Come Together Right Now Over Me

INTERCONNECTION NETWORKS, sometimes called SYSTEM
AREA NETWORKS (SANSs), play a critical role in all types of
parallel computers — be they clusters spanning many racks or
multiple cores on the same chip. Although commodity hardware
and straightforward topologies are sometimes effective, commu-
nications within parallel programs tend to have specific properties
that allow a well-engineered network to dramatically outperform
the obvious alternatives.

Aggregate Functions. In parallel computing systems, it is very
common that the global state of a computation must be sampled —
which is not an efficient operation when synthesized as “collective
communications” using point-to-point network hardware. In 1994,
we invented AGGREGATE FUNCTION NETWORKS (AFNs) as an
extension of the fast barrier synchronization hardware we had
developed earlier. An AFN doesn’t route messages; rather, an
AFN is really a simple parallel computer dedicated to computing
functions of global state. A typical aggregate function communi-
cation is implemented by each processor placing its data and an
opcode in its dedicated interface to the AFN and then reading
the AFN-computed result back. Thus, many operations sampling
global state can be implemented in essentially constant time
independent of the number of nodes. Such aggregate functions
include:

o Confirmation of hardware reliability
o Barrier synchronization

e VLIW multiway branch support

e SIMD any and all tests

o Broadcast & multicast

o PutGet (conflict-free reverse-routed messages)
« Reductions

e Scans (parallel prefix operations)

e Searches (first, count, & quantify)

« Voting & scheduling operations

« Ranking (sorting)

« Parallel signaling (“Eurekas”)

Cluster AFNs. Using simple custom hardware, most basic aggre-
gate operations are accomplished with just 3us total latency. We
have placed various AFN hardware designs and support software
in the public domain. The simplest design is WAPERS (Wired-
and Adapter for Parallel Execution and Repid Synchronization),
which uses wired-AND logic implemented by wiring parallel
ports together without any active components. High-performance
cluster AFNs, such as the 2006 KAPERS (Kentucky’s Adapter
for Parallel Execution and Rapid Synchronization) AFN shown
above, can be implemented for less than $25/node.

Although we have been building high-performance AFN hardware
since 1994, significant improvements continue to be made, and the
2006 KAPERS AFN incorporates a number of firsts. In addition
to the basic functions, this AFN supports a very general form of
shared memory. The memory is nybble-oriented, but efficiently
supports various operations on data objects of any multiple of 4
bits in length. This AFN also supports reduce multiply operations
of any precision, implementing multiplication using addition of
values represented in a logarithmic number system.

On-Chip AFNs For Multi-Core Processors. As multi-core
processors have become common, there has been much talk of
scaling to huge numbers of cores on a single chip. However,
shared memory communication does not scale well to large
numbers of cores due to a combination of competition for shared
resources and the overhead of dynamic arbitration. By tightly
integrating an AFN on chip, an alternative, more efficient, path
is provided for coordination and communication.

Although such tight integration always had been our goal for
AFNs, it is only over the past year that we have become focussed
on determining precisely how an on-chip AFN would work in
a modern multi-core processor. Working with Sam Midkiff at
Purdue, Soohong Kim has defined a detailed structure for a CMP-
AFN to be integrated with IA32 cores. This cycle-accurate AFN
model is incorporated in a multi-core simulation implemented
using Ruby, and performance was measured substituting AFN
operations for the methods normally used by OpenMP. Early
results are very encouraging; an OpenMP barrier synchronization
across 4 cores obtains more than 6X speedup, while 8 and 16
core systems achieve 11X and 12X respectively.

Perhaps the most difficult issue for the CMP-AFN is the fact that
multi-core programming models like OpenMP do not directly
match the number of active threads to the number of cores,
neither do operating systems like Linux force every process to
be bound to the same core throughout its lifetime (i.e., processes
can migrate across cores). Thus, the CMP-AFN incorporates new
mechanisms that virtualize groups and allow more than one group
to be simultaneously active.

This document should be cited as:
@techreport{scO07afn,
author={Henry Dietz, William Dieter, and Sam Midkiff},
title={Come Together Right Now Over Me},
institution={University of Kentucky},

address={http://aggregate.org/WHITE/sc07afn.pdf},

month={Nov}, year={2007}}

Aggregate 05G= TNy

UNBRIDLED COMPUTING



