
Programming
Techniques

S. L. Graham, R. L. Rivest
Editors

Assembling Code for
Machines with Span-
Dependent
Instructions
Thomas G. Szymanski
Princeton University

Many modern computers contain instructions whose
lengths depend on the distance from a given instance of
such an instruction to the operand of that instruction.
This paper considers the problem of minimizing the
lengths of programs for such machines. An efficient
solution is presented for the case in which the operand
of every such "span-dependent" instruction is either a
label or an assembly-time expression of a certain
restricted form. If this restriction is relaxed by allowing
these operands to be more general assembly-time
expressions, then the problem is shown to be NP-
complete.

Key Words and Phrases: span-dependent
instructions, variable-length addressing, code
generation, assemblers, compilers, NP-complete,
computational complexity.

CR Categories: 4.11, 4.12, 5.25

General permission to make fair use in teaching or research of
all or part of this material is granted to individual readers and to
nonprofi t libraries acting for them provided that A C M ' s copyright
notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted
by permission of the Associat ion for Comput ing Machinery. To
otherwise reprint a figure, table, other substantial excerpt, or the
entire work requires specific permission as does republication, or
systematic or multiple reproduct ion.

Research supported in part by NSF Grant MCS 74-21939 A01.
Author 's address: Depar tment o f Electrical Engineering and Com-

puter Science, Princeton University, Princeton, N.J. 08540.
© 1978 ACM 0001-0782/78/0400-0300 $00.75

3 0 0

1. Introduction

Many modern computers contain instructions whose
lengths are span-dependent in the sense that the amount
of storage occupied by a given instance of such an
instruction is determined by the distance from that in-
struction to its operand. Typically, a short form of an
instruction can be used if the instruction's operand is
"close" to the instruction, otherwise a long form of the
instruction must be used. It is usually preferable to use
the shorter form whenever possible in an effort to reduce
both program length and execution time.

The problem of deciding when it is possible to use
the shorter form of an instruction on such a machine is
made nontrivial by the fact that the distance from an
instruction to its operand depends on the lengths of the
intervening instructions. These lengths can, of course,
depend either directly or indirectly on the length selected
for the original instruction. In order to simplify code
generation for compilers and other assembly language
programmers of such machines, it is desirable to relegate
the choice between long and short forms of instructions
to the assembler. It is the purpose of this paper to
investigate the conditions under which this choice can
be made optimally and efficiently. We shall only consider
translation methods which preserve statement order, thus
no rearrangement of code will be permitted. Previous
work considering similar problems may be found in [3]
and [61.

In an attempt to avoid cumbersome notation we shall
present our results in the context of a specific computer:
the Digital/Equipment Corporation PDP-11 [5]. How-
ever, it should be noted that our results apply to any
computer containing span-dependent instructions (hence-
forth sdi's) as specified formally in the following defini-
tion.

Definition: An instruction is said to be span-dependent
if 1) the instruction exists in two forms of differing
length, 2) the shorter form of such an instruction can be
used at machine location m only if that instruction's
operand has an address between m + a and m + b where
a and b are fixed (and possibly negative) integer con-
stants, 3) the longer form of such an instruction can
always be used in place of a shorter form. []

Two additional examples of machines possessing
sdi's are the Motorola 6800 microprocessor and the IBM
1130. Undoubtedly, many other examples exist.

The PDP-11 contains two types of unconditional
transfer instruction. The branch instruction (mnemonic
br) is two bytes long and can only be used if the branch
target is within approximately 254 bytes ~ of the branch
instruction. The jump instruction (mnemonic jmp) is four
bytes long but is unrestricted with respect to the location
of its target.

Conditional transfer instructions on the PDP-11 are

More precisely, a branch instruction at address m can have as its
target any instruction whose address is between m - 254 and m + 256
inclusive.

Communica t ions April 1978
of Volume 2 i
the ACM Number 4

two bytes long and subject to the same target restrictions
as the branch instruction. Two such instructions are
branch-if-equal and branch-if-not-equal (mnemonics beq
and bne respectively). No conditional analog of the jump
instruction exists on this machine and, accordingly, a
conditional transfer to a distant target must be synthe-
sized by using a conditional branch in conjunction with
a jump instruction. For example, if X were close enough,
then it would be permissible to use the instruction "beq
Z". On the other hand, if X were remote, then we would
have to use a sequence of instructions such as "bne skip;
jmp X; skip: . . . ".

The PDP-11 assembler available under the U N I X
operating system [7] supports extended branch mnemonics
such as jbr, jeq, and jue. I f the circumstances permit,
these are translated into branch type instructions, that is,
br, beq, and bne. Otherwise, they are treated as jmp's or
as conditional branches over a jmp as described above.
It is easy to verify that these extended branch mnemonics
may be regarded as sdi's according to the definition
given above.

The actual algorithm used in the U N I X assembler
for translating programs containing sdi's is a three-pass
algorithm which, although not always succeeding in
minimizing the length of an object program, 2 has very
good average performance. In Section 2 of this paper we
consider this and other natural, but suboptimal, algo-
rithms. In Section 3 a two-pass algorithm will be pre-
sented which is guaranteed to produce the minimum
length translation of a program containing span-depend-
ent instructions. This algorithm requires that the oper-
ands of all sdi's be restricted to assembly-time expres-
sions of a certain type. I f this restriction is relaxed, the
problem of program size minimization becomes NP-
complete, as will be proved in Section 4.

