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Abstract

PCs and workstations offer execellent performance per unit cost. Thus, for computational

tasks where a single machine is not sufficient, the possibility of treating multiple machines as a

parallel system seems very attractive. Howev er, conventional communication hardware mecha-

nisms yield communication and synchronization latencies that make only the largest-grain paral-

lelism efficient. For example, typical LANs accessed through UNIX have latencies measured in

milliseconds; even the fastest parallel supercomputers have latencies measured in tens to hun-

dreds of microseconds. Thus, for any of these systems, the minimum effective parallel grain size

is measured in thousands of floating point operations.

Rather than accepting these delays, we have dev eloped new hardware that very efficiently

implements barrier synchronization and aggregate communication operations. This new hard-

ware is called PAPERS: Purdue’s Adapter for Parallel Execution and Rapid Synchronization.

Although the various different versions of PAPERS differ somewhat in the operations they sup-

port, each PAPERS unit is capable of performing any basic synchronization or aggregate commu-

nication operation with a total UNIX-process to UNIX-process latency of just a few microseconds.

This paper details the public domain design of TTL_PAPERS, which Purdue University

and the authors provide strictly on an “as-is” basis, without warranty or liability. TTL_PAPERS

differs from the other PAPERS units in a variety of ways, however, all these differences focus on

making TTL_PAPERS implementable with a minimum of hardware development resources. The

4-processor TTL_PAPERS design discussed in this paper uses just 8 TTL chips, can be wired and

powered using parts readily available at Radio Shack or other electronic supply stores, and fits

neatly into a box that is easily constructed using standard sized lumber.
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1. Theory of Operation

When one first hears of TTL_PAPERS, it is very difficult to accept that such cheap and

simple hardware can implement very effective synchronization and communication operations for

parallel processing. This is because the traditional views of parallel and distributed processing

rest on a set of basic assumptions that are incompatible with the concept:

• Conventional wisdom suggests that the operating system should manage synchronization

and communication, but even a simple context switch to an interrupt handler takes more

time than TTL_PAPERS takes to complete a typical synchronization or communication.

All interactions with the TTL_PAPERS hardware are I/O port accesses made directly from

the user program; there are no OS modifications required and no OS call overhead is

incurred.

• Communication operations are characterized primarily by latency (total time to transmit

one object) and bandwidth (the maximum number of objects transmitted per unit time).

The hardware and software complexity of most interaction methods results in high latency;

high latency makes high bandwidth and large parallel grain size necessary. In contrast,

TTL_PAPERS is very simple and yields a correspondingly low latency. Providing low

latency allows TTL_PAPERS to work well with relatively fine-grain parallelism, but it also

means that relatively low bandwidth can suffice.

• A typical parallel computer is constructed by giving each processor a method of indepen-

dently performing synchronization and communication operations with other processors; in

contrast, TTL_PAPERS interactions between processors are performed as aggregate opera-

tions based on the global state of the parallel computation, much as in a SIMD machine.

This SIMD-like model for interactions results in much simpler hardware and a substantial

reduction in software overhead for most parallel programs (as was observed in the PASM

prototype [SiN87]). For example, message headers and dynamically-allocated message

buffers are not needed for typical TTL_PAPERS communications. It is also remarkably

cheap for the TTL_PAPERS hardware to test global state conditions such as any or all.

Thus, TTL_PAPERS does not perform any magic; it simply is based on a parallel computation

model that naturally yields simpler hardware and lower latency. TTL_PAPERS is not really a

network at all, but a special-purpose parallel machine designed specifically to provide low-latency

synchronization and communication, taking full advantage of the “loosely synchronous” execu-

tion models associated with fine-grain to moderate-grain parallelism.

1.1. Synchronization

The only synchronization mechanism implemented by TTL_PAPERS is a special type of

fine-grain barrier synchronization that facilitates compile-time scheduling of parallel operations

[DiO92] [DiC94].

Hardware barrier synchronization was first proposed in a paper by Harry Jordon [Jor78],
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and has since become a popular mechanism for coordination of MIMD1 parallel processes. A

barrier synchronization is accomplished by processors executing a wait operation that does not

terminate until sometime after all PEs have signaled that they are waiting. However, while

building the 16 processor PASM (PArtitionable Simd Mimd) prototype in 1987 [SiN87], we real-

ized that the hardware enabling a collection of conventional processors to execute both MIMD

and and instruction-level SIMD2 programs was actually an extended type of barrier synchroniza-

tion mechanism. Generalizing this barrier synchronization mechanism resulted in several new

classes of barrier synchronization architectures, as reported in [OKD90] [OKD90a]. Unlike other

PAPERS implementations, the TTL_PAPERS barrier mechanism provides only a subset of these

features; however, these features are sufficient to enable conventional processors to efficiently

implement fine-grain MIMD, SIMD, and VLIW3 execution [CoD94a].

The TTL_PAPERS barrier mechanism also provides an effective target for compile-time

instruction-level code scheduling [DiO92].

1.2. Communication

In addition to high-performance barrier synchronization, TTL_PAPERS provides low-

latency communication. This mechanism is not equivalent to a shared memory nor a conven-

tional message-passing system, but has several advantages for loosely synchronous communica-

tion. Basically, it trades asynchrony for lower latency and more powerful static routing abilities.

As a side-effect of a barrier synchronization, each PE can place information into the

TTL_PAPERS unit and get information from whichever processor, or group of processors, is

selected. Thus, the sender only outputs data; it is up to the receiver to know where to look for the

data that the sender has made available to it. In TTL_PAPERS, we further simplify the hardware

by extending this concept so that all processors must agree on and contribute to the choice of

what data each processor will have available. Compared to conventional networks, this method

allows less autonomy for each processor, but yields simpler hardware, better performance, and

more powerful access to global state.

The most basic PAPERS and TTL_PAPERS communication operation is a multi-broadcast

that sends to each processor a bit mask containing one bit from each processor. This is a very

powerful mechanism for examining the global state of the parallel machine. An obvious applica-

tion is for processors to “vote” on what they would like to do next. For example, it can be used to

determine which processors are ready for the next phase of a computation or which processors

would like to access a shared resource (e.g., to implement a balanced, conflict-free, schedule for

1 MIMD refers to Multiple Instruction stream, Multiple Data stream; i.e., each processor inde-
pendently executes it own program, synchronizing and communicating with other processors when-
ev er the parallel algorithm requires.

2 SIMD refers to Single Instruction stream, Multiple Data stream; i.e., a single processor with
multiple function units organized so that the same operation can be performed simultaneously on
multiple data values.

3 VLIW refers to Very Long Instruction Word; i.e., a generalization of SIMD that allows each
function unit to perform a potentially different operation on its own data.
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access to an Ethernet). However, because any communication pattern is a subset of multi-

broadcast, it can also be used to implement general communication “routing”.

In addition to one-bit multi-broadcast, some versions of PAPERS provide the ability to get

four bits of data from any processor in a single operation. Using a unidirectional Centronics

printer port, four bits is the theoretical maximum number of data bits that can be obtained by one

port input operation. TTL_PAPERS implements four bit sends, and even more functionality,

using simple NAND logic to combine signals from the processors. Operations directly supported

include:

• Since TTL_PAPERS data is literally a four-bit wide NAND of data sent across all proces-

sors, computing a four-bit global NAND takes only one operation. Likewise, NAND can

implement AND and OR functions by simply complementing the output or by comple-

menting the inputs.

• To accomplish a four-bit broadcast from a single processor, all the other processors simply

output 0xf — four 1 bits. Again, the result will be the complement of the data sent.

• To accomplish a one-bit multi-broadcast, each processor sends four bits of data such that

processor i’s bit i is the data it wishes to send, and the other bits are all 1 values. For exam-

ple, bit 2 will be 1 for processors 0, 1, and 3; thus, NANDing these signals together will

result in a signal that is the complement of bit 2 from processor 2.

