
Bitwise Aggregate Networks

R. Hoare, H. Dietz, T. Mattox, and S. Kim

Purdue University, School of Electrical and Computer Engineering
West Lafayette, IN 47907-1285

[hoare|hankd|tmattox|soohong]@ecn.purdue.edu
http://garage.ecn.purdue.edu/˜papers

Abstract

Typical communication networks for parallel processing
are based on sending data from one processor to one, or all, of
the other processors. Using such a network, many simple oper-
ations that require information from every processor requires
many point-to-point or broadcast communications. These
aggregate operations can be as simple as a barrier synchroniza-
tion or as complex as an arithmetic reduction. In this paper, we
discuss a class of networks that directly implement a wide range
of aggregate operations. These networks are capable of per-
forming aggregate operations in a single communication opera-
tion using only simple bitwise combining logic in a trivially
scalable tree configuration.

This work has been supported in part by ONR Grant No.
N0001-91-J-4013 and NSF Grant No. CDA-9015696.

1. Introduction

For multi-processor systems, shared memory and mes-
sage passing communication each has a clear heritage. If multi-
ple simple processors are all placed on a single memory bus,
communication through shared memory requires no additional
logic. If multiple processors do not share a memory bus, the
simplest hardware results when one processor sends a message
to another through a dedicated link. Both of these designs work
very well for small numbers of processors, but become increas-
ingly complex and inefficient as more processors are added to
the system. Shared memory systems blossom into complex
cache protocols and coherence networks; message-passing sys-
tems proliferate routing, arbitration, and switching logic to
avoid a multitude of physical point-to-point connections. Thus,
both communication methods result in increased latency,
achieving reasonable bandwidth only by transmitting a large
cache line or message at a time which they admittedly do very
well.

We suggest that, at least for the aggregate functions
described in this paper, high complexity and latency are not
necessary results of using more processors, but rather are side-
effects of using a few-processor model for systems that incorpo-
rate a large number of processors. Given this, neither the shared
memory nor the message-passing model is appropriate.

The question then becomes one of what new model is
appropriate. An appropriate model has been in use in parallel
software for quite some time. Even a cursory examination of

the HPF (High-Performance Fortran) specification quickly
reveals a multitude of aggregate functions — functions that col-
lect a set of values (one per processor) and produce either a sin-
gle result or a set of results. Likewise, both the PVM [6] and
MPI [13] libraries define collective operations over a data set
provided by a group of processors. Unlike communication
using point-to-point mechanisms, the aggregate model dis-
cussed in this paper is inherently independent of the number of
processors involved.

Using a single clock for all processors makes it easy for
many systolic-array and content-addressable memory designs to
implement a wide variety of aggregate communication opera-
tions using only bitwise logic for communication [5]. This type
of implementation of aggregate communication is not only effi-
cient, but is potentially scalable to very large numbers of pro-
cessors. Custom VLSI implemented SIMD machines often pro-
vide at least one global bitwise aggregate communication func-
tion. The NCR GAPP [7] has a single bit GO (Global Output)
that essentially implements a wired NOR across all the proces-
sors, and this is used as a basic operation to construct various
aggregate functions. The MasPar MP1 and MP2 each imple-
ment an eight-bit globalor across all the processor elements
[11], and use this hardware to implement several aggregate
functions: broadcast, any, and bitwise OR reduction.

However, in a machine constructed using processor mod-
ules that employ standard cache-based, pipelined, processors in
a MIMD configuration, it is very difficult to implement purely
synchronous communication by simply sharing a global proces-
sor clock. The solution is to use fast hardware barrier synchro-
nization to provide the SIMD-like timing needed. Barrier syn-
chronization can be viewed as an aggregate communication in
which each processor outputs a signal, and receives a response
signal only after all processors have performed the output oper-
ation.

Although most hardware barrier work, from Jordon’s
original paper [8] to the Cray T3D implementation [1], has not
taken good advantage of barriers as a mechanism to support
more general aggregate function communication, we suggest
that it is both easy and efficient to do so for at least bitwise
functions. Further, we note that the logic tree(s) used in imple-
menting efficient barrier synchronization hardware are precisely
the same mechanisms that are needed to support bitwise func-
tions. In this paper, we explore some of the bitwise aggregate
functions that can be implemented for MIMD processors using

only a k bit wide logic tree. Although the logic tree could use
nearly any logic function, our examples will focus on NAND
logic trees.

NAND is a basic gate for nearly all logic families and is
also the mechanism used to construct TTL_PAPERS, the TTL
implementation of Purdue’s Adapter for Parallel Execution and
Rapid Synchronization [4]. TTL_PAPERS is an external unit
that links multiple PCs/workstations as a tightly-coupled paral-
lel machine. Performance of the TTL_PAPERS implementa-
tion, for each of the bitwise aggregate functions discussed, is
also given.

