A Maze Of Twisty Little Passages

In Crowther’s 1970s COLOSSAL CAVE ADVENTURE, whose lay-
out happened to be partly modeled after Kentucky’s MAMMOTH
CAVE, you may recall two mazes: the original “all alike” one
and an “all different” one that was added later. The same kind of
distinction is commonly made in classifying modern parallel com-
puting systems as SIMD or MIMD, and providing different, often
mutually incompatible, programming environments for each. Is it
really necessary to make such a stark distinction between the two?

Consider the wooden maze in our SCO8 Research Exhibit (shown
above). Each of the colored balls has a different path to take
(MIMD), yet it is perfectly feasible to get all the balls to their
respective destinations by a series of tilts of the table (SIMD).

GPUs (Graphics Processing Units). Modern GPUs are not ex-
actly SIMD, using a model that avoids most scaling limitations of
SIMD by virtualization, massive multithreading, and imposition
of a variety of constraints on program behavior (e.g., recursion
is not allowed by NVIDIA nor by ATI). This branch off the
SIMD family tree has grown quickly, with new programming
models and languages appearing at each new bud... but little code
base and many portability issues. MIMD C or Fortran using MPI
message passing or OpenMP shared memory are now the bulk
of the parallel program code base, so we suggest using those —
via our public domain MIMD On GPU (MOG) technologies
overviewed here.

MOG Instruction Set Architecture (ISA). To be efficient, the
MOG ISA must make the performance-critical GPU features
accessible while minimizing the number of different types of
instructions in common use. For example, our MOG ISA for
NVIDIA CUDA targets is a stack machine using shared memory
to implement a variable-depth stack cache.

MOG Compiler. Our goal is to compile unmodified C or
Fortran programs with MPI and/or OpenMP communications.
Our compiler currently accepts and optimizes only a subset of
C supporting both integer and floating point data, the usual C
operators and statements, recursive functions, etc.

MOG Simulator. Perhaps the most obvious way to execute
MIMD code on SIMD hardware is to write a SIMD program that
fetches and simulates the code compiled for a MIMD machine.
Our implementation is called mogsim, and has been operational

on NVIDIA CUDA systems, and generic C hosts, since October
2008. The simulator correctly handles recursion, system calls,
breaking execution into fragments fitting within the allowable
GPU execution timeout, etc.

MOG Assembler. The simulator literally fetches instruction bit
patterns from a GPU texture memory. Thus, the assembly code
output by the compiler must be assembled into binary data.
Our assembler, mogasm, does not require all simulated PEs to
execute from the same code image; multiple node programs can
be compiled separately and integrated by the assembler for true
MIMD (not just SPMD with MIMD semantics). Currently, the
output is a set of data structures compiled with the base mogsim
code using the target system’s compiler (e.g., nvcc) to produce
a host-executable program.

MOG Meta-State Converter. Although the simulator uses a
variety of technologies that make it surprisingly efficient in sim-
ulating MIMD execution, it still suffers a great deal of overhead
from use of GPU resources to fetch and decode instructions.
Using mogmsc instead of mogasm results in code that has no
such overheads. How? Meta-State Conversion (MSC) literally
transforms MIMD code into pure SIMD code by converting code
into an NFA representing MIMD control flow, and then a DFA
is constructed by enumerating sets of NFA states that could
be simultaneously occupied by different processors in MIMD
execution of the NFA. For example, a simple factorial program
and its NFA and DFA follow:

/* Factorial in C... */
int a;

int fact(int i)

{
if (1 < 2) return(l);
return(i*fact(i-1));

¥

int main()
{

a = fact(IPROC%10);
}

AN
SIMD e
Meta-State Graph —
(DFA)

State Graph
(NFA)

S
oany
()

For more information, talk to us in our SCO8 exhibit or see
http://aggregate.org/MOG/

This document should be cited as:
@techreport{sc08mog,
author={Henry Dietz,

title={A Maze Of Twisty Little Passages},

Dalton Young, Diego Rivera}l,

institution={University of Kentucky},

address={http://aggregate.org/WHITE/sc08mog.pdf},
month={Nov}, year={2008}}

Aggregate 05g- ;

UNBRIDLED COMPUTING