In summary, TTL_PAPERS provides almost no facility for autonomous communications, but

does provide a very rich collection of aggregate communication operations based on global state.

1.3. Interrupts

To facilitate some level of asynchronous operation, some versions of PAPERS provide a

separate interrupt broadcast facility so that any processor can signal the others. Such an interrupt

does not really generate a hardware interrupt on each processor, rather, it sets a flag that each pro-

cessor can read at an appropriate time. Although such a check can be made at any time, the two

most obvious times are:

• When a barrier wait has taken an unexpectedly long time. This would indicate that one or

more processors might have generated an interrupt, freezing the barrier state so that other

processors would know to check for an interrupt.

• When the OS is invoked to perform a scheduling operation. Thus, gang scheduling and

other OS functions can be implemented by having the OS on each processor use the inter-

rupt facility to coordinate across processors.

At this time (November, 1994), the TTL_PAPERS interrupt facility is not used by the software.

However, the hardware does provide all the necessary logic for generating an interrupt and pro-

viding a special “interrupt acknowledge barrier.”
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1.4. Purpose

Unlike most research prototype supercomputers, TTL_PAPERS is a fully public domain

hardware and software design intended to be widely replicated. It is hoped that the fine-grain

capabilities of TTL_PAPERS in linking conventional computers will bring a qualitative change to

the fields of cluster, network, and heterogeneous supercomputing.

The first public demonstration of TTL_PAPERS was at the International Conference on

Parallel Processing, August 16-18, 1994. That unit differed from the one discussed here in that it

lacked a parallel interrupt facility, but we were able to demonstrate the complete library using a

cluster of four IBM 486DX/33 ValuePoint PCs under Linux. The second public demonstration

was at the IEEE Supercomputing conference, November 14-18, 1994. There, we demonstrated

the version of TTL_PAPERS discussed here; however, we didn’t just use a cluster of PCs under

Linux. We also demonstrated the system using four IBM PowerPCs under AIX and using four

DEC Alpha workstations under OSF. Despite the fact that TTL_PAPERS is a very simple and

cheap unit that communicates through the parallel printer port, these demonstrations have gone

far tow ard convincing the research community that it isn’t a toy. TTL_PAPERS is a very serious

introduction to a new way of thinking about how processors in a parallel machine should interact.

The TTL_PAPERS units will continue to evolve and improve; since the first PAPERS was

built in February 1994 [DiM94], we have constructed and tested six different types of PAPERS

units. TTL_PAPERS systems will also serve as a software testbed for a prototype supercomputer

based on the same barrier synchronization technology — CARDBoard, the Compiler-oriented

Architecture Research Demonstration Board. CARDBoard differs from TTL_PAPERS in that it

does not center on using PCs as processing elements, but simply uses PCs as hosts for boards that

each incorporate four high-performance RISC processors along with a PAPERS-like synchroniza-

tion and communication facility. Thus, CARDBoard will offer much higher performance than

TTL_PAPERS, but requires much more complex and specialized hardware and software.

In addition to the authors of this paper, many students have been involved in the develop-

ment of PAPERS and CARDBoard. These students include Y. Choe, T. Chung, W. Cohen, R.

Fisher, S. Kim, G. Krisnamurthy, C. Sheldon, and J. Sponaugle.
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2. PC Hardware

Although TTL_PAPERS provides very low latency synchronization and communication, it

is interfaced to PCs using only a standard parallel printer port and is implemented with a minimal

amount of external hardware. This section details the PC hardware involved in use of

TTL_PAPERS.

Throughout the following description, we will distinguish between stand-alone PCs and

PCs used as processors within a parallel machine by referring to the later as “PEs” — processing

elements. The design presented here directly supports 4 PEs (PE0, PE1, PE2, and PE3), and we

also detail how the design can be scaled to 8, 16, or 32 PEs. In fact, no significant changes are

needed to scale the design to thousands of processors.

2.1. PE Hardware Interface

No changes are required to make standard PC hardware into a TTL_PAPERS PE. All that

is needed is a standard parallel printer port and an appropriate cable. Although some of the PCs

on the market provide extended-functionality parallel ports that allow 8-bit bidirectional data con-

nections, many PCs provide only an 8-bit data output connection. Like the original PAPERS,

TTL_PAPERS can be used with any PC; it uses only the functions supported by a standard unidi-

rectional parallel port.

But if there is no parallel input port, how does TTL_PAPERS get data into the PC? The

answer lies in the fact that the 8-bit data output port is accompanied by 5 bits of status input and 4

bits of open-collector input/output (which are sometimes implemented as output only) on two

other ports associated with the 8-bit data output port. The way we use these lines, there are actu-

ally 12 bits of data output and 5 bits of data input.

All versions of both TTL_PAPERS and PAPERS use all 5 available input lines. However,

the various versions differ in how many and which of output signals are used. Because the open-

collector lines are generally not as well driven as the 8-bit data output lines and require access to

a different port address, we generally use the open-collector lines only for signals that are modal,

i.e., that change relatively infrequently and can have large settling times. The version of

TTL_PAPERS discussed here uses 11 of the 12 available output lines, but only the 8-bit data out-

put port is written in the process of normal interactions with the TTL_PAPERS hardware; the 3

other bits are used only for interrupt handling.

The pin/contact assignment for each of the lines used by TTL_PAPERS is given in Table 1.

Table 1 lists the pin numbers as they appear on the PE’s DB25 connector. We recommend

directly connecting the cable’s wires to the TTL_PAPERS circuit board; thus, it is very useful to

know the color code used by the wires. Table 1 includes a wiring color code. However, we hav e

found that cables from different manufacturers differ in some of the color assignments, so this

color code is to be considered only as an accurate guide to how the first group of prototypes is

wired.
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Table 1: DB25 Parallel Port Pin Assignments

Pin # Std. Name Use In TTL_PAPERS Wire Color

Pin 1 Strobe P_NAK, not interrupt ack Brown

Pin 2 D0 P_D0, bit 0 of output nybble Red

Pin 3 D1 P_D1, bit 1 of output nybble Orange

Pin 4 D2 P_D2, bit 2 of output nybble Pink

Pin 5 D3 P_D3, bit 3 of output nybble Yellow

Pin 6 D4 P_LG, light LED Green Green

Pin 7 D5 P_LR, light LED Red Light Green

Pin 8 D6 P_S0, strobe P_RDY to 0  Blue

Pin 9 D7 P_S1, strobe P_RDY to 1  Purple

Pin 10 Ack P_I3, bit 3 of input nybble Gray

Pin 11 Busy P_RDY, toggling ready signal White

Pin 12 PE P_I2, bit 2 of input nybble Black

Pin 13 SlctIn P_I1, bit 1 of input nybble Brown, White stripe

Pin 14 AutoFD P_IRQ, interrupt request Red, White stripe

Pin 15 Error P_I0, bit 0 of input nybble Red, Black stripe

Pin 16 Init P_SEL, int/ready select Orange, White stripe

Pin 17 Slct reserved Orange, Black stripe

Pin 18 Gnd — Pink, Black stripe

Pin 19 Gnd — Yellow, Black stripe

Pin 20 Gnd — Green, White stripe

Pin 21 Gnd — Green, Black stripe

Pin 22 Gnd — Blue, White stripe

Pin 23 Gnd — Purple, White stripe

Pin 24 Gnd — Gray, Black stripe

Pin 25 Gnd — Black, White stripe

2.2. PE Port Bit Assignments

Although the parallel port hardware is not altered to work with TTL_PAPERS, the parallel

port lines are not used as they would be for driving a Centronics-compatible printer. Thus, it is

necessary to replace the standard parallel port driver software with a driver designed to interact

with TTL_PAPERS. Tow ard this end, it is critical to understand which port addresses, and bits

within the port registers, correspond to each TTL_PAPERS signal.
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There are three port registers associated with a PC parallel port. These registers have I/O

addresses corresponding to the port base address (henceforth, called P_PORTBASE) plus 0, 1, or

2. Typically, P_PORTBASE will be one of 0x378, 0x278, or 0x3bc, corresponding to MS-DOS

printer names LPT1:, LPT2:, and LPT3:. Check the documentation for your PC system to

determine the appropriate P_PORTBASE value for the parallel port that you are using as the inter-

face to TTL_PAPERS. As a general rule, most PCs use 0x378 for the built-in port, however, IBM

PCs generally use 0x3bc. Workstations based on processors other than the 386, 486, or Pentium,

e.g., DEC Alphas, also generally use 0x3bc; however, most of these processors map port I/O reg-

isters into memory addresses, so you will need to replace the inb() and outb() operations

with accesses to the memory locations that correspond to the specified port register I/O addresses.