Throughout this paper the label of an assembly lan-
guage statement will be separated from the statement
proper by a colon. As usual, this label represents the run-
time address of the labelled instruction. A period will
denote the address of the statement containing it. Greek
letters will be used to denote sequences of instructions.
The size of a code sequence a, denoted] a l, is the amount
of storage occupied by a under some specified transla-
tion. The notation "A = n" will be used to represent an
arbitrary sequence of instructions which does not contain
any sdi's and which occupies exactly n bytes of storage.

It is traditional in the design of assembly languages
to allow the programmer to specify the operands of a
statement by means of an assembly-time expression. We
assume that these expressions are built up from statement
labels (including "."), integer constants, operators and
parentheses in the usual manner. We also assume that
the usual procedence and associativity rules are used to
interpret expressions.

Expressions can be designated absolute or relocatable

2 Throughout this paper the phrase "program length minimiza-
tion" means minimizing the total length of the span-dependent instruc-
tions of the program in question without reordering the code.

301

according to the following rules:
1. An integer constant is an absolute expression.
2. A label is a relocatable expression.
3. I f r denotes a relocatable expression and a an

absolute expression, then an expression of the form
a + r or r +_ a is a relocatable expression; an
expression of the form a + a or r - r is an absolute
expression.

We assume that the operands of all sdi's in a program
are specified by relocatable expressions.

Any translation of a program containing n sdi's can
be uniquely specified by listing the set of sdi's which
have been translated in the long form. We call such a set
a selection set. Given a program P and a selection set S,
we can assign addresses to the instructions of P in the
obvious way. I f S is the empty set (alternatively, the set
of all sdi's in P) then the resulting address assignment is
called the minimum (maximum) address assignment. It
corresponds to choosing a short (long) translation for
every sdi in the program.

Definition: Let S be a selection set for program P.
The span of an instruction whose operand is the expres-
sion E is the value of the expression " E - . " when evalu-
ated under the address assignment determined by S. The
translation of P corresponding to S is said to be legal if
the spans of all sdi's not occurring in S are within the
architecturally imposed limits for short form instruc-
tions. []
On the PDP-11, the span s of any extended branch
instruction which is given a short translation must satisfy
the condition - 2 5 4 _< s - 256.

2. Some Natural but Suboptimal Algorithms

Let us begin by considering some natural ways to
assemble programs containing sdi's. We shall restrict
ourselves to assemblers which employ a classical multi-
pass organization. This is, they first read the program,
producing a symbol table of labels and corresponding
relative addresses. Then, during a subsequent pass over
the program, they translate the program into actual
machine code. The basic question here is which addresses
should be assigned to those labels which have been
preceded by one or more sdi's. In the sequence

jbr L
A:
L:

the relative address of the label A cannot be determined
until after the size of the code sequence a has been
determined. I f a translates into at most 254 bytes of code
then the jbr can be translated into a br and A can be
assigned relative address 2. Otherwise, the jbr becomes
a jmp and A is assigned relative address 4.

It is tempting to circumvent this difficulty by using
a finite sized buffer to look ahead some fixed amount
before deciding how to translate a given sdi. The inade-
quacy of this approach is shown by the program appear-

Communications April 1978
of Volume 2 i
the ACM Number 4

ing in Figure 1. If the code segment a involves no more
than two bytes of code then all the jbr's can be translated
as br's, otherwise they must all be translated as jmp's.
The point here is that no bounded amount of lookahead
will guarantee the optimal assignment of addresses to
labels.

Another possible approach is to assign maximum
addresses to labels during pass 1; that is, assume that
each sdi must be translated to its long form. One or more
intermediate passes can then be used to adjust downward
the sizes of any sdi's which can be given short translations
(according to the current symbol table contents) and
update the symbol table values of the program's labels.
The actual translation to machine code is then done
during a final pass. As an example of this technique let
us again consider the program in Figure 1 and assume
that the code sequence a produces exactly 2 bytes of
machine code. Recall that under these conditions
all jbr's of the program can be translated to br's. During
the first pass, all the jbr's will be treated as having
a size of 4 bytes resulting in Li being assigned address
4 + 256 * i for 0 _< i < n. Label Ln will be assigned
address 2 + 256 *n. During the second pass the span of
the statement "jbr Ln" will be discovered to be 256. This
allows the "jbr L / ' statement to be tested as a br instruc-
tion and decreases the assigned addresses of both Ln-1
and L~ by 2. During each subsequent pass one more jbr
is discovered to be translatable to a br and the symbol
table values of the Li's reach their final values after n +
1 passes.

