables are declared and passed between func-
tions, Scc must execute several extra steps to retrieve data in a known-to-be-aligned

form.

Stores are subject to the same restrictions, but here the problem is solved by using
a permute (which requires an index vector) followed by four 32-bit stores. Hence, Scc
takes six instructions to perform a 128-bit store from an AltiVec register. Smaller
precision stores can be implemented using fewer instructions because we can replicate
the value throughout the register in one instruction, then let the following element
store select the correct field. Comparing these operations to a general register store,
it takes up to six times as many instructions to store an object which resides in an
AltiVec register.

The situation is made worse when a 128-bit object is accessed because the two
halves of the object must be swapped to place the low end of the data at the low end

of the vector register. Thus, loads take up to five operations and stores up to seven.
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Loads and stores of vector elements are even more complex when the element is
indexed by a value in an AltiVec register. This is because AltiVec expects all the
parts of an address to be in the general registers, but does not provide a means of
directly moving parts which reside in a vector register to them. Thus, these parts
must be stored to memory, then loaded into the general registers before they can be

used as part of an address in a memory operation.

While one may argue that all addressing data should be generated in the general-
purpose integer registers, we will dismiss this argument because any integer value
should be usable as a vector index, regardless of which register set it is generated in.
In my opinion, the failure to support addressing modes which use vector registers, or
to provide instructions which allow vector data to be moved directly to the general-
purpose registers, is a significant flaw in the AltiVec instruction set. However, the Scc
compiler should do a better job of alleviating this problem by aggressively combining

vector element memory operations.

Another problem encountered exists because the Scc compiler was originally writ-
ten to target only Intel-based architectures. These allow up to two registers to be
named in each instruction. Scc has not yet been fully converted to support the three-
and four-address code that AltiVec allows. Thus, current Scc-generated C output is
two-address code. Extra instructions are used to save register values which would be
overwritten in two-address code but need not be in three-address code. This makes

the Scc-generated AltiVec code both longer and slower than is necessary.

Despite these problems, these tests show that SWARC code operating on non-
standard integer data types can be ported to a PowerPC G4 target using its standard
integer instructions or AltiVec-enhanced instruction set. It also shows that this code

can achieve significant speedup in either case.
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5.3.2 Analysis of Results on MMX Target

Scc-generated MMX code did not achieved speedup in any of the tests performed
on a Pentium 4 target. The speedup obtained over measured trials was between ap-
proximately 0.4x and 0.8x. These results are summarized in table G.2 in appendix G
for 2-bit Sce-generated MMX code, 2-bit Sce-generated C-only code using the target’s
32-bit general-purpose integer registers, GCC-generated C code using 32-bit integer
data, and GCC-generated C code using 8-bit character data.

The best-case Scc code was generated without using the MMX registers, with
Scc running at optimization level 0, and with Scc only performing back-end peephole
optimizations. Thus, we might assume that the overhead of using the MM X-enhanced
hardware was greater than the gains made. However, an inspection of the generated C
code reveals that the MMX-based C code is hindered by the relatively small number
of enhanced registers available. Scc’s spill code is admittedly horrendous, so there is a
high penalty for spills. This is the primary reason for the relatively poor performance

of the MMX code.

The worst-case Scc code performed better than the worst-case GCC code. Hence,
the range of performance of Scc-generated code falls within that of the GCC-generated
code. Thus, the choice of data precisions and compiler switches has more effect than

the choice between the Scc and GCC compilers.

Correct operation of the Scc-generated MMX code was assumed to be verified by
comparing the results with the GCC-generated C versions and finding no difference
in the calculated totals. Note that there is no difference in the results of the Scc-

generated non-MMX code and the GCC-generated code.

These tests show that SWARC code operating on non-standard integer data types
can be ported to a Pentium 4 target using its integer instruction set or MMX exten-
sions, and that the range of performance of this code is similar to that of GCC-

generated code from a C source.
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5.3.3 Analysis of Results on 3DNow! Target

The Scc-generated 3DNow! code also achieved speedup when run on the K6-2
target. Again, this was significantly less than the theoretical maximum of 64/2 or
32x over serial 32-bit integer or 8-bit character code, but was more than either the

AltiVec-based code on the PowerPC target or the MMX code on the Pentium 4 target.

The obtained speedup for the Scc-generated code ranged from approximately 3.9x
to 5.1x. The results are summarized in table G.3 in appendix G for 2-bit Scc-
generated 3DNow! code, 2-bit Scc-generated C-only code using the target’s 32-bit
general-purpose registers, GCC-generated C code using 32-bit integers, and GCC-

generated C code using 8-bit characters.

As with the MMX target, correct operation of the Scc-generated 3DNow! code was
assumed to be verified by comparing the results with the GCC-generated C versions

and finding no difference in the calculated totals.

The 3DNow! code suffers from the same problems as the MMX code in relation to
register spills. Interestingly though, the 3DNow! trials all obtained speedup over the
best GCC-generated C code. This is a significant difference in two relatively similar
architectures. The reason for this needs to be studied, but may include the use of
3DNow!’s femms instruction which is intended to be a faster version of the MMX emms
instruction, or an architectural issue such as the number of available pipelines for the
given code sequence or the design of the memory hierarchy. It may also be due to

differences in the GCC-generated C code for the different targets.

These tests show that SWARC code operating on non-standard integer data types
can be ported to a K6-2 target using its standard integer instruction set or its
3DNow! extensions. It also shows that this code can achieve significant speedup

in either case.
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5.3.4 Analysis of Results on IA32 Target

When run on the unenhanced Pentium target, Scc-generated 1A32 code achieved
speedup in only one case, but not by a significant amount over the best GCC-
generated C code. In the majority of cases, the Scc-generated code was actually
slower. This is to be expected because the architecture does not provide any form
of SWAR instructions other than the basic polymorphics (bitwise logical operations).
However, this isn’t the point of porting this code to an unenhanced 32-bit architec-
ture. The important point proven here is that the SWARC code can be ported to an

unenhanced architecture without modification.

The speedup for Scc-generated code ranged from approximately 0.42x to 1.03x. It
is worth noting that the GCC-generated code achieved speedups ranging from 0.28x to
1.00x. Thus, the choice of compiler switches appears to affect the performance more
than the choice between Scc and GCC. The results are summarized in table G.4 in
appendix G for 2-bit Scc-generated C-only code using 32-bit integer fragments in the
general registers, GCC-generated C code using 32-bit integers, and GCC-generated

C code using 8-bit characters.

Correct operation of the Scc-generated C code was again verified by comparing the
results with the GCC-generated C versions and finding no difference in the calculated

totals.

These tests show that SWARC code operating on non-standard integer data types
can be ported to an unenhanced TA32 target using its general registers and integer
instruction set. It also shows that this code can achieve performance similar to that

of standard C code.

5.4 A Floating-Point Benchmark — Linpack

As a benchmark for floating-point performance, a version of the Linpack bench-

mark used for ranking a wide range of machines for the Top 500 Supercomputers
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list [189] was modified using Scc-generated code. This was run on several systems

and compared with the standard C version for single-precision data.

In one test using a 400MHz AMD K6-2 platform [5], the standard C version
achieved 54 Mflops. The modified version included a few lines of the core DAXPY,
DDOT, and DSCAL loops which were rewritten using hand-inlined Scc-generate
3DNow! code. Using this code, the performance increased to approximately 90 Mflops.
While a significant improvement, performance was hindered by the Scc scheduler’s
conservative estimations of load cost which was previously discussed. A hand-tuned

version of the Scc-generated 3DNow! code schedule achieved more than 220 Mflops.

In more recent testing, a C version of Linpack was modified to conditionally call
SWARC code compiled by Scc for the DAXPY, DDOT, and DSCAL loops. This was
constructed as two sources: one in SWARC, the other in C which were compiled and
combined by the Scc compiler (no hand coding). The SWARC source is presented
in appendix H. This was compiled for various fixed subvector lengths and maximum
optimization times. Results of the trial runs for this set of tests are also presented in

appendix H.

These tests were conducted on a 1GHz AMD Athlon-based system, with and with-
out using 3DNow!, and on a 500MHz PowerPC G4-based system, with and without
using AltiVec. Significant improvement of between 51.9% and 105% was achieved
for the 3DNow! target, taking performance from the 250 270 Mflops range to the
407-616 Mflops range. Performance on the AltiVec target was, however, disappoint-
ing. It never reached the level of the corresponding C code compiled by the native
C compiler. In fact, there was between a 7.6% and 8.9% decrease in performance
from around 176 Mflops to between 160 and 167 Mflops for the best Scc-generated
code. The worst Scc-generated code was near 50 Mflops — around a 70% decrease.
This degradation is most likely due to the poor handling of memory accesses both
by the AltiVec target and by the Scc compiler as discussed in the section on the dna

benchmark (section 5.3).
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This benchmark showed that the SWAR model could be applied to standard
high-performance computing algorithms, that the SWARC language could be used to
describe portable code modules for operating on single-precision floating-point data,
and that these modules could be translated by the Scc compiler into 3DNow!- or
AltiVec-based parallel floating-point code. It also shows that the Scc-generated code
can achieve significant speedup over GCC-generated code for the 3DNow! target. It
also highlights the weaknesses of the AltiVec target and the current Scc compiler with

regards to the handling of memory accesses.
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6. CONCLUSION

In this thesis, a new, abstract model of parallel computation was developed which
better reflects the capabilities and limitations of modern SWAR (SIMD Within A

Register) architectures than did previously-defined computational models.

A summary of the support provided by various multimedia extension sets for
general-purpose SWAR processing was compiled (section 2) and presented as a set of
tables describing the type of SWAR operations supported by each of these families
(section 2.1 and appendix C) with an accompanying analysis of their capabilities

(section 2.2).

These capabilities were shown to vary significantly, with some extensions offer-
ing little support for SWAR processing, having only a few SIMD instructions, while
others offered significantly better support with larger, more complete repertoires.
Commonly-supported operations were identified, and the suitability of the various
types of operations which these extensions perform was considered in terms of inclu-

sion in a general-purpose SWAR programming model.

This work formed a basis for the design of the new, general-purpose SWAR pro-
gramming model developed in this research (section 3.3) and hereby placed in the
public domain. This programming model allows general-purpose applications pro-
grammers to exploit vector SIMD parallelism when targeting SWAR-capable com-
modity off-the-shelf (COTS) processors in a portable, target-independent manner.

This model more closely reflects the capabilities and limitations of current SWAR
processors than did previously-defined models by allowing for commonly-supported
operations such as saturation addition while discouraging esoteric operations such as
full permutations and less efficient operations such as complex communications and

multi-dimensional array operations.
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A list of properties that a well-designed, full-scale, high-level language for SWAR
should exhibit (section 3.4) was enumerated. This formed the basis for the devel-
opment of prototype implementations of the model. These guidelines can also be
used by others who wish to develop languages based on the general-purpose SWAR

processing model.

Prototype implementations of the SWAR model were developed and presented
including various libraries (section 4.1) and the SWARC modular programming lan-
guage (section 4.2) which provides a portable, target-independent language for ex-
pressing data parallel applications in terms of vector processing. These implementa-
tions show that the SWAR programming model is viable and can be implemented in

various forms.

The Scc compiler for the SWARC language (section 4.3) was enhanced through the
development of various techniques for emulating unsupported operations, for exploit-
ing the advanced features of various targets, and for optimizing SWAR-based target
code. These advancements allow code to be generated for a variety of multimedia-
enhanced architectures and even unenhanced processors. The current version of the

Scc compiler is hereby placed in the public domain.

Various metrics were also developed and applied to evaluate the portability, com-
pleteness, and performance of the SWARC language and Scc compiler. These took
the form of SWARC programs and include:

1. A validation program to thoroughly test the correctness of Scc-generated code
for the majority of binary operations allowed in SWARC. This is limited to
power-of-two data precisions through 32-bits, but includes both signed and un-

signed and both modular and saturated data types.

2. A program to test the portability and performance of code which operates on

non-standard precision integer data.
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3. A version of the standard Linpack benchmark to test the single-precision floating-
point performance of Scc-generated code on various platforms which support

floating-point SWAR operations.

4. Various other programs developed by me or by others.

These metrics show that the SWAR model is viable as exhibited by its implemen-
tation as the SWARC vector processing language. Specifically, they show that:

1. The SWARC language allows general-purpose integer and floating-point vector

applications to be described in a consistent, natural, and portable manner.

2. SWARC applications may use standard precision floating-point data or integer
data of standard or non-standard precisions, including those which are not

supported directly by the target architecture.

3. SWARC applications can include scientific and high-performance algorithms as

well as multimedia algorithms.

4. SWARC code can be, and has been, ported to various multimedia-enhanced

and unenhanced architectures.

These metrics also show that the Scc optimizing compiler for the SWARC language
is viable and capable of generating highly efficient code, although it has been found

to be lacking in certain respects. Specifically, these metrics show that:

1. The Scc compiler can generate output which exploits the multimedia enhance-

ments of various targets to achieve performance gains.

2. The Scc compiler can generate standard C code output which can be ported to

various unenhanced processors.

3. Significant speedup can be achieved for integer and floating-point applications.
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4. Significant speedup can be achieved, or significant degradation avoided, for ap-
plications which require the emulation of operations on non-standard precision

integer data.

5. The Scc compiler’s interaction with the underlying C compiler has implications
in regards to the layout of data in memory which can have a significant negative

impact on performance.

6. The fixed-vector size required by the Scc compiler is a liability, albeit one that

can be easily addressed using known techniques.

7. The fragmentation of large vectors, as opposed to strip-mining them, can have
a significant effect on the size of code and can negatively impact the compiler’s

ability to generate efficient code.

In summary, the general-purpose SWAR processing model developed in this thesis
is a new, abstract model of parallel computation which better reflects the capabilities
and limitations of modern SWAR architectures than did previously-defined compu-
tational models and allows programmers to exploit the capabilities of current SWAR

architectures in a portable and consistent manner.

6.1 Future Research

This work provides a starting point for future research and the development of

practical programming languages for SWAR processing. Future research may include:

1. Extension of the model to array-based SWAR architectures when they become
commonplace. Current commodity SWAR processors are primarily based on
one-dimensional vector parallel architectures. Future COTS processors will
likely be based on multi-dimensional array parallel architectures. This will
require consideration of certain aspects of SIMD processing which have been

safely ignored in the current work.
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2. Refinement of the SWARC language as SWAR architectures evolve. The set of
operations which a typical multimedia enhanced architecture supports can be
expected to grow as this paradigm matures and new architectures are developed.

Certain operations will become more common while others will be orphaned.

3. Continued development of new emulation techniques for unsupported SWAR
operations. Portability depends greatly on the ability to emulate operations
which are unsupported by the target architecture. Further research will be
necessary to increase the range of viable targets and the repertoire of viable

operations.

4. Development of new languages based on the general-purpose SWAR model.
These may include application-specific languages or languages which denote
parallel data or operations in a manner which differs from current SWAR lan-

guages.
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APPENDIX A
HISTORICAL PERSPECTIVE

In order to develop this new abstract model for modern SWAR architectures, we need
to have a good understanding of related architectures and programming models. In
this appendix, we discuss some of these architectures and the languages developed

for programming them in relation to SWAR processing.

Vector Architectures

SWAR architectures are closely related to vector architectures in that both are
designed to perform identical operations on sets of related data. Knowledge of these
architectures, their features, and the issues traditionally associated with them should
provide insight into how SWAR architectures may be best used, and may give clues
as to the future of SWAR architectures.

In general, a typical vector processor has one or more sets of function units. These
may be contained within a single processor (a uniprocessor) or spread across a group
of connected processors (a multiprocessor). Each set contains one or more individual
function units, some or all of which may be redundant. In this discussion, we will refer
to a set of function units as a “processing element” (PE), regardless of the number
of processors involved.

Having multiple function units allows multiple instructions to be issued at one
time, as long as no two instructions require the same function unit simultaneously.
For example, the execution of an addition and a multiplication in the same clock
cycle can take place if separate adder and multiplier units are available. This is often
referred to as superscalar operation. Almost all of the vector processors discussed

below had superscalar PEs.
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Redundancy of function units within a PE allows instructions of the same type to
be issued simultaneously. These may or may not be part of the same vector instruc-
tion, depending on how the function units are used and controlled. In some cases
these units are used independently, in superscalar fashion, such as when executing
two unrelated additions in the same clock cycle. In other cases, they are used together
to execute the same instruction on different parts of the same set of data. In this

case, they are acting in a SIMD manner.

Most of the vector processors discussed below have multiple identical PEs. Such a
system, whether a uniprocessor or multiprocessor, is essentially a parallel processing
system. If these are driven by a single instruction, then they act as a SIMD system.
If they are driven as independent sections, they act as a MIMD system instead. In
this discussion, we are primarily concerned with pipelined and SIMD vector systems,
which are similar to SWAR architectures, rather than MIMD vector systems, which

are not.

STAR-100

Built in the early-1970s, the Control Data Corporation (CDC) STring ARray
STAR-100 [144, 125] was one of the first vector supercomputers. Its superscalar
vector unit consisted of two dissimilar pipelined function units. These were an adder/-
divider/logical unit and a separate adder/multiplier. Both could produce a result
during each clock cycle, so the vector unit could complete up to two vector element

operations per cycle.

According to [141], each of the STAR-100’s vector function units also had a SWAR-
like feature: they could process one 64-bit operation or two simultaneous 32-bit op-
erations. Special logic inserted between the two halves of the 64-bit datapath broke
the carry chains between them. This effectively separated the datapath into two in-
dependent parts which performed identical operations. This method of partitioning

the processor is essentially the same method used in modern SWAR architectures.
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Special hardware was incorporated into the STAR-100 to handle sparse vectors,
which consist mostly of zero-valued elements. These were stored as two separate
vectors: one which held a bit mask indicating the non-zero elements and a second
which actually stored those elements. When a sparse vector was accessed, the bit
vector was checked for each element to determine if it needed be loaded or stored

from the vector of non-zero elements.

The STAR-100 had several other innovative features. One was the use of bit masks
for controlling conditional operations. Another was the ability to use “...stride[s] and
gather/scatter memory accesses....” [141] This last point is contradicted, however,
in [135] which claims that the STAR-100 could only handle single-strided accesses.
Unfortunately, neither [141] nor [135] is a first-hand source, and I have been unable

to obtain a copy of [144].

Operands were drawn from a fast main memory and results were stored there. Any
result that was to be used in a subsequent operation was first written to memory,
then read back from it. This memory-to-memory architecture resulted in slower than
necessary inter-operation times. The STAR-100 ultimately failed due to this and its
poor scalar performance. However, it was the beginning of the CDC line of vector

processors which survived into the late 1980s.

TI-ASC

The Texas Instruments Advanced Scientific Computer (TI-ASC) [139, 190, 141]
had an architecture similar to that of its contemporary, the CDC STAR-100. Both
were first-generation pipelined, memory-to-memory, vector processors. Both em-
ployed bit masks for conditional execution and were capable of providing SWAR-like

functionality.

There were some differences between the TI-ASC and the STAR-100. One was the
apparent lack of sparse vector handling in the TI-ASC. The other was the functionality
and expandability of the TI-ASC’s pipelines.
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The TI-ASC’s central processor contained of a set of up to four identical, micropro-
grammed vector pipelines, each of which consisted of an combined adder/multiplier
unit and was serviced by a combined load/store path. This allowed up to four ele-
mentwise operations to be applied simultaneously. These pipelines were driven by a

single instruction processing unit and could be used in a SIMD manner [139, 140].

The ASC was TI's only venture into large scale computers [141] and failed for
reasons similar to those of the STAR-100. Many of the features of the TI-ASC can

be found in the digital signal processing chips currently produced by TI.

CRAY-1

Cray Research, Incorporated introduced the CRAY-1 [135] in 1976. Unlike the
TI-ASC and CDC STAR-100 memory-to-memory architectures, it had a set of vector
registers for storing vector operands and results. It also had a larger number of vector

function units and was designed to allow better data flow between them.

A set of eight 64-word registers were used to store vector operands, which consisted
of elements of 64-bits each. This allowed lower-latency access to data than memory-
based architectures could achieve. Maintaining high-performance depended in part
on making good use of these registers. The data path between memory and the vector
register file was only a single word wide and thus could only supply one 64-bit word
per clock cycle. Thus, the register file was necessary to provide data at a high enough

rate to keep the multiple vector units sufficiently supplied.

The CRAY-1 had twelve independent, non-redundant function units which could
be thought of as a single superscalar PE. Its function units were grouped into vector,
floating point, scalar, and address units. Six of these, the vector and floating-point
units, could be used to operate on vector data. These included integer and floating-
point addition units, floating-point multiplication and reciprocal approximation units,

and integer logical and shift units.
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One of the strengths of the CRAY-1 was the ability to “chain” function units
together to form a pipeline. As the individual elemental results of a vector operation
left one function unit, they could be immediately forwarded to another for use as an
operand before the first vector operation completed. This allowed a series of vector
operations to be performed in an overlapped manner that is similar to the operation

of a pipelined scalar processor.

The CRAY-1’s memory system had 16 banks of 72 modules. Each 64-bit word
was stored across the modules of a bank along with an 8-bit SECDED (single-error
correction, double-error detection) code. The memory address space cycled through
the banks so that sequential addresses were stored in neighboring banks and every
16th address occurred in the same bank. This allowed up to 16 sequential data words

to be accessed with no two accessing the same bank of memory.

The CRAY-1 was descended from a line of processors developed by Seymour Cray
at CDC including the 6600 and 7600 and was the first of the Cray line which continues
today. The CRAY-1 was a significant improvement over the TI-ASC and CDC STAR-
100 systems. However, as a non-parallel vector system, it was not able to fully make
use of the data parallelism available in vector programs, and thus was not able to

achieve the full potential of vector processing.

Cyber 205

The vector processor of the CDC Cyber 205 [136, 126] was a SIMD processor
with up to four identical PEs. These were pipelined floating-point ALUs driven by a
control unit which read a single instruction stream. Like its predecessor, the STAR-
100, the Cyber 205 was a memory-based architecture. Its PEs had no registers and

operated on data stored in the central memory.

The Cyber 200 series of computers, including the Cyber 205, had improved scalar
processing over the STAR-100 and incorporated SIMD processing. However, its
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memory-based architecture was not a match for later register-based systems. The Cy-

ber 200 line continued with the ETA-10 and eventually died out in the late 1980s [141].

VP200

Fujitsu, Limited introduced the VP200 in 1982 [141]. It had up to two identical
sets of pipelines operating as a SIMD system. Each of these consisted of an adder/logic
unit, a multiplier, and a separate divider. Like the CRAY-1, the VP200 was a register-
based system. Each PE had a large register file supplied by two combined load/store
units. The VP200 was part of the “first generation” of Japanese vector processors.

Later generations would eventually dominate vector processing.

S810/20

Hitachi introduced the S810/20 in 1983 [141]. It had up to two identical vector
PEs operating in SIMD mode. Each of these consisted of two adder/logic units, a
multiplier with a cascaded adder, and a multiplier/divider which also had a cascaded
adder. The S810/20 had 32 vector registers of 256 elements each. These were supplied

with data via a set of three load units and a separate load/store unit for every PE.

SX-2

The NEC SX-2 [137, 138] vector parallel processor was introduced in 1984. Its
vector unit had “four identical sets of functional units” [138] which worked in SIMD
parallel fashion. Each set consisted of adder, multiplier, logical, and shift units. These
could be chained to increase performance.

The SX-2 had forty 256-element vector registers which were connected to memory
via a four word wide load path and a separate four word wide load/store path. The
main memory could store up to 1GB of memory organized in 512 banks of 2MB each.

Extended memory of up to 8GB was also available.
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S820/80

The Hitachi S820/80 [143], introduced in 1987, had “the same basic architecture
as its predecessor, the S-810.” [191] According to [141], the S820/80 had a maximum
of four identical vector PEs which were simpler than those of the S810/20. These
consisted of a combined adder/logical unit, a multiplier with a cascaded adder, and
a separate divider. Two of the load units were eliminated, leaving the S820/80 with
a single load unit and one combined load/store unit. The S820/80 was part of the
second generation of vector processors from Japan which were uniprocessor, SIMD

vector machines.

VP2600

The VP2600 was introduced by Fujitsu in 1989 [142, 141]. Architecturally, it
was primarily a refinement of the VP200 SIMD vector architecture. It had four
identical PEs which were more advanced than those of the VP200. Each consisted
of two multipliers, which each had an adder/logical unit cascaded behind them, and
a separate divide unit. The memory paths were unchanged from the VP200 design.

The VP2600 had a large register file with 2048 vector registers of 64 elements each.

Other Vector Machines

Other companies developed slower, less powerful, low-cost vector processors called
“mini-supercomputers” [141]. These were intended to be affordable yet relatively pow-
erful systems. They were often scaled-down versions of high-end vector processors and
thus typically provided little in the way of architectural innovation. For this reason,
they have been excluded from this discussion. One example of a mini-supercomputer

was Convex Computer Corporation’s C-1 [192] which was introduced in 1985.

In this discussion we have also avoided multiprocessor systems such as the Cray

2, X-MP, and Y-MP, and the later Japanese models such as the NEC SX-3 and
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SX-4 and the Fujitsu VX and VPP series systems. The most significant features of
these machines are related to multiprocessor and MIMD processing issues rather than
SIMD vector processing. Thus, they are of less interest than the earlier models with

respect to the subject of this thesis.

Summary

The purpose of this discussion was to develop an understanding of historical vector
architectures so that we may better understand the relationship between them and
modern SWAR architectures. Having knowledge of past vector systems gives us a

baseline for comparing the capabilities and limitations of current SWAR processors.

SWAR processors are most closely related to pipelined SIMD vector systems.
The latter are, as a general rule, uniprocessor systems which consist of one or more
identical sets of pipelined function units driven by a single instruction stream. Each
set of function units in a pipelined SIMD vector system can thus be thought of as a

single pipelined, superscalar PE in a SIMD system.

A typical SWAR system is a pipelined uniprocessor with a data path that has
been split into multiple parallel sections. These systems can be considered SIMD
processors which are comprised of a linear array of identical pipelined, superscalar

PEs. Conceptually, each PE consists of one section of the microprocessor’s data path.

To better understand how these types of architecture are related, we can com-
pare various aspects of their design including instruction fetch and decoding systems,

function units, register files, memory systems, and conditional execution mechanisms.

A typical vector system has an instruction fetch unit which decodes a single in-
struction stream from a common memory and generates a set of control signals to
drive the system’s function units. This is essentially what happens in SWAR archi-
tectures. Here, a single multimedia instruction is fetched from main memory and
decoded to generate a set of control signals. These determine which operation will be

performed and how the data path will be partitioned into parallel sections. Thus, a
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SWAR system is a SIMD parallel system whose configuration is determined by, and

may change with, each instruction executed.

Most traditional vector processors have superscalar architectures, as do modern
microprocessor systems. In each case, the number and type of function units available
varies between architectures and determines their capabilities. Early vector processors
had one or two function units per processing element while the second generation
tended to have significantly more. Later generations were more balanced and tended
to have a moderate number of function units. Similarly, SWAR architectures can be

expected to undergo an evolutionary process as their use becomes more refined.

A typical vector processor’s function units were pipelined to allow a result to be
generated with every clock cycle. This is also true of the typical SWAR architecture,

in which the data path of a pipelined CPU is split into multiple independent sections.

Chaining, in which function units are connected to form a pipeline, is similar
to data forwarding techniques used in modern pipelined scalar processors. Some
multimedia-enhanced architectures may allow for this type of forwarding as a natural

consequence of using existing pipelines for SWAR processing.

The earliest vector processors were memory-based architectures whose perfor-
mance suffered from their long memory latencies. Later vector processors incor-
porated multi-element vector register files. These registers were capable of storing
multiple data words as a single entity and allowed intermediate results to be stored
internally. This reduced the effective latency of these processors’ memory systems,
which in turn allowed them to have shorter clock cycles and achieve better perfor-

mance than memory-based vector processors.

Modern SWAR architectures are register-based machines in which existing or
especially-designed registers are used with multimedia instructions. These registers
are typically one to four words wide and few in number. For example, a register file
containing 32 registers of 128 bits each (4kb) would be very large by SWAR standards.
This is an eighth of the size of the CRAY-1’s register file, which had eight registers



- 270 -

of 64 64-bit elements (32kb), and less than one percent of the size of the SX-2’s 40
registers of 256 64-bit elements (640kb).

Traditional SIMD vector uniprocessors typically had a common memory shared
by each of their processing elements. To increase performance, later vector processors
were equipped with banked memories which allowed multiple simultaneous accesses.
They were also often designed with a set of memory access pipelines for each inde-
pendent set of function units in the system. This allowed each set to obtain data and
store results at a rate independent of the other processors as long as there were no

addressing conflicts.

SWAR processors are similar with one caveat — each memory access touches a
contiguous set of bits in a common main memory. No individual addressing is possible
because these systems use memory data paths which are split in the same way as their
function units. Thus, each word in memory can be thought of as being spread out
across several banks of memory which are accessed simultaneously. The degree of
interleaving depends on the precision of the data stored and the word size of the

architecture.

More complex memory accesses such as strides and gather/scatters are difficult
to implement on SWAR systems. Strided accesses are often used to access elements
of an array along one of its minor axes. Gathers and scatters are typically used to
compress and expand sparse matrices or vectors. Some SWAR architectures allow
strided accesses to occur, but gathers and scatters require a level of indirection that

current SWAR systems cannot provide.

The first generation of vector processors had only one or two function units per
independent section. The throughput of these systems was thus limited to a few
scalar operations per clock cycle. Hence, these architectures could be served by a

data path that was at most a few words wide.

Later vector processors had a moderate number of function units and large vector

register files. Due to their prohibitive costs, the memory pipelines of these systems
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were often kept narrow in comparison to the size of their vector registers, but wide

enough to keep the function units supplied with data.

Thus, the bandwidth of the full memory-to-memory data path was typically lim-
ited to the data rate of the functional pipelines. This meant that to maintain peak
performance, the vector registers had to be filled at the same rate, and at the same

time, that they were being emptied.

Over time, as the number of processing elements has increased, the bandwidth
required to maintain high efficiency has also increased. Because of this, later vector

processors had some of the highest bandwidth memory systems ever built.

Because SWAR systems have modified microprocessor architectures, their memory
systems are often pre-defined by their underlying architectures. Generally, they are
able to load or store an entire multimedia register with each clock cycle. Depending
on the width of the data path and the precision of the data being accessed, each
memory access may move between one and several vector elements. For example, a
microprocessor with 64-bit registers and a 64-bit memory path can load the register
in one clock cycle. If the data loaded is 8-bit data, then this single load brings in up

to eight vector elements in one clock.

SIMD processors must also deal with the issue of conditional execution. When a
conditional branch is encountered in a program, the condition may be true for some of
the processor’s PEs, but not for others. Normally, every SIMD instruction is executed
by all of the PEs in the system, but when a condition does not hold for some set of
PEs, there needs to be some mechanism to prevent them from executing the related

instructions or to block or undo their effects.

Early SIMD vector processors used bit masks to track which of their PEs were
enabled to execute instructions and which were disabled due to failing some condi-
tional test. These were typically used with masked stores to prevent side effects from
occurring. Modern SWAR processors may use a variety of methods to perform this

basic task. These are discussed in more detail later in this chapter.
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From this discussion, certain trends can be recognized in vector processor architec-
ture. While the number of function units within each processing element has tended
to level off, the number of processing elements themselves has increased significantly.
The size of their vector register files has gone from zero to well into the hundreds of

kilobits range, and their memories and bandwidths have also increased dramatically.

Current vector processors are significantly more complex than any of those dis-
cussed above. This complexity makes them less like current commodity SWAR archi-
tectures than were earlier vector systems. For this reason, we have avoided discussing

them in this section; however, the trends they exhibit are still worth briefly noting.

These machines are generally multiprocessor MIMD systems with a large num-
ber of identical PEs. These typically have a few well-designed, pipelined function
units which are used in superscalar or VLIW (Very Long Instruction Word) mode,
depending on whether the parallelization is performed in hardware or by a compiler.
They are also increasingly connected to allow data to be transferred directly between
them. In many ways, vector processors are becoming increasingly like the parallel

array processors which will be discussed next.

SIMD Array Architectures

Modern SWAR  architectures are also related to traditional SIMD array architec-
tures. Brief descriptions of several of these are presented here with an emphasis on
their relationship to SWAR processing. This should provide an understanding of the
evolution of these processors and of how modern SWAR architectures are constrained

in comparison.

SOLOMON

The SOLOMON [117, 118] prototypes were early SIMD processors built for the

Western Electric Company in the early 1960s. Their design was inspired by the
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physical appearance of a magnetic drum used as storage for the IAS machine built at

Princeton University.

The original design called for 512 byte-wise “processing elements” connected in
a 2-dimensional toroidal mesh, and controlled from a “central source.” In the final
design for the original prototype, the PEs were to be grouped into up to eight 32x8
subarrays for a maximum of 2048 PEs. The actual prototypes used significantly fewer

PEs in various configurations.

The PEs were essentially single bit full adders which used operands that were
either stored in local core memory frames, broadcast from the central source, or read
over the link from any of the PE’s nearest neighbors. An “L-buffer” was used to
convert word-sized data from the control unit into a serial bit stream for the PEs.
The length of this stream was variable and determined by the value of a settable

register.