For example, the PowerPC specification places I/O address 0x3bc at physical memory location

0x800003bc.

Table 2: P_PORTBASE + 0 Bit Assignments

Hex Mask Use In TTL_PAPERS Pin #

0x80 P_S1, strobe P_RDY to 1  Pin 9

0x40 P_S0, strobe P_RDY to 0  Pin 8

0x20 P_LR, light LED Red Pin 7

0x10 P_LG, light LED Green Pin 6

0x08 P_D3, bit 3 of output nybble Pin 5

0x04 P_D2, bit 2 of output nybble Pin 4

0x02 P_D1, bit 1 of output nybble Pin 3

0x01 P_D0, bit 0 of output nybble Pin 2

The bit assignments for the first port register, P_PORTBASE + 0, are listed in Table 2.

Each bit in the register is identified by its hex mask value, use in TTL_PAPERS, and signal pin

number. This register is used to send TTL_PAPERS both strobe and data values, as well as con-

trolling a bi-color LED (red/green Light Emitting Diode) on the PAPERS front panel.

If a PC wants to mark itself as not participating in a group of barrier synchronizations, it

should simply output 0xcf; this corresponds to setting P_S1, P_S0, P_D3, P_D2, P_D1, and P_D0

all equal to 1. Notice that, if a PC is not connected to one of the TTL_PAPERS cables, the TTL

inputs will all float high, causing the missing PC to be harmlessly ignored in operations per-

formed by the PCs still connected. In contrast, setting both P_S1 and P_S0 to 0 will ensure that

all barrier operations halt. In normal operation, each TTL_PAPERS operation is triggered by tog-

gling the P_S1 and P_S0 lines between (P_S1=1, P_S0=0) and (P_S1=0, P_S0=1); this can be

done by simply exclusive-oring the previous output byte with (P_S1 | P_S0).

A PC sends data to TTL_PAPERS by setting the output nybble bits appropriately and tog-

gling the strobe lines as described above. Performing this operation as two steps, first changing

data bits then changing the strobe bits, can be done to increase the reliability of transmission.
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Data lines should be given time to settle before a new ready signal is derived from the new strobe

signals. Changing strobes and data simultaneously results in a race condition in which the data

bits have only about 20 nanoseconds “head start” — a small enough margin for many systems to

perform unreliably.

The P_LR and P_LG lines are simply used to control a bi-color LED to indicate the status

of the PC relative to the currently executing parallel program. When TTL_PAPERS is not in use,

both bits should be set to 0, yielding a dark LED. When a parallel program is running, the LED

should be lighted green, which is accomplished by making P_LG=1 and P_LR=0. When a PC is

waiting for a barrier, it should make its LED red by setting P_LG=0 and P_LR=1. It is also possi-

ble to generate an orange status light by setting both P_LG and P_LR to 1, however, this setting is

used only rarely (as a “special” status indication).

Table 3: P_PORTBASE + 1 Bit Assignments

Hex Mask Use In TTL_PAPERS Pin #

0x80 P_RDY, toggling ready signal Pin 11 (inverted)

0x40 P_I3, bit 3 of input nybble Pin 10

0x20 P_I2, bit 2 of input nybble Pin 12

0x10 P_I1, bit 1 of input nybble Pin 13

0x08 P_I0, bit 0 of input nybble Pin 15

0x04 unused, but generally 1 —

0x02 unused, but generally 1 —

0x01 unused, but generally 1 —

The second port register, P_PORTBASE + 1, was intended to be a status input register, but

is used to receive data from TTL_PAPERS. Bit assignments for this register are given in Table 3.

Because some bits in the port registers are used for active low signals when talking to a printer,

these bits have values that are the opposite of the actual signal on the corresponding pin; the

PAPERS signals are all defined in terms of the sense in which the register records them, but a

note appears if the sense of the signal is inverted at the pin.

To enhance the portability of TTL_PAPERS to somewhat non-standard parallel printer

ports, only these five bits are used as input: four bits of data and one bit to act as a ready line.

Because 0x40 is the only bit that can be enabled to generate a true interrupt to the PC, earlier ver-

sions of PAPERS made P_RDY use 0x40 so that the PAPERS unit could generate a true hardware

interrupt when a barrier synchronization had completed. However, this led to an inconvenient

order for the bits of the input nybble, and we never found a good use for the true hardware inter-

rupt (because interrupt handlers have too much latency), so the current arrangement makes

P_RDY use 0x80. The new arrangement is superior not only because it keeps the bits of the input

nybble contiguous, but also because the inversion of P_RDY is harmless, whereas the inversion of

an input data line would require extra hardware or software to flip the inverted data bit (e.g.,
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exclusive or with 0x80).

Note also that P_RDY is a toggling ready signal. The original PAPERS unit used software

to “reset” the ready signal after each barrier synchronization had been achieved, thus requiring

four port operations for each PAPERS synchronization. By simply toggling P_RDY when each

new barrier is achieved, TTL_PAPERS can perform barrier synchronizations using just two port

operations.

Table 4: P_PORTBASE + 2 Bit Assignments

Hex Mask Use In TTL_PAPERS Pin #

0x80 unused —

0x40 unused —

0x20 unused —

0x10 unused, but force 0 —

bit 3 reserved Pin 17 (inverted)

bit 2 P_SEL, int/ready select Pin 16

bit 1 P_IRQ, interrupt request Pin 14 (inverted)

bit 0 P_NAK, not interrupt ack Pin 1 (inverted)

The third port register, P_PORTBASE + 2, is described in Table 4. It serves only one pur-

pose for TTL_PAPERS: parallel interrupt support. Actually, for the reasons described earlier,

TTL_PAPERS never generates a “real” interrupt to a PC. However, parallel interrupts provide a

mechanism for managing the use of the TTL_PAPERS unit in a more sophisticated way, for

example: providing a better TTL_PAPERS “check-in” procedure, facilitating abnormal termina-

tion of parallel programs, implementing a user-level parallel filesystem, and even gang scheduling

and parallel timesharing of the TTL_PAPERS unit.

To cause a parallel interrupt, a PC simply sets P_IRQ to 1. However, other processors will

not notice that a parallel interrupt is pending unless they explicitly check. This is done by chang-

ing P_SEL to 1, which causes the normal P_RDY (described above) to be replaced by an interrupt

ready flag... until P_SEL is again set to 0. Thus, any PC can check for an interrupt at any time

without interfering with the operation of other PCs; for example, while delayed waiting for a bar-

rier, it is essentially harmless to check for an interrupt. To encourage PCs to check for an inter-

rupt, the interrupting PC can set its P_S1 and P_S0 bits to 0 (see above), forcing barriers to be

delayed. When all PCs set their P_NAK to 0, this simply acts to perform a special interrupt bar-

rier. The extended interrupt functionality is implemented by sending an interrupt code as a side-

effect of this special barrier.
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3. TTL_PAPERS Hardware

Thus far, this document has focused on the way in which PC hardware interacts with

TTL_PAPERS. In this section, we briefly describe the hardware that implements TTL_PAPERS

itself. The TTL_PAPERS design has been carefully minimized to use just 8 standard TTL 74LS-

series parts and to fit on a single-layer circuit board. The result is a remarkably simple design that

is inexpensive to build, yet fast to operate.

