
You Can’t Always Get What You Want

If you try sometimes you might find you get what you need – but
maybe not. That’s the problem with caches. As modern processors
have sprouted increasingly complex memory hierarchies, they
still have not solved the fundamental problem of ensuring that
instructions and data are always ready when they are needed.

A value kept in a register is there when you need it. However,
there are lots of memory objects conventional machines do not
keep in registers. Instructions are not kept in registers, although
there really isn’t a good reason why not. There is a widely held
belief that registers don’t help with “spatial locality” – but that
is true only if we assume that a register is just one object wide.

Of course, ambiguously aliased data cannot be kept in registers.
For example, if a code refers to a[i] and a[j] a number of
times, there are three possible circumstances:

Alias Analysis Register Assignment
compiler knows i==j share one register
compiler knows i!=j two separate registers

compiler doesn’t know which of the above?

In fact, ambiguously aliased object references are the only reason
a processor needs cache: without cache, the store and reload
would become slow references to main memory. Even so, it is
possible that the cache would be ineffective, because references to
other objects might have had addresses hashing to the same cache
line slot, thus evicting the desired object from cache. However,
everything needed to resolve the ambiguity was in the processor
– why not simply modify the register file to automatically update
aliased objects in other registers?

CRegs & LARs. Our SC’88 paper, CRegs: A New Kind of
Memory for Referencing Arrays and Pointers, introduced CACHE-
REGISTERS to solve the ambiguous alias flushing problem by
associatively updating registers whose address fields match. How-
ever, data CREGs don’t make use of spatial locality – our work on
LARs (LINE ASSOCIATIVE REGISTERS) over the past few years
combines CREGs with SWAR (SIMD WITHIN A REGISTER) to
take full advantage of spatial locality. The basic hardware cell
structures are:

An example using Data LARs. In the following C code,
suppose i, j and k are ambiguously aliased. Because each
LAR records the current object position within its data field, the
LAR code reduces memory loads, fewer if any of the lines have

the same base addresses.. The architecture also provides implicit
lazy stores. Each LAR is type tagged, and type information need
not be encoded within arithmetic instructions. The LAR code
as written is scalar; however, if the data are properly aligned,
replacing ADDS and ANDS with ADDV and ANDV would perform
the SWAR parallel operations on a “line” of data at a time.

C Code Conventional RISC LARs
nasty(int*i, LW $t1,j(0) LOADSW d1,d0,d0,j

int*j, int*k) LW $t2,0($t1) LOADSW d2,d0,d1,0

{ LW $t3,k(0) LOADSW d3,d0,d0,k

*i=*j+*k; LW $t4,0($t3) LOADSW d4,d0,d3,0

*k=*i&*k; LW $t5,i(0) LOADSW d5,d0,d0,i

} ADD $t6,$t2,$t4 LOADd d6,d0,d5,0

SW $t6,0($t5) ADDS d6,d2,d4

LW $t7,0($t5) ANDS d4,d6,d4

LW $t8,0($t3)

AND $t9,$t7,$t8

SW $t9,0($t3)

Instruction LARs. Instruction LARs remove the instruction fetch
process from the execution of each instruction, replacing it with
separate, explicit, instructions that load of compressed blocks of
instructions. If a load requests a block that is already in another
instruction LAR, the decoded instruction block is logically copied
without any memory activity. Control flow targets are specified
using an instruction offset within an instruction LAR, rather than
by comparatively lengthy memory addresses. The overall result
is a smaller memory footprint, improved utilization of memory
bandwidth, and complete freedom from misses during instruction
processing.
Status. Krishna Melarkode’s 2004 M.S. Thesis, Line Associative
Registers, first introduced the concepts of LAR as an extension
of CREGs. Matt Sparks’ 2013 M.S. Thesis A Comprehensive
HDL Model of a Line Associative Register Based Architecture
describes a Verilog implementation of a reference architecture,
and significant progress has been made in development of a
complete compiler for a C dialect. The current design uses
2,048-bit lines in both the instruction and data pipelines. Watch
Aggregate.Org/LAR for more information.

This document should be cited as:
@techreport{sc13lar,

author={Paul Eberhart, Matt Sparks and Henry Dietz},

title={You Can’t Always Get What You Want},

institution={University of Kentucky},

address={http://aggregate.org/WHITE/sc13lar.pdf},

month={Nov}, year={2013}}