The central source was responsible for program storage and supplying immediate
data, but its primary task was to act as a controller for the rest of the system. This it
did by providing the PEs with control signals to select operations, enable or disable

PEs, and activate connections between the PEs.

Each PE had a 2-bit “mode” register whose value determined which of four pos-
sible modes the PE was operating in. Each instruction carried a 4-bit field (one per
state) which specified a set of possible modes. Only the PEs that were in one of these
modes were allowed to execute the instruction. This allowed PEs to be effectively
disabled for a given instruction. While “oft”, a PE could supply operands to its

neighboring PEs but was not allowed to change state.

Later SOLOMON prototypes replaced the bit-serial PEs with byte-sliced proces-
sors. These had 24-bit registers and 8-bit arithmetic hardware. As PEs with wider
data paths began being used, the number of PEs in successive prototypes was scaled

down. A full-scale model was never built; however, the design led directly to the

ILLIAC V.
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SOLOMON provides us with a basic model of a SIMD array processor: an array
of processing elements, controlled by a single control unit, with local memories, and

connected via some form of interconnection network.

ILLIAC IV

The first operational SIMD machine was the ILLIAC IV [119], built at the Uni-
versity of Illinois. It was an extension of the SOLOMON prototypes, and was built
by a group led by D. L. Slotnick and which included others from the SOLOMON
project. Both [152] and [123] contain case studies of the ILLIAC IV, and some of the

following material is drawn from these sources.

The ILLTAC IV was contracted by the Department of Defense’s Advanced Re-
search Projects Agency (ARPA) in about 1965. A quarter-sized prototype was de-
veloped and used at Illinois until the early 1970s when it was decided that it should
be moved to a government facility. The prototype was delivered to the NASA Ames
Research Center in 1972, but was not fully operational until 1975. The ILLIAC IV

was decommissioned in 1982.

As delivered, the ILLIAC IV’s processing array consisted of one quadrant of 64
processing elements (PEs). Each of these had an arithmetic/logic unit (ALU), various

registers, and a local processing element memory (PEM).

The ALU could perform arithmetic, logical, and comparison operations on data in
its four 64-bit data registers. These could be loaded from local memory or with a value
broadcast by the control unit (CU). The operation applied depended on the control
signals from the CU and the values stored in the PE’s flag registers. These contained
status and control values and were accessible by both the PE and the CU. This
allowed the various PEs to behave differently while executing the same instruction,

and allowed conditional execution based on an individual PE’s computational results.

Attached to each PE was a local bank of memory from which its data stream was

normally drawn during parallel operations. These banks held 2k words of 64 bits
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each, and were accessible by both the PE and the CU. Each PE could access a local
memory location that differed from that of the other PEs. This was done by indexing
the address by the value in the PE’s 16-bit index register.

ILLTAC IV’s control unit drove the processor array by issuing control signals to
the PEs over a “nanoinstruction” bus. It could set the PEs’ flag registers and mode
bits with different values to conditionally enable or disable sets of PEs. The CU could
also broadcast data and addresses over a 64-bit common data bus. This allowed it to
transmit scalar values and constants to the PE array. A mode “flip-flop” bus collected
a single bit from each PE and delivered the set to the CU as a 64-bit word. This

word could then be tested to determine global conditions.

The CU could access the PEs’ local memories directly over a separate 512-bit bus.
This allowed it to use all of memory and treat the PEs” memory banks as a single
global store. The CU read its instructions from this memory and fetched them into
an instruction cache. Data also could be loaded from this memory and stored in a

private buffer.

The PE interconnect was an 8x8 mesh, with each column connected as a separate
torus, and the rows connected together as a single torus. This allowed data to be
rotated through the columns of the mesh or through the entire set of PEs. It also
allowed nearest neighbor communications in any of four directions. This was useful

for moving data vectors and arrays which had been mapped onto the processor array.

The ILLIAC IV was capable of a form of variable-width processing. Each PE
could operate as a single 64-bit floating-point element, as two 32-bit floating-point
elements, or as eight 8-bit fixed point elements. Whether this was implemented in
a manner similar to that of modern SWAR architectures is unclear from [118]. This
variable-width processing made the architecture more flexible in its ability to support
various data types; however, the languages used to program the ILLIAC IV tended

not to take advantage of this capability.
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ICL DAP

The first commercial massively parallel computer was the Distributed Array of
Processors (DAP) built by International Computers Limited (ICL) [120]. It was
developed in the mid 1970s based on a “design study” by S. F. Reddaway [121].
Work on a prototype took place during the rest of the decade, and the original
system was delivered to Queen Mary College, London University in 1979. In the mid
1980s, Active Memory Technology (AMT), Inc. was spun-off from ICL to develop
DAP systems.

The idea behind the ICL DAP was to use bit-serial processors to simplify the
logic design and provide these with local memories to closely integrate the logic and
storage systems. With enough processors, the entire problem could theoretically be

mapped onto the processing array.

The paper design consisted of a main control unit (MCU) and a processor array,
and was “somewhat similar to SOLOMON 1”7 [121]. The DAP was to be connected
to, and supported by, a “parent” computer system which provided it with data and

instructions.

The MCU was to consist of a “conventional” instruction fetch system, an instruc-
tion buffer, and a set of registers which could be connected to a row or column of the
array. These registers would allow data to be loaded to, or retrieved from, the array

along either of its sides, and was apparently intended for use in processing scalar data.

The processor array was to be two-dimensional with one side connected to the
“store highway” of the parent system. The parent could then load data and instruc-
tions via this bus and hence could use the array for storage or computation. A word of
data was normally to be stored along a column of PEs in what was called “main store
mode”. Words would also be stored in a single PE in “array mode” for more efficient
processing in some circumstances. Conversion between these two modes would occur

within the PE array.
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The PEs were to be connected in a rectangle via a nearest neighbor network with
each PE also connected to the PE “half a row away in the same row”. Independent,
program controlled edge connections were to allow the PEs to be connected as a
linear array, a ring, a mesh, a toroid, or any of up to 32 geometries when half-row

connections were used.

Each PE would have a 4kb local memory. Storage to these memories could be
blocked by the MCU on a row or column basis to allow operations on array subsec-
tions. Each PE also had a set of single-bit registers which were to be used to hold
operands and buffer incoming and outgoing bits. One of these was used as a mask

bit to control conditional execution according to [126].

The design emphasized connectivity and allowed several input and output connec-
tions to be made with the MCU, the parent machine’s store highway, and neighboring
PEs. Multiplexers were to be used to activate connections between the registers and

the various sources and destinations.

MPP

Goodyear Aerospace Corporation’s Massively Parallel Processor (MPP) [122, 123]
was developed in the late 1970s and built in the early 1980s. It was the first so-called
“massively parallel processor,” which meant that it contained thousands of PEs. It
consisted primarily of an array unit which housed the PEs and an array control unit
which directed them. The MPP was descended from the STARAN [193] bit-serial

associative processor, and was similarly intended for image processing using bit-slices.

The array unit (ARU) was a 128x128 array of bit-serial PEs. Each PE had a
set of six bit registers, a programmable shift register, a full-adder, and a Boolean
logic/routing unit. Arithmetic operations were performed bit-serially, with the re-
sult stored in either the shift register or local memory. Most instructions could be
prevented from executing on a particular PE by resetting a “mask bit” in that PE’s

status register.
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Each PE had 1kb of local memory. Because the MPP was designed to operate
on bit planes, these were used collectively with the planes stored across the entire
set. During a memory operation, all of the PEs accessed the same local address,
and thus the same bit plane. Thus, these memories could be thought of as a set
of 1024 bit-planes, with each PE controlling one bit in the same position of each
128x128 plane. Data was typically from 1 to 32 bits in length and was stored across
multiple, consecutive bit-planes. Thus, a set of consecutive bit-planes could be used

to represent an array of multi-bit items.

Because the depth of the memory array was fixed at 1028 bits, the MPP could
store 128 8-bit images or 32 32-bit images. The more precise the pixel data, the
fewer pixels the MPP could store. This trade-off is similar to one found in SWAR
architectures in which a fixed number of bits are available in the CPU’s registers.

This fixed number must be traded off between data precision and parallelism width.

Instructions for the MPP’s ARU were handled by the array control unit (ACU)
by placing them in a “call queue” to be read by the ACU’s PE control section. Each
of these instructions was executed as a microprogram by the PE control unit which
generated one stream of control signals which it broadcast to the entire PE array. For
memory accesses, these signals included a single address that was used by all of the

PEs simultaneously.

The MPP had multiple interconnects including a reconfigurable mesh, a global
OR network, and an aggregate word network. The inter-PE mesh network allowed
nearest neighbor communications in any of four directions called north, east, west,
and south. For this reason, it was called the NEWS network. 1t connected the PEs
in a 128x128 mesh whose topology was controlled by the ACU. This was done by
controlling the connections of the PEs at the edges of the mesh. The PE at the edge
of a column could be connected with the PE at the other edge of the same column or
left disconnected. The same was true of the rows, except that the PE at one edge of
a row could be connected to the PE at the other edge of the next row. This flexibility

allowed the MPP to be connected as a mesh, a vertical or horizontal cylinder, a torus,
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an open or closed spiral, or a spiral torus. This level of flexibility can only be achieved

in SWAR architectures which support permutations.

A second network, called the “sum-or” network, performed a bitwise ORing of the
bits sent by the PEs to the control unit. The SWAR equivalent to this global OR
network would be a test of the CPU register for a non-zero value. In both cases, this

allows aggregate data to be collected and tested easily.

A single bit could also be collected from each of the 16 PEs in the southeast
corners of the ARU’s 32x32 subarrays. These formed a 16-bit aggregate value that
the ACU could access and manipulate as a single word. This third network was more

general than the sum-or network.

The MPP could be difficult to use for higher-dimensional problems and for prob-
lems which did not match its dimensions. While the NEWS network was more flexible
than the mesh of the ILLIAC 1V, it still required all PE data communications to fol-
low the same pattern. For example, for one PE to send data to its northern neighbor,

all the other PEs had to do the same.

The ILLIAC 1V and MPP represented opposite ends of the SIMD continuum. The
ILLTAC IV had a relatively small number of fairly powerful multiple-bit processors,
while the MPP had a large number of very simple one-bit processors. This was a result
of the two architectures having been designed for different purposes. ILLIAC IV was
intended to be a number-cruncher, operating primarily on 32- and 64-bit measured
data, while MPP was intended to be an image processor, operating primarily on 8-bit,

or at most 32-bit, pixel data.

AMT DAP

The AMT DAP [194] was a successor to the ICL DAP and was built in the late
1980s by Active Memory Technology (AMT), Inc. The 500 series had a 32x32 array

of 1-bit processing elements while the 600 series had a 64x64 array. In both systems,
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each PE had between 32k and 1Mbit of local private memory. Thus, both versions

were somewhat smaller than the MPP, but had significantly more memory.

The PEs were bit-serial and consisted of a full adder/logical unit, three 1-bit
registers, and two multiplexers. One of these was used to choose the operand sources,
which could be any of the registers or interconnection networks. The other was used

to choose the source of the result sent to the memory and interconnects.

The PEs were arranged in a two-dimensional mesh with each connected to its four
nearest neighbors in a NEWS network, and also to all of the PEs in its row and to
all of the PEs in its column via buses. This interconnection was more flexible than
the MPP’s NEWS network, allowing a PE’s data to be broadcast within a row or

column, or even to the entire array.

The master control unit (MCU) was a 32-bit CPU. It read instructions from the
code memory and issued control signals to the PEs in the processing array. It also

performed scalar operations and could broadcast data to the array.

One unique feature was a hardware DO instruction which could encompass other
instructions. These instructions could then access various sections of the array in an

incremental manner, with the index automatically incremented for each iteration.

Later versions of the DAP had an 8-bit co-processor which was used for compu-
tation while the 1-bit processors were used for communication. This medium-sized
collection of moderately powerful processing elements represented a trade-off between
the ILLIAC IV and MPP architectures. This allowed it to be more commercially ac-

ceptable on a price/performance basis.

GAPP

The NCR Geometric Arithmetic Parallel Processor (GAPP) ! was a single chip

SIMD processor which consisted of a control unit and a 6x12 array of PEs connected

Part number NCR45CG72.
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by a two-dimensional NEWS network. A brief description of the GAPP can be found

in [145] which explains its use in a particular application.

The PEs were bit-serial full adder/subtracters which could perform basic arith-
metic and logical operations. Operands were drawn from a set of four 1-bit registers
which buffered data that was either drawn from a set of common memory lines or the
NEWS network, or was generated as carries or borrows during arithmetic operations.
The generated output included the sum (SM), carry out (CY), and borrow (BW)
bits.

A set of five multiplexers were used to choose the source of the data latched during
the execution cycle. These were chosen from any of the registers, the ALU outputs,
or the data incoming over the interconnect. Data could also be moved between the
host processor and the PEs’ local memories via a set of common data lines, called

CMN and CMS.

Each PE had a relatively small 128-bit local memory, addressed by a 7-bit imme-
diate field in the instruction opcode. This meant that all PEs addressed the same

location in their local memories during memory accesses.

GAPP chips had a set of I/O ports which allowed them to be connected into
larger processing arrays. This allowed the chip to be used by others to develop larger

systems. One example is the systolic array constructed by Morley and Sullivan [145].

While the GAPP processor is over a decade old as of this writing, it is still in use.
A current video processing/conversion system, the TeraNex video computer [146] is
based on the sixth generation of the SIMD microprocessor which was introduced in
1998 by Lockheed Martin Electronics and Missiles. This processor, called the GAPP
VI, is implemented as a single chip with 1k PEs in a 32x32 mesh. These can be

combined in a 32x32 array for a total of over one million PEs.

The GAPP is actually a full SIMD architecture on a chip, and represents a more
powerful architecture than the SWAR architectures we are concerned with in this

research. If multimedia, especially image processing, continues to be a driving force
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in computing design, then the GAPP and similar architectures may move into the

commodity market. For now, they are used in specialized architectures.

GF11

The IBM GF11 [124, 125, 126] was a pipelined SIMD parallel processor designed
for verifying research in quantum chromodynamics. It had 576 pipelined PEs with
high-speed register files. Each of these had 64KB of high-speed memory and 256KB of
lower-speed memory. The lower-speed memory was expandable to 2MB per processor,
allowing up to 1.125GB in total.

Possibly the most interesting feature of the GF11 was that the PEs were fully
interconnected via a non-blocking Benes network [127]. This network had three stages
of 24x24 crossbars and allowed the PEs to be connected in any arbitrary permutation
in order to share data. Thus, the PEs could be connected in a large number of various

multi-dimensional shapes.

CM-1

The Thinking Machines Corporation’s first “Connection Machine”, the CM-1 [128,
129, 130], was another massively parallel SIMD system consisting of a parallel pro-
cessing unit which contained a very large array of PEs, a front-end host computer
which read instructions from its memory and issued nanoinstructions to the PEs, and
interconnection networks between the PEs and between the PEs and the front end.

The CM-1 had up to 64k PEs significantly more than previous architectures.

232 functions on their inputs.

These were bit-serial ALUs which could perform any of
Each PE had a private memory from which two input bits were taken and a set of
flags from which a third input bit was drawn. Output consisted of one bit which was
stored in memory and another which was stored in the flags register.

Conditional instructions on the CM-1 were executed based on the value of a speci-

fied processor flag. For each PE, if this flag had a specified value, then the instruction
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was executed; otherwise, it was skipped. Thus, like the ILLIAC IV, conditionals were

performed on an instruction-by-instruction basis, with no sense of nesting.

The CM-1 had multiple interconnection networks. A NEWS network connected
the PEs in a two-dimensional mesh and moved bits between neighboring PEs’ flags.
This was used for short distance and regular pattern communications. A global OR
network combined data from the PEs into a single scalar value that was passed to

the front-end. This provided aggregate data to the controlling system.

The most interesting of the CM-1’s interconnects was, however, an adaptive
packet-switched hypercube network. It allowed any set of PEs to communicate with
any other set in an irregular pattern. This network was significantly more complex
and powerful than those of earlier systems, whose interconnects did not allow such

general communication.

Messages on this network passed through a packet-switched adaptive router. Each
set of 16 PEs was connected to a single router node, and these nodes were connected to
form a hypercube. Collisions within the hypercube were resolved by using other paths;
thus, the router network adapted to internal loading. However, because multiple
PEs were connected to a single router node, contention for access to the router was

possible, and blocking could occur as a result.

In relation to SWAR architectures, use of the router network is analogous to ex-
ecuting a generalized permutation instruction. These instructions allow any type
of permutation of the data fields in a CPU register to be selected including replica-
tions. Thus, they can be used to perform broadcasts and generalized communications
between fields just as the CM-1’s router network could be used for interprocessor com-

munication.

The CM-1 represented a return to the ideas behind the Goodyear MPP, but with
the addition of the hypercube network to facilitate the types of communication that
the MPP was weak at. This allowed the CM-1 to be used for problem types that the

MPP performed poorly on.
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CM-2 / CM-2a / CM-200

The Thinking Machines CM-2 [131, 130], CM-2a, and CM-200 were updates of
the CM-1 with various sizes and options 2. The CM-2 could have 16k, 32k, or 64k
PEs, while the the CM-2a could have 4k or 8k PEs. “CM-200" may have been the
name assigned to a version with floating-point co-processors. The basic architecture
was essentially the same as that of the CM-1, although there were some significant

modifications.

One difference was the addition of a sequencer between the front end system and
the PE array. It read instructions from the front end system and issued nanoinstruc-
tions to the PEs, thus taking over this part of the duties of the CM-1’s front-end.
The broadcast and scalar memory buses which had previously connected the PEs to

the front-end now connected them to the sequencer instead.

A second difference was the modification of the global OR network to a more
general combinatorial network which connected the PE array to the sequencer. This
network could perform global reductions such as maximum, summation, and logical
AND on the PE data to form a single value which the sequencer then received. This
was a significant advancement over the previous global network, and could be used
to gather more diverse information about the system’s aggregate state. In relation
to SWAR architectures, this was the equivalent of adding advanced reductions to the

instruction set.

Another difference was the modification of the NEWS network. First, it was
extended from a two-dimensional mesh to an n-dimensional mesh implemented on top
of the existing hypercube. This upgrade allowed regular communications patterns in
multiple directions. Second, it was modified to perform scans and spreads. Scans,
which are also known as parallel prefiz operations, are reductions in which the running

subresults are retained. Spreads are operations which replicate a value throughout

2While the literature is somewhat contradictory with respect to the features of the various Connec-
tion Machine implementations, the specifics are not crucial to the understanding of this thesis.



- 285 -

the PE array. These operations are often used in data parallel processing, especially

when a calculation is split-up between PEs.

In terms of SWAR architectures, no current system performs scans, although they
can usually be emulated rather easily, but expensively, using shifts. Spreads are found
on some architectures, while others attempt to obviate them by including instructions
which use a single data field as a scalar operand to each of the elemental operations

which comprise the vector instruction.

Operations on multibit data were executed bit-serially within the CM-2’s 1-bit
ALUs, while single- and double-precision floating-point operations were processed on
an optional floating-point accelerator. This consisted of one floating-point memory
unit and one floating-point processing unit per pair of processor chips (i.e. one ac-
celerator per 32 PEs). The memory unit acted as a glue chip which converted data
between a collection of 32 single bits or 32 pairs of single bits and a single- or double-
precision floating-point value that the processing unit could operate on. Thus, it

worked similarly to the MPP’s bit-slice processor.

An analysis of the CM-2 and its use at the Research Institute for Advanced
Computer Science (RIACS) at NASA Ames Research Center, written by Robert
Schreiber [195], provides a more in-depth analysis of the system’s utility, strengths,

and weaknesses.

BLITZEN

The goal of the BLITZEN [148] project at the Microelectronics Research Center
of North Carolina was to develop a miniaturized massively parallel processor. Such
a processor was expected to be economical and easily attached to, or embedded in,
other systems. While the chip layout was submitted for fabrication, it appears that
a prototype system was never built [196]. Despite this, the architectural definition is

instructional.
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Each chip contained an 8x16 array of bit-serial PEs driven by an on-chip control
unit. The control unit converted microcoded routines into the control signals for the
array. These routines were stored in a control memory and could be loaded from the
host machine via an external interface. This interface could also be used to transfer

data between the chip and the host’s peripherals.

The PEs had essentially the same design as those of the MPP, but employed vari-
ous modifications. One was a redesign of the shift register to make it bidirectional and
to limit the shifted bits to a selected set, thus protecting the data in the unselected
bits. This made the register more generally useful and allowed parts of it to be used
for temporary storage and address indexing. Another modification was the extension
of masking to all memory accesses. A third was the addition of complementary condi-
tional operations. These performed either the specified operation or its complement
depending on the value of a control bit on each of the PEs. This allowed the PEs to
take opposite actions simultaneously, and could be used to simplify certain control

structures.

Each PE had 1kb of local on-chip memory which was individually addressable
using the contents of the PE’s shift register as an offset to the globally supplied
address. This was done by bitwise ORing them together, and required that the
global address be aligned on a 10 bit boundary. This memory organization had
two advantages over that of the MPP. First, it was more flexible because it allowed
its PEs to access different locations in memory. Second, the BLITZEN design was
theoretically faster because memory accesses were on-chip and thus didn’t suffer from

off-chip delays.

Data could be transferred over a set of 4-bit buses, each of which connected a
row of 16 PEs and provided a port for memory accesses. This allowed memory to be
accessed in 4-bit blocks during row 1/O operations. An innovative interconnection
network called the X-grid was also incorporated in the design. This network connected

each PE with eight nearest neighbors: its four NEWS neighbors and its four diagonal
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neighbors. The X-grid was more flexible than a NEWS grid, yet was significantly

smaller than a full routing network and required fewer 1/O pins.

Each PE had four connections  one leaving each of its four corners. Every four
neighboring PEs which formed a square were connected via their corners within the
square in an X connection. By choosing which corners the PEs would send data out,
and from which they would read data in, the X-grid could be used to connect the
vertical, horizontal, or diagonal pairs of PEs. The unused lines would be effectively

disconnecting by placing them in a high-impedance state.

Like the GAPP, the BLITZEN architecture was an attempt to place a full SIMD
architecture on a single chip and represents a possible future direction for commodity

processors.

MP-1 and MP-2

The compute engine of MasPar Computer Corporation’s MP-1 [132, 133, 134] was
called the data processing unit (DPU). The DPU consisted of a PE array of between 1k
and 16k nodes, an Array Control Unit (ACU) which also performed scalar arithmetic,

and multiple interconnection networks.

While the arrayed PEs were 4-bit ALUs, microcode was used to make them behave,
from a programming perspective, as 32-bit processors. Thus, the MP-1 was another
compromise architecture, falling between the massively parallel 1-bit machines and
those with fewer, more powerful PEs. Each of the MP-1’s PEs had forty 32-bit

registers and was connected to its own local memory of between 16 and 64 kB.

Floating-point support consisted mainly of fast normalization hardware which
decreased the time needed to normalize the integer mantissa and exponent parts
of the operands. This sped-up what is often the slowest part of a floating-point
operation. Floating-point data could be single- or double-precision, and could be in

VAX or [EEE formats.
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Communication between the PEs could be accomplished in two ways. First, an
X-net provided straight-line communication in any of 8 directions. This may have
been a re-invention of the BLITZEN X-grid or an independent invention by MasPar.
Either way, it provided the same level of interprocessor communication and had the

same advantages as the BLITZEN X-grid.

Second, a three-stage global router network, similar to that of the CM-1, allowed
simultaneous, independently-indirected, duplexed communications between pairs of
PEs. The PEs were grouped in clusters of 16, with each cluster having a single
connection to the router network. This connection was multiplexed between the PEs

in the cluster, and operated in a bit-serial fashion.

As in earlier architectures, communication between the PE array and the control
unit was also provided for. Communication from the ACU to the PEs took place over
a broadcast network, and communication from the PEs to the ACU took place over

a global OR network.

As a later SIMD array architecture, the MP-1 benefitted from many of the lessons
learned from previous architectures. While similar to the CM-1 and CM-2, the MP-1’s
architecture was more of a compromise, combining a fairly large number of processors
with a reasonable amount of memory and multiple types of interconnection networks.
The MP-2 was essentially a scaled-up version of the MP-1 which had thirty-two 32-bit
PEs per chip with a floating-point unit attached to each PE. Thus, it too represented

a compromise between the two extremes in SIMD array architecture.

Summary

The purpose of this discussion was to develop an understanding of historical SIMD
array architectures so that we may better understand the relationship between them
and modern SWAR architectures. This should make it easier to set reasonable goals

and avoid pitfalls while designing a SWAR processing model.
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SWAR processing is a limited form of SIMD implemented within a single micro-
processor. A traditional SIMD array architecture consists of a control unit, a pro-
cessing array, memory, and an interconnect. Each of these has a SWAR architecture

counterpart. We will briefly discuss the relationships between them.

The primary task of a SIMD control unit is to read instructions and decode them
into control signals for the processor array. In a SWAR architecture, the analogue of
the control unit is the normal CPU instruction issue mechanism. An instruction is
read from a single instruction stream in memory and decoded into a set of control
signals. These signals specify a single operation to be performed by the ALU or other
functional units. They also turn off logic such as the carry and borrow chains to
ensure that the operation acts independently within each of the fields of the affected

registers.

In a SWAR architecture, each register field can be thought of as a small, complete
register residing on one of the PEs of a SIMD system. The set of fields located in the
same position across the set of CPU registers can then be thought of as a particular
PE’s register set. That PE consists not only of this set of register fields, but also of
that part of the CPU’s data path which operates on them. Thus, a SWAR system

can be thought of as a one-dimensional linear array of PEs.

Thus, a SWAR system is really a vector parallel processor in which vector ele-
ments are stored in the fields of the CPU registers. In contrast, traditional SIMD
systems were usually multi-dimensional array processors with each PE holding one
array element in each of its registers. This implies that many of the problems that

map easily to SIMD array processors will not map easily to SWAR architectures.

In a typical SIMD array processor, each PE had a local memory which was often
shared by, or at least accessible to, the control unit. On a SWAR system, data is
loaded or stored in chunks that are often larger than a single field. For example, a
load that matches the size of the partitioned register is equivalent to all of the SWAR
PEs loading a value from the same address of a banked memory. In this sense, most

SWAR memory systems are similar to that of the ILLIAC TV.
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On most SIMD architectures, a PE’s local memory was not available to the other
PEs. Continuing this analogy, on most SWAR architectures a PE cannot directly
access data from another PE’s part of memory. This is because loads and stores are
usually performed on word-sized entities and preserve the bit ordering of the data.
An access of another PE’s memory slice would be equivalent to performing such a

load with a simultaneous shift of the data to the desired position.

In some SIMD architectures, the control unit also acted as a scalar unit. In SWAR
processors, non-SIMD instructions treat the contents of the registers as single values
regardless of their origins or any earlier partitionings. If the ALU is thought of as
a scalar unit when executing normal instructions, it is one with direct access to the
global memory consisting of the PEs’ local memories. This is true only if the archi-
tecture supports instructions which operate on the entire register contents. Often,

this is not the case, and is a weakness of several of the current SWAR architectures.

One of the weaknesses in early SIMD array architectures that was addressed in
later generations was the lack of sufficient communications capabilities. Early mesh
systems were sufficient for regular communications patterns, but it became clear that
more generalized capabilities were needed. As SIMD systems evolved, more complex

interconnects were developed to provide these capabilities.

Most SWAR architectures have the one-dimensional equivalent of a NEWS net-
work which can be emulated using logical shifts and rotates; but few have any equiva-
lent to the general communication capabilities of a full router network, which requires
some form of permutation instruction. Because of this, a good portable model should

probably avoid this generality, at least until SWAR architectures mature a little more.

One other aspect of SIMD processing requires discussion. As with SIMD vector
processors, SIMD array processors had to incorporate some means of allowing separate
control paths to be taken by different PEs. In most systems this was done by turning
the PE off on an instruction-by-instruction basis. Usually, this was done by the
control unit, but in some cases the PEs could turn themselves off based on the status

of an executed instruction. SWAR architectures do not have equivalent functionality.
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SWAR instructions are executed across an entire register; thus, all SWAR PEs execute

the same instruction.

Other SIMD systems allowed the PE to execute the instruction, but prevented the
side-effects of execution from occurring. Some SWAR architectures employ masked
stores to accomplish this. These operations store only those register fields which are
selected by some type of mask. As long as the data precision used matches one of
the hardware-supported field sizes, masked stores can be used to block unwanted

side-effects during conditional execution.

Where no hardware support for conditional execution is available, arithmetic nul-
lification must be used to block the effects of execution on those PEs for which the
condition doesn’t hold. This was used on some SIMD systems, and can also be used
on SWAR architectures. Arithmetic nullification is also necessary if the data precision

doesn’t match any supported field size.

It is clear that SWAR architectures, while similar to traditional SIMD systems,
also differ from them in significant ways. SWAR architectures are less mature and
more restricted than the later SIMD systems. As we discuss the specifics of commodity
SWAR architectures in the next chapter, we will be able to do so with a perspective

gained from knowledge of past SIMD architectures.

Reconfigurable Architectures

SWAR architectures are also related, though less closely, to reconfigurable archi-
tectures. These are architectures whose processing model or logical configuration can
be changed without actually changing the hardware, either as the machine is running
or between runs. A detailed study of these architectures is unnecessary; however, we

will briefly discuss two in order to compare and contrast them to SWAR architectures.
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PASM

The PArtitionable SIMD/MIMD (PASM) system [197, 198] was a dynamically
repartitionable architecture in which the system could be partitioned, while running,
into several smaller SIMD and/or MIMD systems to perform separate parallel tasks.
As the needs of the tasks changed, the system could be reconfigured on the fly. This
allowed multiple processes to use the array simultaneously, and in a manner that best
fit their needs.

SWAR architectures, by contrast, are much less flexible than was PASM. SWAR
systems are always SIMD and are not partitionable into separate parallel subsystems.
They can, however, dynamically change precision and parallelism by changing how
their data paths are partitioned into logical PEs.

Reconfiguration on PASM was explicit, meaning that a program executed a sep-
arate instruction to set the configuration of the system, then executed other instruc-
tions under that configuration. Reconfiguration on a typical SWAR architecture oc-
curs implicitly with every multimedia instruction executed. The multimedia instruc-
tion determines the configuration of the system, but only during is own execution —
no state is maintained between instructions.

While modern SWAR architectures share some hardware aspects with PASM, the
focus of this research is the development of a programming model for systems in
which the partitioning of individual registers is dynamic. SWAR architectures are
dynamically partitionable not in the sense of tasks, like PASM, but in the sense of
the layout of fields in the register set. Thus, while a study of architectures such as
PASM’s can provide insight into the design of modern microparallel architectures,

they are not particularly relevant to the current work.

TRAC

The Texas Reconfigurable Array Computer (TRAC) prototype consisted of four

8-bit processing elements connected to nine memory modules via a Banyan net-
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work [126, 199]. To perform an operation, the network switches were set to form
an instruction tree rooted at one of the memory modules which would be used to
send instructions to a set of PEs. A set of separate data trees rooted at each of these

PEs were also formed. These were used to access data during the operation.

A more important feature of the TRAC from the perspective of SWAR processing
was its varistructure. This allowed PEs to be ganged together to perform higher-
precision operations. The TRAC’s PEs were byte-slice (i.e. 8-bit) processors which
could be combined to perform operations on data sizes which were multiples of eight
bits. Because the prototype had only four processors, it was limited to 8-, 16-, 24-,
and 32-bit operations, but would allow any combination of data precision and set size

whose product was limited to 32.

TRAC was an extension of the Reconfigurable Varistructure Array Processor [200].
For this architecture, the precision and vector sizes were specified by the programmer
via dimension declarations. The trees were then built, with the PEs ganged together
via exposed carry networks. By passing the carry signals between PEs, multi-byte
precision objects were formed, and by blocking the carry signals multiple elements
of a vector were formed. This is similar to modern SWAR architectures which also

control the carry chain to create sets of equivalent elements of various sizes.

A later version, TRAC 2.0, was built at a time when 32-bit microprocessors were
affordable enough to use as the PEs. Varistructure, which combined byte-slice pro-
cessors to form multi-byte objects, was no longer needed. Each PE in the TRAC 2.0
design could handle 32-bit and smaller objects itself. Because of this, the TRAC 2.0

design is not particularly relevant to SWAR processing.

Early Forms of SWAR Processing

SWAR-like processing is not a new concept. Various forms have been used to

exploit limited machine resources such as memory and register space for some time.
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As demonstrated in this chapter, both the ILLIAC IV and the MPP could perform

datapath partitioning to operate on data in a SWAR-like fashion.

In fact, James Gleick indicates in “Genius” [201] that Stanley Frankel, a mathe-
matician at Los Alamos during the second World War, modified IBM 601 multipliers,
which performed a single ten digit multiplication, to perform three separate three
or four digit multiplies simultaneously. This was clearly a form of SIMD processing,
and, depending on the design of the multipliers, may even have been a form of SWAR
processing. | have not been able to obtain more specific information on this work,
nor was Mr. Gleick able to guide me to the original source of this information 3, so I

cannot confirm this.

Early work in applying this form of processing to microprocessor systems focused
on enhancing these processors with on-chip graphical hardware. These were later
generalized into the multimedia extensions currently in use. A short history of SWAR-
like multimedia extensions is given in [29]. There is also some discussion of early
SWAR-like architectures in [202]. In this section, we will discuss some of these early

SWAR processors.