3.1. Logic Design

The logic design for TTL_PAPERS is logically (and physically) divided into three subsys-

tems: the barrier and interrupt mechanism, the aggregate communication logic, and the LED dis-

play control. This section briefly explains how the required functionality is implemented by the

board’s logic.

3.1.1. Barrier/Interrupt Hardware

Although the DBM (Dynamic Barrier MIMD) architecture presented in [CoD94] [CoD94b]

is far superior to the original DBM design as presented in [OKD90a], neither one is simple

enough to be efficiently implemented without using programmable logic devices. Thus,

TTL_PAPERS uses a variation on the SBM (Static Barrier MIMD) design of [OKD90]. The pri-

mary difference between the previously published SBM and the TTL_PAPERS mechanism is that

there are two barrier trees rather than one. The reason is simply that the published SBM silently

assumed that the barrier hardware would be reset between barriers, essentially by an “anti bar-

rier.” In contrast, the use of two trees allows the hardware for one tree to be reset as a side-effect

of the other tree being used, halving the number of operations needed per barrier. Both of these

two trees are trivially implemented using a 74LS20, a dual 4-input NAND. The result is latched

by setting or resetting a 1-bit register implemented using 1/2 of a 74LS74.

The interrupt logic is remarkably similar to the barrier logic, also using a 74LS20 and 1/2

of a 74LS74. However, there is a difference in the connection between these chips. Interrupt

requests are generated by any PE, and acknowledged by all PEs, while barrier synchronizations

are always implemented by all PEs. Thus, to invert the sense of the interrupt request output from

the NAND, the interrupt logic uses the simple trick of clocking the 1-bit register rather than set-

ting it asynchronously. This trick saves a chip and actually yields a slightly more robust interrupt

mechanism, because the interrupt is triggered by an edge rather than by a level.

Finally, because there are not enough input bits for each PE, the above two latched values

must be independently selectable for each PE. The obvious way to select between values is using

a multiplexor; however, there is no standard TTL 74LS-series part that implements selection

between two individual bits. Instead, we construct the muliplexer using two quad driver chips

that have individually tri-stateable outputs. The 74LS125 and 74LS126 differ only in the sense of

their enable lines, thus, using the same select line to control one output on each chip makes it pos-

sible to simply wire both outputs together. Only the selected signal will be passed; the other
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line’s driver will be in the tri-state high impedance state.

Notice also that this logic trivially can be scaled to larger machines. Every 4 PEs will

require a 74LS125 and a 74LS126. The 74LS74 remains unchanged, although a driver chip may

be needed to increase fan-out of the outputs for more than 8 processors. The 74LS20 NAND

gates simply get replaced by larger NAND trees. For example, for 8 processors, each 1/2 of a

74LS20 is replaced by a 74LS30 (8 input NAND). For 16 processors, chip count is minimized by

implementing each NAND tree using a 74LS134 (12-input NAND) and 1/2 of a 74LS20, the out-

puts of which are combined using 1/4 of a 74LS32 (quad 2-input OR). A somewhat neater 16

processor board layout results from using 2 74LS30 and 1/4 of a 74LS32 for each of the NAND

trees, and a 32 processor system can easily be constructed using 4 74LS30 and 3/4 of a 74LS32

for each NAND tree. If you have more than 32 machines, we strongly recommend building

something fancier than a single SBM.

3.1.2. Aggregate Communication Hardware

Although other versions of PAPERS provide internal data latching and fancy communica-

tion primitives, TTL_PAPERS simply offers NANDing of the 4 data bits across the processors.

In general, there is nothing tricky about building these NAND trees; they look exactly as

described above. Howev er, each NAND tree has an output that must drive one line to each of the

processors, and the use of relatively long cables (up to about 10 feet each) requires a pretty good

TTL driver. For the case of 4 processors, it happens that the 74LS40 (dual 4-input NAND buffer)

provides sufficient drive to directly power all 4 lines, although the signal transitions become

somewhat slow (e.g., about 300 nanoseconds) as the cables get long. In a larger system, we rec-

ommend constructing the NAND tree as described above, and then using 74LS244 or 74LS541

octal drivers to increase the drive ability of the NAND outputs. With a typical cable, each driver

within a 74LS244 or 74LS541 can drive up to about 4 lines.

3.1.3. LED Display Hardware

In the PAPERS prototypes, we have experimented with a variety of different status dis-

plays. However, by far the easiest display to understand was one using just a single bi-color LED

for each processor. The color code is very intuitive: green means running, red means waiting (for

more than two “clock” cycles), and black means not in use. The problem is that there is no trivial

way to derive these color choices directly from the barrier logic, thus, the LEDs are explicitly set

under software control.

There are a variety of different types of bi-color LEDs, however, the cheapest and most

common have three-leads: power for each of the two colors and a common ground. Because

TTL can sink more than it can source, we would rather have seen a common power input and sep-

arate grounds... oh well. The result is that each color of each LED must be fairly well driven,

and it isn’t a good idea to make the computer port directly drive the lights. Instead, a 74LS541 is

used. For scaling, each 74LS541 can handle all the LED drive for 4 processors.
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There is also a power LED on the TTL_PAPERS unit, and that actually yields a minor

complication. To avoid confusion with the rest of the status display, the TTL_PAPERS power

LED is blue. Although blue LEDs are really nice, they do not appear as bright as other colored

LEDs. Consequently, we found that 1K Ohm resistors for driving the red/green bi-color LEDs

just about matched the brightness of a 330 Ohm resistor for driving the blue power LED. Actu-

ally, green was slightly darker than red or blue with this drive, so perhaps the green LEDs should

be driven through about 800 Ohms? In any case, you may find that your LEDs differ in bright-

ness from ours, so some playing with resistor values may be appropriate.

It is also worth mentioning that, if you can’t find appropriate bi-color LEDs, you can sim-

ply use red LEDs and ignore the green LED drivers. Likewise, if you can’t find an appropriate

blue LED for the power indicator, a green LED can be substituted.

3.2. Parts List

The complete parts list for constructing a TTL_PAPERS is given in Table 5. The total parts

cost for a unit should be between $20 and $50, depending on the quantity and source for the parts.

For example, the cables can be purchased for less than $2 each via mail order, but can be more

than $20 each if purchased from some stores. We strongly recommend checking prices from sev-

eral mail order sources for cables and other parts.

Along the same lines, if your computers do not have unused parallel printer ports, there is a

very wide range in the pricing of ISA bus parallel port cards. We hav e found a $7 card via mail

order that works fine; the $45 or more that you would spend for each card in some stores isn’t

likely to buy you any improvement in performance. In fact, if there is a speed difference between

the card and the built-in port, it is harmless to use the slower port for a printer while the faster

port is used for the TTL_PAPERS connection. Do not use a port-switcher or similar device to

share a single port; TTL_PAPERS might not work with such devices.
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Table 5: TTL_PAPERS Parts List

