
Horseshoes & Hand Grenades

“Close enough” is what floating-point arithmetic is all about, but
that doesn’t mean one can safely pretend to be operating on real
numbers. Accuracy matters. The inconvenient fact is that what
most systems allow the user to directly control is precision, not
accuracy. Executing just a few arithmetic operations can make
the relationship between precision and accuracy quite ponderous.

ADCs and DACs rarely attain 20-bit precision and there are 24
bits in an IEEE 32-bit SINGLE FLOAT’s mantissa, thus many
applications do not need hardware for directly implementing
higher precisions. A similar argument has been made for 16-
bit HALF FLOATs used to hold 8-bit or smaller digitized values.
However, ignoring dynamic range issues, even 64-bit DOUBLE or
80-bit EXTENDED intermediate values can be insufficient to make
some arithmetic sequences preserve the desired accuracy.

Native-Pair Arithmetic. One of the best ways to enhance ac-
curacy is to augment a native-precision value with one or more
residual error terms. This is most efficient using just a pair of
native values:

Native-pair operations are slower than native. The following table
shows measured clocks for a Digital Signal Processor (TI320),
SIMD Within A Register (ATHLON 3DNOW! and PENTIUM 4
SSE), and a Graphics Processing Unit (NVIDIA 6800).

Data Type Target + − × /
√

32 DSP 1 1 1 42 51
pair(32) DSP 11 11 25 112 119
32× 2 SWAR 1 1 1 9 9

pair(32× 2) SWAR 24 28 27 57 40
pair(32× 4) SWAR 51 50 148 173 199
pair(64× 2) SWAR 45 48 48 50 −

32× 4N GPU 1 1 − 4 20
pair(32× 4N) GPU 11 11 18 35 28

The concept of error residuals has been around at least since
Dekker’s 1971 paper, A floating-point technique for extending
the available precision. Our contributions center on algorithm
and data layout changes tuning the performance for various
modern targets, new analysis (native-pair values don’t behave
like ordinary higher-precision values), and simple architectural
modifications to speed-up residual computations.

Speculative Precision. Native precision is good enough for
many computations. Where it does not, it might fail only for
relatively rare combinations of input values − in which case
it might still be profitable to try using native precision. Our
speculative precision work centers on language constructs that
allow programmers to specify precisions and to mark blocks of
code for speculative precision execution. Using a programmer-
specified accuracy check, the compiled multiple-version code can
dynamically recompute (or refine) insufficiently accurate results
using increasingly higher precisions, including native-pair forms.
Native-pair works very well with speculative precision... in fact,
on rare occassions SINGLE NATIVEPAIR yields far better accuracy
than DOUBLE because the low 24 bits of a NATIVEPAIR mantissa
can essentially separate from the high 24 bits to cover low bits
that would have fallen off the bottom of a DOUBLE’s 53-bit
mantissa. The accuracies recorded summing many sets of 4,096
Gaussian-distributed pseudo-random numbers with zero mean and
unit standard deviation are summarized below.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140

P
er

ce
nt

 o
f S

am
pl

es

Bits Equivalent

32-Bit Float
64-Bit Float
Native-Pair

32-Bit Float, with Speculation

We also are investigating compiler methods for substitution of
alternative algorithms based on accuracy. For example, recogniz-
ing a simple summation and replacing it with one of the many
summation methods known to better preserve accuracy.
All of these tricks are particularly important for GPUs, and we
are implementing them in our MOG (MIMD On GPU) tools.

This document should be cited as:
@techreport{sc08accprec,

author={Henry Dietz and William Dieter},

title={Horseshoes and Hand Grenades},

institution={University of Kentucky},

address={http://aggregate.org/WHITE/sc08accprec.pdf},

month={Nov}, year={2008}}