Intel 1860

In 1989, Intel introduced the i860 microprocessor [203]. This was the first general-
purpose microprocessor to incorporate SIMD-style instructions for graphics process-
ing [202]. This functionality was intended to accelerate “back-end rendering opera-

tions” such as “shading and hidden surface removal.” [203]

The i860 had a three-dimensional graphics processing unit that could operate
simultaneously on a set of pixels stored in any of its 64-bit floating-point registers.
When used in this manner, these registers were partitioned into sets of eight 8-bit

pixels, four 16-bit pixels, or two 24- or 32-bit pixels.

3James Gleick, email to author, 19 December 2001.
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A set of ten graphics instructions were supported by the i860 which performed
operations such as z-buffer checks, pixel intensity interpolation, and z-distance inter-
polation. These were used for determining which pixels were closest to the viewer,
and therefore must be visible, and for rendering unstored, but visible, points between

polygon vertices.

Motorola 88110

The 88110 [204], introduced by Motorola in 1992, had a set of about nine SIMD
instructions for performing “...fixed-point shading and image processing.” These in-
structions operated on pixel or color intensity data stored in the 88110’s 64-bit general
registers. The 88110 had separate pack/unpack and arithmetic units and could issue

an instruction to each on every clock cycle.

Graphical data was normally stored as “pixels” in packed format. These consisted
of four 8-bit integer values stored as a 32-bit entity. It appears that these were
normally operated on in an “unpacked” format with four 16-bit fixed-point values
stored in a 64-bit register. Instructions for unpacking pixel data into fixed-point form

and packing fixed-point data into pixel form were included.

The 88110 allowed modular and signed or unsigned saturation addition and sub-
traction on 8-, 16-, and 32-bit unpacked fixed-point data. Modular arithmetic refers
to operations in which only the bits that can fit into the assigned storage space are
stored. Overflow bits are ignored, although side effects such as the setting of condi-
tion codes may occur. This is equivalent performing a modulus operation after the
arithmetic operation, and is how arithmetic is traditionally handled on computing

systems.

Saturation arithmetic refers to operations in which overflow is prevented by setting
the result of an operation to the maximum storable value of the same sign when an
overflow would have occurred and to the minimum storable value of the same sign

when a negative overflow would have occurred. Signed saturation refers to performing
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saturation arithmetic while treating the data as signed values. Unsigned saturation
refers to performing saturation arithmetic while treating the data as unsigned values.
Multiplication of fixed-point data by an 8-bit integer scalar value was also sup-
ported. This instruction multiplied each 16-bit unpacked fixed-point field by the same
8-bit value to form a set of 16-bit results stored in unpacked fixed-point form. This
allowed color intensity values to be scaled simultaneously by the same amount.
Other instructions included rotation of the fields of a register by a constant or
variable amount and z-buffer comparison operation. The rotate could operate on 4-,

8-, 16-, and 32-bit fields, presumably in unpacked form.

Texas Instruments MVP

Introduced in 1992, the Texas Instruments multimedia video processor (MVP) [116]

“

was a single-chip parallel processor intended for “...general integer DSP or bit and
pixel manipulation....” The architecture allowed for one to eight parallel processing
units controlled by a “master processor”.

Each parallel processing unit had a 32-bit ALU which could perform arithmetic
operations in a SWAR-like manner. These were referred to as “split ALU” operations
and could be performed on either two 16-bit or four 8-bit register fields simultaneously.
It is unclear from [116] exactly which operations could be performed in this manner.

The MVP was a highly specialized high-performance architecture intended for

DSP and graphics manipulation algorithms. I am unsure if any processor was ever

built based on this architecture.

Parallel Programming Languages

Because SWAR architectures implement a limited form of SIMD processing, it
makes sense to try to develop a SIMD-like abstract model to program them. How-
ever, it is clear that past SIMD architectures differ somewhat from modern SWAR

architectures. Because of this, the programming models developed for SIMD machines
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may not work well with SWAR architectures. Also, while SWAR architectures are
similar to SIMD architectures, their operation more closely fits the one-dimensional
vector processing model than the multi-dimensional array processing model. In order

to develop a good SWAR programming model, it is best to have some understanding

of both.

A large number of programming languages have been developed for programming
vector and SIMD parallel processors. In this section, several of these are discussed
in order to gain an understanding of vector and SIMD programming models and
how they have been embodied in these languages. Having an understanding of the
relationship between these models and languages will be useful when developing a
usable SWAR processing model. We will also borrow from these languages to develop

an experimental SWAR programming language.

Most, parallel programming languages are based on previously existing computer
languages, so it is useful to group them into families of languages which are based on

a common ancestor.

APL-based Languages

APL [162, 205] was developed starting in early 1956 “as a tool for describing and
analyzing various topics in data processing, for use in teaching classes, and in writing
a book....” [206] APL is rooted in mathematics and has a syntax similar to that of

algebraic notation. Thus, APL programs are essentially mathematical expressions.

In APL, vectors and arrays are “first-class” objects. This means that the language
allows the programmer to concisely describe the task at hand as simple high-level
operations on vectors and arrays rather than as a series or loop of low-level operations
on their individual elements. This, in turn, makes it easier for a compiler to recognize

parallelizable operations.

Vectors and arrays are operated on using a set of primitive “functions” (oper-

ations) which are defined in an implementation-independent manner [207]. These
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include arithmetic, Boolean, and relational operations, and other operations such as
array element selection. Operations on scalars are extended in a consistent way to
array operands and handle them in elementwise fashion. These operations have no
“side effects” which are hidden from the programmer and are thus well-suited to

parallelization.

APL also introduced several advanced features. These include reduction and scan
(parallel prefix) operators. Reductions combine the elements of a vector or array to
form a single scalar result. For example, adding all the elements of an array together.
Scans are reductions in which each of the intermediate results is also kept, not just
the final result. For example, keeping the running total for the above example as each
element is added in. Other features were an “axis” modifier which indicated that an
operation was to be applied across the rows or columns of an array, and inner- and

outer-product operators which resulted in a scalar or array respectively.

Because of its mathematical basis and consistent treatment of scalar, vector, and
array objects, APL might be a good choice for SWAR processing. However, APL
has several aspects which make it less desirable as a basis for a SWAR language.
For one, it is a dynamic language. Array types and dimensions are often undeclared
and must be determined by the compiler [126]. Also, variable types may change
during processing. While these features make APL versatile, they also make building

a properly working compiler for it a difficult task.

APL also makes use of symbols that are not part of a modern microcomputer’s
repertoire. Its character set is based on that of the IBM 1050 terminal and includes
a number of symbols not available in the ASCII character set which is used on most
modern systems. Finally, APL differs significantly from the languages most often
used by programmers in the high-performance area. This may be the most damning,
as programmers tend not to use unfamiliar languages no matter how well designed
they are. For these reasons, the SWAR model presented in this thesis will draw
from APL’s strengths, but our incarnation of it will be based on a more universally

accepted language.
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APPLE [208] was intended to be a general-purpose parallel language for the
ILLTAC 1IV. Like APL, it was highly dynamic and allowed operations on vectors and
arrays to be described efficiently. These would be performed in parallel on the PE
array. While this language may have been useful for SWAR processing, the project
was abandoned after proving to be too difficult to implement correctly for the ILLTAC
IV [126, 152].

ALGOL-based Languages

ALGOL [164, 165] was developed in the late 1950s. It was intended to be a well-
designed, machine- and application- independent language for expressing algorithms

with conciseness and structure.

ALGOL was the first block-structured language [126]. It allowed programs to be
hierarchical and better organized than those written in earlier languages such as FOR-
TRAN. It also allowed for dynamically allocated local variables, recursive procedures,
and call-by-value and call-by-name parameters [209]. This structure had a price in
that code written in FORTRAN tended to be compiled to more efficient machine
code. Thus, programmers concerned with performance tended to use FORTRAN

instead.

ALGOL has been the basis for much theoretical work in computer languages, and
has influenced the design of many subsequent languages. ALGOL was a sequential
language, but at least one parallel language, GLYPNIR, was based directly on it.

GLYPNIR [163] was a general-purpose language intended to provide a stable,
efficient method of programming the ILLIAC IV. Designed in 1968, it was one of
the first attempts at the development of a true SIMD language. GLYPNIR was an
extension of ALGOL 60 which allowed parallelism to be expressed explicitly in terms
of 64-word vectors (the size of the ILLIAC IV’s PE array).

GLYPNIR differentiated between what were called CU variables and PE variables.

CU variables represented scalars and vectors of scalars that would normally reside
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on the ILLTAC IV’s control unit, while PE variables represented swords or vectors of
swords (sword vectors) residing on its PE array. A sword was the group of 64 words at
the same address in each of the PEs’ local memories. A sword vector was a collection

of swords contiguously allocated on each of the PEs.

PE variables were first-class objects, and operations on them were executed in
parallel across the PE array. Using PE variables to index a sword vector allowed
a slice to be accessed. This was a group of 64 words residing on the PE array at
possibly different local addresses in each PE. Thus, GLYPNIR allowed what would

later be called “vector-valued indexing” or “vector indexing” of a vector or array.

GLYPNIR allowed data to be stored in a packed format along the same lines as
modern SWAR architectures. The partitioned object was represented by an identifier,
but could not be operated on in a SWAR manner. An individual piece of data was
accessed by modifying the identifier with a bit field specifier which defined the range
of bits to be accessed. A sword of bit fields could be operated on in parallel just as

with any other type of sword.

IF and FLSE statements were parallelized, with implicit PE enabling, if their
conditional tests were PE expressions. This was also true for FOR, DO, and WHILFE
loops. A FOR ALL construct was added as an alternative equivalent syntax for the
parallelized IF. These constructs allowed the programmer to express parallelism using

familiar means.

GLYPNIR also included the Boolean quantifiers SOME and EVERY which could be
used to test aggregate conditions and provide a scalar result. These were TRUE if a

condition was TRUE for some or all of the tested elements, respectively.

Unfortunately, GLYPNIR was not designed to hide the architecture of the ILLIAC
IV from the programmer. In fact, quite the opposite was true. PE variables always
defined a set of 64 objects which were spread across the width of the machine’s
processor array. Operations on larger data sets had to be strip-mined (i.e. split into a

series of operations on smaller parts of the data set) by the programmer to fit within
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this limit. This exposure of the architecture makes GLYPNIR unsuitable as a basis
for a portable SWAR model.

FORTRAN-based Languages

There are a large number of parallel processing languages based on FORTRAN
(the FORmula TRANSslation system). This language was developed by a group at
IBM led by John Backus in the mid-1950’s [210]. It was originally designed as a means
to program the 704, a commercial SISD computer, in a manner which more closely
represented the scientific problems of the end-users than other languages of the time.
In later incarnations, the name was changed to Fortran to signify the acceptance of

case-sensitive sources.

Fortran has a long history as a language for scientific and technical computing,
and has been in continual use since its inception. The proverbial “dusty decks” of
punch cards are typically Fortran sources that few people want to make significant
changes to unless there will be sufficient pay-off. As a result, much research has
centered on converting sequential source code into vectorized or parallelized machine

code. This is typically done by parallelizing the iterations of code loops.

As architectures evolved, so did Fortran. Newer versions of the language treat
arrays and vectors as first-class objects. Thus, looping constructs are no longer nec-
essary for describing vector and array operations. Unfortunately, much of the dusty
deck code is still written as looped constructs. Thus, while Fortran has grown to

allow new paradigms, it has also been forced to continue supporting the old ones.

Because of its history, Fortran is the most widely used language for high-per-
formance computing. This same history has also transformed it into a large and
unwieldy language with many archaic features which are only slowly being removed.
This makes Fortran a non-optimal choice for the basis of a new programming model.

Despite this, much can be learned from its evolution, so it is worth studying. In



- 302 -

this section, we will concentrate on describing versions of Fortran used on vector and

SIMD processing systems.

ILLIAC IV FORTRAN [150] by Burroughs Corporation was developed some-
time before 1968 and was the earliest parallel version of FORTRAN for the ILLIAC
IV [154]. This language introduced some simple constructs for supporting parallel

processing which were used in later languages.

Parallelism was supported via a notation in which an asterisk was used as an
array index. This indicated that operations on the array should be applied to each
of its elements in parallel. Thus, arrays could be treated almost as though they were
first-class objects. Some later versions of Fortran used a similar notation. We will

refer to the use of this notation as wildcard indexing.

ILLTAC IV FORTRAN also introduced the use of “control vectors” as array sub-
scripts to indicate conditional execution. Each element of a control vector had either
a .true. or .false. value. When used as an array subscript, the value of each control
vector element indicated whether or not operations were to be performed on the cor-
responding element of the array. This allowed elementwise conditional operations to

be written as operations on arrays rather than as loops of conditional scalar code.

These constructs provided rudimentary support for parallel processing, but were
somewhat restrictive. Later parallel dialects of FORTRAN would build on this start-
ing point and were significantly more complex.

IVTRAN [159] was an extension of ILLIAC IV FORTRAN which allowed more
complex parallel operations to be performed on arrays of integer or floating-point
data. This was done by adding new looping and data allocation constructs which
helped the compiler to find and extract useful parallelism.

The primary mechanism for expressing parallelism was a new DO FOR ALL con-
struct which was somewhat similar to a DO loop. This construct indicated that certain
assignments within the loop were logically simultaneous and could therefore be par-
allelized. These assignments were denoted as scalar element assignments and were

required to be of a certain form.
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Rather than having a single index variable as with standard Fortran DO loops, DO
FOR ALL loops could be indexed over a set of variables called a “control multi-index”.
Each member of this set represented an axis of the object or objects to be accessed.
A related logical expression specified a range of values for each axis to be operated
on. The values thus specified were called the “index set”. This allowed a subarray to
be selected for parallel operation within the loop body. PE enabling for the selected

elements was handled implicitly.

Using IVTRAN required having knowledge of the ILLIAC IV’s architecture. To
achieve efficient speedup, the data had to be laid-out so that it could be accessed in
parallel. This required the programmer to structure arrays to match the underlying
architecture. Two constructs were provided to help in this endeavor. The first, an
optional allocation declaration, allowed the programmer to specify the layout of an
array. The second was an OVERLAP specifier which allowed an array to be transformed

between multiple layouts in place during processing.

While IVTRAN had certain features which may be useful in a SWAR model, the
exposure of the architecture made it non-portable, and thus not useful in the current

effort. The language also had a short life, having been replaced by CFD soon after
the ILLTAC TV was delivered to NASA [126].

CFD [151, 152] was a FORTRAN-based language designed primarily to allow
computational fluid dynamics code to be ported to the ILLIAC IV (hence the name).
CFD was not intended to be a general-purpose language and was intentionally tied
to the underlying architecture. This allowed programmers in NASA’s CFD research
branch to optimize code for the ILLTAC IV target.

Parallelizable “vector-aligned” arrays of up to three dimensions were allowed, but
the first dimension was required to be less than or equal to the number of PEs.
Parallel operations on these were pseudo-first-class using a wildcard indexing scheme

similar to that of ILLIAC IV FORTRAN. This was extended to allow expressions

over wildcards to denote rotations of the indexed object.
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Scalars and non-parallelizable arrays resided on the CU and operations on them
were performed there. These were thus limited to the operations which the CU could
perform, while a different set of operations could be performed on the vector-aligned

arrays residing on the PEs.

Thus, the language not only required the user to have knowledge of the target
architecture, it codified the differences between its functional units. These issues

make CFD unsuitable for use as a basis for a portable programming model.

Despite this, CFD did have certain features which could be incorporated into a
modern SWAR programming model. Like GLYPNIR, CFD had used CU and PE stor-
age class modifiers which explicitly indicated where the data should be stored. Logical
IF statements with parallel conditionals were parallelized and implicitly handled PE
enabling, thus hiding these issues from the programmer. Finally, explicit .ANY. and
.ALL. quantifiers, which were similar to GLYPNIR’s SOME and EVERY tests, could
be used to obtain aggregate information. CFD expanded upon these with new .NOT

ANY. and .NOT ALL. quantifiers which performed complementary tests.

TI-ASC NX Fortran [149, 154] was a vector Fortran developed for the Texas
Instruments Advanced Scientific Computer a parallel pipelined vector processor.
This language was introduced around 1973. The NX compiler was one of the first
vectorizing compilers, capable of converting standard Fortran 66 code into vector
machine code. To make it easier to make use of the TI-ASC’s capabilities, NX Fortran

also included some array processing features.

Vectors and arrays were apparently first-class objects in NX Fortran which could
be referenced in expressions and assignments by simply using their names. No special
indices or loop constructs were necessary to invoke parallel operation on these objects.
This was essentially a notational improvement over previous versions of FORTRAN
which brought them closer to GLYPNIR or APL.

Elementwise array assignments could be performed as long as the right-hand side
of the assignment conformed to the shape and size of the object on the left-hand side.

Scalars on the right-hand side were promoted to a conforming shape via replication.
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A set of “array generating intrinsics” allowed “the generation of an array cross
section from other array cross sections by use of vector instructions....” [149] Various
reduction intrinsics were also available which generated an aggregate scalar value from

a vector or array argument.

Other features allowed access to subsections of multi-dimensional objects. A
SUBARRAY statement allowed the dynamic aliasing of an array subsection to another
array of the same rank. This allowed multiple operations to be performed on the sub-
section without requiring the subsection to be specified for each one. Cross-sections
of an array could be specified using an asterisk wildcard index. This indicated the full
range of possible values for that index from one to the object’s length in that dimen-
sion. Choosing a particular index value for only one dimension caused a cross-section
of rank n — 1 to be selected from an object of rank n. A negated asterisk could be

used to specify the full range of values from the object’s length down to one.

From the perspective of designing a model for vector-based SWAR processing, the
most significant contribution of NX Fortran was probably its use of first-class vector
objects. Vectorization is used primarily when the source is based on a scalar pro-
gramming model. Cross-sections are trivial unless the object is a multi-dimensional
array — the cross-section of a vector is a single element. Thus, most of NX Fortran’s

features are better suited to non-SWAR programming models.

Vector LRLTRAN [172, 154] was developed, also around 1973, at the Lawrence
Livermore Labs. It was intended to allow programmers to make use of the vector
capabilities of the CDC STAR-100 vector processor by extending the LRLTRAN
version of Fortran with vector features. Vector LRLTRAN was also used to code
programs for the TI-ASC, ILLIAC 1V, and CDC 7600 before the STAR system was

delivered.

The language supported single-strided (i.e. contiguously allocated), one-dimen-
sional vectors as first-class objects. These vectors could consist of REAL, INTEGER, or
BIT data. Vector declarations, assignments, expressions, subscripting, and functions

were included to support these objects.
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Vector LRLTRAN allowed vector objects to be declared in a manner similar to a
Fortran DIMENSION statement. Vectors differed from arrays in that they were first-
class objects and thus could be operated on as a single object. Related to each vector
was a “descriptor”. This was essentially an index into a table containing the memory

address of the first element and the number of elements in each vector.

If the vector was declared with a scalar dimension, it was allocated statically and
assigned a new descriptor which could not be changed during execution. If the vector
was declared using a descriptor, but no dimension, the information in the descriptor
was used to allocate the vector. If both were given in the vector declaration, then
the dimension was assigned to the descriptor and the vector was allocated using
this information. In each of the last two cases, the descriptor was available to the
programmer during execution; thus, the vector’s size and location were dynamically

alterable.

LRLTRAN’s scalar operators were extended to perform in elementwise fashion on
vector operands including sparse vectors. Pure vector and mixed expressions could be
written, with promotion and vector extension performed as necessary. If the size of
the vector operands did not match, the shorter vector was extended with an identity

value for the applied operation.

Available operations included the standard Fortran arithmetic, Boolean, rela-
tional, and logical operators. Location and mode (type) operators, and a set of
“STAR-specific” vector operators were also included. Arithmetic operations on vec-
tors were parallelized and had vector results. Boolean and logical operations could
only be applied to bit vectors and produced a bit vector as a result. Relational
operations could be applied to any type of vector, but produced a bit vector as a

result.

Assignments could also be performed on vector objects using the same syntax as
scalar assignments. When assigning a scalar value to a vector, the scalar was repli-

cated to conform to the vector’s size. Vector to vector assignments were performed
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elementwise to fill the result vector. If the result was longer than the right-hand side

vector value, then the remaining elements of the result were undefined.

The language also allowed subvectors to be defined using “dynamic equivalencing”
in which a range of vector elements could be assigned an alias and operated on as a

single entity. This was similar to vector assignment, but did not create a new object.

Vectors could also be used as function arguments and return values. Although the
length of the returned vector had to be specified upon declaration of a user-defined
function, this size could be a run-time value. When called, the calling routine was

responsible for evaluating the size of the return value and allocating space for it.

Vectors and parenthesized vector expressions could be indexed using several dif-
ferent methods. These allowed a single element, a range of elements, or any set of
elements to be selected for use in expressions. Scalars could be used as with arrays
to specify a single element. Non-bit vector expressions could be used as an index
vector which listed the elements to be selected. This allowed arbitrary permutations
of a vector to be generated. Bit vectors could also be used as indices and acted like a
control vector, indicating whether or not each element would be used in the current

operation.

Semicolon-separated offsets could be used as an index. These specified the number
of elements to dismiss at either end of the vector. The result was the remaining
elements from the middle of the vector. Either offset could be omitted and defaulted

to zero.

Colon-separated limits also could be used as an index. These specified the first
and last elements to include in the result. Either limit could be omitted. The lower
limit defaulted to zero, while the upper defaulted to the length of the vector minus
one.

The STAR-specific operators were .LGTH., .VEC., .DES., .CTRL., ’, :, and ;.
These were used to obtain information about a vector, manipulate it, or select sub-
sections of it. The colon and semicolon index operators were just described. The

others can be described briefly.
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The length of a vector could be obtained using the unary .LGTH. operator. The
.VEC. and .DES. operators were used to manipulate vector descriptors. Conceptually,
.VEC. converted its scalar argument to a vector descriptor which could be used in
expressions and assignments. The .DES. operator returned the descriptor of its vector
or vector expression argument. This allowed the programmer to obtain, copy, or

modify a vector’s descriptor.

Similar to ILLIAC IV FORTRAN, control vectors were bit vectors used to im-
plement conditional execution by indicating which elemental results of a vector ex-
pression were to be stored. These were used with the binary .CTRL. operator which
applied the control vector, or an expression which evaluated to one, which preceded
it to the vector expression which followed it. Only one .CTRL. operator could be used

per statement and it was not allowed to be enclosed in parentheses.

A representation for sparse vectors was also included in the language. These were
stored as a pair of vectors. The “value vector” contained the non-zero element values,
while the “order vector” stored a bit vector indicated which elements contained these
non-zero values. Sparse vectors were denoted as an apostrophe-separated value/order

vector pair.

A set of inlineable intrinsic vector functions were also included in LRLTRAN. One
set of these performed arithmetic reductions on their vector arguments. Q8SUM()
and Q8PROD() performed, respectively, reduce-add and reduce-multiply operations
on their vector arguments. Each of these could also take a control vector as a sec-
ond argument. This specified a subset of the vector’s elements to be used in the

calculation.

A second set of intrinsics could be used either as functions, which returned a
result, or subroutines, which required pre-allocated storage for the result to be made
available to them. This second set of intrinsics included Q8MASK, Q8MERG, Q8CMPRS,
and Q8XPND. The first two of these combined two data vectors using a control vector
to select which elements from each data vector would be selected. Q8MASK selected one

of the two data elements whose index corresponded with that of the result element,
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while Q8MERG treated the data vectors as two stacks and used the control vector to
choose from which the next sequential result element would be taken. Q8CMPRS was
used to compress a vector into sparse form, while Q8XPND was used to expand a sparse
vector back to normal form.

Vector LRLTRAN had a large number of vector-handling features, some of which
are beyond our current needs or the capabilities of current SWAR, architectures. How-
ever, a number of them can be incorporated into a SWAR model or used to implement
a SWAR-based programming language.

VECTRAN [155, 154] was introduced by International Business Machines (IBM)
Corporation in 1978 *. Triplet notation, identify statements, and where constructs
were introduced by this language and/or BSP Fortran which was introduced about
the same time by the Burroughs Corporation [156, 154].

Triplet notation allowed the programmer to reference sections of arrays using a
concise notation. A triplet was a comma-separated list consisting of the indices of the
first and last elements along a particular dimension to be accessed and an optional
stride to be used between successive elements. This notation allowed the programmer
to describe regular patterns of access without using looping constructs.

Each part of the triplet had a well-chosen default value which made commonly-
accessed subsections trivial to describe. If the first index was omitted from a triplet,
the first element in the array was used. Similarly, if the last index was omitted, the
last element was used. An omitted stride was set to one.

Triplet and standard index notations could be mixed as long as corresponding
dimensions had the same number of elements. When used as an array index, triplet
notation allowed the programmer to express regular patterns of access without using
looping constructs. However, triplet notation did not allow conditional selection as
did ILLIAC TV FORTRAN’s control vectors.

The where construct allowed conditional assignment in a manner that was more

flexible than control vectors. A conditional vector expression was evaluated and

1 [154] reports this date as 1973, but the cited work is from 1978.
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used to decide which elements would be operated on. In a sense, the where created
the equivalent of a control vector to be applied to its body. This body could only
contain array assignment statements which conformed to the shape of the conditional
expression. An otherwise statement was also included which operated on the set of

elements where the condition did not hold.

The identify statement was used to allow the expression of operations that
accessed memory in regular strides, but were denoted by array indices with irregular
strides. For example, the diagonal of an array is typically stored with a regular stride
of n + 1 for an array with dimensions of length n, but the correct set of indices
cannot be described using triplet notation. The identify statement applied aliasing
to create a smaller-dimensional object with correctly strided element indices. This

object could then be used in a separate assignment statement.

VECTRAN handled parallelism somewhat more elegantly than earlier parallel
versions of FORTRAN. Subsection selection and conditional execution were denoted
using concise notations and language constructs. These features would be copied by

several later languages.

DAP Fortran [211] was a variant of Fortran for programming the ICL DAP. Tt
was influenced by CFD, but extended for use with the DAP’s bit-serial architecture.

It was developed in the late 1970s.

Two parallelizable data structures were defined which were clearly related to the
geometry of the DAP’s PE array: Two-dimensional arrays equal to the size of the PE
array, and one-dimensional vectors equal to the size of one edge of the array. Higher-
degree objects could be defined as arrays of lower-level objects. Thus, a programmer

could declare an object that was a collection of arrays or vectors.

DAP Fortran, like Vector LRLTRAN, allowed expressions of mixed dimensions. In
these expressions, lower-dimensional objects were replicated and promoted to match
the dimension of higher-dimensional objects. This allowed the programmer to easily

mix vector and array code.
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A set of intrinsic functions were included which performed restructuring operations
such as vector and array shifts and rotates, element and subarray selection, reductions
such as summations and ANY and ALL tests, and a trinary merge which combined
two objects based on the elemental values of a third. Masked assignments, which

stored elements based on an element-wise conditional, were also available.

Because DAP Fortran was so closely tied to the DAP architecture, it is not a
good candidate for a portable SWAR language. However, some of the ideas, such as
defining high-level objects as collections of lower-level ones and dimensional promotion

via replication, may be useful for a SWAR programming language.

Fortran 90 [157, 212] is an extension of the Fortran 77 language which allows
the processing of vectors and multi-dimensional arrays. An interim version, Fortran
8X, was standardized during the late 1980s [213].

Vectors and arrays are treated as first-class objects in Fortran 90; thus, operations
on them can be expressed with a simple syntax. A large number of operations and
functions can be performed on these objects including elemental operations, condi-
tional tests, array sectioning operations, reductions, and various intrinsic functions.

As with earlier languages, elemental operations behave as though they are applied
independently across the elements of their array operands and are often parallelized.
Their operands are required to be conformable in shape and size. As with NX Fortran,
scalar objects were considered to be conformable to any shape and size, thus making
it possible to mix scalars with vectors or arrays within expressions.

Fortran 90 reuses the VECTRAN/BSP Fortran where construct with some mod-
ifications. As in VECTRAN, WHERE operates in parallel on each of the elements of
an object for which a specified condition holds. It is equivalent to an IF statement
enclosed by a DO statement, and can therefore be thought of as a parallelized IF. An
ELSEWHERE statement replaces the VECTRAN otherwise, and operates on the set
of elements where the condition does not hold. It is analogous to a parallel ELSE.

Statements in the WHERE /ELSEWHERE blocks are restricted to array assignments and

were required to conform to the shape of the tested object. The WHERE is typically
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used to avoid singular cases such as dividing by a zero-valued element. To minimize

the overhead of tracking the set of enabled PEs, WHEREs cannot be nested.

Fortran 90 also reuses VECTRAN'’s triplet notation for referencing sections of
arrays, and allows vector and arrays to be indexed using vector subscripts. These are
used to select elements in an independent and variable manner. This allows the pro-
grammer to specify complex data movement and rearrangement such as replications,

permutations, and gathers and scatters of the elements of a sparse array.

These notational capabilities can be used on either side of an assignment statement
to reorganize data, and are typically mapped to interprocessor communications on
the hardware. By assigning one array section to another, the data is effectively moved
between PEs. Section assignments specified by triplet have regular communications
patterns, while those specified by vector subscripting are equivalent to generalized
permutations. The latter is a powerful feature that is only reasonable to use on
architectures with generalized interconnection networks such as the routers found on

the Connection Machines and MasPar systems.

Fortran 90 also has a large number of intrinsics which perform various array opera-
tions. These intrinsics include construction, transposition, multiplication, reductions,
geometric location of elements with specific properties, and structure inquiries. A con-
ditional MASK can be applied to some of these to limit the operation to a subset of

elements.

Fortran 90’s reductions include SUM, PRODUCT, MAXVAL, MINVAL, COUNT,
ANY, and ALL. These can be applied across the rows of an array in any dimension to
form an array of one less dimension, forming a scalar in the limiting case. Conversely,
data can also be spread (replicated) along a new axis to expand an array by one

dimension.

A limited amount of operator and intrinsic function overloading is possible, as
are user-defined operators. These features let the programmer define short-hand

notations for specific tasks, but can also make the source less understandable.
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Fortran 90 is a large and complex language which has evolved to handle array
processing on SIMD and MIMD architectures. However, SWAR architectures are not
particularly well suited to multi-dimensional array processing. Thus, Fortran 90 is
more complex than is necessary for a SWAR processing model.

A number of parallel variations on Fortran were developed concurrently with the
Fortran 90 standard. These languages have features which are similar to those of For-
tran 90. Often these were intended to match the (then proposed) standard. Because
of their concurrent development, and because several dialects of C were developed at
about the same time, it is difficult to determine which of these languages implemented
which features first. We will not be concerned with this, but will introduce some of
these languages and point out salient features regardless of their origins.

Fortran-Plus [194] was a high-level language for programming the AMT DAP.
It had features that were later included in the then proposed Fortran 8X language.
These included extensions and intrinsic routines intended to allow the programmer

to easily take advantage of data parallelism.

As with DAP Fortran, parallel data types were limited to vectors and two-dimen-
sional matrices. These were first-class objects, but were limited to the size of the
DAP array. Later versions of the language were expected to allow arbitrarily-sized
objects.

Fortran-Plus had selection operators which could conditionally operate on sections
of a vector or matrix. This was similar to the proposed Fortran 8X standard. It also
had a set of aggregate functions such as reductions which operated on both vectors
and matrices.

CM Fortran [160, 131] was essentially Fortran 77 with Fortran 90 and Con-
nection Machine-specific array extensions for specifying potential data parallelism.
These extensions were automatically parallelized by the compiler for execution on
the parallel unit of the Connection Machine.

Generally, CM Fortran source code could be divided into Fortran 77 code and

parallel-extended code. Fortran 77 operations were executed on the front end system
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and applied to scalar data and arrays whose elements were only accessed individually.
These data objects were stored on the front end. All other arrays were stored on the
PE array, and were operated on in parallel by Fortran 90 and CM Fortran-specific

operations.

CM Fortran allowed vector subscripting which was only reasonable to use because
of the presence of the CM’s router interconnect. The Fortran 90 WHERE construct
was supported to allow parallel conditional execution. Also, a few CM-specific exten-
sions were supported by the language including a FORALL [161] statement (which had
been dropped from the Fortran 8X proposal) and various advanced array processing

intrinsics.

The FORALL construct was similar to a FOR loop in which the iterations were
known to be parallelizable. This allowed the programmer to explicitly indicate array
assignments which could be parallelized and made it easier for the compiler to find and
exploit this code. To ensure the independence of its iterations, the body of a FORALL

loop was restricted to containing “...a single array assignment statement.” [214]

Array elements to be operated on could be selected by value or position within
the array. The FORALL was typically used for array initialization and elemental as-
signment, but it was also useful for performing various data movements such as scans

and generalized permutations.

From the programmer’s point of view, the elemental operations denoted by a
FORALL executed simultaneously, although this was not necessarily the case. This
guaranteed that elemental assignments which would overwrite a value used in an-
other assignment would not destroy the old value before it was used. Thus, the
programmer did not have to take extra steps to protect values from the execution of

other iterations.

