
How Low Can You Go?

The key to high performance is no longer finding
and using parallelism, but maximizing the return on
investment of power . Our goal is to minimize the total
number of gate-level operations required while still ob-
taining speedup through parallel execution – which requires
rethinking language concepts, compiler optimization and
parallelization, and hardware architecture.

Most programming languages treat data objects as
indivisible, atomic, entities. Programmers typically specify
both type and size of each datum, but the compiler should
save power by not using all the bits, not all the time.

Integer range analysis: most programmers and languages
are either lazy or paranoid about specifying how big an
integer must be. How big is an int? Do you really use all
232 values for things declared as 32-bit integers? Do you
declare non-negative variables unsigned? Why not allow
specifications like int:8 for an 8-bit integer and also use
compiler range analysis to minimize active bits?

Floating point accuracy, not precision: programs specify
precision, but what we want is accuracy. As we proposed
in 2006, why not have language constructs that provide an
accuracy acceptance test so the compiler can speculatively
define precision, automatically re-executing with higher pre-
cisions as needed? Use of LNS (Log Number System) or
scaled integers is also possible.

Packing of smaller data: originally, we did this for SWAR
(SIMD Within A Register) to obtain vector-like parallelism,
but techniques like our CSI (Common Subexpression Induc-
tion) allow a compiler to pack unstructured things to more
efficiently use datapaths and memories.

Over time, machine word size has grown. From the
EDSAC 2 in 1958, microcoded bit slicing was used in many
computers, including the massively-parallel DAP, STARAN,
MPP, CM, CM2, and GAPP. Over time, slice width in-
creased; the MP-1 was 4-bit, and GPUs went from 8 to 32
or even 64-bit words. This was done to speed sequential
code – assuming not enough parallelism is available. Now,
sequential code is handled elsewhere and there is lots of
parallelism available. Bit-level operations require fewer
active gates per computation.

Consider executing 32 ripple carry 32-bit additions in 32
clock cycles using just 32 one-bit full adders. To execute
one 32-bit addition in one clock cycle requires much more
active circuitry (e.g., to implement carry lookahead), more
power, and probably a slower clock. Even greater savings
are possible by optimizing bit-level operations rather than
microcoding a simple word-level ISA (as bit-slice processors
generally did). For example, consider an 8-bit add vs. what
is truly needed to add 4 to an 8-bit number:

Optimizing whole programs at the gate level is hard, but
our BitC langauge and compiler for mux-based nanocon-
trollers proved it is possible using our MSC (Meta-State
Conversion), BDD (Binary Decision Diagram) normalization,
and other optimizations. The following BitC code would
become 206,669 mux operations implementing each word-
level operation directly, but instead the compiler uses just 8
instructions to set each bit of a to 0:
int:8 a, b, c; a=(c*c)^70; a=((a>>1)&1);

a=b+(c*b)+a; a=a+~(b*(c+1));

In Spring 2017, we built a C compiler that generates opti-
mized gate-level hardware as a single combinatorial logic
circuit with a state variable. A trivial example is:

Initial targets included Verilog code and GPUs. We are
looking at various new targets, such as adiabatic (thermo-
dynamically reversible) logic. CSWAP (aka, FredKin) gates
are adiabatic gates that do not allow fanout, making them
a difficult target, but a design expressed using them is
efficiently executable by a quantum computer....

@techreport{sc17gates,

author={Henry Dietz},

title={{How Low Can You Go?}},

institution={University of Kentucky},

address={http://aggregate.org/WHITE/sc17gates.pdf},

month={Nov}, year={2017}}

