
A FINE-GRAIN PARALLEL ARCHITECTURE
BASED ON BARRIER SYNCHRONIZATION

H. G. Dietz, R. Hoare, and T. Mattox

Purdue University, School of Electrical and Computer Engineering
West Lafayette, IN 47907-1285
hankd@ecn.purdue.edu

http://garage.ecn.purdue.edu/˜papers

Although barrier synchronization has long been consid-
ered a useful construct for parallel programming, it has gener-
ally been either layered on top of a communication system or
used as a completely independent mechanism. Instead, we pro-
pose that all communication be made a side-effect of barrier
synchronization. This is done by extending the barrier synchro-
nization unit to collect a datum from each processor, compute
an aggregate function, and return the corresponding result to
each processor.

This paper describes a scalable prototype implementation
of PAPERS (Purdue’s Adapter for Parallel Execution and Rapid
Synchronization). Despite the fact that the prototype is imple-
mented as very simple TTL hardware connecting conventional
workstations, measured performance on fine-grain parallel com-
munication operations is far superior to that obtained using con-
ventional workstation networks. It is comparable to the perfor-
mance of commercially available supercomputers.

1. Introduction

To obtain good speed-up of most programs by executing
portions of the code in parallel, the parallel hardware must pro-
vide more than just multiple processors. A wide range of paral-
lel architectures have been proposed, each focusing on a differ-
ent aspect. Rather than reviewing all these architectures, we
found it more productive to go back to the basic problems
which must be solved, and to derive the architectural model
directly from these needs.

In his popular textbook on high-performance computer
architecture [7], Stone provides a simple list of the primary fac-
tors that can lead to poor performance. The five issues he cites,
and our interpretations of them are:

• Delays introduced by interprocessor communications.
Thus, low latency is at least as important as high bandwidth.

• Overhead in synchronizing the work of one processor
with another. Synchronization of two, or more, processors
must be a direct hardware function, with minimal latency.

• Lost efficiency when one or more processors run out of
tasks. It must be possible to efficiently sample the global
state of the machine and to re-allocate work based on this
sampling so that such imbalance is avoided.

• Lost efficiency due to wasted effort by one or more pro-
cessors. Again, we see this problem as centering on the
need to have low latency access to a sampling of global
state, since that alone can allow processors to recognize and
avoid redundant or unnecessary computations.

• Processing costs for controlling the system and schedul-
ing operations. To minimize runtime scheduling cost is to
maximize the fraction of this work that can be accomplished

at compile time. Thus, it is critical to provide a dynamic
runtime environment in which properties required by the
compiler’s static schedule can be directly enforced. The
basic mechanisms to support this are low latency barrier
synchronization to enforce timing constraints and operations
that allow the appropriate static schedule to be selected
based on the system’s dynamic global state.

From this, we observe that barrier synchronization augmented
by a mechanism for sampling global state can potentially solve
all these problems.

Figure 1: Eight Processor TTL_PAPERS 951201 Cluster

In section 2, the structure of a scalable prototype imple-
mentation of the TTL_PAPERS architecture (cluster shown in
Figure 1) is described. The performance of this prototype sys-
tem is summarized in section 3. In conclusion, section 4
reviews the advantages of this new architecture.

2. TTL_PAPERS 951201 Architecture

The TTL_PAPERS 951201 architecture is comprised of
four subsystems: synchronization, parallel signaling, data com-
munication and status display. The data communication subsys-
tem is a data network that allows communication after a barrier
has been reached. The parallel signaling subsystem can be used
by a processor to asynchronously signal the other processors
and can be used in much the same way as an interrupt. The sta-
tus display subsystem allows the user to see when a processor is

waiting at a barrier, performing computation, being controlled
by the operating system, or inactive.

Figure 2: Static Barrier Mechanism of TTL_PAPERS

2.1. Synchronization Subsystem

Hardware barrier synchronization was first proposed in a
paper by Harry Jordon [4], and has since become a popular
mechanism for coordination of MIMD parallel processes. A
barrier synchronization is accomplished by processors execut-
ing a wait operation that does not terminate until sometime
after all processors have signaled that they are waiting. Experi-
ments with the PASM (PArtitionable Simd Mimd) prototype’s
barrier mechanism [6] led us to significantly extend the concept
of barrier synchronization. The TTL_PAPERS architecture
uses a variation on the SBM (Static Barrier MIMD) design of
[5] to allow a more direct prototype implementation. The pri-
mary difference between the previously published SBM and the
TTL_PAPERS mechanism is that there are two barrier trees
rather than one (see Figure 2). The reason is simply that the
published SBM silently assumed that the barrier hardware
would be reset between barriers. In contrast, the use of two trees
allows the hardware for one tree to be reset as a side-effect of
the other tree being used.