The FORALL was the equivalent of the VECTRAN identify, except that it avoided
the aliasing step by combining the separate aliasing and assignment statements into

a single construct. Syntactically, it was similar to IVTRAN’s DO FOR ALL construct.
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As in Fortran 90, intrinsic functions were modified to work in parallel on the ele-
ments of the object. Also, many of the Fortran 90 array intrinsics were implemented
in CM Fortran including those for construction, location, manipulation, inquiry, and
multiplication. Reduction intrinsics were also supported, but were extended by al-
lowing them to be used with a FORALL to specify scans (parallel prefix operations) to

be performed on the PE array.

A number of other intrinsics beyond those in Fortran 90 were available for per-
forming a variety of transformations on vectors and arrays. These included several
inquiry and location intrinsics, a DTAGONAL constructor which placed a vector in the
diagonal of a matrix filled with an optionally specified value, and a REPLICATE which

extended an array along one of its dimensions.

Compiler directives which controlled the layout of arrays in the memory of the
PE array were also available. These allowed the programmer to attempt to optimize
the placement of the data on the CM. A directive to allow the programmer to specify

where common data should be stored was also provided.

MPF [170, 171] (MasPar Fortran) was a subset of Fortran 77 which included
some of the array-handling extensions of Fortran 8X. It was intended to allow the
programmer to write code in a familiar manner by hiding the details of the Mas-
Par architecture. This made the compiler responsible for finding and automatically

parallelizing operations on vector and array objects.

MPF implemented a subset of the proposed Fortran 8X standard. It treated vec-
tors and arrays as first-class objects. It allowed array sections to be referenced and op-
erated on using triplet notation or vector subscripts. It included the WHERE /ELSEWHERE
construct for describing parallel conditionals. It also supported a subset of Fortran
8X’s array intrinsics. Layout directives which allowed the programmer to specify how
data was to be stored on the MasPar’s DPU were also included.

Fortran D [215] was a post-Fortran 90 attempt to develop a portable, parallel
version of Fortran that could replace the variety of dialects which were around at

the time. These had been developed for various processing models and architectures
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including SIMD, MIMD, and vector systems. It was believed that they tended to
expose the underlying model, and thus programs written in them were often hard to

port to systems based on other models.

The important aspect of Fortran D was decomposition: separating a problem into
a problem mapping and a machine mapping. The problem mapping was an expression
of the inherent, target-independent parallelism of the problem. The machine mapping
was an expression of how the problem was to be mapped onto the specific target ar-
chitecture. Thus, the problem was decomposed into a portable, machine-independent

part and a non-portable, machine-dependent part.

Fortran D operates at a higher level than this research is concerned with. The
purpose of the current work is to develop a new SWAR processing model and related
programming methods, while Fortran D was developed to promote the portability of

Fortran code between multiple processing models.

High Performance Fortran [158] (HPF) is a later dialect of Fortran 90 with
extensions intended to better support data-parallel processing, primarily on MIMD

and SIMD computers with non-uniform memory access costs.

New directives, implemented as Fortran 90 comments, allow the programmer
to suggest parallelization strategies or to make assertions about the program. An
INDEPENDENT directive indicates that statements in a DO loop can be parallelized. An
ALIGN directive indicates that an object should be co-located with another object.
Also, DISTRIBUTE and REDISTRIBUTE directives allow the programmer to suggest

data layouts.

Other additions include support for extrinsic functions which allow the program-
mer to tailor algorithms to the target system. Also, certain of Fortran 90’s capabilities

have been eliminated to remove associated problems.

As with Fortran D, HPF can be rejected for our purposes. HPF is basically
Fortran 90 with a CM Fortran-style FORALL and some mark-up. The FORALL should

not be necessary in a well-designed programming language compiled with a smart
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vectorizing compiler, and the work of the mark-up directives should be unnecessary

in a SWAR environment and should probably be handled in some other manner.

Various vectorizing compilers for Fortran [154] included Cray CFT, Fujitsu
Fortran 77, IBM VS Fortran, Alliant FX/8 Fortran and NEC SX Fortran. These
were developed between about 1979 and 1987. As automatic vectorizors for standard
Fortran, they did not add much in the way of interesting language constructs or
programming concepts for parallel processing. Their purpose was to avoid doing this
so that the programmer could reuse sequential Fortran code without change or, at
most, with the addition of a few directives to provide the compiler with hints about

how to vectorize parts of the code.

PASCAL-based Languages

PASCAL [216] is an ALGOL-based language that was designed as a portable
teaching tool sometime around 1971. This was done by compiling the source to a
simplified, portable intermediate language called P-code [217, 218], then using an
interpreter to execute this code on the target machine. This method was very suc-
cessful. In fact, the highly portable JAVA [219] uses a remarkably similar method to

obtain its portability.

Because of its portability, PASCAL became widely used and well-known, and has
influenced a number of later languages. This ubiquity makes it a reasonable choice

as a basis for parallel programming languages. One parallel language that was based

on PASCAL was Actus.

Actus [153] was a SIMD-parallel language developed just after NX Fortran and
Vector LRLTRAN and at about the same time as VECTRAN and BSP Fortran.
It was a structured language intended to provide a target-independent programming
model for vector and array processors which allowed for the direct, natural expression
of data parallelism. Actus was originally targeted to the ILLTAC IV using a PASCAL

P-code compiler.
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In Actus, the maximum parallelism width that could be applied to an array or
vector was specified upon declaration of the object. This was done using a dimension
notation in which the starting and ending indices along one dimension of the object
were separated with a colon instead of a pair of periods. This indicated both the

maximum “extent of parallelism” and the dimension across which it should be applied.

For example, the declaration var a: array[1:4, 1..5] of integer; would
declare a to be a two-dimensional array and indicate that it should be arranged
in memory so that accesses across its first dimension could occur in parallel. The
maximum extent of parallelism for this array would be four (the length of its first
dimension).

The extent of parallelism to be applied for a particular access could also be ex-
plicitly specified when that access occurred. This allowed subvectors and subarrays
to be described and operated on in a parallel fashion. Suppose that the array a above
was accessed as a[2:3, 1] in an expression. This would indicate that the elements
al2, 1] and a[3, 1] should be accessed in parallel. The extent of parallelism thus

controlled the enabling of PEs which held selected elements.

Actus was one of the first languages to allow vector subscripting. It also allowed
named “parallel constants” which were a set of strided values that were defined using
a notation similar to that of VECTRAN triplets. These could be used as array indices
or as initial values for vectors. They had the form: const id = start: (stride) finish,

where the stride was optional and defaulted to one.

Actus introduced a general form of index sets which were similar to parallel con-
stants. These allowed the programmer to specify a set of indices that would be
involved in an operation. For example, the code index ind = 1:10, 11:(2)99;
created an index set containing all values from 1 to 10 and the odd values from 11
to 99. The identifier ind could then be used to indicate the indices involved in a

particular operation.

These sets could be operated on using set operators to obtain their union, in-

tersection, difference, or complements. Vector shift and rotate operations could also
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be applied to index sets or to explicit extents of parallelism. For example, the code
segments al[1:10 shift 2]; and index idx=1:10 shift 2; alidx]; each repre-
sented the first ten elements of the vector a shifted by two positions.

To allow an extent of parallelism to be reused within a section of code without
forcing the programmer to repeatedly supply the same information, Actus had a
within construct which defined an extent of parallelism to be used throughout its
body. Within the body, the current extent of parallelism was represented by a pound
sign (#).

Like GLYPNIR, Actus had parallelized if, while, and for constructs and any and
all tests that were equivalent to its SOME and EVERY tests. It also had a parallelized

case statement which embodied multiple jump targets given a single conditional test.

Actus also allowed vectors to be passed to functions and procedures as arguments

and used as return values from functions.

While Actus allowed virtualized vector and array dimensions (i.e. dimensions that
did not match the underlying architecture), it only allowed standard data precisions.
As a language which allowed and promoted the use of multidimensional arrays, it
is not a good match for current SWAR architectures which are all one-dimensional.
Under the assumption that future SWAR architectures will be multi-dimensional;
that is, something more akin to the GAPP or BLITZEN processors, they may benefit

from an Actus-like programming model.

C-based Languages

The C programming language was developed in the mid 1970s by Dennis Ritchie
and others at AT&T Bell Laboratories [220, 221]. It was co-developed with the UNIX
operating system and was its primary source language.

C is a well-defined language that is useful for writing portable applications code.
Its real strength, however, lies in its low-level nature. This allows the programmer a

high degree of flexibility and access to the target system.
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Because of the wide-spread use of UNIX on high-performance, multi-user systems,
most of these systems have a working C compiler available to their programmers.
Because of this ubiquity and its power, C has become a favorite of systems-level
programmers, and the basis for several parallel programming languages. Among
these are PASM Parallel-C, C*, and MPL. The language developed as part of this
research, SWARC, is also based on C.

PASM Parallel-C [222] was developed for the dynamically reconfigurable PASM.
It allowed any data type to be parallelized, and treated objects of these types as first-

class entities.

Conditional tests such as if statements were modified for use with parallel ex-

pressions, and a selector type was added which allowed subarrays to be specified.

Assignment of parallel data objects used a syntax similar to that of C and oper-
ated in an element-wise fashion. Mixed-sized parallel assignments were allowed, but
were executed only for corresponding elements. Parallel to scalar assignments were
not allowed, so the the programmer was required to convert the parallel data to a
single value. This was done by using the value of a single selected element from the
parallel object. No reduction operations or reduction-assignments were available in

the language.
Because PASM could be partitioned into sections which used SIMD and MIMD

modes simultaneously, the Parallel-C language was primarily geared toward allowing

this type of usage. Later languages were targeted to more SWAR-like architectures.

C* (pronounced C-star) was an extension of the C language intended to help the
programmer exploit data parallelism on the SIMD Connection Machine. There were
actually two major versions of C*. One was introduced in the mid-1980s and was
modified slightly soon afterward. A second was introduced around 1990 which was
significantly different from the earlier versions. It is instructive to look at each of

these.

The original version of C* [166] was developed for use on the CM-1. It used two

storage class identifiers to explicitly indicate parallel versus scalar data, and implicitly
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indicate where in the system a data object would reside. mono objects were scalars
that were placed in the memory of the host computer and were typically operated
on there. poly objects were placed in the memories of the processors in the parallel

array, and were operated on in parallel.

PEs were represented in the language via the processor type. The programmer
could declare an array of processors to represent a subset of the available PEs
where a parallel data object would reside. By declaring different processor objects,

the programmer could create different sets of PEs to hold different data sets.

C* had a selection statement modifier which allowed the programmer to choose
an “active set” of PEs to be enabled during the execution of the modified statement.
Upon completion of this statement, the PEs were returned to their previous enable

state.

The format of this selection statement was [selector].statement. The selector
could be a processor variable, an array of processors, an indexed value representing
a consecutive series of processors, or a list of any of the above. This allowed any
subset of processors to be chosen at any time to execute a statement, thus providing

a great deal of flexibility.

The standard C control constructs retained their C syntax, but were modified
semantically to match the SIMD processing model using active sets. These were
split and recombined as necessary to handle conditional execution. The bodies of
if, else, and while statements were only executed if, and while, the test condition
held for at least one active PE. This was later called the “rule of local support”.
Nested constructs were allowed. These recursively divided the set of active PEs into
smaller sets which recombined as each level of nesting completed. Once a construct

was completed, the active set before it was entered was restored.

The language supported the full set of standard C operators including its various
assignment operators. New operators were also included to represent the minimum
(<>) and maximum (><) binary operations. These operators provided a concise

means of denoting these often used operations, and could represent scalar or parallel
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operations depending on the types of their operands. These operations could also be

combined with assignment to form comparison-assignment operators.

Purely mono expressions were executed as in C, but poly and mixed expressions
required the semantics of the standard C operators to be modified for use with the
SIMD model. Both poly and mixed expressions were required to follow the “as-if-
serial” rule. This stated that the result was determined as if the parallel parts had

been executed in some undetermined serial order.

In mixed expressions, mono values were promoted to polys as needed via replica-
tion. Assignment of a mono value to a poly object implied replication of the value to
each of the members of the active set. Assignment of a poly to a mono implied some

form of reduction operation to form the single assigned value.

The standard C assignment operators, and those formed from the minimum and
maximum operators, could be used for both assignment and unary reduction. When
used as assignments, they acted as described above. When used as unary reductions,

the result was a mono value which could be used in an expression.

Under the as-if-serial rule, reductions were performed as if the elemental as-
signments occurred in some unspecified serial order. This ensured that reduction-
assignments to a mono object resulted in the correct value being stored without the

loss of any parts of the reduction.

C* had a this keyword which could be used in poly expressions to represent the
currently executing processor. It could be dereferenced to access data on the local
processor; but more importantly, it could also be indexed to access data on another

processor, thus allowing a form of interprocessor communication.

Daniel Hillis” dissertation [128] describes the theory behind the use of the Con-
nection Machine. It was based on mapping data onto the PE array in any of several
representations called zectors. Xectors were domain/range pairings of the indexed
PEs with values determined by applying a function to these indices. The original C*

language was modified to incorporate the domain concept soon after its introduction.
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The modified C* language, described in [167] and [168], included a C++ class-
like construct called a domain. Each instance of a domain represented data residing
on a single PE. An array of some domain represented a set of data (i.e. a xector)
which was distributed with one element per virtual processor. Each processor on
which an instance resided was said to belong to the domain. Using this concept, the
PEs could be divided into groups for performing different tasks on different sets of

data.

Similar to classes in an object-oriented language, domains consisted of a data
structure and a set of functions which could access it. The data structure described
the xector data and its layout in the memory of each of the PEs on which it resided.

These PEs were said to “belong” to the domain.

A domain’s data elements were treated as first-class objects. A references to any
of them referred to the entire set of same-named elements across all of the instances
of the domain. This allowed the programmer to specify an entire parallel data object
concisely.

Parallel execution was performed by calling the member functions of the domain
related to the xector to be operated on. These functions were executed simultaneously
across all the PEs belonging to the domain. Thus, domains were used to specify the
active set of PEs as used in the original version of the language. A domain’s member
functions could only be called on a particular PE if that PE belonged to the domain.
This ensured that the processor had the correct data layout for the called function.

For this version of C*, the meanings of mono and poly were modified slightly to
work with domains. mono domain members were scalars stored on the front-end, while
poly members were allocated across the PEs belonging to the domain.

Other changes included the replacement of the minimum and maximum operators
with (<?) and (>7), respectively, and the addition of a (,=) assignment operator
which indicated that a single, arbitrary element should be chosen as the result.

The use of the selection statement was modified to activate the processors be-

longing to a particular domain for a single statement (which could be a block). This



- 324 -

was done by modifying the format of a selection to: [domain tag].statement. The
effect of this change was to make selection less flexible, thus making it harder for the

programmer to violate the semantics of the language’s control structures.

Selection deactivated the current active domain before selecting the new one,
and reactivated it once the statement completed. Indexing could still be done with
selection, and the this keyword had the same meaning, except that the index referred
to a PE in the active domain. Selection could also be used to initiate parallel execution

from within serial code.

The programmer could still do something along the lines of the original C*’s
selection statement using a dot operator. This was interpreted by evaluating the
left-hand side as an lvalue which specified a set of PEs. These PEs would evaluate
the right-hand side based on the type of the left-hand side. If the right-hand side
evaluated to a value, it was used as the value of the dot operation. In this sense, C*’s

selection statement was an extension of its dot operator.

Function overloading was available and allowed multiple variations of same-named
functions to be written for various combinations of mono and poly parameter and
return types. Resolution was done using an algorithm which tried to find the best
match between the argument and return types of the call and the parameter and
return types of the available functions. C* also had a typeof keyword which was

used to allow function parameters to be polymorphous.

This version of C* allowed interprocessor communication to be denoted concisely.
As in the original C*, the this keyword could be used with the dot operator to
denote interprocessor communication between a PE and its neighbors. For example,
x=(this+1)->x; sets the local PE’s value of x to that of its nearest neighbor’s x. Sim-
ilarly, C* pointers could be used to denote communications between the processors in
a domain. This was accomplished by simply pointing at an object in another proces-
sor’'s memory. This notation supported permutations, multiple parallel broadcasts,

and multiple parallel reductions.
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Around 1990, after about three years of use in this second form, the language
was again redesigned [169, 131]. This second major version of C* was somewhat

cleaner than the previous two, and was based on the concept of data “shapes”.

Shapes were used to specify multi-dimensional spaces on a virtual PE array. Once
specified, these shapes could be associated with data objects as part of their declara-
tion. The syntax for a shape specification was similar to that of a multi-dimensional
array declaration, with the size of each dimension specified by the number of positions
along its axis. This allowed a shape to be described concisely and easily applied to

multiple data objects.

Shaped objects could be simple variables, arrays, structs, or any other C type
construct. Pointers to shapes were also available, and shapes could be passed between
functions. Thus, the new C* provided a significant level of flexibility in dealing with

objects of different sizes and dimensions.

One aspect of this version of C* was the concept of a “current shape”. This was
specified using a with statement. In general, objects had to be of the current shape
in order to be operated on in parallel. The addition of with allowed multiple layouts
to be specified and used within a single program. This allowed parallel data objects

to be independent of not only the architecture, but also of other parallel objects.

Parallelism was expressed in terms of the positions in a data shape that were to
be acted on. A where statement, similar to that of VECTRAN, allowed the set of
active data positions to be conditionally determined. This was referred to as “setting
the context”. The standard C constructs were modified to work with the where
statement to provide conditional execution. These included the else statement,

which was modified to activate the set of positions opposite to that of the where.

An everywhere construct was also added to allow all positions, active or not, to
be enabled for the execution of an embodied statement. Nested wheres operated as
expected, possibly making the set of active positions smaller as each was entered, and

returning to the previous set as each exited.
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Functions could take parallel objects as arguments and also return them. They
could be written with the shape of their parameters explicitly specified or left un-
specified, in which case the current shape would be used during the call. As with
earlier versions of C*, overloading could be used to specify multiple functions with

the same name but various parameter shapes.

C*’s expression syntax was made concise through the use of operator overloading.
Overloading allowed the standard C operators to be used on shaped objects in a first-
class manner. Operations on these objects could then by parallelized and modified
with replications or reductions as necessary. Thus, C* shapes were similar to object-

oriented classes with overloaded operators.

The this keyword was replaced by the pcoord intrinsic function which returned
an identifier for the current data element along a specified axis. This could be used
in a manner similar to this, allowing regular communication along one axis of the

data structure.

“Left indexing” was used with assignments to access data in irregular parallel pat-
terns. Indexing a parallel object on the right-hand side was equivalent to performing
a “get” operation. In this case, the operation assigned the instance of the parallel
object on the indexed virtual PE to the left-hand side. Indexing a parallel object
on the left-hand side was equivalent to performing a “send” operation. In this case,
the operation assigned the value on the right-hand side to the instance of the parallel
object on the virtual PE indexed on the left. These operations allowed generalized
communication to be described using a syntax similar to that of element access and
assignment.

This version of C* also differed from the previous versions by the inclusion of a
bool Boolean type. This type closely matched the bitwise architecture of the parallel
array, and allowed the programmer to make use of this aspect of the system more
easily than the previous versions of C* allowed.

Obviously, C* was changed significantly over time as experience was gained with

its use. The original version focused on the PEs as the parallel entities whose activity
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needed to be described and controlled. This was replaced by the second version, which
focused more on describing the data sets to be parallelized. This version was more
complex in its handling of selection and domains, but more closely matched Hillis’
thesis. Both of these exposed the virtual processor array via selection, a mechansim

which was promoted for communications purposes.

These versions of C* can be rejected as the basis for a SWAR model, just as they
were ultimately rejected by Thinking Machines. In each case, the language was a
mix of a data-oriented programming model and one with explicit control over PE
selection and inter-virtual PE communications. This made each of these languages
more complex than necessary. While these versions of C* could be thought of as
failures, certain of their aspects were very well-designed and deserve to be remembered

by anyone trying to design a new parallel programming model.

The last version of C* was, semantically, the cleanest of the three. Processor
selection was limited to the conditional where and the unconditional everywhere
constructs. Few new constructs were added beyond those of the C language, and the
semantics of the C operators were extended to handle parallelism through operator
overloading. This version of the language also allowed the programmer to focus on
describing the data sets, and the operations to be performed on them, rather than on

the control of parallel execution.

This last version of C* might be a good choice for the basis of a SWAR program-
ming model. However, “shapes” are more useful for multi-dimensional data structures
than for the vectors which more closely fit the SWAR model. Thus, a SWAR model
should probably avoid C*-like shapes. Also, special syntax and intrinsic functions are
probably unnecessary for communications in a SWAR environment simple element

accesses and assignments should suffice.

A generic fine-grained parallel C [178] was developed by scientists at NASA’s
Goddard Space Flight Center in the late 1980s. It was intended to be a common

interface language to multiple types of architectures including serial processors [178].
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At the time [178] was published, the language was only partially implemented for the

Apple Macintosh II — a serial processor.

This language extended C with a parallel storage class which indicated that
the declared object was multi-valued. Conceptually, parallel objects were stored in a
parallel memory and serial objects stored in a separate serial memory. When mapped

to a target architecture, these memories may or may not have been separate.

As with previous parallel languages, the standard C operators were extended to
operate on parallel objects. Arithmetic operators were extended to perform in an
elementwise manner. Bit shifts were implemented such that shifting by a parallel
value resulted in each element being shifted by a (possibly) different number of bits.
Logical operators were implemented using a parallel if-else structure, apparently to
maintain the short-circuit semantics of C’s logical operators. Mixed expressions were

allowed, with scalar values replicated to match the dimensions of parallel objects.

Mixed assignments were also allowed. Assignment of a parallel value to a scalar
object resulted in a reduce-OR of the parallel elements, while scalar to parallel as-
signments resulted in replication of the scalar. C’s assignment operators were also

parallelized with reduction or replication of values taking place as necessary.

The C control constructs, if, while, for, and switch were modified for use with
parallel conditionals. If the conditional was a parallel expression, each body would
be executed if the condition held for at least one element. Each case in a switch

was executed only if at least one element was directed to that case.

Parallel pointers were disallowed, but serial pointers to parallel objects were legal.
Arithmetic on these pointers could be used to denote interprocessor communication
by shifting values between elements. Thus, the language hid communication behind
its normal syntax.

This language also allowed all variables, including parallel objects, to be assigned
a bit size. This was primarily intended for use with bit-sliced target architectures,
such as the MPP, which allowed variable data lengths. It is unclear from [178] if

this feature allowed all bit sizes to be applied. To ease portability to more restrictive
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architectures, the compiler was allowed to use larger bit sizes than were specified in
the program source. Given the assertion that a general-purpose SWAR model should
support any data precision, this aspect of the language deserves further examination.

This language had several interesting features that may be of value for a SWAR-
based programming language. Unfortunately, I could find no further references to this
language, so it is probably safe to assume that it either was abandoned or evolved into
another language. The SWARC language described in this thesis has some similarities
to this language, but is more fully developed.

MPL [107, 170, 171], the MasPar Programming Language, was another SIMD
variant of C developed around 1990. Semantically, it was similar enough to C to
allow it to be compiled with a simple variation of the GNU C Compiler (GCC). MPL

was also known as the MasPar Parallel Application Language.

To allow the programmer to specify data parallel algorithms, a plural type modi-
fier was used which indicated that the object was multi-valued and distributed across
the PE array. An operation on a plural object was executed simultaneously on the
enabled PEs and resulted in another plural object. This allowed the programmer to

specify data parallel operations in a manner semantically similar to C.

A scalar data object in MPL was referred to as a single. These objects had one
value and resided on the MasPar’s ACU. Operations on single objects took place in
the ACU and resulted in single values. This allowed the programmer to specify scalar
operations simply, again using C-like semantics.

MPL also allowed mixed-mode operations and assignments, with reductions and
replications performed as necessary. As with C*, the semantics of control constructs
such as while loops and if statements were modified for proper operation under the
SIMD processing model.

MPL allowed for synchronous inter-PE communication via the addition of three
new constructs: proc, router, and xnet. These allowed non-local data to be accessed
by the PEs. They also allowed expressions to be executed where their operands

resided, with only their results passed over the interconnect. Using these constructs,
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communication occurred synchronously with all active PEs sending and receiving

data on the same instruction.

The proc[ez1] . ez2 construct allowed the programmer to specify the execution of
an expression, ez2 on a single PE chosen by another expression, ez1. In the simplest
case, this allowed the extraction of elements from plural objects.

The router[ezl] . exz2 construct was a plural operation in which the result on
each of the PEs was the result of evaluating expression ez2 on PE number ez! with
communication occurring over the three-stage router network. The expression ex1
was a plural object. This allowed independently indexed communications to be

specified.

Similarly, the xnetdir[ez1] . ez2 construct was a plural operation in which the
result on each of the PEs was the result of evaluating expression ez2 on the PE which
is ex1 steps away in direction dir with communication occurring over the Xnet. The
expression exl was a single value; thus, all PEs executed the same communications

pattern.

While the names of these constructs are taken directly from the MP-1’s major
interconnection networks, they are really more generally applicable. For example,
the PE numbering used in the router construct is linear, but these numbers may
be mapped onto an N-dimensional array where N is any non-negative integer. Also,
the xnet construct could be mapped to smaller-dimensional PE arrays by ignoring

dimensions, or to larger-dimensional ones by adding new directions.

MPL code was callable from other languages used on MasPar systems to ease
code migration to the parallel model. This allowed the programmer to incrementally
rewrite existing code to take advantage of the parallel architecture.

MPL was well-designed and semantically clean. It allowed the programmer to
express parallelism and operations such as reductions in a manner which did not
expose the properties of the underlying architecture. It also allowed communications
using language constructs that were applicable to other types of architectures. MPL

would be a good choice for the basis of a SWAR programming model, with the
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caveat that most SWAR architectures cannot easily support its highly-generalized

communications constructs.

C[ ] (C brackets) [173], developed in the early 1990s, is an extension of the ANSI
C language. It was intended to allow the programmer to write efficient code that
was portable between the SIMD architectures then available without incorporating

non-portable features.

C[ | is vector-based, treating vectors as first-class objects with a declarable fixed
stride between elements. Multidimensional arrays are allowed, and are treated as
vectors of vectors. This is an approach that may work well for allowing array-based

processing on vector-based SWAR architectures.

C[ ] was defined in a manner that ensured that pointer arithmetic has a consistent
interpretation which followed the basic intent of the then current ANSI C standard.
Accesses of vector and array elements obey an arithmetic which takes the declared
stride into account. Subarrays can be specified using either pointer arithmetic or a
notation similar to C’s array indexing.

C[ ] extends the C language’s bit fields by allowing vectors of these to be assigned
values via a gather operation on an integer vector of fixed stride. However, it appears
that this is the only first-class operation allowed on bit field vectors, and that the

language does not allow SWAR-like operations to be performed on them.

Along with the standard C operators, C*-like scalar maximum (?>) and mini-
mum (7<) operators were included in C[ ], as were operators for bitwise population
(?), leading zero count (%) and word reversal (@). Unary operators can be applied
to vectors and operate in elementwise fashion, while binary operators can operate
on vector or mixed operands. These same operations can be performed as unary
reductions using a set of “unary linear operators” which are denoted by enclosing
the corresponding C operator in a bracket pair. For example reductive addition is

denoted by the symbol [+].

Vectors could be converted in length or type via casting or on assignment, but

vector to scalar conversions were not allowed. Binary operations between vectors of
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differing lengths had undefined results. Vectors and arrays could also be passed to
functions as first-class objects and return values could be of vector type. All of the
attributes of a vector or array parameter were required to be defined as part of the
function’s formal declaration. Thus, functions using these parameters could not be

written to accept objects of some other size without resorting to pointer arithmetic.

The goals of C[ ] are similar to those of the SWAR model of processing, but the
language was intended to provide efficiency and portability at the level of array and
vector processing of standard data types. While not the best model for the current
set of SWAR architectures, this language has features that may be useful in future

SWAR-like languages targeting array-based architectures.

Other Languages

There are a few other languages that are worth mentioning because they have
some feature or features which are related to SWAR. processing; however, for various

reasons, are not languages that we wish to model.

PL/I [223, 224, 225] was developed in the mid-1960s and was originally intended
to be an update of FORTRAN IV that was referred to by the name of FORTRAN
VI. After it was decided that it would be incompatible with FORTRAN IV, the name
NPL (New Programming Language) was given to it. This name happened to conflict

with the name of a laboratory in England, so the name of the language was finally

changed to PL/I.

PL/I allowed the programmer to specify arbitrary precisions to be used for storing
individual data objects “by declaring the total number of digits and the number of
digits to the right of the decimal (or binary) point.” [225] This allowed the programmer
to specify data precisions that closely matched those of the application. The compiler
could then attempt to preserve precision when possible. As a practical matter, using

precisions that differed significantly from those supported by IBM’s S/360 series of
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computers, PL/I’s primary target, resulted in unexpected results and were thus rarely
used.

AJL (Anar Jhaveri’s Language) [174] was developed around 1990 and was in-
tended to provide a simple vector programming model which could be easily ported
to various target architectures. AJL was a calculator language which provided ba-
sic arithmetic and trigonometric operations and functions on either scalar (mono) or
vector (poly) objects. It was similar in certain respects to both C and Pascal.

Arithmetic operations provided by AJL included addition, subtraction, negation,
multiplication, division, and power. Intrinsic functions included sine, cosine, tangent,
floor, and ceiling. Mixed expressions were allowed for some of these operations and
functions, but each could be applied to purely scalar or vector expressions.

A set of predefined values was also provided, including pi and e, and a shorthand
for the number of elements in any vector (#). A set of intrinsic functions were also
included which provided limited support of the input and output of scalar values.

AJL provided operations related to layout and rearrangement of vector data.
These included vector value definitions (i.e. the ability to assign the values of a vec-
tor’s elements from a list), generation of linearly ranging vectors, left and right vector
shifts, shuffle, and inverse shuffle.

Only a “less than” comparison operator was available in the language. It operated
on either scalars or on vectors in an element-wise fashion. A C-like trinary operator
was also provided which operated on vectors by element.

Source code written in AJL was translated into a pseudo-assembly language for
a non-existent stack-based machine. This code was actually a list of macros which
were then converted into native C code for the target machine. Thus, porting AJL-
compiled code consisted of defining the pseudo-assembly macros for the new target.
This method of translation allowed AJL to be very portable and to take advantage
of the optimization capabilities of the native C compiler.

AJL was a limited language which dealt neither with vectors of unequal lengths nor

with vector element precisions. However, many of its features are useful for developing
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a new SWAR programming language, and lessons learned in its development can be
applied to the development of a new SWAR language. In fact, the language developed
as part of this thesis has some similarities to AJL, but AJL itself is not particularly
suited to SWAR processing.

NESL/VCODE/CVL NESL [175] is a “nested data-parallel language”. This
means that it allows data to be described using recursive data structures and allows
operations to be applied to sets of data described by these structures. Its primary ben-
efit is the description of irregular data sets. Like APL, NESL differs significantly from
the programming languages which are most commonly used in the high-performance
computing community.

NESL is built on top of the stack-based VCODE vector language [176]. VCODE
allows operations on the primitive data types: int, bool, float, char, and segdes,
where segdes “specifies a partitioning of one of more vectors into segments.” The
language allows basic arithmetic operations, conditional tests, intra-element shifts,
logical operations, and conversions. It also allows higher-level mathematics such as
exponentials and trigonometric functions. A limited set of reductions and scans are
also available. Various operations allow data manipulation such as permutations,
extractions, and packing. Operations for manipulating the stack and performing I/O

are also included.

While VCODE allows a large range of useful functions which can be included in
a SWAR model, it is a stack language for a rather powerful, theoretical machine. As

such, it does not match the current set of multimedia-enhanced targets very well.

VCODE itself is built on top of CVL [177], a low-level vector library for the C
language. CVL functions include elementwise operations, reductions, scans, permu-

tations, vector-scalar conversions, management, and some higher-level functions.

CVL functions operate on an area of memory set aside exclusively for the storage
of vectors. Vectors are laid-out within this memory in an implementation-dependent
manner. Vector elements may be stored in larger than necessary locations in memory

in order to simplify processing or provide portability.
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Functions are passed a “handle” for each of their vector operands. This handle
may be a pointer or a more complex structure which indicates the position and layout
of the vector. Functions must also be passed the length of their vector operands and,
in some cases, a handle to a previously allocated scratch space in vector memory.

CVL’s functions operate on vectors of type int and double, which have native
precision, and cvl bool which may be stored in any useful form such as chars or
bits. A vector may be segmented, meaning that it is actually a collection of smaller
vectors, or unsegmented which means that it consists of a single vector (i.e. it has one
segment). Operations performed on a segmented vector are applied to each segment
independently.

CVL was intended to provide portability between massively-parallel processors
such as the Connection Machines CM-2 and MasPar MP-1. It was not intended to
provide functionality for non-standard data precisions. CVL’s use of a private vector
memory allows vectors to be laid-out in the most efficient manner without regards to
issues such as pointer arithmetic although it provides similar functionality via vector
handles.

CVL provides much of the functionality that one would hope to have in a good
SWAR model. However, it is limited to standard data precisions and provides certain
functionality, such as trigonometric functions, which should not be included in a

general-purpose SWAR model.