Used In Label Description Quantity

Box Red Oak 1x4 (3/4" by 3 1/2") 9" +

Box Poplar 1x4 (3/4" by 3 1/2") 9 1/2" +

Box Poplar scant board or Plywood (1/4" by 3 1/2") 11 1/4" +

Box 1 1/4" all-purpose screws 8

Cables 10’ 25-wire Male DB25 to Male DB25 2

Display U8 74LS541, octal Buffer 1

Display D2-D5 3-lead Bi-Color Red/Green LED 4

Display D1 Blue LED 1

Display R2-R9 1K Ohm resistor 8

Display R10 330 Ohm resistor 1

Logic Printed Circuit Board (see Figures 11-13) 1

Logic U1, U2 74LS20, dual 4-input NAND 2

Logic U6, U7 74LS40, dual 4-input NAND Buffer 2

Logic U5 74LS74, dual D Flip-Flop with Preset & Clear 1

Logic U3 74LS125, quad Tri-State Bus Buffer 1

Logic U4 74LS126, quad Tri-State Bus Buffer 1

Logic R1 1K Ohm resistor 1

Logic C1 0.001 microfarad Capacitor 1

Power 9-12 volt, 200 ma AC to DC adaptor 1

Power Power receptacle (to match above) 1

Power Ground post (e.g., small screw eye) 1

Power U9 7805, 5 volt regulator 1

Power C3, C4, C6-C8 0.1 microfarad Capacitor 5

Power C5 47 microfarad Capacitor 1

Power C2 100 microfarad Capacitor 1
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3.3. Construction

Constructing a TTL_PAPERS unit requires building two separate items: the box and the

board. Because the board is directly wired to the cables (i.e., no connectors are used), and the

box acts as a mount for the circuit board, LEDS, ground post, and cables, it is much easier to

assemble the box first and then assemble the board. The following two sections detail exactly

how the box and board can be constructed.

3.3.1. Building The Box

TTL_PAPERS is housed in a very simple hardwood case, but a lot of people ask us, “where

did you get the custom boxes?” Well, we designed and built them. It isn’t that difficult. We

could use a standard metal or plastic case, but they just are not as nice. The wooden boxes also

are cheaper because they can simply be drilled to create mounts for LEDs, cables, and power

connector — mounting hardware is not needed.

The materials you will need to construct the TTL_PAPERS box are listed in Table 5. As

specified, this constitutes between $5 and $10 worth of hardwood lumber; however, almost any

hardwood, or even pine, can be substituted for the 1x4 Red Oak and Poplar. Red Oak was

selected because it is very durable and yields a beautiful natural finish; Poplar was selected

because it is cheap and also is very durable.

Throughout the construction, be sure to read, understand, and follow all safety instructions

and be sure to wear safety glasses. Woodworking isn’t particularly dangerous, but doing stupid

things with power tools can lead to serious injuries.

Figures 1 and 2 show the front view and right side view of the completed box. Figures 3

through 10 show the individual pieces that are assembled to make the box, including the positions

of rabbets, holes, and screw countersink holes. Although these figures were generated by groff

and pic using the exact dimensions of the pieces, the processing through these tools and a

postscript interpreter is likely to result in printed output that does not maintain the precise dimen-

sions. Check the actual dimensions before you use these figures as templates. If the error is less

than 1/16" over a 6" span, directly using the figures as templates is unlikely to cause serious prob-

lems in assembling the box.
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PE3 status

PE2 status

PE1 status

PE0 status

power

Figure 1: Assembled TTL_PAPERS Box (Front View) 3 1/2" x 6"
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Figure 2: Assembled TTL_PAPERS Box (Right View) 5" x 6"
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PE3 status

PE2 status

PE1 status

PE0 status

power

Figure 3: Front Panel 3 1/2" x 6" x 3/4"

Page 18



December 2, 1994 TTL_PAPERS

Figure 4: Base (Top View) 3 1/2" x 3 1/2" x 3/4", rabbets shaded

Figure 5: Base (Front View) 3 1/2" x 3 1/2" x 3/4"
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Figure 6: Cover Back 3 1/2" x 3" x 3/4"

PE3PE2PE1PE0

9-12 VDC

Figure 7: Base Back 3 1/2" x 3" x 3/4"
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Figure 8: Cover Right Side 3 1/2" x 5 5/8" x 1/4"
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Figure 9: Cover Left Side 3 1/2" x 5 5/8" x 1/4"
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Figure 10: Cover Top 3 1/2" x 3" x 3/4"
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The following step-by-step instructions are for making a single TTL_PAPERS box. Recall

that the parts list is given in Table 5 and that Figures 3 through 10 give templates for the individ-

ual pieces of wood after they hav e been cut to size. Read through all the steps before you begin

construction. If more than one box is being built, it is generally easier and safer to perform step

[2] before cutting the Poplar 1x4 to length.

[1] Using a miter box or some other crosscut saw, make the following 90° cuts. Cut the Red

Oak 1x4 to make two pieces, one 6" long and one 3" long. Cut the Poplar 1x4 to make

three pieces, two 3" long and one 3 1/2" long. Cut the poplar scant board to make two

pieces, each 5 5/8" long.

[2] The 3 1/2" long piece of Poplar will become the base of the box (Figures 4 and 5). In order

to prevent the box cover sliding from side to side, a rabbet is cut into each side of the base.

This rabbet should be 3/8" deep and 1/4" wide. The best way to make these rabbets is to

use a router table, table saw, or radial arm saw, although a router with a rabbeting bit will

suffice. You may find it easier to cut the rabbets before cutting the Poplar 1x4 to the 3 1/2"

length.

[3] You’ve now got a lot of drilling to do. A drill press is recommended, but a hand-held

power drill can suffice. You can use the diagrams provided in this document as templates

to align your holes, but you will need to determine the appropriate drill sizes based on the

particular parts you are using. Always use a backer board and/or masking tape to reduce

splintering when drilling. The holes to drill are:

• Fiv e holes for the LEDs on the front panel (Red Oak 6" piece shown in Figure 3).

These holes should first be drilled from the front so that the LEDs are a snug fit and

cannot be pushed through the panel (there is a little “lip” at the base of each LED that

is slightly wider and thus acts as a stop). Next, the panel is flipped and a slightly

larger drill is used to widen each hole to a depth of about 1/2". The resulting holes

will allow the LEDs to be inserted from the back of the panel so that they are flush

with the front of the panel, with the lip on each LED firmly seated against the point

where the hole narrows.

• Four holes for the cables on the back panel (Red Oak 3" piece shown in Figure 7).

These holes should be drilled to precisely match the outside diameter of the cables

being used, so that each cable has to be “worked” through.

• One hole for the power receptacle on the back panel (Red Oak 3" piece shown in Fig-

ure 7). These receptacles come in a wide variety of shapes and sizes, some of which

are much easier to mount than others. The plastic receptacle we have used on many

of the TTL_PAPERS boxes requires a very small hole that is partly squared-off —

not a serious problem if you happen to have a mortising jig, but nearly impossible

otherwise. We recommend using a circular metal receptacle that was designed for a

panel mount with a locking nut; simply drill the hole to exactly match the size of the

threaded portion of the receptacle. Later, when you are assembling the box, you will
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be able to screw-in the receptacle, with the metal thread acting as a tap to cut a

matching thread in the hardwood.

• Eight countersink holes for the screws that will hold the assembly together (two each

on the Red Oak 6" shown in Figure 3, Red Oak 3" shown in Figure 7, and the Poplar

5 5/8" pieces shown in Figures 8 and 9).

[4] Having completed the above, the box is ready for assembly; however, it is generally easier

to do some of the finish work on the parts before they are assembled. Thus, this is a good

time to sand and paint the component parts. The Poplar parts (Figures 4 and 5, 6, 8, 9, and

10) are given a coat of black paint, the Red Oak parts (Figures 3 and 7) are given a coat of

sanding sealer.

[5] Assemble the lower half of the box. Before assembly, install the ground post in the center

of the base. Next, butter one end of the base Poplar 3 1/2" piece (Figures 4 and 5) with yel-

low carpenter’s glue and clamp it flat near the edge of a table. Position the front panel Red

Oak 6" piece (Figure 3) and screw it into the base. Rotate this unit, glue, and screw the

back panel Red Oak 3" piece (Figure 7) onto the base.