In practice, very few programs exhibit the control
structure shown in Figure 1. It would therefore probably
be sufficient to restrict the process to but one interme-
diate pass. This is in fact the approach taken by the
UNIX assembler. The resulting assembly algorithm can
be expected to give near optimal performance. It does,
however, require three complete passes 3 over the source
code. Moreover, even if passes were continued until
convergence occurred, the method would still fail to
minimize the size of programs such as the one appearing
in Figure 2, for which the algorithm would converge
with X having relative address 0 and Y having relative
address 262. Thus, both sdi's would have to be translated
to their long form. However, it is easy to see that if X
and Y are assigned addresses 0 and 256 respectively,
then the short form can be used for both instructions. It
should be noted that the control structure depicted in
Figure 2 corresponds to the standard implementation of
a "while" loop and, as such, is not unexpected.

The point here is that multipass algorithms which
start with the maximum address assignment and attempt
to converge downward to a final solution must be sub-
optimal, although they can be expected to give good
performance if terminated after a few iterations. Multi-

3 For example, the first pass of the UNIX assembler assigns
"estimated" addresses to labels, the second pass determines which form
should be used for each sdi and assigns "final" addresses to labels, and
the third pass does the actual translation to object code.

302

Fig. 1. The inadequacy of the "window" approach.

jbr El
L0: A = 252

jhr L2
LI: A = 252

jbr Li
Li-l: A = 252

jrb Ln
Ln-l: A -- 252

Ln:

Fig. 2. A bistable configuration.

X: jne Y
A = 252
jbr X

Y:

pass algorithms which start with the minimum address
assignment and converge upwards give optimal perform-
ances but cannot be terminated until convergence occurs.

Finally, note that the convergence of multipass al-
gorithms cannot be guaranteed if the operands of sdi's
are allowed to be unrestricted expressions. To see this,
consider the program fragment in Figure 3. The operands
of the jbr's are such that choosing a short translation for
a given jhr forces some other jhr to be given a long
translation. Conversely, whenever a jbr is treated as a
imp, it becomes possible to convert some other jbr to a
br. The only stable situation is to translate all three jbr's
as jmp's. Unfortunately, a multipass algorithm which
attempts to converge toward a solution will fall victim to
some variant of the following cycle of reasoning:

1) Since the jbr at A is long, the jbr at C can be short;
2) Since the jbr at C is short, the jbr at B must be

long;
3) Since the jbr at B is long, the jbr at A can be short;
4) Since the jbr at A is short, the jbr at C must be

long;
5) Since the jbr at C is long, the jbr at B can be short;
6) Since the jbr at B is short, the jbr at A must be

long;
7) repeat from 1).

Thus, it is far from clear precisely what strategy should
be used by a multipass algorithm in order to meet the
twin requirements of convergence and optimal perform-
ance.

3. An Optimal, Two-Pass Algorithm

The algorithm to be presented in this section is
essentially an iterative algorithm which starts with an
empty selection set and converges upwards to a final
selection set corresponding to the shortest legal transla-

Communications April 1978
of Volume 21
the ACM Number 4

Fig. 3. Nonconvergence of iterative techniques.
A: jbr .+260 - (C - B)
B: jbr . + 2 6 0 - (D - C)

C: jhr .+260 - (B - A)
D:

tion of the program in question. As we have just seen,
the convergence of such an algorithm cannot be guar-
anteed unless some restrictions are placed on the oper-
ands of the sdi's in the program. The restrictions which
we need are provided in the following two definitions.

Definition: A simple expression is a relocatable expres-
sion containing exactly one label. []

Without loss of generality, we can consider all simple
expressions to be of the form "label _ constant." Thus
the expression "A + B - C", although relocatable, is not
simple.

Definition: An sdi I is said to be pathological if there
exist selection sets $1 and S~ such that, 1) $1 is included
in $2, 2) the span of I under $1 is outside the range
allowed for a short form instruction, and 3) the span of
I under $2 is within the range allowed for a short form
instruction. []

As an example of a pathological instruction, consider
the statement labeled A in Figure 3 and the selection sets
$1 = {} and $2 = {A, B, C}. Under the address assign-
ment implied by S~, the span of the instruction A is 258,
which is too large for a short form instruction. On the
other hand, the span of A under $2 is only 256, which is
within the limits allowed for a br instruction.

The algorithm to be presented in this section requires
that all sdi's in a program be nonpathological and have
simple operands. We do not feel that any significant loss
of utility results from this requirement. Fewer and fewer
computers today employ a uniform instruction size, and
thus even simple expressions of the form "L + c" are
somewhat confusing and of limited usefulness. 4 Indeed,
all of the instruction operands produced by the U N I X
C-compiler are both simple and nonpathological. As we
shall soon see, pathological instructions are so obfuscat-
ing that they can be proscribed solely on the grounds of
program (un)clarity.

At this point it is necessary to describe how to enforce
these restrictions. The simplest method for enforcement
is to automatically translate any sdi which is either
nonsimple or pathological to a long form instruction.
This method will revoke the guarantee that the translated
program is as short as possible. However, as we shall see
in Section 4, the optimal translation of programs con-
taining pathological instructions is prohibitively expen-
sive anyway. Thus we feel that we are really sacrificing
very little by discarding them at the onset.

Identifying nonsimple instructions is easy. In order

4 The traditional interpretation of an assembly-time expression
demands that the expression "'L + c" refer to that machine location
which is c storage units beyond the instruction labeled "L". This
location is usually not the same as the one which is c instructions
beyond L.