Typically, a barrier synchronization consists of four
cycles: request a barrier, observe that the barrier is done, reset
the barrier unit, and observe that the barrier unit has been reset.
Barrier synchronization is typically implemented using a barrier
tree which can be viewed as a large AND gate, where each pro-
cessor supplies a barrier request signal, S1, to an input of the
AND gate and the output which is the barrier done signal, B1.
This can be seen as the upper NAND Tree of Figure 2. The bar-
rier done signal, B1, transitions to a logic high only when all
processors have set their barrier request signal, S1, high. This is
essentially the same as the barrier/eureka network in a Cray
T3D [2]. Each processor can then test the resulting signal to
determine when all processors have reached the barrier. How-
ev er, a single barrier tree has to be reset before it can be used
again. This presents two serious problems:

• None of the processors can clear their S1 signal until all of
the processors have observed the B1 (barrier done) signal.
Otherwise, a barrier request can go low before all the pro-
cessors have seen the barrier done signal in its high state.
Thus, some processors can get stuck waiting at a barrier that
has already been completed.

• Before a processor can set its barrier request signal high
again at the next barrier, all other processors must have
already cleared their S1 signal from the first barrier.

Otherwise, a processor with little or no work to do between
the first and second barriers might clear and then set its S1
signal again while other processors still have their S1 sig-
nals high due to the first barrier. This race condition can
cause the B1 signal to erroneously go high, and if observed
by any processor, would be seen as “the second barrier is
done,” which is incorrect.

The first problem can be solved by using a one bit register
that is set to one when the B1 signal goes high, as shown in Fig.
2. Then all processors can asynchronously observe that the bar-
rier is complete by reading the output signal, RDY, of the regis-
ter.

The second problem is solved by literally having a second
barrier tree that indicates when all processors have cleared their
S1 signals. One way to do this is to have a second signal, S0,
from each processor that is set when that processor has cleared
its S1 signal. Thus the second barrier tree generates a signal,
B0, when all processors have cleared their S1 signals. A direct
way of utilizing this B0 signal would be to clear the RDY regis-
ter when B0 goes high. The end result of all this is that as each
barrier in a sequence is reached, the RDY signal toggles. Since
the transition of the RDY from a high to a low is a valid syn-
chronization at a barrier, the act of resetting the B1 barrier tree
can itself be used as a barrier.

An additional benefit to having two synchronization sig-
nals, S1 and S0, is the ability for processors to remove them-
selves from the barrier group. This allows the machine to parti-
tion into two sets: those processors using this barrier unit and
those who are not. This is accomplished by a disabled proces-
sor setting both its S1 and S0 signals high. Both the barrier
trees would then effectively ignore the state of the disabled pro-
cessors.

This architecture scales to arbitrarily large systems, since
the electrical propagation delay of an AND tree is O(log N),
with O(2N) components in the tree. Note that the magnitude of
the delay time is measured in nanoseconds for typical circuit
implementations.

2.2. Communication Subsystem

The TTL_PAPERS library provides a rich array of aggre-
gate communication operations, most with total process-to-
process latency in the tens of microseconds. This is accom-
plished without packetizing, routing, or switching by construct-
ing more complex aggregate functions using a 4-bit wide
NAND tree. Clearly, operations like bitwise AND or OR are
directly implemented by the NAND tree, but so are many other
aggregates. For example, a broadcast is implemented by one
processor contributing the complement of its 4-bit datum while
all others hold their outputs high. NAND hardware also imple-
ments a variety of voting operations. A more detailed discus-
sion of the communication library can be found in [3].

2.3. Parallel Signaling Subsystem

The parallel signaling subsystem, shown in Fig. 3, is sim-
ilar to that of the barrier unit. At any time, a processor can
asynchronously set the parallel signal, IRQ, high. Each of the
other processors is then required to acknowledge that it has seen
the INT signal by setting its IACK signal high. When all

Figure 3: Asynchronous Parallel Signaling Subsystem

processors have acknowledged the parallel INT signal, it is
cleared. Although this mechanism is implemented very differ-
ently, in function it is very similar to an interrupt and can be
used as an interrupt mechanism.