- 336 -



- 337 -

APPENDIX B
SUPPORTED SWAR EXTENSIONS
IN COMMODITY CPUS
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Table B.1
Supported SWAR Extensions in Commodity CPUs

[ Processor Name [ Year T ] Aliases [ MVI [ MAX-1 [ MAX-2 [ MIPS-V_| MDMX
DEC Alpha 21264 [60] 19977 EV6 Yes - - - -
DEC Alpha 21164PC [226] 1997 PCA56 Yes - - - -
DEC Alpha 21164A 19957 EV56 - - - - -
DEC Alpha 21164 [227] 1994 EV5 - - - - -
TP PA-8000 [34] 1996 . Ves Ves . -
HP PA-7100L.C [61] 1994 - Yes - - -
MIPS MIPS64 [87] 1999 - - - Optional -
MIPS H1 Arch. [85]2 19997 - - - Yes Yes
MIPS R12000 [85] 19987 - - - - -
MIPS R10000 [66] 19947 . . ; - ;
Motorola MPC7400 [89] 1999 G4 - - - - -
Sun UltraSparc ITT Cu [92] 2001 - - - - -
Sun UltraSparc I1I [92] 2000 - - - - -
Sun UltraSparc IT [202, 91] 19967 - - - - -
Sun UltraSparc [ [202, 228] 1995 - - - - -
Intel Pentium 4 [229] 2000 Willamette - - - - -
Intel Pentium TIT [229] 1999 Katmai - - - - -
Intel Pentium IT [229] 1997 - - - - -
Intel Pentium w/MMX [229] 1996 - - - - -
Intel Pentium Pro [229] 1995 - - - - -
Intel Pentium [229] 1993 80586 - - - - -
AMD Athlon XP [99] 2002 Thoroughbred - - - - -
AMD Athlon MP [230] 2001 Palomino - - - - -
AMD Athlon 4 [98] 2001 Palomino - - - - -
AMD Athlon [76] 1999 K7 - - - - -
AMD K6-111 [75] 1999 - - - - -
AMD K6-2 [75] 1998 Model 8 - - - - -
AMD K6 [73] 1996 Models 6-7 - - - - -
VIA C3 [103] 2000 Cyrix MIII - - - - -
Cyrix MXi [231]2 19987 Cayenne - - - - -
Cyrix M-I [232, 77] ? M2 . . - . -
Cyrix MediaGXm [100] ? - - - - -
Cyrix 6x86Mx [100] 1997 - - - - -
Cyrix MediaGX [100] ? - - - - -
Cyrix 6x86 [100] ? - - - - -

! Approximate year of introduction or implementation.
2T'm not sure that this was ever implemented.
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Table B.1 cont’d.
Supported SWAR Extensions in Commodity CPUs

Processor Name | AltiVec | VIS | MMX | SSE | SSE2 |

DEC Alpha 21264 - -
DEC Alpha 21164PC - - - . .
DEC Alpha 21164A - : - , .
DEC Alpha 21164 - - . _ i

HP PA-8000 - - - B -
HP PA-7100LC - - - - -

MIPS MIPS64 - - B B B
MIPS H1 Arch. - - - - -
MIPS R12000 - - - - -
MIPS R10000 - - - - -

Motorola MPC7400 Yes - - - -

Sun UltraSparc 11T Cu - 2.0 - - -
Sun UltraSparc I11 - 2.0 - - -
Sun UltraSparc IT - 1.0 - - -
Sun UltraSparc I - 1.0 - - -

Intel Pentium 4 - - Yes Yes Yes
Intel Pentium IIT - - Yes Yes -
Intel Pentium IT - - Yes - -
Intel Pentium w/MMX - - Yes - -
Intel Pentium Pro - - - - -
Intel Pentium - - - - -

AMD Athlon XP - - Yes - -
AMD Athlon MP - - Yes - -
AMD Athlon 4 - - Yes - -
AMD Athlon - - Yes - -
AMD K6-111 - - Yes - -
AMD K6-2 - - Yes - -
AMD K6 - - Yes - -
VIA C3 - - Yes - -
Cyrix MXi - - Yes - -
Cyrix M-IT - - Yes - -
Cyrix MediaGXm - - Yes - -
Cyrix 6x86Mx - - Yes - -

Cyrix MediaGX - - - - _
Cyrix 6x86 - - - - -
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Table B.1 cont’d.
Supported SWAR Extensions in Commodity CPUs

Processor Name [| 3DNow! [ E3DNow! [ 3DNow!Pro | EMMX | MMFP

DEC Alpha 21264 - - - - -
DEC Alpha 21164PC - : - , .
DEC Alpha 21164A - - - . .
DEC Alpha 21164 . : . , .

HP PA-8000 - - - - B
HP PA-7100LC - - - - -

MIPS MIPS64 - - N B _
MIPS H1 Arch. - - - _ _
MIPS R12000 - - - - _
MIPS R10000 - - - - _

Motorola MPC7400 - - B _ -

Sun UltraSparc III Cu - - B B -
Sun UltraSparc ITT - - - - -
Sun UltraSparc 11 - - - - _
Sun UltraSparc I - - - - -

Intel Pentium 4 - - - _ -
Intel Pentium IIT - - - _ _
Intel Pentium IT - - - - -
Intel Pentium w/MMX - - - - -
Intel Pentium Pro - - - _ _
Intel Pentium - - - - -

AMD Athlon XP Yes Yes Yes - -
AMD Athlon MP Yes Yes Yes - -
AMD Athlon 4 Yes Yes Yes ! - -
AMD Athlon Yes Yes - - -
AMD K6-T1T Yes - - - -
AMD K6-2 Yes - - - -
AMD K6 - - - - -
VIA C3 Yes - - - -
Cyrix MXi - - - - Yes
Cyrix M-IT - - - Yes -
Cyrix MediaGXm - - - Yes -

Cyrix 6x86Mx - - - - -
Cyrix MediaGX - - - - -
Cyrix 6x86 - - - - -

I Available on later models.
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APPENDIX C
SWAR INSTRUCTION MNEMONICS
The following tables show the instruction mnemonics for the SWAR multimedia sup-

port tabulated in section 2.1. Except for table C.1, each table corresponds to the

table in section 2.1 with the same number.
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Table C.1
Comparison of Multimedia Instruction Set Extensions

Architectural Feature DEC HP HP SGI SGI
MVI MAX-1.0 MAX-2.0 MIPS-V MDMX
Typical Processor Alpha 21164PC | PA-7100LC PA-8000 H1 Arch. H1 Arch.
# MM Pipelines! 2[226] 2 ALUs [63] | 2 ALUs, 2 SMUs [63] 2 | Unknown | Unknown
Year Announced [233] 1996 1993 1995 1996 1996
Year Shipped [233] 1997 1994 1996 1999 19997
Architectural Feature Motorola Sun Intel, AMD Intel
AltiVec VIS MMX SSE
Typical Processor MPC7400 UltraSparcl Pentium w/MMX | Pentium IIT
# MM Pipelines! 1ALU, 1 VPU [89] 2 | 2in GRU [90]* | 2 (U and V) [234] 27
Year Announced 1998 1994 1996 19987
Year Shipped 1999 1995 1996 1999
Architectural Feature Intel AMD AMD AMD Cyrix
SSE2 3DNow! E3DNow! 3DNow!Pro | EMMX
Typical Processor Pentium4 K6-2 Athlon Athlon XP M-I1
# MM Pipelines' 27 2 (X and Y) | 2 (excluding L/S) [235] 2 [99] 17 [232]
Year Announced 19997 19977 19987 2001 1997
Year Shipped 2000 1998 1999 2002 ?

!Independent pipelines may not necessarily be equivalent.
2SMU=Shift Multiply Unit.
3VPU=Vector Permute Unit.

4GRU=Graphics Unit
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Table C.2
SWAR Addition Operations

Operation Types DEC HP HP SGI SGI Motorola
MVI MAX-1 MAX-2 MIPS-V MDMX AltiVec
Modular Addition
Part/Part - - - vaddubm,
hadd hadd vadduhm,
add.ps vadduwm
Immd/Part - - - - - -
Part/Part w/Acc - - - - add[la].ob, -
(w/ or w/o Init) add[la].qh
Scalar/Part w/Acc - - - - add[la].ob, -
(w/ or w/o Init) add[la].qh
Immd/Part w/Acc - - - - add(la].ob, -
(w/ or w/o Init) add[la].qh
Element /Element - - - - - -
Saturation Addition
Part/Part - hadd,ss, | hadd,ss, - add.ob,add.qh vaddsbs,vaddubs,
hadd,us | hadd,us vaddshs,vadduhs,

vaddsws,vadduws,vaddfp

Scalar/Part - - - - add.ob,add.qh -
Immd/Part - - - - add.ob,add.qh -
Modular Add. High
Part/Part - - - - - vaddcuw

[ Sat. RedAdd w/EL [ - - - - - VSUmMsws
Sat. Part. RedAdd - - - - - vsuma2sws
w/Even
Sat. Part. RedAdd - - - - - vsumdsbs,
w/Part vsum4ubs,

vsum4shs

Sat. RedAdd
and Pack

Sat. RedAdd/Sub
and Pack
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Table C.2 cont’d.
SWAR Addition Operations

Operation Types Sun Intel Intel Intel
VIS MMX SSE SSE2

Modular Addition

Part/Part paddb, paddb,
fpadd16s,fpadd16, paddw, paddw,
fpadd32s,fpadd32 paddd addps paddd,

paddq,addpd

Immd/Part - - - -

Part/Part w/Acc - - - -

(w/ or w/o Init)

Scalar/Part w/Acc - - - -

(w/ or w/o Init)

Immd/Part w/Acc - - - -

(w/ or w/o Init)

Element/Element - - addss

addsd

Saturation Addition

Part/Part

Scalar/Part
Immd/Part

paddsb,paddusb,
paddsw,paddusw

paddsb,paddusb,
paddsw,paddusw

Modular Add. High

Part/Part

Sat. RedAdd w/EL

Sat. Part. RedAdd
w/Even

Sat. Part. RedAdd
w/Part

Sat. RedAdd
and Pack

Sat. RedAdd/Sub
and Pack
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Table C.2 cont’d.
SWAR Addition Operations

Operation Types

AMD
3DNow!

AMD
E3DNow!

AMD
3DNow!Pro

Cyrix
EMMX

Modular Addition

Part/Part

Immd/Part
Part/Part w/Acc
(w/ or w/o Init)
Scalar/Part w/Acc
(w/ or w/o Init)
Immd/Part w/Acc
(w/ or w/o Init)
Element /Element

addps

addss

Saturation Addition

Part/Part

Scalar/Part
Immd/Part

pfadd

paddsiw

Modular Add. High

Part/Part

Sat. RedAdd w/EL

Sat. Part. RedAdd
w/Even

Sat. Part. RedAdd
w/Part

Sat. RedAdd
and Pack

pfacc

Sat. RedAdd/Sub
and Pack

pfpnacc
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Table C.3
SWAR Subtraction Operations

Operation Types DEC HP HP SGI SGI Motorola
MVI MAX-1 MAX-2 MIPS-V MDMX AltiVec
Modular Subtraction
Part/Part - - - vsububm,
hsub hsub vsubuhm,
sub.ps vsubuwm
Part/Part w/Acc Diff - - - - sub.ob, -
(w/ or w/o Init) sub.qh
Scalar/Part w/Acc Diff - - - - sub.ob, -
(w/ or w/o Init) sub.qh
Immd/Part w/Acc Diff - - - - sub.ob, -
(w/ or w/o Init) sub.qgh
Element/Element - - - - - -
Saturation Subtraction
Part/Part - hsub,ss, | hsub,ss, - sub.ob,sub.qgh vsubsbs,vsububs,
hsub,us | hsub,us vsubshs,vsubuhs
vsubsws,vsubuws,vsubfp
Scalar/Part - - - - sub.ob,sub.qh -
Immd/Part - - - - sub.ob,sub.qh -
Subtraction High
Part/Part - - - - - vsubcuw
Sat. RedSub - - - - - -
and Pack
[ RedAdd of Abs. Diffs || perr | - | - | - | - | -

Sum Abs Diffs; Sat Acc. [[ - | - [ - [ N [ _ [ _

Table C.3 cont’d.
SWAR Subtraction Operations

Operation Types Sun Intel Intel Intel
VIS MMX SSE SSE2
Modular Subtraction
Part/Part psubb, psubb,
fsub16s,fsub16, psubw, psubw,
fsub32s,fsub32 psubd subps psubd,

psubq,psubq,subpd
Part/Part w/Acc Diff - - - -
(w/ or w/o Init)
Scalar/Part w/Acc Diff - - - -
(w/ or w/o Init)
Immd/Part w/Acc Diff - - - -
(w/ or w/o Init)
Element/Element - - subss
subsd

Saturation Subtraction
Part/Part - psubsb,psubusb - psubsb,psubusb,
psubsw,psubusw psubsw,psubusw

Scalar/Part - - - -
Immd/Part - - - -

Subtraction High
Part/Part - - - N

Sat. RedSub - B _ -
and Pack

RedAdd of Abs. Diffs || pdist | - | psadbw | psadbw |
Sum Abs Diffs; Sat Acc. || - [ N [ B [ N |
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Table C.3 cont’d.

SWAR Subtraction Operations

Operation Types

AMD
3DNow!

AMD
E3DNow!

AMD
3DNow!Pro

Cyrix
EMMX

Modular Subtraction

Part/Part

Part/Part w/Acc Diff
(w/ or w/o Init)
Scalar/Part w/Acc Diff
(w/ or w/o Init)
Immd/Part w/Acc Diff
(w/ or w/o Init)
Element/Element

subps

subss

Saturation Subtraction

Part/Part

Scalar/Part
Immd/Part

psubsiw

Subtraction High

Part/Part

Sat. RedSub
and Pack

RedAdd of Abs. Diffs

Sum Abs Diffs; Sat Acc.

[ pdistib_|
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Table C.4

Maximum and Minimum Operations

Operation Types DEC HP SGI SGI Motorola Sun
MVI MAX | MIPS-V | MDMX AltiVec VIS
Maximum
Part/Part maxsb8 maxub8, - - max.ob, vmaxsb,vmaxub, -
maxsw4,maxuw4 max.gh vmaxsh,vmaxuh,
vmaxsw,vmaxuw,vmaxfp
Scalar/Part - - - max.ob, - -
max.gh
Immd/Part maxsb8,maxub8, - - max.ob, - -
maxsw4,maxuw4 max.qgh
Element /Element - - - - - -
Minimum
Part/Part minsb8, minub§, - - min.ob, vminsb,vminub, -
minsw4,minuw4 min.gh vminsh,vminuh,
vminsw,vminuw,vminfp
Scalar/Part - - - min.ob, - -
min.gh
Immd/Part minsb8, minub8, - - min.ob, - -
minsw4,minuw4 min.gh
Element /Element - - - - - -
[ Magnitude Part/Part || - [ - ] - | - | - I
[ Abs. Value Part/Part || - | - [ absps | - | - [ - ]
[ Negate Part/Part I - | - | negps | - | - I
[ Generate Sign Mask || - [ - ] - | - | - [ - ]
Operation Types Intel Intel Intel AMD AMD AMD Cyrix
MMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro | EMMX
Maximum
Part/Part - pmaxub, pmaxub, pmaxub, -
pmaxsw, pmaxsw, pmaxsw
maxps pfmax maxps
maxpd
Scalar/Part - - - - - - -
Immd/Part - - - - - - -
Element/Element - maxss - - maxss -
maxsd
Minimum
Part/Part - pminub, pminub, pminub, -
pminsw, pminsw, pminsw
minps pfmin minps
minpd
Scalar/Part - - - - - - -
Immd/Part - - - - - - -
Element /Element - minss - - minss -
minsd
[ Magnitude Part/Part || - ] - | - | - | - | - | pmagw |
[ Abs. Value Part/Part || - ] - | - | - | - | - | -
| Negate Part/Part I - ] - | - | - | - | - | -
Generate Sign Mask - pmovmskb, | pmovmskb, - pmovmskb -
movmskps movmskps
movmskpd
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Table C.5
Multiplication Operations

Operation Types DEC HP HP SGI SGI Motorola
MVI | MAX-1 | MAX-2 | MIPS-V MDMX AltiVec
Modular Multiplication
Part/Part - - - mul.ps - vmulesb,
vmuleub,
vmulosb,
vmuloub,
vmulesh,
vmuleuh,
vmulosh,
vmulouh
Immd/Part - - - - - -
Part/Part w/Acc - - - - mul[la].ob, -
(w/ or w/o Init) mul[la].qh
Scalar/Part w/Acc - - - - mul[la].ob, -
(w/ or w/o Init) mul[la].gh
Immd/Part w/Acc - - - - mul[la].ob, -
(w/ or w/o Init) mul[la].gh
Part/Part w/Acc Subt - - - - mul[la].ob, -
(w/ or w/o Init) mul[la].gh
Scalar/Part w/Acc Subt - - - - mul[la].ob, -
(w/ or w/o Init) mul[la].qh
Immd/Part w/Acc Subt - - - - mul[la].ob, -
(w/ or w/o Init) mul[la].qh
Part/Element
Element /Element - - - - - -
Modular Mul. High
Pt/Pt Store in Enh. - - - - - -
Pt/Pt Store in Implied - - - - - -
Pt/Pt Acc. w/Implied - - - - - -
Sat. Multiplication
Part/Part - - - - mul.ob,mul.qh -
Scalar/Part - - - - mul.ob,mul.qh -
Immd/Part - - - - mul.ob,mul.qh -
Mult. by Sign (-,0,+)
Part/Part - - - - msgn.gh -
Scalar/Part - - - - msgn.qgh -
Immd/Part - - - - msgn.gh -
Average - - - vavgsb,vavgub,
have havg vavgsh,vavguh,
vavgsw,vavguw
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Table C.5 cont’d.
Multiplication Operations

Operation Types Sun Intel Intel Intel
VIS MMX SSE SSE2
Modular Multiplication
Part/Part fmul8x16, pmullw pmullw,
fmul8sux16,
fmul8ulx16,
fmuld8sux16,
pmuludq,
fmuld8ulx16 pmuludq,
mulps
mulpd
Immd/Part - - - -

Part/Part w/Acc - - - -
(w/ or w/o Init)
Scalar/Part w/Acc - - - -
(w/ or w/o Init)
Immd/Part w/Acc - - - -
(w/ or w/o Init)
Part/Part w/Acc Subt - - - -
(w/ or w/o Init)
Scalar/Part w/Acc Subt - - - -
(w/ or w/o Init)
Immd/Part w/Acc Subt - - - -
(w/ or w/o Init)
Part/Element fmul8x16au, - - -

fmul8x16al

Element/Element - - mulss
mulsd

Modular Mul. High

Pt/Pt Store in Enh. - pmulhw | pmulhuw | pmulhuw,pmulhw
Pt/Pt Store in Implied - - - -
Pt/Pt Acc. w/Implied - - B _

Sat. Multiplication

Part/Part - - - N
Scalar/Part - - , -
Immd/Part - - - -

Mult. by Sign (-,0,4)

Part/Part - - B N
Scalar/Part - - , -
Immd/Part - - - -

Average - - pavgb, pavgb,
pavgw pavgw
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Table C.5 cont’d.

Multiplication Operations

Operation Types

AMD
3DNow!

AMD
E3DNow!

AMD
3DNow!Pro

Cyrix
EMMX

Modular Multiplication

Part/Part

Immd/Part

Part/Part w/Acc

(w/ or w/o Init)
Scalar/Part w/Acc

(w/ or w/o Init)
Immd/Part w/Acc

(w/ or w/o Init)
Part/Part w/Acc Subt
(w/ or w/o Init)
Scalar/Part w/Acc Subt
(w/ or w/o Init)
Immd/Part w/Acc Subt
(w/ or w/o Init)
Part/Element

Element /Element

mulps

mulss

Modular Mul. High

Pt/Pt Store in Enh.
Pt/Pt Store in Implied
Pt/Pt Acc. w/Implied

pmulhrw

pmulhrw
pmulhriw
pmachriw

Sat. Multiplication

Part/Part
Scalar/Part
Immd/Part

Mult. by Sign (-,0,+)

Part/Part
Scalar/Part
Immd/Part

Average

pavgusb

pavghb,
pavgw

paveb
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Table C.6
Combined Arithmetic Operations

Operation Types DEC HP SGI SGI Motorola
MVI | MAX MIPS-V MDMX AltiVec
Multiply, then Add - - - - -
Neighboring Fields
Multiply/Mod. Add - - madd.ps - vmaddfp,
vmladduhm
Negated - - nmadd.ps - -
Multiply/Mod. Add
Multiply/Sat. Add - - - - vmhaddshs
Multiply(w/Rnd)/Sat. Add - - - - vmhraddshs
Multiply/Mod. Subtract - - msub.ps - -
Negated - - nmsub.ps - vnmsubfp
Multiply/Mod. Subtract
Multiply, then Modular - - - - vmsumubm,
Add Neighbor w/Part
vmsumshm,
vmsumuhm,
vmsummbm
Multiply, then Saturate - - - - vmsumshs,

Add Neighbor w/Part

vmsumuhs
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Table C.6 cont’d.
Combined Arithmetic Operations

Operation Types Sun Intel Intel Intel AMD Cyrix
VIS MMX SSE SSE2 3DNow! (All families) | EMMX
Multiply, then Add - pmaddwd - pmaddwd - -

Neighboring Fields

Multiply/Mod. Add

Negated
Multiply/Mod. Add

Multiply/Sat. Add

Multiply(w/Rnd)/Sat. Add

Multiply/Mod. Subtract

Negated
Multiply/Mod. Subtract

Multiply, then Modular
Add Neighbor w/Part

Multiply, then Saturate
Add Neighbor w/Part
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Table C.7

Division and Advanced Arithmetic Operations

Operation Types DEC HP SGI SGI Motorola | Sun Intel
MVI | MAX | MIPS-V | MDMX AltiVec VIS | MMX
Divide
Part/Part - - - - - - -
Element /Element - - - - - - -
Square Root
Part/Part - - - - - - -
Element /Element - - - - - - -
Reciprocal Approx.
Part - - - - vrefp - -
Element - - - - - - -
Recip. Sq. Rt. Approx.
Part - - - - vrsqrtefp - -
Element - - - - - - -
Loga(x) Approx.
Part - - - - vlogefp - -
2% Approx.
Part - - - - vexptefp - -
Operation Types Intel Intel AMD AMD AMD Cyrix
SSE SSE2 3DNow! E3DNow! | 3DNow!Pro | EMMX
Divide
Part/Part divps - - divps -
divpd
Element /Element divss - - divss -
divsd
Square Root
Part/Part sqrtps - - sqrtps -
sqrtpd
Element /Element sqrtss - - sqrtss -
sqrtsd
Reciprocal Approx.
Part rcpps - - - rcpps -
Element repss - pfrep/pfrepitl/pfrepit2 - repss -
Recip. Sq. Rt. Approx.
Part rsqrtps - - - rsqrtps -
Element rsqrtss - pfrsqrt/pfrsqit1/fprepit2 - rsqrtss -
Loga(x) Approx.
Part - - - - - -
27 Approx.
Part - - - - - -
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Table C.8
Shift and Rotate Operations

Operation Types DEC HP HP SGI SGI Motorola | Sun
MVI MAX-1 MAX-2 MIPS-V | MDMX AltiVec VIS
Shift Left Logical
Part by Part - - - - sll.ob, vslb, -
sll.qh vslh,
vslw
Part by Scalar - - - - sll.ob, -
sll.gh
vsl
Part by Single sll - - - - -
vslo
Part by Immd sll - hshl - sll.ob, - -
sll.gh
Shift Right Logical
Part by Part - - - - srl.ob, vsrb, -
srl.gh vsrh,
VSrw
Part by Scalar - - - - srl.ob, - -
srl.gh
Part by Single srl - - - - VSro -
Part by Immd srl - hshr,u - srl.ob, - -
srl.gh
Shift Right Arithmetic
Part by Part - - - - sra.qh vsrab, -
vsrah,
vsraw
Part by Scalar - - - - sra.gh - -
Part by Single sra - - - - - -
Part by Immd sra - hshr or hshr;s - sra.gh - -
Shift Left and Add
by 1 bit - - - - - - -
by 2 bits sd4addq - - - - - -
by 3 bits s8addq - - - - - -
Shift Left and Sat. Add
by 1,2, or 3 bits - hshladd - - - - -
Shift Left and Subtract
by 2 bits sdsubq - - - - - -
by 3 bits s8subq - - - - - -
Shift Right and Sat. Add
by 1,2, or 3 bits - hshradd - - - - -
Rotate
Part by Part - - - - - vrlb, -
vrlh,

vrlw
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Table C.8 cont’d.

Shift and Rotate Operations

Operation Types Intel Intel Intel AMD AMD AMD Cyrix
MMX | SSE SSE2 3DNow! | E3DNow! | 3DNow!Pro | EMMX
Shift Left Logical
Part by Part - - - - - - -
Part by Scalar - - - - - - -
Part by Single psllw, - psllw, - - - -
pslld, pslid,
psllq psllq
Part by Immd psllw, - psllw, - - - -
pslld, pslid,
psllq psllq,
pslldg
Shift Right Logical
Part by Part - - - - - - -
Part by Scalar - - - - - - -
Part by Single psrlw, - psrlw, - - - -
psrld, psrld,
psrlq psrilq
Part by Immd psrlw, - psrlw, - - - -
psrld, psrld,
psrlq psrlq,
psrldq
Shift Right Arithmetic
Part by Part - - - - - - -
Part by Scalar - - - - - - -
Part by Single psraw, - psraw, - - - -
psrad psrad
Part by Immd psraw, - psraw, - - - -
psrad psrad
Shift Left and Add
by 1 bit - - - - - - -
by 2 bits - - - - - - -
by 3 bits - - - - - - -
Shift Left and Sat. Add
by 1,2, or 3 bits - - - - - - -
Shift Left and Subtract
by 2 bits - - - - - - -
by 3 bits - - - - - - -
Shift Right and Sat. Add
by 1,2, or 3 bits - - - - - - -
Rotate
Part by Part - - - - - - -
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Table C.9
Polymorphic Operations

Operation Types || DEC HP HP SGI SGI Motorola Sun
MVI | MAX-1 | MAX-2 | MIPS-V MDMX AltiVec VIS

AND
Part/Part and and and - and.ob,and.qh vand fands,fand
Part/Imm and - - - and.ob,and.qh - -
Part/Scalar - - - - and.ob,and.qh - -
ANDN
Part/Part bic | andem | andem - - vandc | fandnot[12]s" fandnot[12]
Part/Imm bic - - - - - -
NAND
Part/Part - - - - - - fnands,fnand
Part/Imm - - - - - - -
OR
Part/Part bis or or - or.ob,or.qh vor fors,for
Part/Imm bis - - - or.ob,or.gh - -
Part/Scalar - - - - or.ob,or.qgh - -
ORN
Part/Part ornot - - - - - fornot[12]s,fornot[12]
Part/Imm ornot - - - - - -
NOR
Part/Part - - - - nor.ob,nor.qh vnor fnors,fnor
Part/Imm - - - - nor.ob,nor.qh - -
Part/Scalar - - - - nor.ob,nor.qh - -
XOR
Part/Part xor xor xor - xor.ob,xor.qh vxor fxors,fxor
Part/Imm xor - - - xor.ob,xor.gh - -
Part/Scalar - - - - xor.ob,xor.qh - -
XORN
Part/Part eqv - - - - - -
Part/Tmm eqv - - - - - -
NXOR
Part/Part - - - - - - fxnors,fxnor
Part/Imm - - - - - - -

[ Population [ ctpop | - | - | - | - | - | -

[ Leading O bits | ctlz [ - I | - | - | - [ -

[ Trailing 0 bits [ cttz | - | - | - | - | - | -

1“[12]77 means “1” or “27.
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Table C.9 cont’d.
Polymorphic Operations

Operation Types

Intel
MMX

Intel
SSE

Intel
SSE2

AMD
3DNow!

AMD
E3DNow!

AMD
3DNow!Pro

Cyrix
EMMX

AND

Part/Part
Part/Tmm
Part/Scalar

pand

andps

pand,andpd

andps

ANDN

Part/Part
Part/Imm

pandn

andnps

pandn,andnpd

andnps

NAND

Part/Part
Part/Imm

OR

Part/Part
Part/Imm
Part/Scalar

por,orpd

ORN

Part/Part
Part/Imm

NOR

Part/Part
Part/Imm
Part/Scalar

XOR

Part/Part
Part/Tmm
Part/Scalar

pxor,xorpd

XORN

Part/Part
Part/Imm

NXOR

Part/Part
Part/Tmm

Population

Leading 0 bits

Trailing 0 bits
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Table C.10

Operation Types

DEC
MVI

HP
MAX

SGI
MIPS-V

SGI
MDMX

Motorola
AltiVec

Forms of Result

Bitmask

FP CC
Bits

FP CC Bits

Field Mask
All/None Bits

Equality

Part/Part

Part/Imm
Part/Scalar
El/El

cmpeq

cmpeq

c.eq.ps

c.eq.ob,
c.eq.gh

c.eq.ob,c.eq.qgh
c.eq.ob,c.eq.gh

vempequb,
vempequh,
vempequw,vempeqfp,

Inequality

Part/Part

Part/Imm
Part/Scalar
El/El

c.neq.ps

Greater Than

Part/Part

El/EL

c.gt.ps

vempgtsb,vempgtub,
vempgtsh,vempgtuh,

vempgtsw,vempgtuw,vempgtfp

Less Than

Part/Part

Part/Tmm
Part/Scalar
El/El

c.lt.ob,
c.lt.qh

c.lt.ob,c.lt.qh
c.lt.ob,c.lt.gh

Greater or Equal

Part/Part
Part/Tmm
Part/Scalar

cmpbge
cmpbge

vempgefp

Less or Equal

Part/Part

Part/Tmm
Part/Scalar
El/El

c.le.ob,
c.le.qh

c.le.ob,c.le.gh
c.le.ob,c.le.qh

Not Less nor Equal

Part/Part
Element /Element

c.nle.ps

Not Less Than

Part/Part
Element /Element

c.nlt.ps
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Table C.10 cont’d.
Condition Testing Operations

Operation Types Sun Intel Intel Intel
VIS MMX SSE SSE2
Forms of Result Bitmask Field Mask | Field Mask | Field Mask
Equality
Part/Part pcmpeqgb, pcmpeqgb,
fcmpeq16, pcmpeqw, pcmpeqw,
fcmpeq32 pcmpeqd cmpps/0 pcmpeqd,
cmppd/0
Part/Imm - - - -
Part/Scalar - - - -
El/El - - cmpss/0 cmpsd/0
Inequality
Part/Part fcmpnel6, -
fcmpne32 cmpps/4 cmppd/4
Part/Imm - - - -
Part/Scalar - - - -
El/El - - cmpss/4 cmpsd/4
Greater Than
Part/Part pcmpgtb, - pcmpgtb,
fempgt16, pcmpgtw, pcmpgtw,
fempgt32 pcmpgtd pcmpgtd,
El/El - - - -
Less Than
Part/Part - -
cmpps/1 cmppd/1
Part/Imm - - - -
Part/Scalar - - - -
El/El - - cmpss/1 cmpsd/1
Greater or Equal
Part/Part - - - -
Part/Imm - - - -
Part/Scalar - - - -
Less or Equal
Part/Part -
femplel6,
fcmple32 cmpps/2 cmppd/2
Part/Imm - - - -
Part/Scalar - - - -
El/El - - cmpss/2 cmpsd/2
Not Less nor Equal
Part/Part - - cmpps/6 cmppd/6
Element/Element - - cmpss/6 cmpsd/6
Not Less Than
Part/Part - - cmpps/5 cmppd/5
Element/Element - - cmpss/b cmpsd/5
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Table C.10 cont’d.

Condition Testing Operations

Operation Types

AMD
3DNow!

AMD
E3DNow!

AMD
3DNow!Pro

Cyrix
EMMX

Forms of Result

Field Mask

Field Mask

Equality

Part/Part

Part/Imm
Part/Scalar
El/El

pfcmpeq

cmpps/0

cmpss/0

Inequality

Part/Part

Part/Imm
Part/Scalar
EI/El

cmpps/4

cmpss/4

Greater Than

Part/Part

Fl/El

pfcmpgt

Less Than

Part/Part

Part/Imm
Part/Scalar
El/El

cmpps/1

cmpss/1

Greater or Equal

Part/Part
Part/Imm
Part/Scalar

pfcmpge

Less or Equal

Part/Part

Part/Imm
Part/Scalar
El/El

cmpps/2

cmpss/2

Not Less nor Equal

Part/Part
Element/Element

cmpps/6
cmpss/6

Not Less Than

Part/Part
Element/Element

cmpps/5
cmpss/b
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Table C.10 cont’d.
Condition Testing Operations

Operation Types DEC HP SGI SGI Motorola | Sun
MVI MAX MIPS-V MDMX AltiVec VIS

[ Not (Greater or Equal) Pt/Pt [ - | - [ cngeps | - [ - [ ]
| Greater or Less Than Pt/Pt || - | R | c.gl.ps | B | Z | N |
[ Not (Greater or Less) Pt/Pt I - [ - ] cnglps | B [ B [ -]
[ Not Greater Than Pt/Pt I - T - T cngtps | _ [ B [ - ]
| Greater, Less, or Equal Pt/Pt || - | R | c.gle.ps | R | B | Z |
[ Not (Gr.,Less,orEq.) Pt/Pt [ - | - [ cngleps | - [ - [ ]

Ordered

Part/Part - - C.0T.ps R Z B

Element /Element - - - - . -

Unordered

Part/Part - - c.un.ps - - -

Element /Element - - - - . -
[ Unordered or Equal Pt/Pf I - T - T cueqps | _ [ B [ - ]
| Signaling Equal Pt/Pt || - | R | c.seq.ps | B | Z | Z |
[ Signaling Not Equal Pt/Pt I - | - ] csneps | - [ - [ ]
| Ordered or Greater Than Pt/Pt || - | R | c.ogt.ps | R | B | Z |
[ Unordered or Greater Pt/Pt I - [ - ] cugtps | B [ B [ -]
[ Ord. or Greater or Eq. Pt/Pt [ - | - [ c.ogeps | B [ B [ ]
| Unord. or Grtr. or Eq. Pt/Pt || - | R | c.uge.ps | R | B | Z |
[ Ordered or Less Than Pt/Pt I - [ - ] coltps | B [ B [ ]
| Unordered or Less Than Pt/Pt || - | R | c.ult.ps | R | B | Z |
[ Ordered or Lessor Eq. Pt/Pt [ - | - [ c.oleps | B [ B [ -]
[ Unord. or Less or Eq. Pt/Pt I - T - T culeps | _ [ B [ - ]
| Ord. or Greater or Less Pt/Pt || - | R | c.ogl.ps | R | B | Z |
[ Compare Bounds Pt/Pt T - T - 1 _ [ _ [ vempbfp | - ]

Set Cond. Codes

Ordered EI/EIl
Unord. EI/El
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Table C.10 cont’d.