[6] Assemble the cover of the box. The two side Poplar 5 5/8" pieces (Figures 8 and 9) ought

to rest snugly, with the countersink holes at the top edge, in the rabbets between the front

and back panels... but they probably don’t quite fit. Use a power sander, plane, or joiner to

shave them to a good fit. You may also have to fine-tune the length of these pieces so that

they match each other. Next, take one of the Poplar 3" pieces (Figure 10) and glue and

screw the side pieces to it much as you did for the lower half of the box in step [5]. Finally,

to assemble the upper back piece of the cover, lay the box on its front panel with the cover

in place and position, glue, and clamp the last Poplar 3" piece (Figure 6). Refer to Figure 2

to see the assembled cover. Because the cover is painted black, a multitude of minor align-

ment errors tend to be hidden....

[7] Once the glue has set, give the box a final sanding and finishing. Generally, you’ll have to

retouch the black at least where you had trimmed the side panels. If the box is likely to be

handled often, we suggest giving the entire box a few coats of a satin finish clear

polyurethane — this yields a nice, hard, finish that is both tougher and more consistent than

if some parts were just painted black. One other issue to consider at this time is RF shield-

ing; wood is not conductive, so you might want to use a conductive paint or to glue alu-

minum foil on the inside of the box. Because there are typically no signals over about

1MHz within the TTL_PAPERS unit, shielding should not be a major issue.

Notice that the completed box consists of two separate pieces; the cover is not permanently

attached to the base. If desired, a strip of Velcro can be used to hold the two units together by the

seam between the cover and base at the back of the unit. However, the interlocking fit of the

cover and base makes a fastener unnecessary unless the box will be handled often.
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3.3.2. Building The Board

All the circuitry for the complete TTL_PAPERS unit, including the logic, display compo-

nents, and power conditioning, fits on a 2 1/2" by 4" single-layer circuit board. Aside from turn-

ing-off auto-routing and designing the board traces by hand, a few tricks were needed to accom-

plish this minor miracle:

• Had we used standard circuit-board-mount DB25 connectors for each of the cables, the

board would have been much more expensive, larger, and would have required at least two

layers. However, by bringing each wire from each cable separately and directly to the posi-

tion where the signal is used on the board, a single layer suffices for all but one connection.

A single jumper (marked J1) implements this connection.

• One of the chips, namely the LED driver, is turned sideways relative to the other chips.

• The display LEDs are mounted on the back side of the circuit board. In other words, the

side that doesn’t hav e the chips on it has the LEDs sticking up by about 3/4". Thus, when

the board-mounted LEDs are aligned with and inserted into the corresponding holes in the

back side of the front panel of the box, the front of the LEDs is flush with the front of the

front panel when the back of the circuit board is flush against the back of the front panel.

Soldering the LEDs onto the back side of the circuit board isn’t very difficult because the

leads are so long, and this LED mounting is very effective.

The result is a very inexpensive board that can be made using just the most basic etching materi-

als (e.g., as found in Radio Shack) and a small drill press with which to drill the holes.

The board is fairly easy to build, but be very careful to follow the instructions, because

some steps just cannot be done in any other order. For example, you cannot install the jumper

(step 4) after populating the board (step 5). Likewise, you cannot connect the cables (step 7) and

then pass them through the holes in the box (step 6). The construction procedure is:

[1] Using the 2X board image given in Figure 11, etch a 2 1/2" by 4" single-sided circuit board.

The words “TTL PAPERS” should be etched such that they read correctly when viewed

directly on the solder side of the board.

[2] Although Figure 13 provides a label mask that is suitable for use as a component-side

silkscreen, the expense of silkscreening is not needed. You could do the silkscreen now, but

we suggest simply using Figure 13 as a guide during assembly.

[3] Using the 2X drilling mask given in Figure 12 as a guide, drill the holes in the board. (If

you will be manually drilling the holes, you might find it easier to combine Figures 11 and

12 to produce an negative hole mask that can be etched along with the board traces.)

[4] Remember the J1 jumper we mentioned before? Install this jumper before you install any

other parts. One of the holes for this jumper is directly underneath an IC in the finished

board, so you should use thin wire for this jumper, e.g., 30-gauge wire-wrap wire works

fine.
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[5] Populate the board. Figure 13 gives the component-side label mask, and both Figure 14

(the circuit diagram) and Table 5 (the parts list) cross-reference these labels with the com-

ponents they represent. Because most of these chips cost less than sockets and TTL parts

are relatively robust, all the ICs can be soldered directly to the board. Also insert the 7805,

capacitors, and resistors as marked; note that resistor R1 should be inserted standing verti-

cally rather than laying flat on the board. As mentioned earlier, the LEDs are installed

about 3/4" high off the solder side of the board. Be sure that the orientation is correct for

7805, electrolytic capacitors, LEDs, and ICs -- 180° rotation might still fit, but it will not

work for these parts.

[6] Prepare the cables. The cables are purchased as 10’ cables with a male DB25 connector on

each end, so the first step is to cut each of the two cables in half, yielding four cables that

each have a male DB25 on one end and a clean cut on the other end. Pass the clean cut end

of each cable through one of the tight-fitting holes you drilled in the back of the box. Now

strip the cable sheath back about 6" on each cable, and cut the sheath and shielding away

from the wires. Now is also a good time to strip each wire (and to tin it with solder, if you

wish); strip the wires only about 1/8".

[7] Determine the correct cable color code. Each cable should contain 25 wires, one connected

to each pin on the DB25 — if it doesn’t, you cannot use the cable you have. Generally,

these cables use color-coded wires, but there is no real standard for which color goes to

which pin. Consequently, although Table 1 provides the color code that was used on the

cables for the first TTL_PAPERS boxes we built, your cables probably differ by at least a

few color assignments. Use a continuity checker to determine how your cable’s color code

differs from the one listed in Table 1, and make your own corrected version of Table 1.

Using that table along with Figure 13, it is a simple matter to determine which wire carries

each signal.

[8] Connect the cables to the ground post. Of the 25 wires in each cable, 8 are signal ground

connections. We strongly recommend creating a single-point ground connection for all the

cables and the power supply connection. Do this by collecting the eight signal ground

wires from each cable, stripping the wires about 3/8", twisting them together tightly, and

soldering each twisted group directly to the ground post.

[9] Connect the cables to the board. At this time, you have the somewhat daunting task of con-

necting the remaining wires from the cables to the appropriate (and apparently randomly

located) spots on the board. This really is not as bad a problem as it seems, but neatness

counts! We recommend that you connect one signal for all cables before moving on to the

next signal, and further suggest that you loosely twist the last cable’s wire around the same

signal wires from the other cables. About 3 times around the other wires is sufficient to

keep the wires together as a group.

Notice that, for most wires, the order of connection of the wires from the different cables

(i.e., processors) does not matter; for example, the order of inputs to a NAND gate is
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irrelevant to the NAND operation. The cable (i.e., processor) number is used as a suffix on

the label for the four signals that are order sensitive (i.e., SEL, RDY, LG, and LR). Because

TTL_PAPERS doesn’t use one of the signals, you should have four wires left unconnected

when you are done; wrap these individually in electrical tape and tape the bunch to inside

base of the box.

[10] Make the power and ground connections. Connect a 6" lead to the power receptacle’s

power and a 3" lead to the power receptacle’s ground, then install the power receptacle in

the box. Next, solder the 3" ground wire to the ground post in the base of the box. Next,

solder a 4" ground wire from the ground post to the ground connection point on the circuit

board. Finally, loosely twist the 6" power lead around the 4" ground wire you just con-

nected, and solder the 6" power lead to the power input point on the circuit board.

[11] Complete the mounting of the board in the box. The board itself probably needs no mount-

ing hardware; simply line-up the LEDs with the holes in the back of the front panel and

press the board flat against the back of the front panel. The force of the wires against the

board and the fit of the LEDs in their mounting holes will tend to hold the board in place,

but a couple of pieces of Velcro or a small screw through each of the two mounting holes in

the board will ensure that the board stays in place. Likewise, the heavy connections to the

ground post essentially ensure that the cables will not pull out, but a small dab of super

glue, or a thin wrapper around the cables just after they enter the box, will provide an even

safer mount.