Section 2 discusses the structure and properties of various
bitwise aggregate operations. For each operation, the following
are given: an explanation of what the operation does, why it is
needed, and how it is implemented. Barrier synchronization,
broadcast communication operations, reduction operations, vot-
ing operations, multi-way branching, and asynchronous parallel
signaling are all described. Section 3 describes the
TTL_PAPERS hardware that has been built to facilitate these
and other aggregate communication operations. Section 4
describes the theoretically minimum hardware that is required
for these operations as well as the times achieved for
TTL_PAPERS. Section 5 offers conclusions that result from
this research.

2. Bitwise Aggregate Operations

A bitwise aggregate operation is a communication that
can be implemented by independent logic for each result bit and
requires information to be contributed by each processor. The
size of this information depends on the requirements of the
aggregate operation that is being performed. In many cases,
ev ery processor must contribute only a very small amount of
information; in some cases, just a single data bit is output by
each processor. In contrast, conventional networks generally
are designed to optimize transmission of a relatively large data
block from one processor to another. Thus, the network struc-
ture for bitwise aggregate operations is quite different from that
of most networks. This architecture is centered around NAND
trees and barrier synchronization.

The remainder of this section discusses a few types of bit-
wise aggregate operations that all share the property that their
implementation can scale to arbitrarily large numbers of proces-
sors with negligible change in performance.

2.1. Barrier Synchronization

Barrier synchronization is a common way for MIMD pro-
grams to guarantee correct ordering of operations. Specifically,
when each processor arrives at a barrier, it waits until all of the
other processors have arrived and only then does it continue
executing its code. This guarantees that the code after a barrier
is only executed after all the processors have finished executing
the code that appears before that barrier.

Using traditional point-to-point or broadcast networks,
performing a barrier synchronization requires at least N com-
munication operations. Depending on the network topology,
some of these communication operations can be executed

concurrently so that the time to perform these N communica-
tions can be as low as C * log2(N) where C is the communica-
tion time. Using a global bitwise NAND network, a barrier syn-
chronization can be performed in just C time, independent of
the number of processors.

The following example demonstrates how a barrier is per-
formed using a multi-bit NAND network. Consider three pro-
cessors executing a SPMD program in which each processor is
to sequentially perform computations A, B, and C with barriers
to ensure that no processor can begin executing B until all have
completed A, nor C until all have completed B. The execution
time for each code block is assumed to be either processor
and/or data dependent and thus each barrier is required to guar-
antee the correct order of execution across the entire machine.
As is typical of UNIX-based operating systems, each processor
runs an operating system that can pre-emptively interrupt a pro-
cess to perform context switches or other maintenance tasks.

PE0 PE1 PE2
Execute A Execute A Execute A
Out 1 Out 1 Out 1
Poll In for 0 OS delay OS delay
Out 0 OS delay OS delay
Execute B Poll In for 0 Poll In for 0
Out 1 OS delay Poll In for 0
Poll In for 0 OS delay Poll In for 0
Out 0 OS delay Out 0
Execute C Poll In for 0 Execute B

Figure 1: Single NAND tree failed barrier sequence.

2.1.1. Using a Single NAND Tree

Although a single NAND tree is sufficient as a barrier
mechanism under the right timing constraints [12], given that
processor interactions with the network can be randomly
delayed, if only a single NAND tree is used, correct barrier syn-
chronization semantics may not be enforced. For example, in
figure 1, all processors will wait (by polling for 0 input) for
each of the other processors to signal (by output of 1) that they
have completed execution of A. If PE0 is the first processor to
see the signal that the barrier has completed, and thus continues
to reset its signal (by output of 0) and execute B, PE0 will think
that B is being executed by all processors when in fact PE1 and
PE2 are both still looking for the signal that PE0 has completed
A. This situation only gets worse when PE0 reaches the second
barrier, which PE2 then interprets as the first barrier and PE1
again fails to detect. Thus, due to the fact that the processors
are each subject to their local OS randomly imposing arbitrary
delays (to handle device interrupts and timeshare task switches),
each processor could be at a different barrier, yet be unable to
discern this fact. In the worst case, a “slow” processor (e.g.,
PE1) might never move past its first barrier because the other
processors always see the barrier completion and reset their out-
put before the slow processor can detect that the barrier has
been completed.