303

to identify those remaining simple instructions which are
pathological, we note the following.

LEMMA: Let I be an sdi with simple operand E. Let
L be the label occurring in E. Let S be some selection
set.

1) I f I precedes L in the program, then the span of
I according to S is monotonically nondecreasing as ele-
ments are added to S.

2) I f I occurs after L in the program, then the span
of I according to S is monotonically nonincreasing as
elements are added to S.

PROOF: Since E is simple, I is of the form "jbr L +
c". The only sdi's whose length affects the span of I are
those lying strictly between I and L. I f I precedes L,
adding any of these intervening sdi's to S can only
increase the address of L while leaving the address of I
unchanged. Thus the span of I, which is L 4"_ c - . , cannot
decrease. 2) is proven in a similar manner. []

Since the spans of instructions with simple operands
change monotonically with additions to the selection set,
it is only necessary to look at the span of each sdi relative
to the empty selection set and the selection set consisting
of all sdi's in the program. Call these the empty span and
the ful l span respectively.

Let us return for a moment to the case of the PDP-
11. Suppose that I is the sdi "jbr L _ c". I f I precedes L,
then I is pathological iff the empty span of I is < - 2 5 4
and the full span is _>-254. I f I occurs after L, then I is
pathological iff the empty span of I is >256 and the full
span of I is -<256. (As a consequence of this, note that no
simple operand having c -- 0 can ever by pathological.)
For example, consider the code fragment shown below.

X: A = 50
Y: jeq someplace

A = 50
Z: jbr X + 360

The span of the instruction labeled Z is X + 360 - Z.
Letting y denote the size of the instruction labeled Y, Z
= X + 100 + y, and thus the span of Z is 260 - y. I f the
instruction labeled Y is translated as beq, then the
(empty) span of Z is 258 and hence Z must be translated
as a jmp. On the other hand, if Y is translated as a bne,
j m p pair, then the (full) span of Z is only 254 and Z can
be translated as a br. Thus Z is pathological.

The code fragment used in the previous example is
reminiscent of doing an indexed jump into a table
(namely, X) of branch addresses. The operand X + 360
could presumably arise when a smart compiler folds a
constant subscript. However, the numbers involved here
suggest that the subscript was out of range! Thus we can
regard this example as justifying our use of the adjective
"pathological" to describe instructions such as Z above.
Indeed, it is very difficult, if not impossible, to construct
program schemes containing pathological instructions
whose computation does not depend on the translation
selected for its sdi's.

At this point we have enough terminology to describe

Communications April 1978
of Volume 2 l
the ACM Number 4

our algorithm. Throughout the rest of this section let n
denote the number of sdi's in the program being assem-
bled. We suppose further that all sdi's have simple
operands and are nonpathological.

During the first pass we assign addresses to instruc-
tions and build a symbol table of labels and their ad-
dresses according to the minimum address assignment.
We do this by treating each sdi as having its shorter
length. We also number the sdi's from 1 to n in order of
occurrence and record in the symbol table entry for each
label the number of sdi's preceding it in the program.
Simultaneous with pass 1 we build a set

S = {(i,a,l,c)ll <- i <- n, a is the minimum address of
the ith sdi, 1 and c, are the label and constant com-
ponents of the operand of the ith sdi respectively}.
Between passes 1 and 2 we will construct an integer

table LONG[I:n] such that LONG[t] is nonzero if and
only if the ith -sdi must be given a long form translation.
Initially LONG[t] is zero for all i.

At the heart of our algorithm is a graphical represen-
tation of the interdependencies of the sdi's of the pro-
gram. For each sdi we construct a node containing the
empty span of that instruction. Nodes of this graph will
be referred to by the number of the sdi to which they
correspond. Directed arcs are now added to the graph so
that i ---> j is an arc if and only if the span of the ith sdi
depends on the size of the j th sdi, that is, the j th sdi lies
between the ith sdi and the label occurring in its operand.
It is easy to see that the graph we have just described
can be constructed from the information present in the
set S and the symbol table.

The significance of this graph is that sizes can be
assigned to the sdi's of the program so that the span of
the ith sdi is equal to the number appearing in node i if
and only if all the children of i can be given short
translations.

After the structure is built we process it as follows.
For any node i whose listed span exceeds the architec-
tural limit for a short form instruction, set LONG[t]
equal to the difference between the long and short forms
of the ith sdi. Increment the span of each parent of i
by LONG[t] if the parent precedes the child in the pro-
gram. Otherwise, decrement the span of the parent by
LONG[t]. Finally, remove node i from the graph. Clearly
this process must terminate. Any nodes left in the final
graph correspond to sdi's which can be translated in the
short form.

Now construct a table INCREMENT[0:n] by defin-
ing INCREMENT[0] = 0 and INCREMENT[t] = IN-
CREMENT[/ - 1] + LONG[t] for 1 < i < n. INCRE-
MENT[t] represents the total increase in size of the first
i sdi's in the program. At this point we can adjust the
addresses of each label L in the symbol table. I f L is
preceded by i sdi's in the program, then add INCRE-
MENT[t] to the value of L in the symbol table. Finally,
we do the traditional second assembly pass using the
LONG table to specify how each sdi is to be treated.

