
A Maze Of Twisty Little Passages

In Crowther’s 1970s COLOSSAL CAVE ADVENTURE, whose
layout happened to be partly modeled after Kentucky’s
MAMMOTH CAVE, you may recall two mazes: the original
“all alike” one and an “all different” one that was added
later. The same kind of distinction is commonly made in
classifying modern parallel computing systems as SIMD or
MIMD, and providing different, often mutually incompatible,
programming environments for each. Is it really necessary
to make such a stark distinction between the two?

Take a moment to examine one of the little mazes in our
SC15 exhibit. Each of the colored balls has a different
path to take – it’s a MIMD program. Yet, it is perfectly
feasible to efficiently get all the balls to their respective
destinations by a series of tilts of the table – execution
on SIMD hardware.
We have been using MIMD-on-SIMD technologies for over
two decades, targeting SIMD hardware from the MasPar
MP-1 supercomputer to arrays of millions of nanocontrollers.

GPUs (Graphics Processing Units). Modern GPUs are not
exactly SIMD, using a model that avoids scaling limitations
by virtualization, massive multithreading, and imposition of
a variety of constraints on program behavior (e.g., recursion
is not allowed by NVIDIA nor by AMD). This branch off the
SIMD family tree has grown quickly, with new programming
models and languages appearing at each new bud... but little
code base and many portability issues. MIMD C, C++, or
FORTRAN using MPI message passing or OPENMP shared
memory are now the bulk of the parallel program code base,
so we suggest using those – via the public domain MIMD
On GPU (MOG) technologies we have created.

SC08 MOG. The first proof-of-concept MOG system was
demonstrated in our exhibit at SC08. Actually, there were
two systems, one using an interpreter and another using
META-STATE CONVERSION (MSC) to generate pure native
code. Both shared the same MOG instruction set and
specially-built C-subset compiler supporting both integer
and floating point data, the usual C operators and state-
ments, recursive functions, and a parallel-subscript exten-
sion for remote memory access.

The simulator, mogsim, targeted both NVIDIA CUDA sys-
tems and generic C hosts. It correctly handles recursion,
system calls, breaking execution into fragments fitting within
the allowable GPU execution timeout, etc. The simulator’s

fixed code was compiled with data structures generated by
mogasm, our optimizing assembler. Multiple node programs
can be compiled separately and integrated by the assembler
for true MIMD (not just SPMD with MIMD semantics).
The MSC-based system avoids all overhead from use of
GPU resources to fetch and decode instructions, but was
somewhat buggy and has not yet been fixed.
SC09 MOG. Much more sophisticated analysis and trans-
formations enabled mogasm to create a highly customized
mogsim for each program – making MOG execution nearly
as fast as native CUDA. Slowdown was generally less than
6X and often just a few percent. This performance is the
fruit of experimenting with optimizations based on runtime
statistics, scheduling using a GENETIC ALGORITHM (GA),
and even per-program automatic instruction-set recoding to
improve runtime decode overhead.
SC10-12 MOG. The new MOG interpreter system was
released as full “alpha test quality” source code. Unlike
earlier versions, it allows any compiler tool chain targeting
MIPSEL to be used to compile your code. The GCC-
based version is called mogcc, and can process any of the
languages that compiler supports. The new ISA enables
more optimizations than the old one, and hence typically
outperforms it by a small margin. The assembler, mogas,
generates an optimized CUDA interpreter named mog.cu.
SC13-15 MOG. Work centered on fixing “bit rot” in the
released code and improving the host system call in-
terface. General-purpose mechanisms for passing argu-
ments and return values between code running inside
the GPU and the host allow basic file I/O, etc. MOG
requires a MIPS cross compiler; using Mentor Graph-
ics Sourcery CodeBench Lite has greatly simplified the
MOG install process. The new release of MOG is at
https://github.com/aggregate/MOG/

What’s Next? Our intent always has been to support MPI
both within and across CUDA or OpenCL hardware in cluster
nodes. The system is ready to be refined and extended to
be viable for production use, but lack of external support for
this work has diverted most of our effort to other projects.

This document should be cited as:
@techreport{sc15mog,

author={Henry Dietz and Sam Morris},

title={A Maze Of Twisty Little Passages},

institution={University of Kentucky},

address={http://aggregate.org/WHITE/sc15mog.pdf},

month={Nov}, year={2015}}