2.1.2. Using Tw o NAND Trees

It can be seen that with random delays, even if two
NAND trees, S0 and S1, are used to implement barrier synchro-
nization, proper code execution still cannot be guaranteed.
Before a barrier NAND tree is reset, it must be guaranteed that
ev ery processor has seen the “barrier done” signal. Therefore, it
would seem sufficient to use two barrier NAND trees, such that
barrier S0 is reset every time that barrier S1 is reached and bar-
rier S1 is reset every time that barrier S0 is reached. This, how-
ev er, is not sufficient. Suppose that all of the processors are at
barrier S0. After barrier S0 has been completed, the barrier S1
NAND tree will be reset. However, if one processor, PE0, gets
ahead of the rest of the processors, it is possible that it will
arrive at the next barrier before any of the other processors have
been able to reset their signals for barrier S1. Therefore, PE0
will think that barrier S1 has completed and will continue its
execution, erroneously assuming that the code before barrier S1
has been completed.

Figure 2: Barrier using two NAND trees and a flip-flop.

2.1.3. Using Tw o NAND Trees and a Flip-Flop

Barrier synchronization can be performed using three
NAND trees, but this requires more signals and logic than using
two NAND trees that control a single flip-flop as shown in fig-
ure 2. If barrier S0 is able to be reset before barrier S1 is com-
pleted and vice versa, then two NAND trees are sufficient to
implement barrier synchronization. This can be done by using
barrier NAND tree S0 to cause the flip-flop to be reset to a 0
value and barrier NAND tree S1 to cause the flip-flop to be set
to a 1 value. In this manner, barrier NAND tree S0 and barrier
NAND tree S1 can be assigned in an alternating manner to each
barrier that is in the code by first assigning barrier NAND tree
S0 to the first barrier, S1 to the second barrier, S0 to the third
barrier, etc. For barriers that use barrier NAND tree S0, proces-
sors will continue their execution when a 0 is returned and bar-
riers that use barrier NAND tree S1 will continue their execu-
tion when a 1 is returned. Therefore, upon reaching a barrier,
each processor sends a set-and-reset pair of signals to the bar-
rier NAND trees, S0 and S1. In this way, one barrier is being
reset while the other barrier is being set.

For example, let us suppose that all of the processors are
between barrier i and barrier i+1 where barrier i is seen to be
done by a 0 and barrier i+1 is seen to be done by a 1. When the
first processor, PE_A for example, reaches barrier i+1, it will
send the set-and-reset pair of signals to the barrier NAND trees.

The set signal will notify barrier i+1 that PE_A has arrived and
the reset signal will notify barrier i that it should be reset. Now,
suppose that there is a processor, PE_B, that has signaled bar-
rier i that it has arrived but has not yet seen the “barrier done”
signal. PE_A’s signal to reset barrier i does not change the sta-
tus of the flip-flop but does prevent the barrier NAND tree from
sending an erroneous “barrier done” signal to the flip-flop and
thus does not prevent PE_B from seeing the “barrier done” sig-
nal.

2.2. Broadcast

One of the simplest aggregate communication operations
is the broadcast of a datum from one processor to all processors.

To accomplish this communication, a single sending pro-
cessor outputs a datum and all the other processors allow this
datum to be passed through the network without changing its
value. Using NAND logic, if all but the one broadcasting pro-
cessor set all their data output bits to 1, the resulting NAND
value will be the complement of the value output by the broad-
casting processor. Thus, each processor can simply read the
NAND result and complement it to obtain the datum broadcast.
Alternatively, the sending processor can output the complement
of the datum it wants to broadcast, so that the value read by
each processor will be precisely the broadcast value. Thus, one
NAND bit is needed per datum bit to be transmitted in parallel.

However, this assumes that the data are all sent and
received with the proper timing. Unless all processors sample
the NAND result at the correct times, a sequence of broadcast
data might not be received correctly. This timing constraint can
be enforced by using a hardware design which ensures that new
data is sampled within a precise time window after detecting a
signal transition. Alternatively, and somewhat more robustly,
the same effect can be achieved by using an ANDed acknowl-
edge signal closely resembling a barrier synchronization. In
fact, timing can be ensured in software simply by using barrier
synchronizations to ensure that all processors have read one
datum before the sender will broadcast the next.

2.3. Any and All

In data parallel and SIMD-oriented algorithms, it is very
common that program control flow is determined by answering
questions like “have all processors solved their sub-problems?”
or “does any processor need to execute the following opera-
tion?” Both any and all have been widely used for control
flow constructs in SIMD languages from Glypnir [10] to MPL
[11]. The all voting operation enables the processors to detect
if every processor has voted “true” for a given decision. Simi-
larly, the any voting operation allows a processor to detect if
any of the processors has voted “true.”