As an example of the operation of this algorithm,

304

Fig. 4. An example program for the algorithm.
A = 100

A: jne B
A = 248
jbr C
jbr A

B: jeq E
A = 246
jbr A - 10

C: jbr F + 20
A = 2

E: A = 300
F:

Fig. 5. The initial dependency graph.

consider the program shown in Figure 4. The initial
dependency graph is shown in Figure 5. The numbers
occurring inside each node are, respectively, its node
number and current span. Initially nodes 5 and 6 are the
only nodes whose spans necessitate translation as long
form instructions. Node 5 is removed from the graph
and the spans of both nodes 2 and 4 are increased to
256. Node 6 is now removed, changing the span of node
4 to 258. Since this is too large a span for a br, node 4
can be removed, increasing the span of node 2 to 260
(the long form of jeg is 6 bytes long). Finally, node 2 is
removed, increasing the span of node 1 to 256 and
decreasing the span of node 3 to -254, both of which
are legal spans for short form instructions. The final
graph is shown in Figure 6. Thus the length of the
program appearing in Figure 4 is minimized by giving a
short translation to the two statements "jne B" and "jbr
A". All the other sdi's must be given long translations.

The following facts provide the basis for the claim
that the algorithm minimizes program size. (l) The
decision to use a long translation for a given sdi is not
made until a long translation for that instruction has
been proven necessary. (2) Since sdi's are required to be
nonpathological, it will never be the case that once a
given sdi has been shown to require a long translation,
subsequent selections of long translations for other sdi's
will allow its translation to take the short form. (3) The
order in which nodes are removed from the graph is
irrelevant. Once the span listed in a node exceeds the
allowed range for a short form instruction, the node must
eventually be removed.

The running time of the algorithm just presented is

Communications April 1978
of Volume 21
the ACM Number 4

Fig. 6. The tinal dependency graph.

essentially proportional to the number of arcs in the
dependency graph because no arc is ever followed from
a child to a parent more than once. In the worst case
there could be nearly n 2 such arcs but for reasonable
programs it is likely that there would be only O(n) arcs.
Since space is likely to be of more concern than time in
the implementation of this algorithm, we suggest that a
brute-force scan of the set S be used to find the parents
of a given node. The worst case running time of the
algorithm 5 remains O(n 2) but the space requirement is
reduced to O(n) because it is no longer necessary to
explicitly construct the arcs of the dependency graph.

Mark Linton, an undergraduate student at Princeton,
has implemented the algorithm in this final form and
incorporated it into the UNIX assembler for the PDP- 11
as a substitute for that assembler's intermediate pass. As
a test of the effectiveness of our techniques, the entire
UNIX operating system was compiled into PDP-11 as-
sembly language and subjected to the two assemblers.
The UNIX code contained 1424 sdi's (all of which were
simple and nonpathological) and assembled into approx-
imately 27K bytes of instructions. The original assembler
used a long form for 80 of these sdi's whereas the
modified (and optimal) assembler produced only 60 long
translations. More significantly, the modified assembler
ran 25% faster than the original assembler. Several points
should be made here. First, since such a high percentage
of sdi's can be translated, short, extensive space savings
(in this case about 4.5K bytes, or 17% of the total
operating system size) can result from doing long/short
optimizations. Second, the heuristic used in the original
UNIX assembler is quite effective, coming in this case
within 60 bytes of the minimal size. Third, the major
justification for using the method proposed in this paper
is the assembly time which can be saved while still
producing optimal translations.

In closing this section, it should be noted that the
requirement that programs not contain any pathological
instructions was crucial for guaranteeing the optimal
convergence of our algorithm. The requirement that all
sdi's have simple operands was made solely for conven-
ience. We leave as an exercise for the reader the task of
modifying the algorithm given above to accommodate
programs containing nonsimple operands. It should also
be noted that the processing described above is unnec-
essary in the case of those sdi's which must be translated
long under any selection set or which can be translated
short under all selection sets.

s For each sdi m which requires a long translation we must adjust
the span of all sdfs whose span is dependent on m.

305

4. Minimizing Program Length is NP-Complete

In the previous section an efficient algorithm for the
length minimization of programs with simple operands
was presented. If a program is allowed to contain path-
ological or nonsimple operands, it is still possible to
minimize its length, although the algorithm for doing so
may no longer be efficient. Since there are only two ways
of translating each sdi in a program, there are at most
0(2 n) possible translations of a program containing n
sdi's. We could simply generate each of these transla-
tions, discard those which are not legal, and select as our
result the shortest surviving program. The algorithm we
have just described would obviously require an enor-
mous amount of time to process any program of sub-
stantial size. Nevertheless, it is our goal in this section to
show that there really is no significantly better way to
handle the general problem than the bruteforce tech-
nique we have just described. We shall do this by show-
ing that the problem of determining the minimum fea-
sible length of an arbitrary program is NP-complete.