As for the box, you may find that some things become easier if you are building more than one

TTL_PAPERS board at a time. For example, if you will be building several units, purchasing all

the cables from one batch will allow you to use the same color code for all the boxes.
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Figure 11: Circuit Board Traces, 2X Plot
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Figure 12: Circuit Board Holes, 2X Plot
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Figure 13: Circuit Board Labels, 2X Plot
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Figure 14: TTL_PAPERS Circuit Diagram
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4. PAPERS Software

Although TTL_PAPERS will be supported by a variety of software tools including public

domain compilers for parallel dialects of both C and Fortran [DiO92] [CoD94a], in this document

we restrict our discussion to the most basic hardware-level interface. The code given is written in

C (the ANSI C-based dialect accepted by GCC) and is intended to be run under a UNIX-derived

operating system. However, this interface software can be adapted to most existing (sequential)

language compilers and interpreters under nearly any operating system.

The following sections discuss the operating system interface, TTL_PAPERS port access,

the basic barrier interface, and how NANDing is used to implement data communication.

4.1. Operating System Interface

Although it would certainly be possible to implement the TTL_PAPERS software interface

as part of an operating system’s kernel, typical latency for a minimal system call is between 5 and

50 times the typical latency for the TTL_PAPERS hardware port operations — layering overhead

of a system call for each TTL_PAPERS operation would destroy the low latency performance.

Thus, the primary purpose of the OS interface is to obtain direct user-level access to the ports that

connect to TTL_PAPERS.

On older architectures, such as the 8080 and Z80, direct user access to I/O was accom-

plished by simply using the port I/O instructions or by accessing the memory locations that corre-

sponded to the desired memory-mapped I/O device registers. Things are now a bit more com-

plex. Using a PC based on the 386, 486, or Pentium processor, port I/O instructions are now pro-

tected operations. Similarly, processors like the DEC Alpha, PowerPC, and SPARC use memory

mapped I/O, but physical addresses corresponding to I/O ports generally are not mapped into the

virtual address space of a user process. None of these problems is fatal, but it can take quite a

while to figure out how to get things working right, and you might have to write your own kernel

driver to set things up.

Thus, although the parallel printer port can be directly accessed under most operating sys-

tems, here we focus on how to gain direct user process access to I/O ports on a 386, 486, or Pen-

tium-based personal computer running either generic UNIX or Linux.

4.1.1. Generic UNIX

In general, UNIX allows user processes to have direct access to all I/O devices. However,

only processes that have a sufficiently high I/O priority level can make such accesses. Further,

only a privileged process can increase its I/O priority level —  by calling iopl(). The following

C code suffices:
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if (iopl(3)) {

/* iopl failed, implying we were not priv */

exit(1);

}

But beware! This call grants the user program access to all I/O, including a multitude of unre-

lated ports.

In fact, this call allows the process to execute instructions enabling and disabling interrupts.

By disabling interrupts, it is possible to ensure that all processors involved in a barrier synchro-

nization act precisely in unison; thus, the average number of port operations (barrier synchroniza-

tions) needed to accomplish some TTL_PAPERS operations can be reduced. However, back-

ground scheduling of DMA devices (e.g., disks) and other interference makes it hard to be sure

that a UNIX system will provide precise timing constraints even when interrupts are disabled, so

we do not advocate disabling interrupts.

Even so, performance of the barrier hardware can be safely improved by causing UNIX to

give priority to a process that is waiting for a barrier synchronization. This improves performance

because if any one PE is off running a process that has nothing to do with the synchronization,

then all PEs trying to synchronize with that PE will be delayed. The priority of a privileged UNIX

process can increased by a call like:

/* set priority just below critical OS code */

nice(-20);

The argument to nice() should be a negative value between -20 and -1.

4.1.2. Linux

Although Linux supports the UNIX interface described in the previous section, it also pro-

vides a more secure way to obtain access to the I/O devices. The ioperm() function allows a

privileged process to obtain access to only the specified port or ports. The C code:

if (ioperm(P_PORTBASE, 3, 1)) {

/* like iopl, failure implies we were not priv */

exit(1);

}

Would obtain access for 3 ports starting at a base port address of P_PORTBASE. Better still, if

the operating system is managing all parallel program interrupts, only the first two ports need to

be accessible:
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if (ioperm(P_PORTBASE, 2, 1)) {

/* like iopl, failure implies we were not priv */

exit(1);

}

Because the 386/486/Pentium hardware checks port permissions, this security does not

destroy port I/O performance; however, checking the permission bits does add some overhead.

For a typical PC parallel printer port, the additional overhead is just a few percent, and is proba-

bly worthwhile for user programs.

4.2. Port Access

Although Linux and most versions of UNIX provide routines for port access, these routines

often provide a built-in delay loop to ensure that port states do not change faster than the external

device can examine the state. Consequently, the TTL_PAPERS support code uses its own direct

assembly language I/O calls. The code is:

inline unsigned int

inb(unsigned short port)

{

unsigned char _v;

__asm__ __volatile__ ("inb %w1,%b0"

:"=a" (_v)

:"d" (port), "0" (0));

return(_v);

}

inline void

outb(unsigned char value,

unsigned short port)

{

__asm__ __volatile__ ("outb %b0,%w1"

: /* no outputs */

:"a" (value), "d" (port));

}

The basic TTL_PAPERS interface is thus defined in terms of the above port operations on any of

three parallel printer port interface registers. The following definitions assume that

P_PORTBASE has already been set to the base I/O address for the port, which is generally 0x378

on PC clones and 0x3bc for IBM ValuePoint PCs.
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/* Stuff concerning the regular output port...

*/

#define P_OUT(x) \

outb(((unsigned char)(x)), \

((unsigned short) P_PORTBASE))

#define P_S1 0x80 /* Strobe RDY -> 1 */

#define P_S0 0x40 /* Strobe RDY -> 0 */

#define P_S (P_S0 | P_S1) /* Strobe Mask */

#define P_LR 0x20 /* LED Red */

#define P_LG 0x10 /* LED Green */

#define P_LY (P_LG | P_LR) /* LED Yellow (Red + Green) */

#define P_LB 0x00 /* LED Black */

#define P_D3 0x08 /* Data Bit 3 Value */

#define P_D2 0x04 /* Data Bit 2 Value */

#define P_D1 0x02 /* Data Bit 1 Value */

#define P_D0 0x01 /* Data Bit 0 Value */

/* Stuff concerning the input port...

*/

#define P_IN() \

inb((unsigned short) (P_PORTBASE + 1))

#define P_RDY 0x80 /* Ready */

#define P_INT 0x80 /* INTerrupt */

#define P_I3 0x40 /* PE3 P_D bit */

#define P_I2 0x20 /* PE2 P_D bit */

#define P_I1 0x10 /* PE1 P_D bit */

#define P_I0 0x08 /* PE0 P_D bit */

#define P_IN_MASK 0x78 /* Mask for all the above bits */

/* Stuff concerning the mode port...

*/

#define P_MODE(x) \

outb(((unsigned char)(x)), \

((unsigned short) (P_PORTBASE + 2)))

#define P_SEL 0x04 /* INT/RDY SELect */

#define P_IRQ 0x02 /* Interrupt ReQuest */

#define P_NAK 0x01 /* Not interrupt AcKnowledge */

It is important to note that, even though the TTL_PAPERS hardware interrupt mechanism

does not have to be used, it is necessary that any processor connected to TTL_PAPERS set the

mode port so that the P_RDY bit, and not P_INT, is visible. This can be done by executing:

Page 36



December 2, 1994 TTL_PAPERS

P_MODE(P_NAK);

As part of the TTL_PAPERS initialization code.

