
Make Things Better

Evolution is cool. Mediocre things evolve into really fit things.
Wouldn’t it be nice if your programs could do that?
Well, of course they can. There are plenty of Genetic Algo-
rithm (GA) implementations that provide a multitude of exciting
interfaces for specifying your problem, the fitness metric, and
various parameters of the search. Catch is, none of those interfaces
is particularly convenient for generically improving arbitrary
programs. That’s why we built gamake.
How gamake Works
Despite the name, gamake actually has two separate search
modes: exhaustive and GA. All it does is to try various combina-
tions of parameter values by invoking standard make to build
whatever and create a metric output, which it then parses to
determine fitness.
Yeah, that could take a while, so gamake is actually an MPI
program that runs the makes in parallel across however many
nodes you told MPI to run on.
What gamake Needs To Know
The parameter names and value ranges to be searched are given in
a file named gain. For each parameter, the following is specified:

Name: The parameter name as it will be passed to make
Type: Currently int, float, or double
Min: The minimum value for this parameter
Max: The maximum value for this parameter
Step: The granularity of steps in the value

The choice between exhaustive and GA search, and some other
runtime choices, are made on the gamake command line.
When gamake runs each parameter set, it does so by executing
make in a directory on one of the nodes it was mpirun to. It is
the responsibility of the Makefile to create a file called eval
in response to being invoked with “make eval”. This file is then
parsed looking for a decimal ASCII floating-point value which is
taken to be the metric value. Greater values are considered better,
but using negative values can essentially invert that order.
An Example
Here’s a trivial program for which gamake will find the optimal
values of A, B, and C. The parameters used are:

A int 1 5 1
B int 40 50 1
C int 1 5 1

The Makefile is:

test: test.c
cc test.c -o test \

-DA=$(A) -DB=$(B) -DC=$(C)
eval: test

cc test.c -o test \

-DA=$(A) -DB=$(B) -DC=$(C)
./test >>eval
rm -f test

Here’s the C source code that computes eval. The reference
values are used to compare with for the evaluation – gamake
should find the reference values automatically:

#define AREF 5
#define BREF 42
#define CREF 3
double f(double x) {
return(A + (B * x) +

(C * (x * x)));
}
double ref(double x) {
return(AREF + (BREF * x) +

(CREF * (x * x)));
}
main() {
double e = 0, d, x;
for (x=0; x<=100; ++x) {
d = ref(x) - f(x);
d *= d;
e += d;

}
printf("%lf\n", -e);

}

How Do I Get gamake?
The current version of gamake is fully functional, but
we intend to delay release somewhat until we are cer-
tain that the interface will not change. At that time, it
will be made freely available online as full source code at
http://aggregate.org/GAMAKE/

This document should be cited as:
@techreport{sc12gamake,

author={Matt Wiggins and Henry Dietz},

title={Make Things Better},

institution={University of Kentucky},

address={http://aggregate.org/WHITE/sc12gamake.pdf},

month={Nov}, year={2012}}