Operation Types Intel Intel Intel AMD AMD AMD Cyrix
MMX SSE SSE2 3DNow! | E3DNow! | 3DNow!Pro | EMMX

[ Not (Greater or Equal) Pt/Pt  [| - | - [ - [ - [ _ [ - [ - |
| Greater or Less Than Pt/Pt I - ] - [ - [ 7 [ , [ N [ - |
[ Not (Greater or Less) Pt/Pt I - - [ - [ - [ _ [ - [ - |
[ Not Greater Than Pt/Pt I - - [ - [ _ [ _ [ N [ N |
[ Greater, Less, or Equal Pt/Pt ]| - | - [ B [ B [ B [ N [ B |
[ Not (Gr., Less, or Eq.) Pt/Pt [ - | - [ - [ _ [ _ [ - [ - |

Ordered

Part/Part - cmpps/7 | cmppd/7 - - cmpps/7 -

Element /Element - cmpss/7 | cmpsd/7 - - cmpss/7 -

Unordered

Part/Part - cmpps/3 | cmppd/3 - - cmpps/3 -

Element /Element - cmpss/3 | cmpsd/3 - - cmpss/3 -
[ Unordered or Equal Pt/Pt I - - [ - [ _ [ _ [ - [ - |
[ Signaling Equal Pt/Pt I - - [ - [ , [ , [ N [ - |
[ Signaling Not Equal Pt/Pt I - ] - | - | - [ B [ N [ N |
[ Ordered or Greater Than Pt/Pt [| - | - [ - [ 7 [ B [ N [ B |
[ Unordered or Greater Pt/Pt I - - [ - [ _ [ _ [ - [ - |
[ Ord. or Greater or Eq. Pt/Pt [| - | - [ - [ _ [ _ [ - [ - |
[ Unord. or Grtr. or Eq. Pt/Pt ]| - | - [ - [ 7 [ , [ N [ N |
[ Ordered or Less Than Pt/Pt I - - [ - [ _ [ _ [ - [ - |
[ Unordered or Less Than Pt/Pt [| - | - [ - [ 7 [ B [ N [ B |
[ Ordered or Less or Eq. Pt/Pt  [| - | - [ - [ _ [ _ [ - [ - |
[ Unord. or Less or Eq. Pt/Pt I - - [ - [ _ [ _ [ - [ - |
[ Ord. or Greater or Less Pt/Pt [ - | - [ - [ 7 [ B [ N [ B |
[ Compare Bounds Pt/Pt I - - [ N [ _ [ _ [ N [ N |

Set Cond. Codes

Ordered El/El - comiss comisd - - comiss -

Unord. El/El - ucomiss | ucomisd - - ucomiss -
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Table C.11
Conditional Flow Control Operations

Operation Types DEC HP HP SGI SGI Motorola | Sun
MVI MAX-1 MAX-2 MIPS-V | MDMX AltiVec VIS

Branch On... T
None True beq - - - - - -
Any True bne - - - - - -
All Equal (Part/Part) - combt,= cmpb,*= - - - -
All Equal (Part/Immed) - comibt,= cmpib,*= - - - -
All Inequal (Part/Part) - combt,<> cmpb,*<> - - - -
All Inequal (Part/Immed) - comibt,<> cmpib,*¥<> - - - -
Operate and Null Next On...
AND/Any True? - and,<> and,*<> - - - -
AND/None True? - and,— and,*= - - - -
ANDN/Any True? - andcm, <> andcm, ¥ <> - - - -
ANDN/None True? - andcm,= andcm,*= - - - -
OR/Any True? - or,<> or,¥*<> - - - -
OR/None True? - or,=— or,*= - - - -
XOR/Any True? - xor,< > xor,*<> - - - -
XOR/None True? - xor,= xor,*= - - - -
XOR/Any False? uxor,¥swz

- uxor,shz uxor,*shz - - - -

uxor,sbz uxor,*sbz

XOR/None False? uxor,*nwz

- uxor,nhz uxor,*nhz - - - -

uxor,nbz uxor,*nbz

Add Complement/Any False?
(A+B)

uaddcm,shz
uaddcm,sbz

uaddcm,*swz
uaddcm,*shz
uaddcm,*sbz

Add Complement/None False?
(A+B)

uaddcm,nhz
uaddcm,nbz

uaddcm,*nwz
uaddcm,*nhz
uaddcm,*nbz

11x32 versions of these tests are also

available. For example, “cmpb,<>".
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Table C.11 cont’d.

Conditional Flow Control Operations

Operation Types Intel Intel | Intel AMD AMD AMD Cyrix
MMX | SSE | SSE2 | 3DNow! | E3DNow! | 3DNow!Pro | EMMX

Branch On...

None True - - - - - - -

Any True - - - - - - -

All Equal (Part/Part)

All Equal (Part/Immed)
Any Inequal (Part/Part)
Any Inequal (Part/Immed)

Operate and Null Next On...

AND/Any True?
AND/None True?

ANDN/Any True?
ANDN /None True?

OR/Any True?
OR/None True?

XOR/Any True?
XOR/None True?

XOR/Any False?

XOR/None False?

Add Complement/Any False?
(A+B)

Add Complement/None False?
(A+ B)
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Table C.12

Conditional Data Manipulation Operations

Operation Types

DEC
MVI

HP
MAX-1

HP
MAX-2

SGI
MIPS-V

SGI
MDMX

Motorola
AltiVec

Sun
VIS

Move Reg/Imm On...

None True
Any True

cmoveq
cmovne

Zero Masked Bytes

zap

Zero UnMasked Bytes

zapnot

Clear Reg
& Null Next/All

Part/Part
Part/Tmm
Part/Scalar

comclr,=
comiclr,=

cmpclr,*=
cmpiclr,*=

Clear Reg

& Null Next/Not All

Part/Part
Part/Tmm
Part/Scalar

comclr,<>
comiclr,<>

cmpclr,¥<>
cmpiclr,*<>

Load Reg. On...

Zero
Non-Zero
Negative
Non-Negative

Move Reg. On...

CC bit TRUE
CC bit FALSE

movt.ps
movf.ps

Pick True

Part/Part
Part/Tmm
Part/Scalar

pickt.ob,pickt.qh
pickt.ob,pickt.qh
pickt.ob,pickt.qh

Pick False

Part/Part
Part/Imm
Part/Scalar

pickf.ob,pickf.qh
pickf.ob,pickf.qh
pickf.ob,pickf.qh
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Table C.12 cont’d.

Conditional Data Manipulation Operations

Operation Types

Intel
MMX

AMD
3DNow!

Intel
SSE

Intel
SSE2

AMD
E3DNow!

AMD
3DNow!Pro

Cyrix
EMMX

Move Reg/Imm On...

None True
Any True

Zero Masked Bytes

Zero UnMasked Bytes

Clear Reg & Null Next/All

Part/Part
Part/Tmm
Part/Scalar

Clear Reg & Null Next/Any

Part/Part
Part/Imm
Part/Scalar

Load Reg. On...

Zero
Non-Zero
Negative
Non-Negative

pmvzb
pmvnzb
pmvlzb
pmvgezb

Move Reg. On...

CC bit TRUE
CC bit FALSE

Pick True

Part/Part
Part/Imm
Part/Scalar

Pick False

Part/Part
Part/Tmm
Part/Scalar
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Table C.13
Data Movement, Replication, and Type Conversion Operations

Operation Types DEC HP HP SGI SGI Motorola Sun
MVI | MAX-1 | MAX-2 | MIPS-V | MDMX AltitVec VIS

[ Move Reg.—»Enh. Reg. [[ - | - | - | - | - | - | -

[ Move Enh. Reg.—wReg. [[ - | - | - | - | - | - | -
Move Enh. Reg. - - - fsrc[12]sT,
—Enh. Reg. movb movb fsrc[12]

mov.ps
Move Comp. Enh. Reg. - - - - - - fnot[12]s,
—Enh. Reg. fnot[12]

[ Pack Singles to Part [ - - - cvi.ps.s | - | - | -
Modular Move Acc—Reg
Low Third of Acc. - - - - racl.ob, - -

racl.qh
Middle Third of Acc. - - - - racm.ob, - -
racm.gh
High Third of Acc. - - - - rach.ob, - -
rach.qh
Move Regs. to Low Acc. - - - - wacl.ob, - -
wacl.gh
Move Reg. to High Acc. - - - - wach.ob, - -
wach.qh
Replicate Field vspltb,
(Element /Part) - - - - - vsplth, -
vspltw
Replicate Sign-Extended vspltisb,
Immediate to Part - - - - - vspltish, -
vspltisw
Shift Rt, Rnd, & Sat Acc
toward 0 - - - - rzu.ob, - -
rzs.gh,
rzu.qh
to nearest away from 0 - - - - rnau.ob, - -
rnas.qh,
rnau.qh
to nearest toward even - - - - rne.ob, - -
rnes.gh,
rneu.gh
Convert int. to flt. - - - - - vefux, -
vefsx
Convert flt. to int. - - - - - vetuxs, -
vetsxs

[ Convert fit. to flt. [ - - - - - | - | -
Round flt. value to int.
to nearest - - - - - vrfin -
toward zero - - - - - vrfiz -
toward +infinity - - - - - vrfip -
toward -infinity - - - - - vrfim -

114[12]77 means 44177 or 44277.
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Table C.13 cont’d.
Data Movement, Replication, and Type Conversion Operations

Operation Types Intel Intel Intel
MMX SSE SSE2
| Move Reg—Enh. Reg. || movd | - | movd |
[ Move Enh. Reg— Reg. [[ movd | - | movd |
Move Enh. Reg—Enh. Reg. movq movq,
movdq2q,movq2dq,
(movdqu)movdqa,
(movups)movaps (movupd)movapd

Move Comp. Enh. Reg. - - N
—Enh. Reg.
Pack Singles to Part I - 1 - [ N |
Modular Move Acc—Reg
Low Third of Acc. - - B
Middle Third of Acc. - - -
High Third of Acc. - - -
Move Regs. to Low. Acc. I - 1 - [ N |
Move Reg. to High Acc. I - 1 - [ _ |
Replicate Field [ - [ B [ N |
Replicate Sign-Extended - - -
Immediate to Part

Shift Rt, Rnd, & Sat Acc
toward 0 - B -
to nearest away from 0 - - -
to nearest toward even - - -

Convert int. to flt. - cvtpi2ps, cvtpi2pd,
cvtsi2ss cvtsi2sd,
cvtdq2ps,
cvtdq2pd
Convert flt. to int. - cvt(t)ps2pil, cvt(t)pd2pil,
cvt(t)pd2dq?t,
cvt(t)ss2sit cvt(t)sd2sit,
cvt(t)ps2dq!
Convert flt. to flt. - - cvtpd2ps,
cvtps2pd,
cvtsd2ss,
cvtss2sd

Round flt. value to int.
to nearest - - _
toward zero - - -
toward +infinity - - _
toward -infinity - - -

LCvt* uses rounding mode specified in MXCSR. Cvtt* truncates the fractional part.
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Table C.13 cont’d.

Data Movement, Replication, and Type Conversion Operations

Operation Types

AMD AMD
3DNow! | E3DNow!

AMD
3DNow!Pro

Cyrix
EMMX

Move Reg—Enh. Reg.

Move Enh. Reg—Reg.

Move Enh. Reg—Enh. Reg.

(movups)movaps

Move Comp. Enh. Reg.
—Enh. Reg.

Pack Singles to Part

Modular Move Acc—Reg

Low Third of Acc.
Middle Third of Acc.
High Third of Acc.

Move Regs. to Low. Acc.

Move Reg. to High Acc.

Replicate Field

Replicate Sign-Extended
Immediate to Part

Shift Rt, Rnd, & Sat Acc

toward 0
to nearest away from 0
to nearest toward even

Convert int. to flt.

pi2fd pi2fw

cvtpi2ps,
cvtsi2ss

Convert flt. to int.

pf2id pf2iw

cvt(t)ps2pil,

cvt(t)ss2sil

Convert flt. to flt.

Round flt. value to int.

to nearest
toward zero
toward +infinity
toward -infinity

LCvt* uses rounding mode specified in MXCSR. Cvtt* truncates the fractional part.
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Table C.14

Operation Types DEC HP HP SGI SGI
MVI MAX-1 MAX-2 MIPS-V | MDMX
[ Extract Field to Reg. || - - - - -
[ Insert Selected Field [ - - - - -
[ Insert Low Field [ - - - - -
Byte Shft Rt & Extract
By Immed. extbl,extwl,extll,extql - - - -
By Register extbl,extwl,extll,extql - - - -
Byte Shft Lt & Extract
By Immed. extwh,extlh,extgh - - - alni.ob,
alni.gh
By Register extwh,extlh,extgh - - alnv.ob,
alnv.qh
alnv.ps
Byte Shft Rt & Insert inswh,inslh,insqh - - - -
into Zeroed Reg
Byte Shft Lt & Insert insbl,inswl,insll,insql - - - -
into Zeroed Reg
Bit Shft Lt & Extract - (v)extrs | extrw(,s), - -
(v)extru | extrw,ul
- extrd(,s),
- extrd,u?
Merge, Bit Shft Rt - (v)shd shrpw, - -
& Extract shrpd
Bit Shift Left & Insert
into Zeroed Reg
from Immed - z(v)depi depwi,z, - -
depdi,z
from Reg - z(v)dep depw,z, - -
depd,z
Bit Shift Left & Insert
into Unchanged Reg
from ITmmed - (v)depi depwi, - -
depdi
from Reg - (v)dep depw, - -
depd
| Clear Segment Low | mskbl,mskwl,mskll,mskql - - - -
[ Clear Segment High | mskwh msklh,mskgh - - - -
Permute
Part/Indexed by Part - - - - -
Part/Indexed by ITmm - - permh - -

Swap Fields

!See table D-13, pD-9 in [82].
2See table D-14, pD-9 in [82].
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Table C.14 cont’d.
Data Extraction, Insertion, and Permutation Operations

Operation Types

Motorola
AltiVec

Sun
VIS

Intel
MMX

Intel
SSE

Intel
SSE2

Extract Field to Reg.

| pextrw |

pextrw

Insert Selected Field

| pinsrw |

pinsrw

Insert Low Field

| movss |

movsd

Byte Shft Rt & Extract

By Immed.
By Register

faligndata

Byte Shft Lt & Extract

By Immed.

By Register

Byte Shft Rt & Insert
into Zeroed Reg

Byte Shft Lt & Insert
into Zeroed Reg

Bit Shft Lt & Extract

Merge, Bit Shft Rt
& Extract

Bit Shift Left & Insert
into Zeroed Reg

from Immed

from Reg

Bit Shift Left & Insert
into Unchanged Reg

from Tmmed

from Reg

Clear Segment Low

Clear Segment High

Permute

Part/Indexed by Part
Part/Indexed by Imm

pshufw,

shufps

pshuflw,pshufhw,
pshufd,

shufpd

Swap Fields
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Table C.14 cont’d.
Data Extraction, Insertion, and Permutation Operations

Operation Types

AMD
3DNow!

AMD
E3DNow!

AMD
3DNow!Pro

Cyrix
EMMX

Extract Field to Reg.

pextrw

Insert Selected Field

pinsrw

Insert Low Field

Byte Shft Rt & Extract

By Immed.
By Register

Byte Shft Lt & Extract

By Immed.

By Register

Byte Shft Rt & Insert
into Zeroed Reg

Byte Shft Lt & Insert
into Zeroed Reg

Bit Shft Lt & Extract

Merge, Bit Shft Rt
& Extract

Bit Shift Left & Insert
into Zeroed Reg

from Immed

from Reg

Bit Shift Left & Insert
into Unchanged Reg

from Tmmed

from Reg

Clear Segment Low

Clear Segment High

Permute

Part/Indexed by Part
Part/Indexed by ITmm

shufps

Swap Fields
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Table C.15
Interleaving Operations

Operation Types DEC HP HP SGI SGI Motorola Sun
MVI | MAX-1 | MAX-2 | MIPS-V MDMX AltiVec VIS
[ Interleave (Merge) I - 1 - | - | - | - | - | fpmerge
Interleave odd (left) - - mixh,], - - - -
mixw,l
Interleave even (right) - - mixh,r, - - - -
mixw,r
Interleave upper
Part/Part - - - shfl.mixh.ob, | vmrghb, -
shfl.mixh.qh vmrghh,
puu.ps vmrghw
Part/Imm - - - - shfl.mixh.ob, - -
shfl.mixh.qh
Part/Scalar - - - - shfl.mixh.ob, - -
shfl.mixh.qh
Part/Zero - - - - shfl.upuh.ob - -
Interleave lower
Part/Part - - - shfl.mixl.ob, vmrglb, -
shfl.mixl.qh vmrglh,
pll.ps vmrglw
Part/Tmm - - - - shfl.mixl.ob, - -
shfl.mixl.qh
Part/Scalar - - - - shfl.mixl.ob, - -
shfl.mixl.qh
Part/Zero - - - - shfl.upul.ob - -
[ Scale, Trunc., Clip & Merge [[ - - - - | - | - | fpack32
Interleave even w/odd
Forward or Reverse
Part/Part - - - - shfl.bfl[ab].qh - -
plu.ps
Part/Tmm - - - - shfl.bfl[ab].qh - -
Part/Scalar - - - - shfl.bfl[ab].qh - -
Interleave odd w/even
Forward or Reverse
Part/Part - - - pul.ps - - -
Part/Tmm - - - - - - -
Part/Scalar - - - - - - -
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Table C.15 cont’d.

Operation Types Intel Intel Intel
MMX SSE SSE2
[ Interleave (Merge) I - | - -
Interleave odd (left) - - -
Interleave even (right) - - -
Interleave upper
Part/Part punpckhbw, punpckhbw,
punpckhwd, punpckhwd,
punpckhdq unpckhps punpckhdq,
punpckhqdq,unpckhpd
Part/Imm - - -
Part/Scalar - - -
Part/Zero - - -
Interleave lower
Part/Part punpcklbw, punpcklbw,
punpcklwd, punpcklwd,
punpckldq unpcklps punpckldq,
punpcklqdq,unpcklpd
Part/Imm - - -
Part/Scalar - - -
Part/Zero - - -

Scale, Trunc., Clip & Merge

Interleave even w/odd
Forward and Reverse

Part/Part

Part/Imm
Part/Scalar

Interleave odd w/even
Forward and Reverse

Part/Part
Part/Imm
Part/Scalar
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Table C.15 cont’d.
Interleaving Operations

Operation Types

AMD
3DNow!

AMD
E3DNow!

AMD
3DNow!Pro

Cyrix
EMMX

Interleave (Merge)

Interleave odd (left)

Interleave even (right)

Interleave upper

Part/Part

Part/Imm
Part/Scalar

Part/Zero

unpckhps

Interleave lower

Part/Part

Part/Imm
Part/Scalar

Part/Zero

unpcklps

Scale, Trunc., Clip & Merge

Interleave even w/odd
Forward and Reverse

Part/Part

Part/Imm
Part/Scalar

Interleave odd w/even
Forward and Reverse

Part/Part
Part/Tmm
Part/Scalar




Table C.16
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Catenating, Packing, and Unpacking Operations

Operation Types DEC HP SGI SGI Motorola
MVI MAX | MIPS-V MDMX AltiVec
Catenate odd
Part/Part - - - shfl.pach.ob, -
shfl.pach.qh
Part/Tmm - - - shfl.pach.ob, -
shfl.pach.qh
Part/Scalar - - - shfl.pach.ob, -
shfl.pach.qh
Catenate even
Part/Part - - - shfl.pacl.ob, vpkuhum,
shfl.pacl.qh vpkuwum
Part/Imm - - - shfl.pacl.ob, -
shfl.pacl.qh
Part/Scalar - - - shfl.pacl.ob, -
shfl.pacl.qh
Catenate upper
Part/Part - - - shfl.repa.qh -
Part/Imm - - - shfl.repa.qh -
Part/Scalar - - - shfl.repa.qh -
Catenate lower
Part/Part - - - shfl.repb.qh -
Part/Tmm - - - shfl.repb.qh -
Part/Scalar - - - shfl.repb.qh -
Unsigned Saturate, - - - - vpkshus,vpkuhus,
Pack, and Catenate vpkswus,vpkuwus
Signed Saturate, - - - - vpkshss,
Pack, and Catenate vpkswss
Pixel Pack - - - - vpkpx
and Catenate
Truncate & Pack pklb, - - - -
Low Byte pkwb
Scale, Truncate, - - - - -
& Clip
Unpack Lower - - - shfl.upsl.ob vupklsb,
& Sign Extend vupklsh
Unpack Upper - - - shfl.upsh.ob vupkhsb,
& Sign Extend vupkhsh
Unpack Low Bytes unpkbl, - - - -
& Zero Extend unpkbw
[ Unpack Lower Pixel ]| - -] - - vupklpx
[ Unpack Upper Pixel || - -] - - vupkhpx

Zero Expand [
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Table C.16 cont’d.

Catenating, Packing, and Unpacking Operations

Operation Types

Sun
VIS

Intel
MMX

Intel
SSE

Intel
SSE2

Catenate odd

Part/Part
Part/Imm

Part/Scalar

Catenate even

Part/Part
Part/Imm

Part/Scalar

Catenate upper

Part/Part
Part/Imm
Part/Scalar

movhlps

Catenate lower

Part/Part
Part/Tmm
Part/Scalar

Unsigned Saturate,
Pack, and Catenate

packuswb

packuswb

Signed Saturate,
Pack, and Catenate

packsswb,
packssdw

packsswb,
packssdw

Pixel Pack
and Catenate

Truncate & Pack
Low Byte

Scale, Truncate,
& Clip

fpack16,
fpackfix

Unpack Lower
& Sign Extend

Unpack Upper
& Sign Extend

Unpack Low Bytes
& Zero Extend

Unpack Lower Pixel

Unpack Upper Pixel ||

Zero Expand

fexpand
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Table C.16 cont’d.
Catenating, Packing, and Unpacking Operations

Operation Types

AMD
3DNow!

AMD
E3DNow!

AMD
3DNow!Pro

Cyrix
EMMX

Catenate odd

Part/Part
Part/Imm

Part/Scalar

Catenate even

Part/Part
Part/Imm

Part/Scalar

Catenate upper

Part/Part
Part/Imm
Part/Scalar

movhlps

Catenate lower

Part/Part
Part/Imm
Part/Scalar

Unsigned Saturate,
Pack, and Catenate

Signed Saturate,
Pack, and Catenate

Pixel Pack
and Catenate

Truncate & Pack
Low Byte

Scale, Truncate,
& Clip

Unpack Lower
& Sign Extend

Unpack Upper
& Sign Extend

Unpack Low Bytes
& Zero Extend

Unpack Lower Pixel

Unpack Upper Pixel

Zero Expand
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Table C.17
Memory Access Operations

Operation Types DEC HP HP SGI SGI Motorola
MVI | MAX-1 MAX-2 MIPS-V | MDMX AltiVec
Load Aligned Idbu, 1db, Idb, - Ivebx,
Idwu, Idh, Idh, Ivehx,
1dl, Idw Idw and ldwa, Ivewx,
1dq Idd and Idda luxcl
lvx or lvxl!
Load Unaligned - - - - -
Idq-u

[ Load Field I - - | - | - | - | -

[ Toad Tmmediate [| - [ Idil | 1dil | - [ - ] -
Load Zeros - - - - - -
Load All Ones - - - - - -
Load Alignment - - - - - lvsl or lvsr
Vector
Store Aligned stb, stb, stb, - stvebx,

stw, sth, sth, stvehx,
stl, stw stw and stwa stvewx,
stq std and stda suxcl
stvx or stvxl!
Store Unaligned stbys stby, - - -
stdby
stq-u
Store Aligned - - - - - -
w/Cache Flush
Masked Store
by Bitmask - - - - - -
by msb of Part - - - - - -

[ Store Sync [ wmb ] - | - | - | - | -

[ Load Sync I - - | - | - | - | -

[ Memory Sync [ - [ sync | - | - | - | -

Spin-wait Hint [ -

'Hints that the reference will probably be the last to this cache block.
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Table C.17 cont’d.

Memory Access Operations

Operation Types Sun Intel Intel Intel
VIS MMX SSE SSE2
Load Aligned 1ddfa,d0, -
lddfa,d2,
movaps movdqga,movapd
1ddfa,[7f]0
Load Unaligned - movd, movss, movd,
movq movq,movsd,
movhps, movhpd,
movlps, movlpd,
movups movdqu,movupd
[ Load Field [ - [ - ] pinsrw | pinsrw |
[ Load Immediate || - [ - ] - | - |
Load Zeros fzeros, - - -
fzero
Load All Ones fones, - - -
fone
Load Alignment - - - -
Vector
Store Aligned stdfa,dO, -
stdfa,d2,
movnti,
movntq,
movdga,movntdq,
movaps,movntps | movapd,movntpd
stdfa,[7f]0
Store Unaligned -
movd, movss, movd,
movq movq,movsd,
movhps, movhpd,
movlps, movlpd,
movups movdqu,movupd
Store Aligned stdfa,e0 - - -
w/Cache Flush
Masked Store
by Bitmask stdfa,c0, - - -
stdfa,c2,
stdfa,c4
by msb of Part - - maskmovq maskmovdqu
| Store Sync [ - [ - ] sfence | - |
[ Load Sync [ - [ - ] - | Ifence |
[ Memory Sync [ - [ - ] - | mfence |
[ Spin-wait Hint || - [ - ] - | pause |
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Table C.17 cont’d.
Memory Access Operations

Operation Types AMD AMD AMD Cyrix
3DNow! | E3DNow! 3DNow!Pro EMMX
Load Aligned - - z
movaps
Load Unaligned - - movss, B
movhps,
movlps,
movups
[ Load Field I - [ pinsrw ] - [ -]
[ Load Immediate || - [ - [ _ [ - |
Load Zeros - - B -
Load All Ones - - B -
Load Alignment - - - z
Vector
Store Aligned - N
movntq
movaps,movntps
Store Unaligned - - z
movss,
movhps,
movlps,
movups
Store Aligned - - - N
w/Cache Flush
Masked Store
by Bitmask - - N -
by msb of Part - maskmovq - -
Store Sync [ - sfence - -

Load Sync

Memory Sync

Spin-wait Hint
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Table C.18

Cache Management Operations

Operation Types

DEC
MVI

SGI
MIPS-V

SGI
MDMX

Motorola
AltiVec

Prefetch Data Line

Prefetch Data Line for Write

Prefetch Hint

Prefetch Hint Transient

dstt

Store Hint

dstst

Store Hint Transient

dststt

Disassociate ID and Stream(s)

dss or dssall

Evict Hint

Flush Line

fdc,fic -

Purge Line

pdc -

Flush Cache

fdce,fice -

Operation Types

Intel
SSE

AMD
3DNow!

AMD
E3DNow!

AMD
3DNow!Pro

Prefetch Data Line ||

prefetch |

Prefetch Data Line for Write ||

prefetchw |

Prefetch Hint I

prefetch*T

- | prefetch*!

Prefetch Hint Transient ||

Store Hint I

Store Hint Transient I

Disassociate ID and Stream ||

Bvict Hint I

Flush Line

Purge Line

Flush Cache

I prefetcht0, prefetcht1, prefetcht2, prefetchnta.
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APPENDIX D
SCC INTERNAL PSEUDO-OPERATIONS

The following table lists the pseudo-ops used internally in the Scc compiler, along
with the number of arguments each takes (i.e. the number of subtrees representing
arguments which are attached to the pseudo-op’s node. A “-” means that the con-
struct has multiple children, but these are not considered to be arguments per se.
“Null” means that the node is a leaf, or that it’s arguments are provided in some
other manner. “U” means that the operation is unary (one argument). “UR” means
that it is a unary reduction (i.e. a unary that returns a single value. “Bi” means that
the operation is binary (two arguments). “Tri” means that the operation is trinary

(three arguments).
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Table D.1
Scc Internal Pseudo-operations

Pseudo-op Args. Meaning

BLOCK - A block of code

BREAK - Break statement

CALL - Function call

CONTINUE - Continue statement

DO - Do statement

EVERYWHERE - Everywhere statement

EXPR - Expression

FOR - For statement

GOTO - Goto statement

IF - If statement

LABEL - Label

RETURN - Return statement

SEMI - An empty statement

WHERE - Where statement

WHILE - While statement

NUM Null A constant single number

VNUM Null A constant parallel number

SIZEOF Null sizeof operator

LVSL Null | Load index vector for shift left (used for alignment in AltiVec)
LOAD Null Vector load

NEG U Parallel negate

RCP U Parallel reciprocal (or 1st step of 3 step operation)
NOT U Parallel bitwise-NOT (1’s complement)
CAST U Type cast arg0

I2F U Parallel convert arg0 from integer to floating-point
F21 U Parallel convert arg0 from floating-point to integer
LNOT U Parallel logical NOT yielding -1 or 0

LEA U Load/calculate effective address and store in register
LOADR U Fragment load based on effective address in register
LOADRR U Fragment load based on effective address in a pair of registers
LOADX U Vector element load

STORE U Vector store

UNPACKL U Unpack and extend the lower fields of a source
UNPACKH U Unpack and extend the higher fields of a source
ALL UR Reduce logical-AND of arg0

ANY UR Reduce logical-OR of arg0
REDUCEADD UR Reduce add of arg0
REDUCEAND UR Reduce bitwise-AND of arg0
REDUCEAVG UR Reduce average of arg0
REDUCEMAX UR Reduce maximum of arg0
REDUCEMIN UR Reduce minimum of arg0
REDUCEMUL UR Reduce multiply of arg0
REDUCEOR UR Reduce bitwise-OR of arg0
REDUCEXOR UR Reduce bitwise-XOR of arg0
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Table D.1 cont’d.
Scc Internal Pseudo-operations

Pseudo-op Args. Meaning

ADD Bi Parallel add

ADDH Bi Parallel add high (low bit is carry-out of add)
AVG Bi Parallel average

DIV Bi Parallel divide

MOD Bi Parallel modulus

MUL Bi Parallel multiply (low N bits of result of NxN)
MULEVEN Bi Parallel multiply (even N-bit fields yeilding 2N-bit result)
MULODD Bi Parallel multiply (odd N-bit fields yeilding 2N-bit result)
MULH Bi Parallel multiply high (high N bits of result)
MAX Bi Parallel maximum

MIN Bi Parallel minimum

RCP1 Bi Parallel reciprocal (or 2nd step of 3 step operation)
RCP2 Bi Parallel reciprocal (or 3rd step of 3 step operation)
SUB Bi Parallel subtract

AND Bi Parallel bitwise-AND

ANDN(x,y) Bi | Parallel bitwise-AND with complement (Identical to AND(NOT x, y))
NOR Bi Parallel bitwise-NOR

OR Bi Parallel bitwise-OR

XOR Bi Parallel bitwise-XOR

EQ Bi Parallel == yielding -1 or 0

EQ.C Bi Parallel == yielding 1 or 0 (C-like result)

GE Bi Parallel >= yielding -1 or 0

GT Bi Parallel > yielding -1 or 0

GT_C Bi Parallel > yielding 1 or 0 (C-like result)

LE Bi Parallel <= yielding -1 or 0

LT Bi Parallel < yielding -1 or 0

NE Bi Parallel ! = yielding -1 or 0

LAND Bi Parallel logical AND yielding -1 or 0

LOR Bi Parallel logical OR yielding -1 or 0
STORER Bi Fragment store based on effective address in register
STORERR Bi Fragment store based on effective address in a pair of registers
STOREX Bi Vector element store

ROTATE Bi Vector rotate (inter-element rotate) (count>0 is left?)
SHIFT Bi Vector shift (inter-element shift) (count>0 is left?)
SHL Bi Parallel intra-element shift left

SHLBIT Bi Parallel fragment shift left by bits
SHLBYTE Bi Parallel fragment shift left by bytes

SHR Bi Parallel intra-element shift right

SHRBIT Bi Parallel fragment shift right by bits
SHRBYTE Bi Parallel fragment shift right by bytes
INTRLVLOW Bi Interleave lower fields of sources
INTRLVHIGH Bi Interleave higher fields of sources
INTRLVEVEN | Bi Interleave even fields of sources
INTRLVODD Bi Interleave odd fields of sources
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Table D.1 cont’d.
Scc Internal Pseudo-operations

Pseudo-op | Args. Meaning

PACK Bi Catenate the even fields of sources (arg0 into low half)
PACKS2U | Bi | Catenate the signed, even? fields of sources (arg0 into low half?)
PERM Bi Permute arg0 indexed via argl

REPL Bi Replicate field ’argl’ of ’arg(’ in rest of fragment
PUTGET Bi? Unused
QUEST Tri Trinary construct (e.g. a? true:false)

TPERM Tri

Permute arg0 and argl indexed via arg2
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APPENDIX E
THE INTEGER EXPRESSION VALIDATION PROGRAM

The integer expression validation program is written using C preprocessor macros to
minimize its size. In this form, it is about 500 lines long, so I only include some
sections here with some empty lines removed. Below is the macro which is expanded
to create the SWARC functions for testing an operation op, for vectors of fields
elements of signed or unsigned (sign), bits-bit precision, using modular or saturation

arithmetic (ms).