PAPERS uses an alternative approach to interrupts, called
parallel signaling, that does not require any context switches
and can still be used by the programmer in the same way as
interrupts. When a parallel signal is issued, the PAPERS unit
registers the request and does not allow any barriers to be com-
pleted until all of the processors have seen the parallel signal.
This is done by using the barrier library to detect the parallel
signal. After sending a barrier request, the processor waits for
the barrier acknowledge to be completed. During this waiting
time the processor checks to see if the parallel signal has been
set. If it has been set, the processor acknowledges that it has
seen the signal, executes the signaling routine, and then resumes
waiting for the barrier. This does not use any operating system
routines and spends the idle time waiting at a barrier performing
useful work. Thus the efficiency of parallel signaling increases
as the granularity becomes smaller.

2.4. Hardware/Software Interface

The PAPERS architecture was designed for extremely
low latency and thus, the hardware/software interface was opti-
mized. The operating system was avoided because of context
switching time and thus, the software libraries communicate
with the hardware directly through I/O hardware registers. The
TTL_PAPERS was designed so that a single I/O write could
request a barrier and a single I/O read could be used to detect
when the barrier is done. At the same time the barrier comple-
tion is detected, data is also received. This allows data commu-
nication to be added to the architecture without incurring a large
amount of overhead.

2.5. Scalability

It can be seen in Figures 1 and 4 that a single
TTL_PAPERS 951201 unit can support 8 processors. The
TTL_PAPERS 951201 also has four additional inputs as well as
four additional outputs. By using these inputs and outputs,
TTL_PAPERS 951201 can scale in a tree like fashion. Figure 5
shows how a 168 processor system can be constructed with
twenty-one TTL_PAPERS 951201 units.

When a barrier is requested, the both signals and data
travel up the tree to the root node, which, upon completion of
the barrier synchronization, broadcasts the result back down the

Figure 4: Internal wiring of an 8 processor TTL_PAPERS 951201

Figure 5: 168 Processor TTL_PAPERS 951201 Tree Structure

tree. While the result is traveling down the tree, it is also sent
out to the processors that are connected to the individual
PAPERS units. In this way, TTL_PAPERS 951201 can be
scaled to over two thousand processors with a tree height of
only five.

3. Performance

The performance of the TTL_PAPERS design is limited
primarily by the fact that it is connected via the parallel port of
each machine within the cluster. Although the latest EPP and
ECP “enhanced” parallel ports could improve performance by
an order of magnitude, the TTL_PAPERS design was made
compatible with the more universally available “standard” par-
allel ports. Thus, the design uses software handshaking and
data transmission is limited to a 4-bit path.

3.1. Performance Model

Each reference to a standard parallel port register takes
between 900ns and 5us, with 1us-2us typical. In comparison,
the propagation delay caused by cables is negligible, with a
worst-case of approximately 100ns. Likewise, the worst-case
propagation delay through the logic of the TTL_PAPERS unit is
merely 78ns when using 74LS family parts, and an amazing
23ns when using 74F family parts. Thus, as we have confirmed
experimentally with many different computers, simply multiply-
ing the count of port register accesses by the average port regis-
ter access time yields a good lower-bound estimate of the time
taken for each operation.

The port register access counts for a variety of simple
operations are given in Table 1. A simple barrier synchroniza-
tion takes just two port register accesses: one to request syn-
chronization, another to read the synchronization achieved sig-
nal. Operations that transmit data as a side-effect of synchro-
nization also can be accomplished with just two port register
accesses, but the simplified TTL_PAPERS hardware requires
five accesses: one to output the data, two to synchronize and
sample the resulting data value, and two more to signal and con-
firm that all processors have read the result. Because the data
path is just four bits wide, larger data transmissions require five
port register accesses for every four bits received. Notice that
there is no start-up latency; sending K 1-unit data takes the
same time as sending 1 K-unit datum.