These operations are extremely simple, requiring only a
single bit of information from each of the processors. Using
point-to-point or broadcast networks requires that a minimum
of N communications take place, with a minimum execution
time of C*log2(N), where C is the execution time for a single
communication operation. By using a single NAND tree this
information can be obtained in a single communication

operation that takes only C time. Given that each processor
provides a boolean value a which is 1 for “true” and 0 for
“false,” the basic logic is:

Any(a) = OR(a) = NAND(NOT a)
All(a) = AND(a) = NOT (NAND(a))

2.4. Reductions (Bitwise, Minimum/Maximum, etc.)

Reductions are aggregate operations in which each pro-
cessor supplies a value and the result is a single value for the
entire collection. Example reductions include minimum value,
maximum value, bitwise OR, and bitwise AND. To perform a
reduction operation requires at least N communication transac-
tions on traditional point-to-point or broadcast networks with N
processors. Depending on the network topology, the time to
perform these N communications can only be as low as log2(N)
communication times. On several useful reduction operations,
significantly lower time complexities can be achieved with a
multi-bit NAND network.

Bitwise AND, OR, and NOR reductions can be per-
formed in order one cycles using NAND trees. Specifically,
with k NAND trees, k bits of result for an AND, OR, or NOR
reduction is produced per cycle. Using NAND trees to operate
on a k-bit value a from each processor, and using ˜ to represent
bitwise 1’s complement, the equivalences are:

reduceAND(a) == ˜(reduceNAND(a))
reduceOR(a) == (reduceNAND(˜a))
reduceNOR(a) == ˜(reduceNAND(˜a))

One very common use of reductions is in optimization
problems, where each processor works on a potential solution.
Each processor computes a measure of merit or quality for its
solution, and then the processors collectively perform a maxi-
mum value reduction on these measures. The best solution is
the one with the highest score. Genetic algorithms frequently
use maximum reductions.

A multi-bit NAND network can perform a maximum or
minimum reduction in order one time as well; the time is inde-
pendent of the number of processors. Specifically, with a k-bit
NAND, log2(k) bits of maximum or minimum reduction result
are produced per cycle.

In the maximum reduction algorithm, each cycle is a vot-
ing operation where each processor votes for a portion of the
result bit pattern. To simplify the discussion, let us first con-
sider a maximum reduction over 1-bit unsigned integers.
Although one normally thinks of maximum being computed as
the result of a series of pairwise comparisons, the maximum of
a set of 1-bit unsigned integers is clearly 1 iff any processor’s
value was a 1. As described in section 2.3, an any operation is
easily accomplished using just a one-bit NAND tree for data
transmission. The execution time is independent of the number
of processors providing data values.

Now consider a maximum being computed over k-bit
unsigned integers. Clearly, determining the most significant bit
is exactly the same as performing the 1-bit maximum operation
just described, but how can the remaining bits be determined?

The answer lies in the fact that all processors know the result of
the operation on the most significant bit. If the value for a pro-
cessor has a most significant bit that does not match this result,
then that value cannot be the maximum, and that processor
should not participate in determining the values of the less-
significant bits. Thus, the k-bit unsigned integer maximum can
be accomplished in k any operations, with a potentially
decreasing set of processors participating in each successive
comparison.

This algorithm can be further improved so that the i most
significant bits of the maximum can be determined in a single
operation. This is done by using m NAND trees for each step,
where m≡2i-1. Suppose that the value of a particular proces-
sor’s most significant i bits is j; then, this processor will output a
0 bit only in the j-1 bit NAND tree. The result is thus a bit vec-
tor in which the highest 1 bit indicates the bit pattern that is the
maximum for these i most significant bits. Notice that if there
is no 1 bit in the result, the most significant i bits must all be
zero.

It is perhaps surprising that this same algorithm can be
used to compute the maximum (or minimum) over k-bit signed
integers or even floating point values. For k-bit signed integers,
one can simply add a bias factor of 2k-1, perform the unsigned
maximum, then subtract this bias from the result. For floating
point numbers, the only additional complication is determining
the proper order in which to examine the bits (i.e., exponent
before mantissa). For some floating-point formats the compari-
son can be performed literally as though the value bit patterns
were a signed integers.

2.5. Voting To Resolve Resource Contention

Voting operations are aggregate communications in which
each processor supplies a “vote,” and a cumulative result of the
votes is delivered to every processor. There are many different
variations on voting; for example:

• Return the processor number of the lowest numbered pro-
cessor that voted “true”. This is done using the minimum
reduction algorithm with each processor’s value as the pro-
cessor number (from 0 to N-1) for those that vote “true” and
N for those that vote “false.”