The class of NP-complete problems consists of a large
number of essentially combinatorial problems for which
all known algorithms require (in the worst case) expo-
nential time. Moreover, if any one of these problems
could be solved in polynomial time, then they all could.
Many famous optimization problems such as the travel-
ing salesman problem and the chromatic number prob-
lem for graphs have been shown to be NP-complete.
These problems have been studied for decades without
the discovery of any efficient algorithmic solutions. It is
therefore widely believed that no polynomial time solu-
tion exists for any NP-complete problem. Readers desir-
ing more information about NP-complete problems may
consult the literature (e.g. Ill or [4]) for additional back-
ground and terminology).

For technical reasons it is useful to require that all
problems be phrased so as to have a yes/no answer.
Accordingly, the problem considered in this paper can
be cast as follows.

Definition: Given an integer s and an assembly lan-
guage program P, the instruction length assignment prob-
lem is to determine whether P can be assembled to yield
an object program of size s or less. []

We now need some sort of measure of the size of a
problem. Intuitively, the size of a problem is that param-
eter (or parameters) of the problem which determines
the running time of algorithms which solve the problem.
In the case of the instruction length assignment problem,
the size of an instance of the problem can be defined to
be the number of sdi's in a program. 6

In order to show that a problem is NP-complete, it is
necessary to show, first, that the problem can be solved
nondeterministically in an amount of time which is
bounded by a polynomial function of the problem size,

6 Alternatively, the number of statements in a program could be
defined to be the size of a problem. We view this definition of size as
being less relevant to those aspects of the problem which interest us.

Communications April 1978
of Volume 21
the ACM Number 4

and secondly, that the problem is at least as hard as any
other problem which is solvable in nondeterministic
polynomial time. The first requirement is a technical
detail which is usually easy to verify. Accordingly we
shall not bother to demonstrate it in our proofs.

The second requirement is most easily fulfilled by
showing how to transform an instance x of some known
NP-complete problem X to an instance y of the problem
of interest Y. This transformation must be efficient in
the sense that it can be done in polynomial time (in the
size of x) and does not increase the size of x by more
than a polynomial factor. Moreover, the answer to x
must be yes iff the answer to y is yes. The "known NP-
complete problem" which we shall employ in our proofs
is the following.

Definition: An instance of the 3-satisfiabilityproblem
is a set of variables {xill _< i -< n} and a collection of
clauses C~ Cm such that each Cj is a set consisting
of exactly 3 literals of the form xi or xi. A given instance
of the problem is said to be satisfiable if there exists a
truth assignment f mapping {Xi I 1 _< i _< n} into {true,
false} such that for every j in the range l _< j _ m there
exists an i such thatf(xi) = true and xi E Cj or elsef(x/)
= false and xi E C~. The size of an instance is simply n
+ 3m. []

The 3-satisfiability problem was first defined and
proven NP-complete in [2]. We can now state and prove
the main result o f this section.

THEOREM 1 : The instruction length assignment prob-
lem is NP-complete if the assembly language programs
under consideration are allowed to contain span-depend-
ent instructions whose operands are arbitrary assembly-
time expressions.

PROOF: We shall show how to transform an arbitrary
instance I of the 3-satisfiability problem to a program PI
which can be translated to a certain min imum length iff
I is satisfiable. For each variable xi, PI contains the code
fragment

Yi: jbr
A = 254

Zi:

For every clause Cj = {lj.1, 15.2, lj.3}, PI contains the code
fragment

As:

B j:

A -- 246
jbr t~,l
jbr t~,2
jbr t j,3

I f lj,~ is an unnegated literal xi, then E , is " .+Z i -Y i " . I f
lj,k is an negated literal ii, then tj,k is " . + Z i - Y i - 5 1 2 " .
Finally, for every clause Cj we add to Pt exactly n + 3m
+ 1 copies of the statement "jbr . + B T A T ' . Thus P~
contains a total o f n + 3m + (n + 3m + 1)m sdi's. The
total length of a given translation of PI is 256n + 254m
+ 2nm + 6m 2 + 2q where q is the number of jmp
instructions in the translated version of Pt.

306

We shall now show that I is satisfiable iff PI can be
assembled to produce a program of size 258n + 260m
+ 2nm + 6m 2 or less. Equivalently, I is satisfiable iff PI
can be assembled to an object program containing at
most n + 3m imp instructions.

The following observation will be useful. Suppose
that c is an even integer constant in the range 0 _< c <-
258. The statement "jbr .+c" can be given a short
translation iff c -< 256. The statement "jbr . + c - 5 1 2 " can
be given a short translation iff c = 258.

In any translation of Pt, each of the statements
"Yi:jbr." can be translated as either "Yi:br." or as "Yi:
jmp.". Thus, for 1 _< i _< n, the distance Zi - Yi can be
either 256 or 258. These n selections correspond to an
assignment of truth values to the variables of I in a
natural way, namely, Zi - Yi is 256 iff xi is true in the
given truth assignment.

In any translation of PI, each of the distances Bj - Aj
must be 252, 254, 256, or 258. The first 3 possibilities
arise when at least one of the jbr 's between A i and Bj is
given a short form translation. This is, of course, equiv-
alent to saying that at least one of the literals of Cj is
made true by the truth assignment determined by the
Zi - Yi distances.

I f I is satisfiable, it is possible to select the Zi - Yi
distances with Bj - Aj _< 256 for 1 _< j _< m. This means
that all of the statements "jbr .+Bi - Aj" can be given
short translations. Thus no more than n + 3m jbr 's need
be translated as jmp's.