PAPERS Operation 4 PEs 8 PEs n PEs

Barrier Synchronization 2 2 2

ANY Test 5 5 5

ALL Test 5 5 5

8-bit Global OR 10 10 10

1-bit Multibroadcast 5 10 5*ceil(n/4)

8-bit Broadcast 10 10 10

32-bit Broadcast 40 40 40

Table 1: Port accesses for various aggregate operations

For example, Table 1 predicts that a cluster using four
machines, each with 2us port register access time, would take a
little more than 4us to perform a barrier synchronization.
Experimentally, the difference between actual and predicted
lower-bound time is primarily a function of software overhead
imposed by slow processors; using a four-machine
TTL_PAPERS cluster, the measured times are no more than 5%
above the predicted lower bound for 90MHz Pentium, 15% for
33MHz 486DX, 25% for 25MHz 486SX, and 100% for
386DX33 processors. There are also a variety of second-order
effects that can hinder actual performance (cache misses, UNIX
scheduler anomalies, etc.), but the combined effect has been
measured as no worse than about 1.5% per additional processor
in the cluster. The overhead from second-order effects can be
reduced via various techniques (involving the OS), but are
beyond the scope of this paper.

Viewing this data another way, the 90MHz Pentium soft-
ware overhead for a barrier synchronization was determined to
be approximately 160ns. If the processor was directly con-
nected to the PAPERS hardware, without making any other
changes, the resulting total operation time could be under
400ns — a full order of magnitude faster than using the conven-
tional parallel port connection. Similarly, the bandwidth could
easily exceed 100 Mbits/s, as opposed to the 1.2 Mbits/s maxi-
mum of a standard parallel port.

Even using the parallel port interface, the complete sys-
tem latency, including all hardware and software layers, for
TTL_PAPERS is far less than that for most other networks.
Typical minimum communication times for local area networks
(e.g., Ethernet, ATM, FDDI) using a socket software interface
are generally at least a millisecond; even custom parallel
machines have relatively high latencies: 32-110 microseconds

for the nCUBE2 and 240 microseconds for the Intel Paragon
XP/S [1]. Although many of these networks offer significantly
higher bandwidth for large block transfers, the combination of
low latency and aggregate sampling in a single operation (which
would take at least log2(n) communications for other systems)
gives TTL_PAPERS better bandwidth for aggregate operations
and transmissions of individual data objects. Thus,
TTL_PAPERS forms an appropriate complement to such high-
bandwidth networks.

4. Conclusion

This paper introduces a new scalable, tightly coupled par-
allel processing architecture for fine grain execution. PAPERS
provides a microsecond latency, low overhead alternative
approach for barrier synchronization, global operations, and
data communication for MIMD architectures. This architecture
can be used to augment high latency, high bandwidth networks
and results in a better parallel processing architecture because
of the speedup of the global operations.

The demonstration prototypes have shown a 2.5 to 10
microsecond UNIX user process to UNIX user process latency
for barrier synchronization. The library of functions shows that
a full range of communication operations is possible which
allows the TTL_PAPERS unit to execute without additional
communication channels.

It has also been shown that removing the many unneces-
sary layers of software and hardware can result in very low
latency. The PAPERS hardware itself has been reduced to the
simplest level to increase speed without limiting functionality.
In essence, PAPERS has added to MIMD architecture the
advantages of SIMD synchronization, global operations, and
broadcast communications.

This work was supported in part by ONR Grant No.
N0001-91-J-4013 and NSF Grant No. CDA-9015696.

References

[1] U. Bruening, W. K. Giloi, and W. Schroeder-Preikschat, “Latency
Hiding in Message-Passing Architectures,” 8th International Par-
allel Processing Symposium, pp. 704-709, 1994.

[2] Cray T3D System Architecture Overview, Publication HR-04033,
Cray Research, Inc., 2360 Pilot Knob Road, Mendota Heights,
MN 55120, 1993.

[3] H. G. Dietz, T. M. Chung, and T. I. Mattox, “A Parallel Processing
Support Library Based On Aggregate Communication,” Lan-
guages and Compilers for Parallel Computing, Ed. by C.-H.
Huang et al., Springer, New York, pp. 254-268, 1996.

[4] H. F. Jordon, “A Special Purpose Architecture for Finite Element
Analysis,” Int’l Conf. on Parallel Processing, pp. 263-266, 1978.

[5] M. T. O’Keefe and H. G. Dietz, “Hardware barrier synchroniza-
tion: static barrier MIMD (SBM),” Int’l Conf. on Parallel Process-
ing, pp. I 35-42, 1990.

[6] T. Schwederski, W. G. Nation, H. J. Siegel, and D. G. Meyer,
“The Implementation of the PASM Prototype Control Hierarchy,”
Second Int’l Conf. on Supercomputing, pp. I 418-427, 1987.

[7] H. Stone, High-Performance Computer Architecture, Addison-
Wesley, Reading, Massachusetts, 1993.