• Return the approximate number of processors voting “true.”
The result thus distinguishes whether zero, one, more than
one, or all processors voted “true.” The approximate count
can be obtained by performing an OR reduction of the pro-
cessor numbers for processors that voted “true” and then col-
lecting three single-bit NAND tree results. One bit computes
any, thus detecting the case of no “true” voters. Another bit
computes all, thus detecting the case of all N processors
giving “true” votes. The third bit is computed as the any
over those processors who voted “true” but whose processor
number did not match the OR reduction result; this distin-
guishes between one “true” voter and more than one.

• Return a k-bit vector in which the ith bit indicates how the ith
participating processor voted. In general, the ith processor
involved in such a vote controls bit i; this is done by output of
a 1 bit for all other NAND trees, and output of the

complement of the processor’s logical vote value for the ith
NAND tree.

• Return a k-bit vector in which the ith bit indicates whether
zero or at least one processors want to access the ith shared
resource.

Despite the differences, all of these operations are typically
used to sample global state to obtain information needed to cre-
ate a static schedule (at runtime) which will be conflict-free.

When several processors need to access a set of shared
resources, such as a shared I/O device or software structure
(e.g., a data base record), some technique is required to guaran-
tee exclusive access to each processor in turn. By taking a vote
before attempting access to a database record, the set of con-
tending processors can be determined. This set of processors
can then access the record in a deterministic sequence, with bar-
rier synchronizations between each access to guarantee this
ordering. This technique is further described in [2] for statically
scheduling access to high-bandwidth conventional networks
(e.g., HiPPI).

Voting operations are also quite useful for preventing
needless communications. A primary example is a race condi-
tion in which several processors attempt to store data into a
common data object. Due to the serialization principle, there
can be only one final winner of the race condition; thus, if we
can detect which processors lose the race, they do not have to
send any data. Voting can be used prior to data transmission to
determine the winner of the race, and then only the winning
processor needs to send data to update the object. A more
detailed discussion of this technique can be found in [2].

Various other operations, such as more complex reduc-
tions and scans (parallel prefix operations) also incorporate vot-
ing steps to enhance performance.

2.6. VLIW-Style Multi-Way Branching

In order to facilitate more aggressive compiler code
motions, ideal VLIW (Very Long Instruction Word) machines
allow multiple branch tests to be executed in parallel. In the
idealized VLIW model, a central control unit collects these test
result bits and selects the appropriate branch target. However,
as was observed in and [9], it is possible to use bitwise global
communication hardware to collect and distribute test results so
that each processor can independently perform the correspond-
ing multi-way branch. The necessary communication is actu-
ally the second bit vector vote operation described in the previ-
ous section.

Figures 3, 4, and 5 show how multi-way jump is imple-
mented with NAND trees. Once the example given in figure 3
has been VLIW scheduled, suppose that PE2 evaluates two
branch conditionals and PE0 evaluates one (PE1 and PE3 do not
evaluate any). Thus, the voting operation (NAND) has PE0
control the least significant bit and PE2 controls the next two
bits. In this way, the low three bits of the NAND result form the
densely-encoded key value for every processor to index its local
jump table for this multi-way branch. Having the compiler
select which processors should control which NAND bits for a
given multi-way branch is essentially a trivial register allocation

problem. The jump table for PE0 is shown in figure 4, and the
corresponding code structure is shown in figure 5.

E

Store e, E

F

Store f, F

G

Store g, G

H

X

Y

Store h, H

IF d

IF a

B

Store b, B

IF c

a

c

d

if (a&c&d)

if (a&~c)

if (~a)

if (a&c&~d)

Figure 3: Sequential Code that contains multiple branches.

nand() arguments

PE1PE0 PE2 PE3

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111

1111 1111

11011111

1110 1111

11011110

1111 1011

1110 1001

10111110

1111 1001

0000

0001

0010

0011

0100

0101

0110

0111

Result
nand()

index label

0

1

2

3

4

5

6

7

L1

L4

L4

L4

L4

L2

L3

L3

tab0 []

Figure 4: Multi-way branch table.

The resulting code provides not only “branch parallelism”
by performing branch tests on PE0 and PE2 simultaneously, but
also aggressive code motions by allowing execution of code
blocks B, E, F, G, and H before the four-way branching of
figure 3 is resolved.

PE0 PE1 PE3PE2

B

G

c

d

a

F

Store f, F

X

X

X

Store b, B

Store b, B

X Store b, B

Store g, G

t = nand (111a) t = nand (1111) t = nand (1111)t = nand (1dc1)

Y

Y

Y

Y Store e, E

Store h, H

E

H

Store h, H

L3:

L4:

L2:

L1:

Jump tab0 [t] Jump tab1 [t] Jump tab2 [t] Jump tab3 [t]

Figure 5: VLIW code based on multi-way branching.