Conversely, if I is unsatisfiable, then for any choice
of the Zi - Y~ distances, there will be at least one value
o f j for which all three of the jhr 's between Aj and Bj
must be given long translations. This means that Bj - Aj
will be 258 and so all n + 3m + 1 of the statements "jbr
. + B j - A 7' must be translated as jmp's. Thus Pt will
contain at least n + 3m + 1 jmp's. This completes the
proof of the theorem because it is obvious that the
transformation of I to PI can be done in polynomial
time. []

It turns out that the computational difficulty in min-
imizing program size is due to the presence of patholog-
ical instructions and is independent of whether operands
are constrained to be simple. We show this below.

THEOREM 2: The instruction length assignment prob-
lem is NP-complete even if all operands of sdi's are
simple.

PROOF: Let I be an instance of the 3-satisfiability
problem having n variables xi, 1 _< i -< n, and m clauses
Cy = {ly,1, b',2, b,a}. Let q = n + m + 1. We shall construct
a program QI which can be legally translated with a
selection set o f size n + 2m or less iff I is satisfiable.

First, consider the program P~ shown in Figure 7. As
in the proof of Theorem 1, the translations selected for
the statements labeled Yi will correspond to a unique
assignment of truth values to the variables xi of I. Spe-
cifically, Yi is translated as a br (making Zi - Yi -- 2) if
xi = true; Yi is translated as a imp (making Zi - Yi = 4)
if xi -- false.

Communications April 1978
of Volume 21
the ACM Number 4

Fig. 7. Basic construction for proof of Theorem 2.

Yx: jbr
ZI: jbr

a t

Yn: jbr
Z.: jbr

O/n
Ax,l: jbr
Ax,2: jbr
A1,32 jbr

AI,1 4- tl,1
A1,1 4- tx,2 4- 4
A1,1 4- tl,3 + 8

Am, l: j b r Am,1 + tin,1
Am,2: jbr Am,1 4- tm,2 4- 4
Am,a: jbr mm, l 4- tm,3 4- 8

/~m

The q.k are expressions defined as follows. If lj, k is an
unnegated literal, say xi, then ti,k is "Zi - Yi 4- 254". If
Li,h is a negated literal, say ii, then ti,k is "Zi - Y i -
258". The tj, k have been carefully selected so that

1) A~,I is translatable as a br iff the literal lj,~ is made
true by the truth assignment defined by the Zi - Y~
distances.

2) IfAj,1 is translated as a imp, then Ay,2 is translatable
as a br iff the literal li,2 is made true by the truth
assignment defined by the Z~ - Yi distances.

3) If mj, x and Ai,2 are both translated as jmp's then Aj, a
is translatable as a br iff the literal lj, a is made true
by the truth assignment defined by the Zi - Yi
distances.

It is easy to verify that
I is satisfiable iff Pi can be translated
so that for every j, exactly one of Aj, k,

(*) 1 ----- k _< 3, is translated as a br and
the other two are translated as jmp's.

The code segments denoted by ai and fly are called
enforcers and have the following properties:

a) Each enforcer consists of exactly 2q + 2 jbr state-
ments.

b) Within any enforcer, if any one jbr is translated as
a imp, then at least 2q of the jbr's in that enforcer
must be translated in the long form. When this
happens, we say that the enforcer explodes.

c) If the translation of Yi and Zi produces exactly 6
bytes of code (i.e. one imp and one br), then all the
jbr's in cti can be translated as br's.

d) If the translation of Yi and Zi does not produce
exactly 6 bytes of code (i.e. both are translated as
br's or else both are jmp's), then ai explodes.

e) Similarly, fli must explode if the three statements
As,k, 1 ----- k ----- 3, do not produce exactly one br and
two jmp's.

307

It should be clear from the properties of enforcers and
(*) above that

I is satisfiable iff PI can be translated
(**) to have exactly n + 2m jmo's.
To see this, first suppose that I is satisfiable and consider
any one of the translations whose existence is implied by
(*). The translations of the statements labeled Zi can be
freely chosen so that Zi is a imp iff Yi is a br. By property
(c) above, all of the jbr's in the ai's can therefore be
translated as br's. Moreover, by property e) above, all of
the jbr's in the tiffs can be translated as br's. This gives
us a total of exactly n + 2m jmp's.

Now suppose that a translation of Pt having exactly
n + 2m jmp's exists. Clearly, none of the enforcers in
such a translation could be exploded, for if it were, then
the translation would contain at least 2q = 2n + 2m
+ 2 > n + 2m jmp's. Thus, for every j, exactly one of the
statements Ai,h, 1 --< j <-- 3, is a br. By (*), I is satisfiable.

Unfortunately, the operands in PI are not all simple
expressions. We must therefore show how to modify P1
to form a new program Qx which has only simple oper-
ands and which can be translated to have n + 2m jmp's
iff PI can.

One of the main functions of the enforcers in Pt is to
bind certain labels to fixed relative addresses in any
minimal length translation of Px. More precisely,

A given translation of Pt contains
exactly n + 2m jmp's iff label Yi is at

(***) relative address (4q + 10)(i - 1), 1
--< i _< n, and Aj,1 is at relative address
(4q + 10)n + (4q + 1 4) (j - 1), 1 -<
j < _ m .