#define BINOP(name, op, bits, fields, sign, ms) \
void name (ms sign##signed int i, ms sign##signed int j, \
ms sign##signed int:bits[fields] c) \
{ \
ms sign##signed int:bits[fields] a; \
ms sign##signed int:bits[fields] b; \
\
a=1ij; \
b=7j; \
c = a op b; \
}

The C versions of these operations are generated using a set of macros which are
not included here. These must emulate the operations performed by the SWARC
code, handling saturation and non-standard bits sizes correctly.

Debugging the Scc compiler using macro-generated code is particularly painful.
Here is an example function generated by the macro shown above for adding 1-bit

unsigned integer values using modular addition:

void addlum(modular unsigned int i, modular unsigned int j,
modular unsigned int :1[64] c) { modular unsigned int:1[64] a;
modular unsigned int:1[64] b; a = i; b= j; c = a + b; }

This is embedded in a longer line of code because the above macro is nested in

another macro that generates all the functions for 1-bit unsigned modular data. This
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can be seen by typing “make valid64-MMX” in the Examples/Valid directory of the
Scc compiler sources and looking at the file valid64.Si. 1 have never found a way to
embed a newline or line-feed character in these macros to make the generated code
more readable.

An example of the C code generated by the Scc compiler for an MMX-based
target is given below. Here, we see the wrapper macros generated to execute the
MMX instructions:

/* # 100 "valid64.Sc'"x/
__inline__

void addlum(unsigned int *i,
unsigned int *j,

p64_t *c)

{

extern p64_t cpool64[];
register p64_t *_cpool

&(cpool64[0]);

extern p64_t spool64[];
register p64_t *_spool

& (spool64[0]);

{

volatile pB64_t al[l];

volatile p64_t b[1];

movq_m2r (*(_cpool + 0), mmO) ;

movg_m2r (*(((p64_t *) ((char *)i +0)) + 0), mml);

movq_m2r (*(_cpool + 2), mm2);

pand_r2r (mm2, mml) ;

movq_r2r (mm0, mm3) ;

psubd_r2r (mm1, mmO);

movq_r2r (mm0, mm4) ;

psllq_i2r(32, mm0) ;

movqg_m2r (*(((p64_t *) ((char *)j +0)) + 0), mm5);

por_r2r (mm0, mm4) ;

pand_r2r (mm5, mm2) ;

psubd_r2r (mm2, mm3) ;

movqg_r2r (mm3, mm6) ;

psllg_i2r(32, mm3);

por_r2r (mm3, mm6) ;

pxor_r2r (mm6, mm4) ;

movqg_r2m(mm4, *(((p64_t *) ((char *)c +0)) + 0));
}

emms () ;
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In this code, a macro with a name that ends in “r2r” performs an operation on one or
more registers and leaves its result in a register. A macro with an “m2r” suffix takes
an operand from memory and leaves its result in a register. Also, a macro with an
“r2m” suffix takes an operand from a register and leaves its result in memory. The
objects “mm0”, “mml”, etc. represent MMX registers. The type p64_t is a union
type which represents a fragment of data. emms () must be called to put the system
back into floating-point mode from MMX mode.

Each macro is replaced with one or more inline assembly statements. Here is the

preprocessed code corresponding to the above function with some formatting changes:

__inline

void addlum(unsigned int *i, unsigned int *j, p64_t *c)

{

&(cpool64[0]);
& (spool64[0]);

extern p64_t cpool64[]; register p64_t *_cpool
extern p64_t spool64[]; register p64_t *_spool

{
volatile p64_t all];
volatile p64_t b[1];
__asm__ __volatile__ ("movg" " %0, %A" "mmO" : : "m" (*(_cpool + 0)));
__asm__ __volatile__ ("movq" " %0, %%" "mml" : :
"m" (% (((p64_t *) ((char *)i +0)) + 0)));
__asm__ __volatile__ ("movqg" " %0, %A" "mm2" : : "m" (*(_cpool + 2)));
__asm__ __volatile__ ("pand" " %" "mm2" ", %" "mml");
__asm__ __volatile__ ("movq" " %" "mmO" ", %" "mm3");
__asm__ __volatile__ ("psubd" " %" "mm1" ", %" "mmO");
__asm__ __volatile__ ("movq" " %" "mmO" ", %" "mm4");
__asm__ __volatile__ ("psllg" " $" "32" ", %" "mmO");
__asm__ __volatile__ ("movqg" " %0, %%" "mm5"
"m" (*(((p64_t *) ((char *)j +0)) + 0)));
__asm__ __volatile__ ("por" " %" "mmO" ", %" "mm4");
__asm__ __volatile__ ("pand" " %" "mm5" ", %" "mm2");
__asm__ __volatile__ ("psubd" " %" "mm2" ", %" "mm3");
__asm__ __volatile__ ("movq" " %" "mm3" ", %" "mm6");
__asm__ __volatile__ ("psllg" " $" "32" ", %" "mm3");
__asm__ __volatile__ ("por" " %" "mm3" ", %" "mm6");
__asm__ __volatile__ ("pxor" " %" "mm6" ", %" "mm4");
__asm__ __volatile__ ("movq" " %%" "mm4" ", %0"
"=m" (*(((p64_t *) ((char *)c +0)) + 0)) : );
}

asm__ __volatile ("emms") ;



- 392 -

The above function is compiled by the C compiler to assembly. The assembly

code generated is directly related to the C code generate by the Scc compiler. The

final code is scheduled according to the Scc compiler’s scheduling algorithm with the

C compiler generating the code for handling the stack.

.globl addilum

addium:

#APP

#NO_APP

.type

pushl
movl
pushl
pushl
subl
movl
movl
movl
movl
movl

addium,@function

%ebp
%esp, %ebp
fhesi
%ebx
$16, %esp

8(%ebp) , %edx
12(%ebp), %ecx
16 (%ebp) , %ebx
$cpool6s, Yeax
$spool64, Yesi

movq (%eax), %mmO
movq (%edx), %mml
movq 16(%eax), %mm2
pand /mm2, %mml
movq %mmO, %mm3
psubd %mml, %mmO
movq %mmO, %mm4
psllg $32, %mmO
movq (%ecx), %mmb5
por %mmO, %mmé
pand mm5, %mm2
psubd %mm2, %mm3
movq %mm3, %mm6
psllq $32, %mm3
por %mm3, %mm6
pxor %mm6, %mm4
movq %mmé, (%ebx)

emms

addl
popl
popl
popl
ret

$16, %esp
%hebx
%hesi
%ebp
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APPENDIX F
THE DNA EXAMPLE BENCHMARK

This is the SWARC source with inlined C code for the DNA example benchmark.
Note the lack of target-specific code in the SWARC sections of the source, and the

exposure of the target architecture in the inlined C code.

${

$include <stdio.h>

$include <stdlib.h>

$include <time.h>

$include <sys/times.h>

$include <limits.h>

$include <time.h>

typedef unsigned long long int ullong;

$}

#include "common.h"

#if BPF == 128
#define FRAGTYPE p128_t
#define FRAGCTYPE ullong
#define FRAGEXT uq

#elif BPF == 64
#define FRAGTYPE p64_t
#define FRAGCTYPE ullong
#define FRAGEXT uq
#define FRAGCONST ULL

#else
#define FRAGTYPE p32_t
#define FRAGCTYPE unsigned
#define FRAGEXT ud
#define FRAGCONST U

#endif

${

struct tms junk;
clock_t start, end, comptime;

$}
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void f(unsigned int:2[LENGTH] DNA, unsigned int total)
{

unsigned int:2[3] substring;
unsigned int:2[LENGTH] count;
unsigned int i;

#ifdef DEBUG_PEEK

${
static pl128_t output;
{
$}
#endif
#ifdef DEBUG_TOTAL
${
printf ("total=%u\n", *total);
$}
#endif
#ifdef DEBUG_SUBSTRING
${
substring[0] .uq[0] = 0x0123456789abcdefULL;
substring[0] .uq[1] = 0xfedcba9876543210ULL;
printf ("substring[0]1={0x%01611x,0x%01611x}\n",
substring[0] .uq[0], substring[0].uql[1]);
$}
#endif

substring[0]=A; substring[1]=G; substring[2]=T;
#ifdef DEBUG_SUBSTRING

${
printf ("substring[0]={0x%01611x,0x%01611x}\n",
substring[0] .uq[0], substring[0].uql[1]);
$
#endif
count = 0;
#ifdef DEBUG_COUNT
${
int frag, x;
for (frag=0; frag<((LENGTH/(BPF/2))+1); ++frag) {
printf ("count[%d]={0x%01611x,0x%01611x}\n",
frag, count[frag].uq[0], count[fragl.uql1]);
}
for (x=0; x<((LENGTH/(BPF/2))+1); ++x)
printf(" DNA[%d]={0x%01611x,0x%01611x}\n",
x, DNA[x].uq[0], DNA[x].uql1]);
$

#endif
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for (i=0; i<3; ++i) {
#ifdef DEBUG_COUNT
${

int x;

printf ("At top of loop: in memory order\n");
for (x=0; x<((LENGTH/(BPF/2))+1); ++x)
printf ("count[%d]={0x%01611x,0x%01611x}\n",
x, count[x].uql[0], count[x].uq[1]);
#ifdef DEBUG_SETCOUNTBYHAND
printf("After setting by hand: in memory order\n");

count [0] .uq[0] = Oxffffffffffffffff;
count [0] .ugq[1] = 0x0000000000000000;
count [1] .uq[0] = 0x0123456789abcdef;
count[1] .uq[1] = 0xfedcba9876543210;

for (x=0; x<((LENGTH/(BPF/2))+1); ++x)
printf ("count[%d]={0x%01611x,0x%01611x}\n",
x, count[x].uql[0], count[x].uq[1]);
#endif
$r
#endif
count = count[<< 1];
#ifdef DEBUG_COUNT

${
int x;
printf ("After shift: in memory order\n");
for (x=0; x<((LENGTH/(BPF/2))+1); ++x)
printf ("count[%d]={0x%01611x,0x%01611x}\n",
x, count[x].uql[0], count[x].uql[1]);
$}

#endif
count += (DNA == substring[i])? 1:0;
#ifdef DEBUG_COUNT

${
int x;
printf ("At bottom of loop: in memory order\n");
for (x=0; x<((LENGTH/(BPF/2))+1); ++x)
printf ("count[%d]={0x%01611x,0x%01611x}\n",
x, count[x].uql0], count[x].uql[1]);
printf ("\n");
$}

#tendif
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#ifdef DEBUG_COUNT

$4{
int x;
printf ("Just outside loop: in memory order\n");
for (x=0; x<((LENGTH/(BPF/2))+1); ++x)
printf ("count[%d]={0x%01611x,0x%01611x}\n",
x, count[x].uql[0], count[x].uq[1]);
$
#endif
count = (count == 3)7 1:0;
#ifdef DEBUG_COUNT
${
int x;
printf ("After marking full counts: in memory order\n");
for (x=0; x<((LENGTH/(BPF/2))+1); ++x)
printf ("count [%d]={0x%01611x,0x%01611x}\n",
x, count[x].uql[0], count[x].uql[1]);
$
#endif

total += count;
#ifdef DEBUG_TOTAL

${
printf ("total=%u\n", *total);
$r
#endif
#ifdef DEBUG_PEEK
${
printf ("output = {0x%01611x, 0x}%0161lx}\n",
output.uq[0], output.uq[l]);
}
$r
#endif
}
${
int main(void)
{

int iters, i, j, k;
unsigned int total = 0O;
FRAGTYPE DNA[((2*LENGTH-1)/BPF)+11];

#ifdef TIME_OVERALL
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start = times(&junk);
#endif

#ifdef TIME_COMPUTE
comptime = OULL;

#endif

srand (SEED) ;

for (iters=0; iters<ITERS; ++iters) {
/* Full fragments - 32,31,...,0 x/
for (i=0; i<LENGTH/(BPF/2); ++i) {
for (j=0; j<(BPF/2); ++j) {
#if BPF==128
DNA[i] .FRAGEXT[0] = (DNA[i] .FRAGEXT[0]>>2)
(DNA[i] .FRAGEXT[1] << ((BPF/2)-2));
DNA[i] .FRAGEXT[1] = (DNA[i] .FRAGEXT[1]>>2)
( ((FRAGCTYPE) (4.0*rand()/(RAND_MAX+1.0))&0x3)
<< 62 );
#else
DNA[i] .FRAGEXT = (DNA[i] .FRAGEXT>>2) |
( ((FRAGCTYPE) (4.0*rand()/(RAND_MAX+1.0))&0x3)
<< BPF-2 );
#endif

/* Final, possibly partially-filled, fragment */
if (i == (2*LENGTH-1)/BPF) {
#if BPF==128
DNA[i] .FRAGEXT[1] = DNA[i] .FRAGEXT[0] = OULL;
#else
DNA[i] .FRAGEXT = OULL;
#endif
}
for (j=0; j<LENGTH%(BPF/2); ++j) {
#if BPF==128
if (LENGTH%(BPF/2) > 32) {
/* Store in upper half */
DNA[i] .FRAGEXT[0] = (DNA[i].FRAGEXT[0]>>2)
(DNA[i] .FRAGEXT[1] << ((BPF/2)-2));
DNA[i] .FRAGEXT[1] = (DNA[i].FRAGEXT[1]>>2)
( ((FRAGCTYPE) (4.0*rand()/(RAND_MAX+1.0))&0x3)
<< ((LENGTHY ((BPF/2)/2))*2)-2);
} else {
/* Store in lower half */
DNA[i] .FRAGEXT[1] = OULL;
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DNA[i] .FRAGEXT[0] = (DNA[i].FRAGEXT[0]>>2)
( ((FRAGCTYPE) (4.0*rand()/(RAND_MAX+1.0))&0x3)
<< ((LENGTHY%((BPF/2)/2))%2)-2);
}
#else
DNA[i] .FRAGEXT = (DNA[i].FRAGEXT>>2)
( ((FRAGCTYPE) (4.0*rand()/(RAND_MAX+1.0))&0x3)
<< ((LENGTH’ (BPF/2))*2)-2);
#endif

#ifdef DEBUG
printf (" (Descending order) DNA[i]=");
for (i=0; i<LENGTH; ++i) {
#if BPF==128
j (LENGTH-1-1i)/(BPF/2);
k (LENGTH-1-i)%(BPF/2) ;
if (k >= (BPF/4)) {
/* Field is in upper half */
k -= (BPF/4);
printf ("%1lu ",
(DNA[j] .FRAGEXT[1]1>>2%k) & O0x3ULL);
} else {
/* Field is in lower half */
printf ("%1lu ",
(DNA[j] .FRAGEXT[0]>>2%k) & Ox3ULL);

}
#else
j = (LENGTH-1-i)/(BPF/2);
k = (LENGTH-1-1i)%(BPF/2);
printf("%d ",
(int) ((DNA[j] .FRAGEXT >> 2xk) &
0x3FRAGCONST) ) ;
#endif
}
printf ("\n");
#endif

#ifdef TIME_COMPUTE
start = times(&junk) ;
#endif
f(DNA, &total);
#ifdef TIME_COMPUTE
end = times(&junk);
comptime += (end-start);
#endif
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}
printf ("Total was %u.\n", total);

#ifdef TIME_OVERALL
end = times(&junk);
printf ("Time elapsed for %d element check: %1d (%1d, %1d)\n",
LENGTH, end-start, end, start);
#endif
#ifdef TIME_COMPUTE
printf ("Time elapsed for ’%d element check: %1ld\n",
LENGTH, comptime) ;

#endif
return O;
}
$}
The C versions of this program are similar to one another. The C character version
is:

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <sys/times.h>
#include <limits.h>
#include <time.h>

#include "common.h"

struct tms junk;
clock_t start, end, comptime;

int £ (char DNA[])
{
char substring[3] = {A, G, T};
char count [LENGTH] ;
int total;
int i, j;

/* start = times(&junk); */
for (i=0; i<LENGTH-2; ++i) count[i] = O;

total = 0;
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for (i=0; i<3; ++i)
for (j=0; j<LENGTH-2; ++j)
count [j] += (DNA[j+i] == substringl[il);

for (i=0; i<LENGTH-2; ++i)
total += (count[i] == 3);

/* end = times(&junk); */
/* printf ("Time elapsed for %d element check: %1d (%1d, %1d)\n",
LENGTH, end-start, end, start);

*/
return total;
}
int main(void)
{
int iters;
int 1i;

int total = O;
char DNA[LENGTH] ;

#ifdef TIME_OVERALL
start = times(&junk);
#endif

#ifdef TIME_COMPUTE
comptime = OULL;
#tendif

srand (SEED) ;
for (iters=0; iters<ITERS; ++iters) {
for (i=0; i<LENGTH; ++i) {
DNA[i] = (char) (4.0*rand()/(RAND_MAX+1.0));
}
#ifdef DEBUG
printf ("DNA[i]=");
for (i=LENGTH-1; i>=0; —-i) {
printf("%x ", DNA[i]);
}
printf ("\n");
#endif

#ifdef TIME_COMPUTE
start = times(&junk);
#endif
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total += f(DNA);
#ifdef TIME_COMPUTE
end = times(&junk);
comptime += (end-start);
#endif
}
printf ("Total was %d.\n", total);

#ifdef TIME_OVERALL
end = times(&junk);
printf ("Time elapsed for %d element check: %1d (%1d, %1d)\n",
LENGTH, end-start, end, start);
#endif
#ifdef TIME_COMPUTE
printf ("Time elapsed for ’%d element check: %1ld\n",
LENGTH, comptime) ;
#endif

return 0;

The C integer version is:

#include
#include
#include
#include
#include
#include

#include

struct t
clock_t

int £ (i
{

<stdio.h>
<stdlib.h>
<time.h>
<sys/times.h>
<limits.h>
<time.h>

"common.h"

ms junk;
start, end, comptime;

nt DNA[])

int substring[3] = {A, G, T};
int count [LENGTH] ;

int total;

int i, j;

/* start = times(&junk); */

for (i=0; i<LENGTH-2; ++i) count[i] = 0;
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total = O;

for (i=0; i<3; ++i)
for (j=0; j<LENGTH-2; ++j)
count[j] += (DNA[j+i] == substringl[il);

for (i=0; i<LENGTH-2; ++i)
total += (count[i] == 3);

/* end = times(&junk); */
/* printf ("Time elapsed for %d element check: %1d (%1d, %1d)\n",
LENGTH, end-start, end, start);

*/
return total;
}
int main(void)
{
int iters;
int 1i;

int total = O;
int DNA[LENGTH] ;

#ifdef TIME_OVERALL
start = times(&junk);
#endif

#ifdef TIME_COMPUTE
comptime = OULL;
#endif

srand (SEED) ;
for (iters=0; iters<ITERS; ++iters) {
for (i=0; i<LENGTH; ++i) {
DNA[i] = (int) (4.0*rand()/(RAND_MAX+1.0));
}
#ifdef DEBUG
printf ("DNA[i]l=");
for (i=LENGTH-1; i>=0; —-i) {
printf("%x ", DNA[i]);
}
printf ("\n");
#endif
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#ifdef TIME_COMPUTE
start = times(&junk);
#endif
total += f(DNA);
#ifdef TIME_COMPUTE
end = times(&junk);
comptime += (end-start);
#endif
}
printf ("Total was %d.\n", total);

#ifdef TIME_OVERALL
end = times(&junk);
printf ("Time elapsed for %d element check: %1d (%1d, %1d)\n",
LENGTH, end-start, end, start);
#endif
#ifdef TIME_COMPUTE
printf ("Time elapsed for J%d element check: %1ld\n",
LENGTH, comptime) ;
#endif

return 0;

The following file defines the parameters of the experimental run to ensure com-
monality between each version:

/* Parameters of rTum sskskskskskskokoskoskokokoskokoskokokoskoskokoskok ko ko ok ok ok ok ok ok ok ok sk ok sk sk sk sk sk sksk sk sk ok sk sk sk ok ok ok
LENGTH is the length of the DNA vector to be searched,
ITERS is the number of iterations that the main loop will be run,
SEED is for random() to ensure all versions generate the same data.
*/
#define LENGTH 350
#define ITERS 1000000
#define SEED 11

/* Choose one of the following for timimg informatiom. skkskkskskkskskskkkskkkkskk
TIME_OVERALL includes time to initialize the data,
TIME_COMPUTE does not.
*/
#undef TIME_OVERALL
#define TIME_COMPUTE

/* Define this to generate some debugging information #kiskkkskskkkskskkkkskk*xk/
#undef DEBUG_PEEK
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#undef DEBUG_SUBSTRING
#undef DEBUG_COUNT

#undef DEBUG_SETCOUNTBYHAND
#undef DEBUG_TOTAL

/* Values for the genes. Do not change these. kkkikxsckkskokskkskkkkkkkkskkkk /
#define A 0
#define G 1
#define T 2
#define C 3
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APPENDIX G
NUMERICAL RESULTS FOR DNA BENCHMARK

This appendix contains the numeric results of experiments in porting the dna.Sc

benchmark program.

Speedup was calculated as the average time for the fastest C version divided by
the average time for the version under test. In all cases, 10 trials were run and the
running times of the counting function averaged. This separated the time to generate
the random data and pack it into the correct layout from the actual processing time.
This is reasonable under the assumption that measured data can be presented to the

computer in an optimal layout by the measuring device.

To ensure that the timing averages are reasonably precise despite the relatively
coarse-grained timing mechanism used, one million iterations of the loop were per-

formed in each trial and the resultant timings averaged.

G.1 Results on AltiVec Target

The Scc-generated AltiVec code achieved speedup, though significantly less than
one would hope given AltiVec’s 128-bit registers and the 2-bit data. The optimal
speedup would have been approximately 128/2 or 64x over serial 32-bit integer or 8-
bit character code. The average speedup calculated from the measured trials ranged

from about 3.8x to about 4.6x.

The results are presented in table G.1 below for Scc-generated code using 2-bit
integers and employing various fragment sizes, compiler optimization levels, and op-
timization types; GCC-generated C code using 32-bit integers, and GCC-generated

C code using 8-bit characters.
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The numbers in this table were obtained by compiling and running each of the
four versions on a 1GHz PowerBook G4 computer running LinuxPPC. No other ap-
plications (excluding normal services) were running, and no other users had access to

the machine.

The best speedup was achieved by Scc-generated 32-bit integer C code. While
this code was obviously incorrect (the calculated total is slightly off), it is remarkable
because it does mot use the AltiVec instruction set. The best speedup using the
AltiVec instructions was 4.567, which is nearly as good. Given that the AltiVec
registers are four times as large as the PowerPC’s general registers, we would expect
the 128-bit AltiVec SWAR code to be about four times as fast as the 32-bit SWAR

code on the same platform.

G.2 Results for MMX Target

Scc-generated MMX code did not achieved speedup in any of the tests. The
speedup calculated from the measured trials was between approximately 0.4x and
0.8x. These results are summarized in table G.2 below for 2-bit Scc-generated MMX
code, 2-bit Sce-generated C-only code using the target’s 32-bit general-purpose integer
registers, GCC-generated C code using 32-bit integers, and GCC-generated C code

using 8-bit characters.

The worst-case Scc code was generated without using any of the optimizations
built into the compiler. The best case Scc code was generated without using the MMX
registers, with Scc running at optimization level 0, and with Scc only performing back-
end peephole optimizations. Thus, we might assume that the overhead of using the
MMX-enhanced hardware was greater than the gains made. However, an inspection
of the generated C code reveals that the MMX-based C code is hindered by the
relatively small number of enhanced registers available. Scc’s spill code is admittedly
horrendous, so there is a high penalty for spills. This is probably the primary reason

for the relatively poor performance of the MMX code.
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Table G.1

AltiVec Trial Runs

Compiler Data Type: Optimization Compiler Avg. Speedup Calculated
Bits:Fragsize Level(s) Switches Time | (x factor) Total
Scc 010530 int:2:128 Scc 0 / GCC 3 - 439.5 4.458 5441660
Sce 010530 int:2:128 Scc 1/ GCC 3 - 437.7 4.476 5441660
Scc 010530 int:2:128 Scc 2 / GCC 3 - 429.0 4.567! 5441660
Sce 010530 int:2:128 Scc 3/ GCC 3 - 441.5 4.438 5441660
Sce 010530 int:2:32 Scc 0 / GCC 3 - 431.8 4.537 5440685
Scc 010530 int:2:32 Scc1 / GCC 3 - 435.4 4.500 5440685
Sce 010530 int:2:32 Scc 2 / GCC 3 - 437.4 4.479 5440685
Scc 010530 int:2:32 Scc 3 / GCC 3 - 422.6 4.6362 5440685
Scc 010530 int:2:128 Scc 0 / GCC 3 —fe-bvt 437.7 4.476 5441660
Sce 010530 int:2:128 Scc 1/ GCC 3 fe-bvt 446.0 4.393 5441660
Scc 010530 int:2:128 Scc 2 / GCC 3 —fe-bvt 436.0 4.494 5441660
Sce 010530 int:2:128 Scc 3/ GCC 3 fe-bvt 441.9 4.434 5441660
Sce 010530 int:2:32 Scc 0 / GCC 3 fe-bvt 438.9 4.464 5440685
Scc 010530 int:2:32 Scc 1/ GCC 3 —fe-bvt 438.6 4.476 5440685
Sce 010530 int:2:32 Scc 2 / GCC 3 fe-bvt 436.2 4.492 5440685
Sce 010530 int:2:32 Scc 3/ GCC 3 fe-bvt 435.6 4.498 5440685
Scc 010530 int:2:128 Scc 0 / GCC 3 —no-be-cofold 440.8 4.445 5441660
Scc 010530 int:2:128 Scc 1/ GCC 3 no-be-cofold 434.3 4.511 5441660
Scc 010530 int:2:128 Scc 2 / GCC 3 no-be-cofold 432.9 4.526 5441660
Scc 010530 int:2:128 Scc 3 / GCC 3 —no-be-cofold 437.6 4.477 5441660
Scc 010530 int:2:32 Scc 0 / GCC 3 —no-be-cofold 439.1 4.462 5440685
Scc 010530 int:2:32 Scc 1/ GCC 3 no-be-cofold 441.3 4.440 5440685
Scc 010530 int:2:32 Scc 2 / GCC 3 —no-be-cofold 430.2 4.554 5440685
Scc 010530 int:2:32 Scc 3/ GCC 3 no-be-cofold 442.7 4.426 5440685
Sce 010530 int:2:128 Scc 0 / GCC 3 no-be-peep 456.7 4.290 5441660
Scc 010530 int:2:128 Scc 1/ GCC 3 —no-be-peep 443.2 4.421 5441660
Sce 010530 int:2:128 Scc 2 / GCC 3 no-be-peep 455.1 4.305 5441660
Scc 010530 int:2:128 Scc 3 / GCC 3 —no-be-peep 452.9 4.326 5441660
Scc 010530 int:2:32 Scc 0 / GCC 3 —no-be-peep 453.6 4.319 5440685
Sce 010530 int:2:32 Scc 1/ GCC 3 no-be-peep 457.1 4.286 5440685
Scc 010530 int:2:32 Scc 2 / GCC 3 —no-be-peep 452.4 4.331 5440685
Sce 010530 int:2:32 Scc 3/ GCC 3 no-be-peep 452.0 4.335 5440685
Sce 010530 int:2:128 Scc 0 / GCC 3 no-be-cofold no-be-peep | 440.0 4.435 5441660
Scc 010530 int:2:128 Scc 1 / GCC 3 | —no-be-cofold —no-be-peep | 449.3 4.361 5441660
Sce 010530 int:2:128 Scc 2 / GCC 3 no-be-cofold no-be-peep | 451.0 4.344 5441660
Scc 010530 int:2:128 Scc 3 / GCC 3 | —no-be-cofold —no-be-peep | 459.3 4.266 5441660
Scc 010530 int:2:32 Scc 0 / GCC 3 | —no-be-cofold —no-be-peep | 457.4 4.283 5440685
Sce 010530 int:2:32 Scc 1/ GCC 3 no-be-cofold no-be-peep | 456.6 4.291 5440685
Sce 010530 int:2:32 Scc 2 / GCC 3 no-be-cofold no-be-peep | 460.7 4.253 5440685
Scc 010530 int:2:32 Scc 3 / GCC 3 | —no-be-cofold —no-be-peep | 446.9 4.384 5440685

IBest dnal28
2Best dna32, best overall
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Table G.1 cont’d.
AltiVec Trial Runs

Compiler Data Type: | Optimization Compiler Avg. | Speedup | Calculated
Bits:Fragsize Level(s) Switches Time | (x factor) Total
Scc 010530 int:2:128 | Scc 0 / GCC 3 —no-fe-cofold —no-be-cofold 445.1 4.402 5441660
Scc 010530 int:2:128 |[Scc 1/ GCC 3 no-fe-cofold no-be-cofold 438.8 4.465 5441660
Scc 010530 int:2:128 | Scc 2 / GCC 3 —no-fe-cofold —no-be-cofold 445.6 4.397 5441660
Scc 010530 int:2:128 | Scc 3 / GCC 3 no-fe-cofold no-be-cofold 443.5 4.418 5441660
Scc 010530 int:2:32 Scc 0 / GCC 3 no-fe-cofold no-be-cofold 440.7 4.446 5440685
Scc 010530 int:2:32 Scc1 / GCC 3 —no-fe-cofold —no-be-cofold 444.9 4.404 5440685
Scc 010530 int:2:32 Scc 2 / GCC 3 no-fe-cofold no-be-cofold 451.3 4.341 5440685
Scc 010530 int:2:32 Scc 3 / GCC 3 —no-fe-cofold —no-be-cofold 451.7 4.337 5440685
Scc 010530 int:2:128 | Scc 0 / GCC 3 —no-fe-cofold 445.5 4.398 5441660
Scc 010530 int:2:128 [Scc 1/ GCC 3 no-fe-cofold 446.3 4.390 5441660
Scc 010530 int:2:128 | Scc 2 / GCC 3 —no-fe-cofold 454.7 4.309 5441660
Scc 010530 int:2:128 | Scc 3 / GCC 3 —no-fe-cofold 446.7 4.386 5441660
Scc 010530 int:2:32 Scc 0 / GCC 3 no-fe-cofold 446.5 4.388 5440685
Scc 010530 int:2:32 Scc1 / GCC 3 —no-fe-cofold 436.6 4.487 5440685
Scc 010530 int:2:32 Scc 2 / GCC 3 —no-fe-cofold 442.5 4.428 5440685
Scc 010530 int:2:32 Scec 3 / GCC 3 no-fe-cofold 453.1 4.324 5440685
Sce 010530 int:2:128 Scc 0 / GCC 3| no-fe-cofold no-be-cofold no-be-peep | 465.6 4.208 5441660
Scc 010530 int:2:128 Scc 1 / GCC 3 | —no-fe-cofold —no-be-cofold —no-be-peep | 471.4 4.156 5441660
Sce 010530 int:2:128 Scc 2 / GCC 3| no-fe-cofold no-be-cofold no-be-peep | 460.2 4.257 5441660
Scc 010530 int:2:128 Scc 3 / GCC 3 | —no-fe-cofold —no-be-cofold —no-be-peep | 470.5 4.164 5441660
Scc 010530 int:2:32 Scc 0 / GCC 3 | —no-fe-cofold —no-be-cofold —no-be-peep | 491.4 3.987 5440685
Sce 010530 int:2:32 Scc 1 / GCC 3| no-fe-cofold no-be-cofold no-be-peep | 509.1 3.8481 5440685
Scc 010530 int:2:32 Scc 2 / GCC 3 | —no-fe-cofold —no-be-cofold —no-be-peep | 489.6 4.002 5440685
Sce 010530 int:2:32 Scc 3 / GCC 3| no-fe-cofold no-be-cofold no-be-peep | 475.3 4.122 5440685
GCC 2.95.3 char:8:32 GCCO - 7148.9| 0.274 5441660
GCC 2.95.3 char:8:32 GCC 1 - 2222.2 0.882 5441660
GCC 2.95.3 char:8:32 GCC 2 - 1959.2 1.0002 5441660
GCC 2.95.3 char:8:32 GCC 3 - 1960.0| 1.000 5441660
GCC 2.95.3 int:32:32 GCC O - 8130.2| 0.2413 5441660
GCC 2.95.3 int:32:32 GCC 1 - 2835.1| 0.691 5441660
GCC 2.95.3 int:32:32 GCC 2 - 1961.1| 0.999% 5441660
GCC 2.95.3 int:32:32 GCC 3 - 1967.9| 0.996 5441660

Worst Scc-compiled
2Best C char, best GCC-compiled
3Worst GCC-compiled

4Best C int
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The numbers in this table were obtained by compiling and running each of the
four versions on a Pentium4 computer running Redhat Linux 7.0 with kernel version
2.2.16-22. No other applications (excluding normal services) were running, and no
other users had access to the machine.