4.3. Barrier Interface

Logically, each barrier synchronization consists of two operations, signaling that we are at

a barrier and waiting to be signaled that the barrier synchronization has completed. Although the

TTL_PAPERS library generally combines these operations, here we discuss them as two separate

chunks of code. The code for signaling that we are at a barrier is simply:

P_OUT(last_out ˆ= P_S);

This code just flips the sense of both strobe bits. Because last_out is initialized to have only

one of the strobe bits high, this has the effect of alternating between P_S0 and P_S1. Nothing

else is changed, including the output data bits.

The code that actually waits for the barrier synchronization to complete involves a fair bit

of logic, even though typically only a few instructions are executed. The reason that there is so

much code has to do with three features of the TTL_PAPERS interface. The first complication is

that the ready signal toggles, rather than always going to the same value. The second complica-

tion is that the status LEDs are software controlled. The third complication is that we want to

check for an interrupt whenever a barrier is excessively delayed. The resulting code is something

like:

/* Which condition am I waiting for? */

if (last_out & P_S0) {

/* Waiting for P_RDY */

if ((!(P_IN() & P_RDY)) && (!(P_IN() & P_RDY))) {

/* Polled twice, make LED red */

P_OUT(last_out ˆ= (P_LG | P_LR));

/* Continue waiting */

while (!(P_IN() & P_RDY)) CHECKINT;

/* Ok, LED green again */

P_OUT(last_out ˆ= (P_LG | P_LR));

}

} else {

/* Waiting for not P_RDY */

if ((P_IN() & P_RDY) && (P_IN() & P_RDY)) {

/* Polled twice, make LED red */

P_OUT(last_out ˆ= (P_LG | P_LR));

/* Continue waiting */

while (P_IN() & P_RDY) CHECKINT;

/* Ok, LED green again */
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P_OUT(last_out ˆ= (P_LG | P_LR));

}

}

In the initial version of the support library, CHECKINT is nothing — TTL_PAPERS interrupts are

not used. However, we can easily check for an interrupt by defining CHECKINT as:

{

/* Make P_INT status visible */

P_MODE(P_SEL | P_NAK);

/* Check for interrupt */

if (P_IN() & P_INT) {

/* Process the interrupt.... */

} else {

/* Restore P_RDY */

P_MODE(P_NAK);

}

}

4.4. NAND Data Communication

Although the TTL_PAPERS library provides a rich array of aggregate communication

operations, all that the hardware really does is a simple 4-bit NAND as a side-effect of a barrier

synchronization. However, this operation typically requires 5 port accesses rather than just the 2

port accesses used to implement a barrier synchronization without data communication. The

extra port operations are required because:

• When a PE changes one or more of its output data bits, the TTL_PAPERS hardware

NANDs in the new data, immediately changing the input data bits for all PEs. Thus, if one

PE gets far enough ahead of another PE, it could change the data before the slower PE has

been able to read the previous NAND result. If interrupts are disabled and an initial ordi-

nary barrier synchronization is performed, then a block of data can be transmitted safely

using static timing analysis alone to ensure that this race condition does not occur. Unfor-

tunately, it isn’t practical to disable interrupts under UNIX, so the safe solution is to follow

each data transmitting barrier with an ordinary barrier that ensures all PEs have read the

data before any PE can change the data. This adds 2 port operations.

• The TTL_PAPERS hardware is fed both data and strobe signals on the same port. Thus,

data and strobe signals change simultaneously. As they race through the cables to the

TTL_PAPERS logic and back out the cables, the TTL_PAPERS logic should give the

NAND data at least a 20 nanosecond lead over the toggling of the P_RDY bit, but is 20

nanoseconds enough to ensure that the NAND data doesn’t lose the race? Well, it depends

on the implementation of the PC port hardware and the electrical properties of the cables...
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which is another way of saying that the race isn’t acceptable. An additional port operation

is used to ensure that the data wins the race.

There are two possible ways to insert the extra operation. One way is to double the output

operation, so that we first change the data and then toggle the strobe. This has the advan-

tage that only PEs that are actually changing their data would need to insert the extra opera-

tion. If only early PEs change their data, we don’t see any delay; however, the asymmetry

of the PE operations can actually result in more delay than if the extra operation was

always inserted. The other alternative is to resample the NAND data value after P_RDY

has signaled it is present. This is somewhat more reliable than the doubling of the output

operation, but the delay is always present for any PE that reads the data.

In any case, the result is that a barrier synchronization accompanied by an aggregate communica-

tion will take 5 port operations. For example, to perform a reliable NAND with our contribution

being the 4-bit value x, we could first:

last_out = ((last_out & 0xf0) | x);

This sets the new data bits so that a barrier synchronization will transmit them along with the

strobe. The next step is to perform a barrier synchronization, precisely as described in section

4.3. Having completed the barrier, we know that the NAND data should now be valid, so we

resample it:

nand_result = P_IN();

Finally, a second barrier synchronization is performed to ensure that no PE changes its output

data until after everyone has read the current NAND data.

Notice that nand_result is actually an 8-bit value with the NAND data embedded within it;

thus, to extract the 4-bit result we simply use:

((nand_result >> 3) & 0x0f)

All the TTL_PAPERS library communication operations are built upon this communication

mechanism. For example, ANY, ALL, and voting operations require just one such operation, or 5

port accesses. Larger operations, such as an 8-bit global OR, 8-bit global AND, or broadcast

require 2 of the above transmission sequences, or 10 port accesses.
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5. Conclusion

In this paper, we hav e presented the complete public domain design of the TTL_PAPERS

hardware. This design represents the simplest possible mechanism to efficiently support barrier

synchronization, aggregate communication, and group interrupt capabilities — using unmodified

conventional workstations or personal computers as the processing elements of a fine-grain paral-

lel machine. We do not view TTL_PAPERS as the ultimate mechanism, but rather as an introduc-

tory step toward the more general and higher performance barrier and aggregate communication

engines that have been at the core of our research since 1987. The key thing to remember about

TTL_PAPERS is not what it is, but rather why it is.

Why is TTL_PAPERS so much lower latency than other networks? Because it doesn’t hav e

a layered hardware and software interface. Why is the hardware so simple? Because it isn’t a net-

work; the fact that TTL_PAPERS communications are a side-effect of barrier synchronization

eliminates the need for buffering, routing, arbitration, etc. Why is it useful? Because, although

shared memory and message passing hardware is very common, the most popular high-level lan-

guage and compiler models for parallelism are all based on aggregate operations — exactly what

TTL_PAPERS provides. Further, barrier synchronization is the key to efficiently implementing

MIMD, SIMD, and VLIW mixed-mode execution. Why didn’t somebody do it earlier? We and

others did. The problem is that tightly coupled design of hardware and compiler is not the stan-

dard way to build systems, so earlier designs (e.g., PASM, TMC CM-5) tended to use too much

hardware and interface software, cost too much, and perform too poorly. Why is it public

domain? Two reasons: (1) Purdue University didn’t want to patent the basic mechanism back in

1987 and (2) we are primarily interested in the related compiler technology, and having more

appropriate hardware makes our compiler work more valuable (i.e., more publishable).

Higher-performance versions of PAPERS are on the way. In fact, this TTL_PAPERS

design is the sixth PAPERS design we have built and tested, and three of the other designs easily

outperform it... but they use much more hardware. We are currently working on a smart parallel

port card for the ISA bus that will roughly quadruple the performance of TTL_PAPERS without

any change to its hardware. We are also pursuing versions of the higher-performance designs

based on Texas Instruments FPGAs, and anticipate a PCI interface to future PAPERS units. Also

watch for releases of various compilers targeting PAPERS. The email server at

papers@ecn.purdue.edu will be the primary place for announcing and distributing future

releases of both hardware and software.
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