The only operands appearing in PI which are not
simple occur in the statements labeled Ai,h. These oper-
ands are all of the form Aj,1 + Zi - Yi + c where c is
some integer constant. This can, of course, be written as
Zi + (AjA - Yi - c). Notice that the subexpression in
parentheses is absolute. By (***), this subexpression can
be replaced with the constant (4q + 10)(n + 1 - 0 + (4q
+ 14)(] - 1) ___ c. The resulting program is the desired
QI. It is easy to verify that properties a) through e) of
enforcers, as well as statements (*), (**), and (***), are
also true of Qt. Thus Q1 can be translated to contain n
+ 2m jmp's iff I is satisfiable.

In order to complete our proof, we must show how
to construct an enforcer having only simple expressions
as operands. Figure 8 shows an enforcer which explodes
to produce at least 2q jmp's in any legal translation in
which 3' produces other than k bytes of code. Observe
first that

1) If A1 is translated as a jmp, then BI must be too.
2) For 1 _< i < q, if B/is translated as ajmp, then Bi+x

must be too.
3) I f Bq is translated as a imp, then Aq must be too.
4) For 1 _< i < q, ifAi+x is translated as ajmp, then Ai

must be too.
Thus all of the Ai's and Bi's must be translated as jmp's
if any one of them is. Moreover, if either F or G is

Communications April 1978
of Volume 21
the ACM Number 4

Fig. 8. Constructing an enforcer.
E: ~,
F: jbr E + 256 + k
G: jbr E - 252 + k
At: jbr B2 + 250
BI: jbr F - 248
A2: jbr B3 + 250
B2: jbr B1 - 250

Ai" jbr Bi+l + 250
Bi" jbr Bi-1 - 250

Aq-l" j b r Bq + 250
Bq-l : j b r Bq-2 - 250
Aq: jbr C + 252
Bq: jbr Bq-1 - 250
C:

translated as a jmp, then B1 (and hence all the Ai's and
Bi's) m u s t be too.

Consider the statement "F: jbr E + 256 + k", which
we could just as well write as "F: jbr .-I~1 + 256 + k".
If I'/I < k, then k-I~'l + 256 > 256 and F must be
translated as a jmp thus triggering the required explosion.

Next consider the statement "G: jbr E - 252 + k",
which could just as well be written "G: jbr . -I Y l - f -
252 + k" w h e r e f i s the length of the code produced by
the statement F. Since f_> 2, if I~1 > k, then k-IYl - f
- 252 < - f - 252 <_ -254. This means that G must be
translated as a jmp and the enforcer must explode.

Hence any legal translation of the program fragment
in Figure 8 must contain at least 2q jmp's if lYl ~ k. We
leave to the reader the task of verifying that if there
exists a legal translation of this program fragment in
which I TI = k, then there exists a legal translation in
which every one of the jbr's shown is translated as a br. []

early draft of this paper. An algorithm similar to the one
presented in Section 2, but restricted to the case where
the operands of sdi's are labels only, has been independ-
ently discovered and implemented in the BLISS-11 com-
piler [8].

Received January, 1977; revised July, 1977

References
1. Aho, A.V, Hopcroft, J.E., and Ullman, J.D. The Design and
Analysis of Computer Algorithms. Addison-Wesley, Reading Mass.,
1974.
2. Cook, S.A. The complexity of theorem proving procedures. Proc.
3rd Annual ACM Syrup. on Theory of Comptng, May 1974, 151-158.
3. Frieder, G., and Saal, H.J. A process for the determination of
addresses in variable length addressing. Comm. ACM 19, 6 (June
1976), 335-338.
4. Karp, R.M. Reducibility among combinatorial problems. In
Complexity of Computer Computations, R. E. Miller and J. W.
Thatcher, Eds., Plenum Press, New York, 1972.
5. PDP-I 1 Processor Handbood. Digital Equipment Corp.,
Maynard, Mass., 1975.
6. Richards, D. L. How to keep the addresses short. Comm. A CM
14, 5 (May 1971), 346-349.
7. Ritchie, D.M., and Thompson, K. The UNIX time-sharing
system. Comm. ACM 17, 7 (July 1974), 365-375.
8. Wulf, W., Johnsson, R.K., Weinstock, C.B., Hobbs, S.O., and
Geschke, C.M. The Design of an Optimizing Compiler. American-
Elsevier, New York, 1975.

5. Summary

The problem of minimizing the length of programs
containing span-dependent instructions was considered.
An efficient algorithm was presented for minimizing the
length of programs all of whose span-dependent instruc-
tions were nonpathological and had simple operands.
Although it is possible to remove the restriction to simple
operands, the restriction to nonpathological instructions
is apparently essential. This was demonstrated by the
proof that the instruction length assignment problem for
programs with simple operands is NP-complete if path-
ological instructions are allowed.

Acknowledgments. Susan Graham, Mark Linton, and
the referees provided several helpful comments on an

308 Communications April 1978
of Volume 21
the ACM Number 4