Correct operation of the Scc-generated MMX code was assumed to be verified by
comparing the results with the GCC-generated C versions and finding no difference
in the calculated totals. Note that there is no difference in the results of the Scc-

generated non-MMX code and the GCC-generated code.

G.3 Results for 3DNow! Target

The Scc-generated 3DNow! code also achieved speedup; again significantly less
than the theoretical maximum of 64/2 or 32x over serial 32-bit integer or 8-bit char-
acter code, but more than the AltiVec code and significantly more than the MMX
code.

The speedup calculated for Sce-generated code ranged from approximately 3.9x to
5.1x. The results are summarized in table G.3 for 2-bit Scc-generated 3DNow! code,
2-bit Scc-generated C-only code using the target’s 32-bit general-purpose registers,
GCC-generated C code using 32-bit integers, and GCC-generated C code using 8-bit
characters.

3DNow! suffers from the same problems as MMX in relation to register spills.
Interestingly though, the 3DNow! trials all obtained speedup over the best GCC-
generated C code. This is a significant difference in two relatively similar architec-

tures. The reason for this needs to be studied.

G.4 Results for IA32 Target

Scc-generated IA32 code achieved speedup in only one case, but not by a significant
amount over the best GCC-generated C code. In the majority of cases, the Scc-

generated code was actually slower. This is to be expected because the architecture
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Table G.2

MMX Trial Runs

Compiler Data Type: Optimization Compiler Avg. Speedup Calculated
Bits:Fragsize Level(s) Switches Time | (x factor) Total
Scc 010530 int:2:64 Scc 0 / GCC 3 - 908.2 0.810 5441660
Sce 010530 int:2:64 Scc1 / GCC 3 - 904.2 0.813 5441660
Scc 010530 int:2:64 Scc 2 / GCC 3 - 891.2 0.825! 5441660
Sce 010530 int:2:64 Scc 3/ GCC 3 - 902.7 0.815 5441660
Sce 010530 int:2:32 Scc 0 / GCC 3 - 981.2 0.749 5441660
Scc 010530 int:2:32 Scc1/ GCC 3 - 979.3 0.751 5441660
Sce 010530 int:2:32 Scc 2 / GCC 3 - 983.0 0.748 5441660
Scc 010530 int:2:32 Scc 3/ GCC 3 - 989.3 0.743 5441660
Scc 010530 int:2:64 Scc 0 / GCC 3 —fe-bvt 930.9 0.790 5441660
Sce 010530 int:2:64 Scc1 / GCC 3 fe-bvt 924.5 0.795 5441660
Sce 010530 int:2:64 Scc 2 / GCC 3 fe-bvt 919.3 0.800 5441660
Scc 010530 int:2:64 Scc 3/ GCC 3 —fe-bvt 938.8 0.783 5441660
Sce 010530 int:2:32 Scc 0 / GCC 3 fe-bvt 933.8 0.787 5441660
Sce 010530 int:2:32 Scc1 / GCC 3 fe-bvt 939.0 0.783 5441660
Scc 010530 int:2:32 Scc 2 / GCC 3 —fe-bvt 934.7 0.787 5441660
Sce 010530 int:2:32 Scc 3/ GCC 3 fe-bvt 952.9 0.772 5441660
Sce 010530 int:2:64 Scc 0 / GCC 3 no-be-cofold no-be-peep | 1154.2 0.637 5441660
Scc 010530 int:2:64 Scc 1 / GCC 3 | —no-be-cofold —no-be-peep | 1147.0 0.641 5441660
Sce 010530 int:2:64 Scc 2 / GCC 3 no-be-cofold no-be-peep | 1160.0 0.634 5441660
Scc 010530 int:2:64 Scc 3 / GCC 3 | —no-be-cofold —no-be-peep | 1180.9 0.623 5441660
Scc 010530 int:2:32 Scc 0 / GCC 3 | —no-be-cofold —no-be-peep | 1096.4 0.671 5441660
Sce 010530 int:2:32 Scc1 / GCC 3 no-be-cofold no-be-peep | 1079.8 0.681 5441660
Scc 010530 int:2:32 Scc 2 / GCC 3 | —no-be-cofold —no-be-peep | 1085.6 0.677 5441660
Sce 010530 int:2:32 Scc 3/ GCC 3 no-be-cofold no-be-peep | 1090.5 0.674 5441660
Scc 010530 int:2:64 Scc 0 / GCC 3 no-be-cofold 959.4 0.766 5441660
Scc 010530 int:2:64 Scc1/ GCC 3 —no-be-cofold 968.1 0.760 5441660
Scc 010530 int:2:64 Scc 2 / GCC 3 no-be-cofold 959.8 0.766 5441660
Scc 010530 int:2:64 Scc 3/ GCC 3 —no-be-cofold 974.4 0.755 5441660
Scc 010530 int:2:32 Scc 0 / GCC 3 —no-be-cofold 968.5 0.759 5441660
Scc 010530 int:2:32 Scc1 / GCC 3 no-be-cofold 968.7 0.759 5441660
Scc 010530 int:2:32 Scc 2 / GCC 3 no-be-cofold 991.3 0.742 5441660
Scc 010530 int:2:32 Scc 3/ GCC 3 —no-be-cofold 998.7 0.736 5441660
Sce 010530 int:2:64 Scc 0 / GCC 3 no-be-peep 1130.9 0.650 5441660
Sce 010530 int:2:64 Scc1 / GCC 3 no-be-peep 1116.6 0.659 5441660
Scc 010530 int:2:64 Scc 2 / GCC 3 —no-be-peep 1107.6 0.664 5441660
Sce 010530 int:2:64 Scc 3/ GCC 3 no-be-peep 1117.3 0.658 5441660
Sce 010530 int:2:32 Scc 0 / GCC 3 no-be-peep 1069.9 0.687 5441660
Scc 010530 int:2:32 Scc1/ GCC 3 —no-be-peep 1089.0 0.675 5441660
Sce 010530 int:2:32 Scc 2 / GCC 3 no-be-peep 1074.4 0.684 5441660
Scc 010530 int:2:32 Scc 3/ GCC 3 —no-be-peep 1071.5 0.686 5441660

Best dna64
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Table G.2 cont’d.
MMX Trial Runs

Compiler || Data Type: | Optimization Compiler Avg. | Speedup | Calculated
Bits:Fragsize Level(s) Switches Time | (x factor) Total
Scc 010530 int:2:64 Scc 0 / GCC 3 —no-fe-cofold —no-be-cofold 931.9 0.789 5441660
Scc 010530 int:2:64 Scc 1/ GCC 3 no-fe-cofold no-be-cofold 942.8 0.780 5441660
Scc 010530 int:2:64 Scc 2 / GCC 3 —no-fe-cofold —no-be-cofold 948.1 0.776 5441660
Scc 010530 int:2:64 Scc 3 / GCC 3 no-fe-cofold no-be-cofold 930.1 0.791 5441660
Scc 010530 int:2:32 Scc 0 / GCC 3 no-fe-cofold no-be-cofold 885.4 | 0.830T 5441660
Scc 010530 int:2:32 Scc 1/ GCC 3 —no-fe-cofold —no-be-cofold 897.9 0.819 5441660
Scc 010530 int:2:32 Scc 2 / GCC 3 no-fe-cofold no-be-cofold 900.6 0.816 5441660
Scc 010530 int:2:32 Scc 3 / GCC 3 —no-fe-cofold —no-be-cofold 897.9 0.819 5441660
Scc 010530 int:2:64 Scc 0 / GCC 3 —no-fe-cofold 963.7 0.763 5441660
Scc 010530 int:2:64 Scc 1/ GCC 3 no-fe-cofold 959.9 0.766 5441660
Scc 010530 int:2:64 Scc 2 / GCC 3 —no-fe-cofold 950.6 0.774 5441660
Scc 010530 int:2:64 Scc 3 / GCC 3 no-fe-cofold 963.5 0.763 5441660
Scc 010530 int:2:32 Scc 0 / GCC 3 no-fe-cofold 984.4 0.747 5441660
Scc 010530 int:2:32 Scc 1/ GCC 3 —no-fe-cofold 971.0 0.757 5441660
Scc 010530 int:2:32 Scc 2 / GCC 3 no-fe-cofold 967.0 0.760 5441660
Scc 010530 int:2:32 Scc 3 / GCC 3 —no-fe-cofold 964.9 0.762 5441660
Scc 010530 int:2:64 Scc 0 / GCC 3 | —no-fe-cofold —no-be-cofold —no-be-peep | 1182.1 0.622 5441660
Sce 010530 int:2:64 Scc 1 / GCC 3| no-fe-cofold no-be-cofold no-be-peep | 1977.0| 0.3722 5441660
Scc 010530 int:2:64 Scc 2 / GCC 3 | —no-fe-cofold —no-be-cofold —no-be-peep | 1191.7| 0.617 5441660
Sce 010530 int:2:64 Scc 3 / GCC 3| no-fe-cofold no-be-cofold no-be-peep | 1194.5 0.616 5441660
Sce 010530 int:2:32 Scc 0 / GCC 3| no-fe-cofold no-be-cofold no-be-peep | 1453.9 0.506 5441660
Scc 010530 int:2:32 Scc 1 / GCC 3 | —no-fe-cofold —no-be-cofold —no-be-peep | 1455.1 0.505 5441660
Sce 010530 int:2:32 Scc 2 / GCC 3| no-fe-cofold no-be-cofold no-be-peep | 1435.8 0.512 5441660
Scc 010530 int:2:32 Scc 3 / GCC 3 | —no-fe-cofold —no-be-cofold —no-be-peep | 1406.8 0.523 5441660
GCC 2.96 char:8:32 GCC O - 1675.8| 0.439 5441660
GCC 2.96 char:8:32 GCC 1 - 968.4 0.759 5441660
GCC 2.96 char:8:32 GCC 2 - 735.3 | 1.0002 5441660
GCC 2.96 char:8:32 GCC 3 - 785.7 0.936 5441660
GCC 2.96 int:32:32 GCCO - 2477.0] 0.2977 5441660
GCC 2.96 int:32:32 GCC 1 - 1046.6 | 0.703 5441660
GCC 2.96 int:32:32 GCC 2 - 904.7 | 0.8135 5441660
GCC 2.96 int:32:32 GCC 3 - 912.1 0.806 5441660

!Best dna32,

2Worst Scc-compiled
3Best C char, best overall
4Worst overall

5Best C int

best Scc-compiled




- 412 -

Table G.3

3DNow! Trial Runs

Compiler Data Type: Optimization Compiler Avg. Speedup Calculated
Bits:Fragsize Level(s) Switches Time | (x factor) Total
Scc 010530 int:2:64 Scc 0 / GCC 3 - 1122.7 4.708 5441660
Sce 010530 int:2:64 Scc1 / GCC 3 - 1095.0 4.827 5441660
Scc 010530 int:2:64 Scc 2 / GCC 3 - 1114.0 4.744 5441660
Scc 010530 int:2:64 Scc 3/ GCC 3 - 1115.7 4.737 5441660
Sce 010530 int:2:32 Scc 0 / GCC 3 - 1065.7 4.959 5441660
Sce 010530 int:2:32 Scc1 / GCC 3 - 1057.1 5.000 5441660
Scc 010530 int:2:32 Scc 2 / GCC 3 - 1059.0 4.991 5441660
Sce 010530 int:2:32 Scc 3/ GCC 3 - 1065.3 4.961 5441660
Scc 010530 int:2:64 Scc 0 / GCC 3 —fe-bvt 1080.3 4.8927 5441660
Sce 010530 int:2:64 Scc1 / GCC 3 fe-bvt 1082.9 4.881 5441660
Sce 010530 int:2:64 Scc 2 / GCC 3 fe-bvt 1090.4 4.847 5441660
Scc 010530 int:2:64 Scc 3/ GCC 3 —fe-bvt 1099.7 4.806 5441660
Sce 010530 int:2:32 Scc 0 / GCC 3 fe-bvt 1054.9 5.010 5441660
Sce 010530 int:2:32 Scc1 / GCC 3 fe-bvt 1061.6 4.979 5441660
Sce 010530 int:2:32 Scc 2 / GCC 3 fe-bvt 1040.1 5.0822 5441660
Sce 010530 int:2:32 Scc 3/ GCC 3 fe-bvt 1060.1 4.986 5441660
Scc 010530 int:2:64 Scc 0 / GCC 3 | —no-be-cofold —no-be-peep | 1308.9 4.038 5441660
Sce 010530 int:2:64 Scc1 / GCC 3 no-be-cofold no-be-peep | 1295.7 4.079 5441660
Sce 010530 int:2:64 Scc 2 / GCC 3 no-be-cofold no-be-peep | 1304.1 4.053 5441660
Scc 010530 int:2:64 Scc 3 / GCC 3 | —no-be-cofold —no-be-peep | 1299.5 4.067 5441660
Scc 010530 int:2:32 Scc 0 / GCC 3 | —no-be-cofold —no-be-peep | 1306.9 4.044 5441660
Sce 010530 int:2:32 Scc1 / GCC 3 no-be-cofold no-be-peep | 1279.7 4.130 5441660
Scc 010530 int:2:32 Scc 2 / GCC 3 | —no-be-cofold —no-be-peep | 1297.1 4.075 5441660
Sce 010530 int:2:32 Scc 3/ GCC 3 no-be-cofold no-be-peep | 1308.2 4.040 5441660
Scc 010530 int:2:64 Scc 0 / GCC 3 no-be-cofold 1095.4 4.825 5441660
Scc 010530 int:2:64 Scc1/ GCC 3 —no-be-cofold 1096.6 4.820 5441660
Scc 010530 int:2:64 Scc 2 / GCC 3 no-be-cofold 1091.7 4.841 5441660
Scc 010530 int:2:64 Scc 3/ GCC 3 —no-be-cofold 1095.7 4.824 5441660
Scc 010530 int:2:32 Scc 0 / GCC 3 —no-be-cofold 1057.9 4.996 5441660
Scc 010530 int:2:32 Scc1 / GCC 3 no-be-cofold 1055.4 5.008 5441660
Scc 010530 int:2:32 Scc 2 / GCC 3 —no-be-cofold 1040.9 5.078 5441660
Scc 010530 int:2:32 Scc 3/ GCC 3 no-be-cofold 1051.5 5.026 5441660
Sce 010530 int:2:64 Scc 0 / GCC 3 no-be-peep 1295.2 4.081 5441660
Scc 010530 int:2:64 Scc1/ GCC 3 —no-be-peep 1277.4 4.138 5441660
Sce 010530 int:2:64 Scc 2 / GCC 3 no-be-peep 1289.1 4.100 5441660
Scc 010530 int:2:64 Scc 3/ GCC 3 —no-be-peep 1282.0 4.123 5441660
Scc 010530 int:2:32 Scc 0 / GCC 3 —no-be-peep 1281.9 4.123 5441660
Sce 010530 int:2:32 Scc1 / GCC 3 no-be-peep 1297.6 4.073 5441660
Sce 010530 int:2:32 Scc 2 / GCC 3 no-be-peep 1256.6 4.206 5441660
Scc 010530 int:2:32 Scc 3/ GCC 3 —no-be-peep 1251.0 4.225 5441660

IBest dna64
2Best dna32, best overall
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Table G.3 cont’d.
3DNow! Trial Runs

Compiler Data Type: | Optimization Compiler Avg. Speedup | Calculated
Bits:Fragsize Level(s) Switches Time | (x factor) Total
Scc 010530 int:2:64 Scc 0 / GCC 3 —no-fe-cofold —no-be-cofold 1126.9 4.690 5441660
Scc 010530 int:2:64 Scc 1/ GCC 3 no-fe-cofold no-be-cofold 1146.7 4.609 5441660
Scc 010530 int:2:64 Scc 2 / GCC 3 —no-fe-cofold —no-be-cofold 1128.9 4.682 5441660
Scc 010530 int:2:64 Scc 3/ GCC 3 no-fe-cofold no-be-cofold 1130.0 4.677 5441660
Scc 010530 int:2:32 Scc 0 / GCC 3 no-fe-cofold no-be-cofold 1084.6 4.873 5441660
Scc 010530 int:2:32 Scc 1/ GCC 3 —no-fe-cofold —no-be-cofold 1105.1 4.783 5441660
Scc 010530 int:2:32 Scc 2 / GCC 3 no-fe-cofold no-be-cofold 1104.7 4.784 5441660
Scc 010530 int:2:32 Scc 3 / GCC 3 —no-fe-cofold —no-be-cofold 1100.7 4.802 5441660
Scc 010530 int:2:64 Scc 0 / GCC 3 —no-fe-cofold 1138.8 4.641 5441660
Scc 010530 int:2:64 Scc 1/ GCC 3 no-fe-cofold 1137.5 4.646 5441660
Scc 010530 int:2:64 Scc 2 / GCC 3 —no-fe-cofold 1124.6 4.700 5441660
Scc 010530 int:2:64 Scc 3 / GCC 3 —no-fe-cofold 1114.7 4.741 5441660
Scc 010530 int:2:32 Scc 0 / GCC 3 no-fe-cofold 1097.2 4.817 5441660
Scc 010530 int:2:32 Scc 1/ GCC 3 —no-fe-cofold 1121.8 4.711 5441660
Scc 010530 int:2:32 Scc 2 / GCC 3 —no-fe-cofold 1120.0 4.719 5441660
Scc 010530 int:2:32 Scc 3/ GCC 3 no-fe-cofold 1111.3 4.756 5441660
Sce 010530 int:2:64 Scc 0 / GCC 3| no-fe-cofold no-be-cofold no-be-peep | 1332.0 3.968 5441660
Sce 010530 int:2:64 Scc 1 / GCC 3| no-fe-cofold no-be-cofold no-be-peep | 1346.3 3.9261 5441660
Scc 010530 int:2:64 Scc 2 / GCC 3 | —no-fe-cofold —no-be-cofold —no-be-peep | 1327.5 3.981 5441660
Scc 010530 int:2:64 Scc 3 / GCC 3 | —no-fe-cofold —no-be-cofold —no-be-peep | 1342.9 3.936 5441660
Sce 010530 int:2:32 Scc 0 / GCC 3| no-fe-cofold no-be-cofold no-be-peep | 1289.7 4.098 5441660
Sce 010530 int:2:32 Scc 1 / GCC 3| no-fe-cofold no-be-cofold no-be-peep | 1309.0 4.038 5441660
Scc 010530 int:2:32 Scc 2 / GCC 3 | —no-fe-cofold —no-be-cofold —no-be-peep | 1292.0 4.091 5441660
Sce 010530 int:2:32 Scc 3 / GCC 3| no-fe-cofold no-be-cofold no-be-peep | 1319.1 4.007 5441660
eges 2.91.66 char:8:32 GCCO - 14800.7 | 0.357 5441660
eges 2.91.66 char:8:32 GCC 1 - 5285.3 | 1.0002 5441660
eges 2.91.66 char:8:32 GCC 2 - 5385.9 0.981 5441660
egcs 2.91.66 char:8:32 GCC 3 - 6064.3 0.872 5441660
eges 2.91.66 int:32:32 GCC O - 15580.7| 0.3393 5441660
egcs 2.91.66 int:32:32 GCC 1 - 6697.4 | 0.7894 5441660
eges 2.91.66 int:32:32 GCC 2 - 7037.3 0.751 5441660
egcs 2.91.66 int:32:32 GCC 3 - 7311.3 0.723 5441660

Worst Scc-compiled

2Best C char, best GCC

3Worst GCC-compiled

4Best C int




- 414 -

does not provide any form of SWAR instructions other than the basic polymorphics
(bitwise logical operations). However, this isn’t the point of porting this code to an
unenhanced 32-bit architecture. The point proven here is that the SWARC code can
be ported to an unenhanced architecture without modification.

The speedup for Sce-generated code ranged from approximately 0.42x to 1.03x. It
is worth noting that the GCC-generated code achieved speedups ranging from 0.28x
to 1.00x. Thus, the choice of compiler switches appears to affect the performance
more than the choice between Scc and GCC. The results are summarized in table G.4
for 2-bit Scc-generated C-only code using 32-bit integer fragments in the general
registers, GCC-generated C code using 32-bit integers, and GCC-generated C code

using 8-bit characters.
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Table G.4

T1A32 Trial Runs

Compiler Data Type: | Optimization Compiler Avg. Speedup | Calculated
Bits:Fragsize Level(s) Switches Time | (x factor) Total
Scc 010530 int:2:32 Scc 0 / GCC 3 - 9029.7 0.801 5435001
Scc 010530 int:2:32 Scc 1/ GCC 3 - 9029.9 0.801 5435001
Scc 010530 int:2:32 Scc 2 / GCC 3 - 8869.6 0.816 5435001
Scc 010530 int:2:32 Scc 3 / GCC 3 - 8736.8 0.828 5435001
Scc 010530 int:2:32 Scc 0 / GCC 3 fe-bvt 8993.0 0.804 5435001
Scc 010530 int:2:32 Scc 1/ GCC 3 fe-bvt 13259.8 0.546 5435001
Scc 010530 int:2:32 Scc 2 / GCC 3 —fe-bvt 8977.9 0.806 5435001
Scc 010530 int:2:32 Scc 3/ GCC 3 fe-bvt 12811.6 0.565 5435001
Sce 010530 int:2:32 Scc 0 / GCC 3 no-be-cofold no-be-peep 11067.3 0.654 5435001
Sce 010530 int:2:32 Scc 1/ GCC 3 no-be-cofold no-be-peep 17094.1| 0.423! 5435001
Sce 010530 int:2:32 Scc 2 / GCC 3 no-be-cofold no-be-peep 11543.7 0.627 5435001
Scc 010530 int:2:32 Scc 3 / GCC 3 —no-be-cofold —no-be-peep 11063.0 0.654 5435001
Scc 010530 int:2:32 Scc 0 / GCC 3 —no-be-cofold 13329.4 | 0.543 5435001
Scc 010530 int:2:32 Scc 1/ GCC 3 no-be-cofold 8949.7 0.808 5435001
Scc 010530 int:2:32 Scc 2 / GCC 3 —no-be-cofold 9105.7 0.794 5435001
Scc 010530 int:2:32 Scc 3/ GCC 3 no-be-cofold 9129.2 0.792 5435001
Sce 010530 int:2:32 Scc 0 / GCC 3 no-be-peep 11414.6 0.634 5435001
Scc 010530 int:2:32 Scc 1/ GCC 3 —no-be-peep 15728.9 0.460 5435001
Sce 010530 int:2:32 Scc 2 / GCC 3 no-be-peep 11213.7 0.645 5435001
Scc 010530 int:2:32 Scc 3/ GCC 3 —no-be-peep 11477.7| 0.630 5435001
Scc 010530 int:2:32 Scc 0 / GCC 3 —no-fe-cofold —no-be-cofold 11583.6 | 0.625 5435001
Scc 010530 int:2:32 Scc 1/ GCC 3 no-fe-cofold no-be-cofold 8859.9 0.817 5435001
Scc 010530 int:2:32 Scc 2 / GCC 3 —no-fe-cofold —no-be-cofold 8615.7 0.840 5435001
Scc 010530 int:2:32 Scc 3/ GCC 3 no-fe-cofold no-be-cofold 8841.0 0.818 5435001
Scc 010530 int:2:32 Scc 0 / GCC 3 no-fe-cofold 7037.6 1.0282 5435001
Scc 010530 int:2:32 Scc 1/ GCC 3 —no-fe-cofold 9833.9 0.736 5435001
Scc 010530 int:2:32 Scc 2 / GCC 3 no-fe-cofold 9175.9 0.788 5435001
Scc 010530 int:2:32 Scc 3 / GCC 3 —no-fe-cofold 9125.7 0.793 5435001
Scc 010530 int:2:32 Scc 0 / GCC 3 | -no-fe-cofold —no-be-cofold —no-be-peep | 16283.1 0.444 5435001
Sce 010530 int:2:32 Scc 1 / GCC 3| no-fe-cofold no-be-cofold no-be-peep | 15685.0 0.461 5435001
Scc 010530 int:2:32 Scc 2 / GCC 3 | -no-fe-cofold —no-be-cofold —no-be-peep | 11604.4 0.623 5435001
Sce 010530 int:2:32 Scc 3 / GCC 3| no-fe-cofold no-be-cofold no-be-peep | 11597.6 0.624 5435001
GCC 2.7.2.1 char:8:32 GCC 0 - 26276.9| 0.275% 5435001
GCC 2.7.2.1 char:8:32 GCC 1 - 10349.3 | 0.6994 5435001
GCC 2.7.2.1 char:8:32 GCC 2 - 10773.6 0.674 5435001
GCC 2.7.2.1 char:8:32 GCC 3 - 10887.6 0.664 5435001
GCC 2.7.2.1 int:32:32 GCC o0 - 19702.7 | 0.367 5435001
GCC 2.7.2.1 int:32:32 GCC 1 - 7234.4 1.000° 5435001
GCC 2.7.2.1 int:32:32 GCC 2 - 7264.5 0.996 5435001
GCC 2.7.2.1 int:32:32 GCC 3 - 7757.5 0.933 5435001

Worst Scc-compiled

2Best dna32, best overall

3Worst GCC-compiled

4Best C char

5Best C int, best GCC-compiled
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APPENDIX H
LINPACK PERFORMANCE

The SWARC code used to replace core loops in the C/C++ Linpack 100x100 Bench-

mark included the following source:
/* 1p.Sc - Compile with Scc -c -k -mK6-2 -05 */

void swar_saxpy(float:32[VECTSIZE] x, float:32[VECTSIZE] y, float s)
{
y += (s * x);

}

void swar_sdot(float:32[VECTSIZE] x, float:32[VECTSIZE] y, float s)
{

s += (x * y);

}
void swar_sscal(float:32[VECTSIZE] x, float s)
{
X = X ¥ 8,
}

Currently, floating-point operations are only supported for 3DNow! and AltiVec.
The code should be compiled with the correct target switch to allow the compiler to

take advantage of SWAR floating-point instructions.

H.1 Results for 3DNow!

The following two tables report performance results on a 1GHz AMD Athlon-based
HP Pavilion N5470 laptop computer. The first of these reports average MFLOPS us-
ing rolled standard C code. The second reports average MFLOPS using Scc-generated
SWARC code.
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Table H.1

Results for rolled C code

VECTSIZE | OPTIME | Average 201 Average 200
2 1 267.99 249.22
2 2 268.10 249.23
2 4 268.01 249.22
2 100 267.90 (Worst) | 249.89 (Best)
4 1 268.17 248.78 (Worst)
4 2 268.17 248.79
4 4 268.28 (Best) 248.99
4 100 268.10 249.39
8 1 268.19 249.29
8 2 268.08 249.10
8 4 268.08 249.15
8 100 267.98 249.87
16 1 268.01 249.56
16 2 267.93 249.63
16 4 268.01 249.69
16 100 267.93 249.63
32 1 268.10 249.33
32 2 268.01 249.33
32 4 268.01 249.48
32 100 268.10 249.33

In both cases, the source was sent through the Scc compiler, which generated C
code from the SWARC code. This was passed by Scc to the native C compiler (GCC
2.96), which generated the executable. The Scc-generated code was called by the

executable conditionally depending on the definition of a macro.

In the first table, table H.1, VECTSIZE and OPTIME are irrelevant because
VECTSIZE is only used within the SWARC code and OPTIME was the time that
Scc was allowed to spend generating a schedule for this SWARC code. The SWARC

code was not called by the executables in this set of runs.

In the second table, table H.2, VECTSIZE represents the fixed vector length used
for generating code. Currently, the Scc compiler does not allow for variable vector
lengths. The length of each vector must be declared or the compiler will assign it a
length of one element. OPTIME was the time allowed for the Scc compiler to attempt
to find the best schedule for each basic block.

For the rolled C code, the best run with a dimension of 201 achieved 268.28
MFLOPS, while the best run for a dimension of 200 achieved 249.89 MFLOPS. In

each case, the variance was negligible.
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Table H.2
Results for SWARC code

VECTSIZE | OPTIME Average 201 Average 200
2 1 408.28 402.27
2 2 408.09 402.50
2 4 407.52 (Worst) | 401.57 (Worst)
2 100 407.90 402.82
4 1 464.86 487.24
4 2 463.76 487.00
4 4 464.53 486.68
4 100 464.53 487.14
8 1 540.28 586.58
8 2 540.91 586.96
8 4 540.91 587.27
8 100 540.75 587.04
16 1 550.75 616.65 (Best)
16 2 551.28 (Best) 616.30
16 4 551.01 616.64
16 100 551.17 616.34
32 1 521.63 559.43
32 2 521.41 557.53
32 4 521.91 558.95
32 100 520.97 558.54

In comparison, the best run for SWARC code with a dimension of 201 achieved
551.28 MFLOPS with a VECTSIZE of 16 and a 2 second maximum optimization

time. This is an improvement of 22828828 — 105% over the best rolled C code.

The best run for SWARC code with a dimension of 200 achieved 616.65 MFLOPS
with a VECTSIZE of 16 and a 1 maximum second optimization time. This is an

improvement of % = 147% over the best rolled C code.

The worst run for SWARC code with a dimension of 201 achieved 407.52 MFLOPS
with a VECTSIZE of 2 and a 4 second maximum optimization time. This is an

improvement of W = 51.9% over the best rolled C code.

The worst run for SWARC code with a dimension of 200 achieved 401.57 MFLOPS
with a VECTSIZE of 2 and a 4 second maximum optimization time. This is an

improvement of W = 60.7% over the best rolled C code.

VECTSIZE was limited to 32 because longer VECTSIZEs led to basic blocks
which required more tuples than the current compiler could handle. Notice that the
best VECTSIZE for the SWARC version was an intermediate value (8 or 16 elements

per subvector).
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Table H.3
Results for rolled C code

VECTSIZE | OPTIME | Average 201 Average 200
2 1 175.37 177.45 (Worst)
2 2 175.67 177.45 (Worst)
2 4 175.37 177.54
2 100 175.37 177.54
4 1 175.53 181.33 (Best)
4 2 175.53 180.75
4 4 174.75 (Worst) 180.62
4 100 175.53 180.75
8 1 175.53 180.75
8 2 175.99 (Best) 180.71
8 4 175.45 180.60
8 100 175.45 180.60
16 1 175.45 180.89
16 2 175.45 180.60
16 4 175.39 180.62
16 100 175.45 180.60
32 1 175.45 180.60
32 2 175.99 180.71
32 4 175.53 180.66
32 100 175.53 180.75
64 1 175.31 177.45
64 2 175.45 177.45
64 4 175.37 177.45
64 100 175.61 177.40

H.2 Results for AltiVec

The following two tables report performance results on a 500MHz PowerPC G4-
based Apple PowerBook laptop computer. Again, the first of these, table H.3, reports
average MFLOPS using rolled standard C code. The second, table H.4, reports
average MFLOPS using Scc-generated SWARC code.

The same compilation process was used as for the 3DNow! trials, with the same
version of the Scc compiler being used. Version 2.95.3 of GCC was used to compile

the final C code for the PowerPC target.

Again, VECTSIZE and OPTIME are irrelevant in the first table and have the

same meaning in the second as in the previous section.

For the rolled C code, the best run with a dimension of 201 achieved 175.99
MFLOPS, while the best run for a dimension of 200 achieved 181.33 MFLOPS. In

each case, the variance was relative small.
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Table H.4
Results for SWARC code

VECTSIZE | OPTIME Average 201 Average 200
2 1 49.48 49.73
2 2 49.46 (Worst) | 49.69 (Worst)
2 4 49.60 49.73
2 100 49.48 49.73
4 1 93.34 94.02
4 2 93.34 94.14
4 4 93.36 94.02
4 100 93.50 94.02
8 1 126.34 127.41
8 2 126.34 127.41
8 4 126.68 127.41
8 100 126.29 127.41
16 1 150.69 152.29
16 2 150.75 152.27
16 4 150.69 152.29
16 100 150.69 152.29
32 1 160.03 167.59 (Best)
32 2 160.40 (Best) 167.17
32 4 160.36 167.15
32 100 160.32 167.20
64 1 96.27 97.10
64 2 96.31 96.93
64 4 96.52 96.91
64 100 96.31 96.91

In comparison, the best run for SWARC code with a dimension of 201 achieved
160.40 MFLOPS with a VECTSIZE of 32 and a 2 second maximum optimization

time. This is a degradation of % = 8.9% versus the best rolled C code. This

means that the best Scc-generated code had significantly slower performance than
the corresponding GCC-generated code.

The best run for SWARC code with a dimension of 200 achieved 167.59 MFLOPS
with a VECTSIZE of 32 and a 1 second maximum optimization time. This is a
degradation of 1332815 — 7.6% versus the best rolled C code. Again, this means

that the Scc-generated code was significantly slower than the corresponding C code.
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