2.7. Asynchronous Parallel Signaling

In order to implement asynchronous communication such
as shared memory or message-passing protocols, it is necessary
to augment the above fully synchronous operations with a
mechanism that can be used to asynchronously trigger a com-
munication. In our discussion of the implementation of barrier
synchronization, one can observe that the barrier is composed of
at least two operations, the first of which is really a type of
asynchronous signal in which each processor signals that it has
arrived at the barrier. Howev er, when one thinks of an asyn-
chronous parallel signal one typically thinks in terms of one (or
more) processors sending a signal to a group of processors,
whereas the first step of a barrier synchronization essentially
has all processors signal each other.

The basic parallel signal logic can be implemented using
a single NAND tree. To send a signal, a processor simply
changes its output bit from 1 to 0, thus causing the NAND tree
result to change from 0 to 1. The other processors can then
detect this change either by translating this signal transition into
a hardware interrupt or by polling to check the state of the result
bit. The combining properties of the NAND tree ensure that
there is no conflict if multiple processors signal simultaneously.
Thus, a processor sending a signal need only output one bit; a
processor that is polling need only input one bit.

Again, as discussed for barrier synchronization (section
2.1), there is a potential timing fault if the parallel signal logic
could be reset before all processors have responded. For this
reason, the TTL_PAPERS hardware incorporates an additional
barrier synchronization unit dedicated to parallel signal
acknowledge (reset). Alternatively, the signal could be sent
using a single NAND tree and other logic could be used to fol-
low it with an ordinary barrier synchronization to serve as an
acknowledgment.

3. Hardware Implementation: TTL_PAPERS

TTL_PAPERS [4], is the name for versions of the
PAPERS (Purdue’s Adapter for Parallel Execution and Rapid
Synchronization) hardware which have been carefully engi-
neered to be easily replicated in a university environment. All
the TTL_PAPERS versions are built using 74LS TTL logic on a

Figure 6: TTL_PAPERS 951201 eight-processor module.

simple one-sided or two-sided circuit board. Despite this sim-
plicity, the TTL_PAPERS 951201 design (figure 6) can be mod-
ularly scaled to interconnect thousands of processors.

The TTL_PAPERS architecture is comprised of four sub-
systems: the synchronization subsystem, the parallel signaling
subsystem, the data communication subsystem, and the status
display subsystem.

3.1. Synchronization Subsystem

TTL_PAPERS uses a variation on the SBM (Static Bar-
rier MIMD) design of [12]. The primary difference between the
previously published SBM and the TTL_PAPERS mechanism is
that there are two barrier trees and a flip-flop rather than just
one barrier tree. The reason is simply that the published SBM
silently assumed that the barrier hardware is reset between bar-
riers and, as Section 2.1 describes, this is not the case. In con-
trast, the use of two trees and a flip-flop (figure 2) allows the
hardware for one tree to be reset as a side-effect of the other tree
being used.

The obvious implementation of a barrier synchronization
would require four I/O cycles: output barrier request, input bar-
rier completed, output barrier acknowledge, and input barrier
reset. The TTL_PAPERS barrier unit performs these four func-
tions in two I/O cycles by interleaving and combining these
operations for two independent barrier NAND trees. The output
barrier request signal for one barrier NAND tree is coupled with
the output barrier acknowledge signal for the other. Likewise,
both input signals are combined using the flip-flop, resulting in
a single input signal that toggles as described in section 2.1.3.

Because this design needs no clocking, packetization,
arbitration logic, etc., but merely needs a couple of NAND trees
and a flip-flop, the design trivially scales to very large numbers
of processors without introducing significant complexity or
delays.

3.2. Communication Subsystem

The TTL_PAPERS library provides a rich array of aggre-
gate communication operations. Due to the synchronous nature

of the data communications, the communication subsystem can
rigorously schedule which processor is sending data and in
which order. Further, all communications are inherently reli-
able; no data is ever lost nor is there ever a need for error cor-
rection or retransmission. This allows the communication
architecture to be extraordinarily simple. Thus, buffers, colli-
sion detection logic, arbitration logic, and interrupt handlers are
not needed.

TTL_PAPERS uses a combination of hardware and soft-
ware to provide a wide range of aggregate communication oper-
ations. The functions described in this paper are all directly
implemented. More complex operations, such as double-
precision floating point multiply scans (parallel prefix), are
implemented using software that takes advantage of the directly
implemented functions both to transmit data and to obtain
global state information that allows more effective algorithms to
be applied. Of course, constructed communication operations
are slower than those directly implemented, but most aggregate
functions on small (64-bit or smaller) data objects still execute
in less time than it takes for a single minimum communication
using traditional networks [3].

Like the barrier structure, this hardware design needs no
clocking, packetization, arbitration logic, etc., but merely a
group of NAND trees. Thus, the design trivially scales to very
large numbers of processors without introducing significant
complexity or delays.

3.3. Parallel Signaling Subsystem

As suggested in section 2.7, the parallel signaling subsys-
tem in TTL_PAPERS is very similar to the barrier subsystem.
An “interrupt request” NAND tree is connected to a flip-flop so
that any processor can cause the flip-flop to register a pending
signal. A second NAND tree, which acts to provide a barrier
synchronization, allows all processors together to acknowledge
and reset any pending signal(s). Due to parallel port limitations,
each processor has an additional output bit which is used to
select whether the normal, toggling, barrier synchronization
input is visible or the signal input is visible on its input port.

Because it is virtually identical to the barrier subsystem,
the parallel signaling unit is also very scalable.

4. Performance

All the operations discussed in this paper are bitwise
aggregates that can be computed using a fixed number of
NAND trees, independent of the number of processors being
interconnected. If we assume that these NAND trees are imple-
mented using TTL-compatible logic in a single, centralized,
hub, the propagation delay is barely affected by the size of each
NAND tree; even thousands of processors could be accommo-
dated with a logic delay on the order of 100 nanoseconds.
Depending on physical layout, the delays introduced by the
wires or cables between each processor and this hub may reach
several hundred nanoseconds, but are essentially independent of
the total number of processors. The device register access time
is relatively large using standard processors, typically between
300 nanoseconds and 2 microseconds depending on bus

Minimum Minimum
NAND I/O
Trees Cycles

Barrier Sync. 1 2

k-bit t+1 2*ceil(k/t)
Broadcast

Any 2 2

All 2 2

k-bit OR t+1 2*ceil(k/t)

k-bit AND t+1 2*ceil(k/t)

k-bit NAND t+1 2*ceil(k/t)

k-bit NOR t+1 2*ceil(k/t)

k-bit t+1 2*ceil(k/floor(log2(t+1)))
Maximum

k-bit t+1 2*ceil(k/floor(log2(t+1)))
Minimum

k-bit t+1 2*ceil(k/t)
vector Vote

Async. Signal 1 1

Table 1: Hardware and time complexity using NAND trees.

interface (e.g., PCI and ISA bus bridges), but it is also indepen-
dent of processor count.

Given this, there is little to discuss about how complexity
and performance scale with system size. Each NAND tree has
the obvious structure, an N-input NAND tree whose output is
duplicated by a fan-out tree of drivers. Because the only direct
impact of scaling on network speed is a small variation in
NAND tree delay, which can be a negligibly small fraction of
the total delay, it is reasonable to consider the performance per
processor to be essentially independent of machine size. Tthis
fact has been confirmed empirically in our experiments.

However, different aggregate operations can show differ-
ent performance using the same tree logic, cable, and interface.
One cause of these differences is the number of NAND trees
available for the operation. Some aggregate functions need, or
can improve performance by using, multiple NAND trees. The
minimum number of NAND trees for each bitwise aggregate
operation is given in table 1. In this table, t is used to represent
the number of NAND trees being used for data transmission,
which must be at least 1. The other primary characteristic is the
number of I/O device register accesses (bus I/O cycles) required
for each aggregate function. These also are listed in table 1,
parameterized by t and by k, the number of data bits from each
processor.

The performance figures listed in table 1 are based on the
assumption that each processor is interfaced to the NAND trees
in a way that ensures that each processor will be able to imme-
diately react to any state change on its inputs. This is a reason-
able model if the processor is not subject to interrupts (caused
by other devices or timesharing) or is connected using “smart”
interface hardware that can immediately react to input state

TTL_PAPERS Measured Time
I/O Cycles for k=32 (µs)

Barrier Sync. 2 2.5

k-bit Broadcast 5*ceil(k/4) 59

Any 5 6.3

All 5 6.3

k-bit OR 5*ceil(k/4) 59

k-bit AND 5*ceil(k/4) 59

k-bit NAND 5*ceil(k/4) 59

k-bit NOR 5*ceil(k/4) 59

k-bit Maximum 5*ceil(k/2) 112

k-bit Minimum 5*ceil(k/2) 112

k-bit vector Vote 5*ceil(k/4) 59

Async. Signal 1 1.2

Table 2: Predicted and measured time using TTL_PAPERS.

changes.

However, using standard parallel port (SPP) interfaces to
connect conventional PCs or workstations each running UNIX,
additional overhead is introduced. For TTL_PAPERS, this
overhead is summarized in table 2. TTL_PAPERS maintains
two-cycle barrier synchronization performance by using two
NAND trees and a flip-flop. Although the SPP provides up to
12 output bits, it only provides five bits of input. TTL_PAPERS
uses one of the five bits to detect each barrier synchronization,
leaving four bits for data transmission. For reliable data trans-
mission using the SPP connection, a five-cycle communication
is needed. This sequence uses two two-cycle barrier synchro-
nizations to ensure that all data is available before the result is
read and is not changed until all processors have read the result.
The fifth operation simply prevents a race between data bits and
barrier request bits.

The measured execution times quoted in table 2 were
obtained using a TTL_PAPERS cluster of four 486DX33 PCs,
each running Linux. In comparison, using Ethernet and PVM 3,
the same cluster yields a barrier synchronization time of 49,000
µs and aggregate function times around 100,000 µs. Thus, the
speed difference ranges from three to four orders of magnitude
in favor of TTL_PAPERS, and this performance gap widens for
larger clusters.

5. Conclusion

In this paper, we hav e suggested that the type of network
once recommended for use in bit-serial systolic array and cus-
tom VLSI SIMD architectures can be readily and effectively
applied to interconnect MIMD processors — or even clusters of
PCs or workstations. Although such networks were tradition-
ally viewed as requiring a purely synchronous machine organi-
zation, they trivially implement efficient barrier synchroniza-
tion, thus providing this synchronous environment without
demanding any special processor features.

Despite the strikingly simple hardware, the performance
(discussed in section 4) on completely scalable aggregate func-
tion communications is dramatically superior to that of far more
complex conventional networks. Not listed in this paper are the
multitude of additional aggregate functions for which scaling to
large numbers of processors causes some slowdown, but perfor-
mance is again far better than that of conventional networks that
optimize bandwidth for large-block transmissions.

References

[1] Cray T3D System Architecture Overview, Publication
HR-04033, Cray Research, Inc., 2360 Pilot Knob Road,
Mendota Heights, MN 55120, 1993.

[2] H. G. Dietz, W. E. Cohen, T. Muhammad, and T. I. Mat-
tox, “Compiler Techniques For Fine-Grain Execution On
Workstation Clusters Using PAPERS,” 7th Annual Work-
shop on Languages and Compilers for Parallel Comput-
ing (also to appear as a book chapter from Springer Ver-
lag), Cornell University, August 1994.

[3] H. G. Dietz, T. M. Chung, and T. I. Mattox, “A Parallel
Processing Support Library Based On Synchronized
Aggregate Communication,” 1995 Workshop on Lan-
guages and Compilers for Parallel Computing, Ohio
State University, Ohio, August 1995.

[4] H. G. Dietz, R. Hoare, and T. Mattox, “A Fine-Grain Par-
allel Architecture Based On Barrier Synchronization,”
International Conference on Parallel Processing, August
1996.

[5] C. C. Foster, Content Addressable Parallel Processors,
Litton Educational Publishing, Inc., New York, 1976.

[6] A. Geist, et. al., PVM, Parallel Virtual Machine, A User’s
Guide and Tutorial for Networked Parallel Computing. ,
The MIT Press, Cambridge, Massachusetts, 1995.

[7] W. Hannaway, G. Shea, W. R. Bishop, “Handling real-
time images comes naturally to systolic array chip,” Elec-
tronic Design, November 15, 1984.

[8] H. F. Jordon, “A Special Purpose Architecture for Finite
Element Analysis,” Proc. Int’l Conf. on Parallel Process-
ing, pp. 263-266, 1978.

[9] S. P. Kim and H. G. Dietz, “VLIW-Style Parallelism On
A Workstation Cluster, ” submitted to International Con-
ference on Parallel Architectures and Compilation Tech-
niques, Boston, MA, 1996

[10] D. H. Lawrie, I. Layman, D. Baer, and J. M. Randal, “The
Glypnir Language,” Communications of the ACM, Vol.
18, No. 3, March 1975.

[11] MasPar Computer Corporation, MasPar Programming
Language (ANSI C compatible MPL) Reference Manual,
Software Version 2.2, Document Number 9302-0001,
Sunnyvale, California, November 1991.

[12] M. T. O’Keefe and H. G. Dietz, “Hardware barrier syn-
chronization: static barrier MIMD (SBM),” Proc. of 1990
Int’l Conf. on Parallel Processing, St. Charles, IL, pp. I
35-42, August 1990.

[13] M. Snir, et. al., MPI The Complete Reference , pp.
147-199, The MIT Press, Cambridge, Massachusetts,
1996.

